
Multivariable Calculus Homework #5

Replace this text with your name

Due: Replace this text with a due date

Exercise (16.1.19). If you have a CAS that plots vector fields (the command
is fieldplot in Maple and PlotVectorField or VectorPlot in Mathemat-
ica), use it to plot

F(x, y) = (y2 − 2xy)i + (3xy − 6x2)j.

Explain the appearance by finding the set of points (x, y) such that F(x, y) =
0.

Solution: Replace this text with your solution. �

Exercise (16.1.24). Find the gradient vector field of f(x, y, z) = x2yey/z.

Solution: Replace this text with your solution. �

Exercise (16.1.34). At time t = 1, a particle is located at position (1, 3). If
it moves in a velocity field

F(x, y) = 〈xy − 2, y2 − 10〉

find its approximate location at time t = 1.05.

Solution: Replace this text with your solution. �
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Exercise (16.2.34). A thin wire has the shape of the first-quadrant part
of the circle with center the origin and radius a. If the density function is
ρ(x, y) = kxy, find the mass and center of mass of the wire.

Solution: Replace this text with your solution. �

Exercise (16.2.41). Find the work done by the force field

F(x, y, z) = 〈x− y2, y − z2, z − x2〉

on a particle that moves along the line segment from (0, 0, 1) to (2, 1, 0).

Solution: Replace this text with your solution. �

Exercise (16.2.45). A 160-lb man carries a 25-lb can of paint up a helical
staircase that encircles a silo with a radius of 20 ft. If the silo is 90 ft high
and the man makes exactly three complete revolutions climbing to the top,
how much work is done by the man against gravity?

Solution: Replace this text with your solution. �

Exercise (16.2.50). If C is a smooth curve given by a vector function r(t),
a ≤ t ≤ b, show that ∫

C

r · dr =
1

2

[
|r(b)|2 − |r(a)|2

]
.

Solution: Replace this text with your solution. �

Exercise (16.2.52). Experiments show that a steady current I in a long wire
produces a magnetic field B that is tangent to any circle that lies in the plane
perpendicular to the wire and whose center is the axis of the wire (as in the
figure). Ampère’s Law relates the electric current to its magnetic effects and
states that ∫

C

B · dr = µ0I

where I is the net current that passes through any surface bounded by a
closed curve C, and µ0 is a constant called the permeability of free space.
By taking C to be a circle with radius r, show that the magnitude B = |B|
of the magnetic field at a distance r from the center of the wire is

B =
µ0I

2πr
.
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B

I current to its magnetic effects and states that

y
C
 B � dr − �0 I

  where I is the net current that passes through any surface 
bounded by a closed curve C, and �0 is a constant called the 
permeability of free space. By taking C to be a circle with 
radius r, show that the magnitude B − | B | of the magnetic
field at a distance r from the center of the wire is

B −
�0 I

2�r

Recall from Section 5.3 that Part 2 of the Fundamental Theorem of Calculus can be 
written as

1 yb

a
 F9sxd dx − Fsbd 2 Fsad 

where F9 is continuous on fa, bg. We also called Equation 1 the Net Change Theorem: 
The integral of a rate of change is the net change.

If we think of the gradient vector = f  of a function f  of two or three variables as a sort 
of derivative of f , then the following theorem can be regarded as a version of the Funda
mental Theorem for line integrals.

2   Theorem Let C be a smooth curve given by the vector function rstd,  
a < t < b. Let f  be a differentiable function of two or three variables whose 
gradient vector = f  is continuous on C. Then

y
C
 = f � dr − f srsbdd 2 f srsadd

0
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FIGURE 1

Note Theorem 2 says that we can evaluate the line integral of a conservative vec
tor field (the gradient vector field of the potential function f ) simply by knowing the 
value of f  at the endpoints of C. In fact, Theorem 2 says that the line integral of = f  is 
the net change in f. If f  is a function of two variables and C is a plane curve with initial 
point Asx1, y1d and terminal point Bsx2, y2d, as in Figure 1(a), then Theorem 2 becomes

y
C
 = f � dr − f sx2, y2d 2 f sx1, y1d

 If f  is a function of three variables and C is a space curve joining the point Asx1, y1, z1 d 
to the point Bsx2, y2, z2 d, as in Figure 1(b), then we have

y
C
 = f � dr − f sx2, y2, z2 d 2 f sx1, y1, z1 d

Let’s prove Theorem 2 for this case.
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Solution: Replace this text with your solution. �
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Exercise (16.3.20). Show that the line integral
∫
C

sin y dx+(x cos y−sin y) dy,
where C is any path from (2, 0) to (1, π), is independent of path and evaluate
the integral.

Solution: Replace this text with your solution. �

Exercise (16.3.29). Show that if the vector field F = P i + Qj + Rk is
conservative and P , Q, R have continuous first-order partial derivatives, then

∂P

∂y
=
∂Q

∂x

∂P

∂z
=
∂R

∂x

∂Q

∂z
=
∂R

∂y
.

Solution: Replace this text with your solution. �

Exercise (16.3.30). Use Exercise 16.3.29 to show that the line integral
∫
C
y dx+

x dy + xyz dz is not independent of path.

Solution: Replace this text with your solution. �

Exercise (16.3.34). Determine whether or not the set {(x, y) | (x, y) 6=
(2, 3)} is (a) open, (b) connected, and (c) simply-connected.

Solution: Replace this text with your solution. �

Exercise (16.3.35). Let F(x, y) =
−yi + xj

x2 + y2
.

(a) Show that ∂P/∂y = ∂Q/∂x.

(b) Show that
∫
C
F·dr is not independent of path. [Hint: Compute

∫
C1

F·dr
and

∫
C2

F · dr where C1 and C2 are the upper and lower halves of the

circle x2 + y2 = 1 from (1, 0) to (−1, 0).] Does this contradict Theorem
16.3.5?

Solution: Replace this text with your solution. �
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Exercise (16.3.34). Determine whether or not the set {(x, y) | (x, y) 6=
(2, 3)} is (a) open, (b) connected, and (c) simply-connected.

Solution: Replace this text with your solution. �
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Exercise (16.4.18). A particle starts at the origin, moves along the x-axis
to (5, 0), then along the quarter-circle x2 +y2 = 25, x ≥ 0, y ≥ 0 to the point
(0, 5), and then down the y-axis back to the origin. Use Green’s Theorem to
find the work done on this particle by the force field F(x, y) = 〈sinx, sin y +
xy2 + 1

3
x3〉.

Solution: Replace this text with your solution. �

Exercise (16.4.19). Use one of the formulas in Theorem 16.4.2 to find the
area under one arch of the cycloid x = t− sin t, y = 1− cos t.

Solution: Replace this text with your solution. �

Exercise (16.4.22). Let D be a region bounded by a simple closed path C
in the xy-plane. Use Green’s Theorem to prove that the coordinates of the
centroid (x̄, ȳ) of D are

x̄ =
1

2A

∮
C

x2 dy ȳ = − 1

2A

∮
C

y2 dx

where A is the area of D.

Solution: Replace this text with your solution. �

Exercise (16.4.29). If F(x, y) = (−yi+xj)/(x2+y2), show that
∫
C
F·dr = 2π

for every positively oriented simple closed path that encloses the origin.

Solution: Replace this text with your solution. �

Exercise (16.4.31). Use Green’s Theorem to prove the change of variables
formula for a double integral (Theorem 15.9.1) for the case where f(x, y) = 1:∫∫

R

dx dy =

∫∫
S

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv.
Here R is the region in the xy-plane that corresponds to the region S in the
uv-plane under the transformation given by x = g(u, v), y = h(u, v).

[Hint: Note that the left side is A(R) and apply the first part of Theorem
16.4.2. Convert the line integral over ∂R to a line integral over ∂S and apply
Green’s Theorem in the uv-plane.]

Solution: Replace this text with your solution. �
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Exercise (16.5.33). Use Green’s Theorem in the form of Theorem 16.5.5 to
prove Green’s first identity:∫∫

D

f∇2g dA =

∮
C

f(∇g) · n ds−
∫∫

D

∇f · ∇g dA

where D and C satisfy the hypotheses of Green’s Theorem and the appro-
priate partial derivatives of f and g exist and are continuous. (The quantity
∇g · n = Dng occurs in the line integral. This is the directional derivative
in the direction of the normal vector n and is called the normal derivative of
g.)

Solution: Replace this text with your solution. �

Exercise (16.5.34). Use Green’s first identity (Exercise 16.5.33) to prove
Green’s second identity:∫∫

D

(f∇2g − g∇2f) dA =

∮
C

(f∇g − g∇f) · n ds

where D and C satisfy the hypotheses of Green’s Theorem and the appro-
priate partial derivatives of f and g exist and are continuous.

Solution: Replace this text with your solution. �

Exercise (16.5.35). Recall from section 14.3 that a function g is called har-
monic on D if it satisfies Laplace’s equation, that is, ∇2g = 0 on D. Use
Green’s first identity (with the same hypotheses as in Exercise 16.5.33) to
show that if g is harmonic on D, then

∮
C
Dng ds = 0. Here Dng is the normal

derivative of g defined in Exercise 16.5.33.

Solution: Replace this text with your solution. �

Exercise (16.5.36). Use Green’s first identity to show that if f is harmonic
on D, and if f(x, y) = 0 on the boundary curve C, then

∫∫
D
|∇f |2 dA = 0.

(Assume the same hypotheses as in Exercise 16.5.33.)

Solution: Replace this text with your solution. �

Exercise (16.5.39). We have seen that all vector fields of the form F = ∇g
satisfy the equation curlF = 0 and that all vector fields of the form F =
curlG satisfy the equation divF = 0 (assuming continuity of the appropriate
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partial derivatives). This suggests the question: are there any equations that
all functions of the form f = divG must satisfy? Show that the answer to
this equation is “No” by proving that every continuous function f on R3 is
the divergence of some vector field.

[Hint: Let G(x, y, z) = 〈g(x, y, z), 0, 0〉, where g(x, y, z) =
∫ x

0
f(t, y, z) dt.]

Solution: Replace this text with your solution. �
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Exercise (16.6.34). Find an equation of the tangent place to the parametric
surface x = u2 + 1, y = v3 + 1, z = u+ v at the point (5, 2, 3).

Solution: Replace this text with your solution. �

Exercise (16.6.43). Find the area of the surface z = 2
3
(x3/2+y3/2), 0 ≤ x ≤ 1,

0 ≤ y ≤ 1.

Solution: Replace this text with your solution. �

Exercise (16.6.47). Find the area of the part of the paraboloid y = x2 + z2

that lies within the cylinder x2 + z2 = 16.

Solution: Replace this text with your solution. �

Exercise (16.6.49). Find the area of the surface with parametric equations
x = u2, y = uv, z = 1

2
v2, 0 ≤ u ≤ 1, 0 ≤ v ≤ 2.

Solution: Replace this text with your solution. �

Exercise (16.6.53). Find the area of the part of the surface z = ln(x2 +
y2 + 2) that lies above the disk x2 + y2 ≤ 1 correct to four decimal places by
expressing the area in terms of a single integral and using your calculator to
estimate the integral.

Solution: Replace this text with your solution. �
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Exercise (16.7.17). Evaluate the surface integral
∫∫

S
(x2z + y2z) dS where

S is the hemisphere x2 + y2 + z2 = 4, z ≥ 0.

Solution: Replace this text with your solution. �

Exercise (16.7.26). Evaluate the surface integral
∫∫

S
F · dS for the vector

field F(x, y, z) = yi−xj+2zk where S is the is the hemisphere x2+y2+z2 = 4,
z ≥ 0, oriented downward. In other words, find the flux of F across S.

Solution: Replace this text with your solution. �

Exercise (16.7.37). Find a formula for
∫∫

S
F·dS similar to the one in Remark

3 for the case where S is given by y = h(x, z) and n is the unit normal that
points toward the left.

Solution: Replace this text with your solution. �

Exercise (16.7.40). Find the mass of a thin funnel in the shape of a cone
z =

√
x2 + y2, 1 ≤ z ≤ 4, if its density function is ρ(x, y, z) = 10− z.

Solution: Replace this text with your solution. �

Exercise (16.7.46). Use Gauss’s Law to find the charge enclosed by the cube
with vertices (±1,±1,±1) if the electric field is

E(x, y, z) = xi + yj + zk.

Solution: Replace this text with your solution. �
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Exercise (16.8.1). A hemisphere H and a portion P of a paraboloid are
shown. Suppose F is a vector field on R3 whose components have continuous
partial derivatives. Explain why∫∫

H

curlF · dS =

∫∫
P

curlF · dS.

1139

 10.  Fsx, y, zd − 2y i 1 xz j 1 sx 1 yd k, C is the curve 
of intersection of the plane z − y 1 2 and the cylinder 
x 2 1 y 2 − 1

 11. (a)  Use Stokes’ Theorem to evaluate yC F ! dr, where

Fsx, y, zd − x 2z i 1 xy 2 j 1 z2 k

   and C is the curve of intersection of the plane 
x 1 y 1 z − 1 and the cylinder x 2 1 y 2 − 9, oriented 
counterclockwise as viewed from above.

 (b)  Graph both the plane and the cylinder with domains  
chosen so that you can see the curve C and the surface  
that you used in part (a).

 (c)  Find parametric equations for C and use them to  
graph C.

 12. (a)  Use Stokes’ Theorem to evaluate yC F ! dr, where 
Fsx, y, zd − x 2 y i 1 1

3 x 3 j 1 xy k and C is the curve of 
intersection of the hyperbolic paraboloid z − y 2 2 x 2 
and the cylinder x 2 1 y 2 − 1, oriented counterclock-
wise as viewed from above.

 (b)  Graph both the hyperbolic paraboloid and the cylinder 
with domains chosen so that you can see the curve C 
and the surface that you used in part (a).

 (c)  Find parametric equations for C and use them to  
graph C.

13–15 Verify that Stokes’ Theorem is true for the given vector  
!eld F and surface S.

 13.  Fsx, y, zd − 2y i 1 x j 2 2 k, 
S is the cone z 2 − x 2 1 y2, 0 < z < 4, oriented downward

 14.  Fsx, y, zd − 22yz i 1 y j 1 3x k, 
S is the part of the paraboloid z − 5 2 x 2 2 y 2 that lies 
above the plane z − 1, oriented upward

 15.  Fsx, y, zd − y i 1 z j 1 x k, 
S is the hemisphere x 2 1 y 2 1 z 2 − 1, y > 0, oriented in 
the direction of the positive y-axis

 16.  Let C be a simple closed smooth curve that lies in the plane 
x 1 y 1 z − 1. Show that the line integral

y
C
 z dx 2 2x dy 1 3y dz

   depends only on the area of the region enclosed by C and 
not on the shape of C or its location in the plane.

 17.  A particle moves along line segments from the origin to the 
points s1, 0, 0d, s1, 2, 1d, s0, 2, 1d, and back to the origin 
under the in"uence of the force !eld 

Fsx, y, zd − z 2 i 1 2xy j 1 4y 2 k

  Find the work done.

;

;

;

;

 1.  A hemisphere H and a portion P of a paraboloid are shown. 
Suppose F is a vector !eld on R3 whose components have 
continuous partial derivatives. Explain why

y
H

y curl F ! dS − y
P

y curl F ! dS

H

4

z

x y22

P

4

z

x y22

2–6 Use Stokes’ Theorem to evaluate yyS curl F ! dS.

 2.  Fsx, y, zd − x 2 sin z i 1 y 2 j 1 xy k, 
S is the part of the paraboloid z − 1 2 x 2 2 y 2 that lies 
above the xy-plane, oriented upward

 3.  Fsx, y, zd − ze y i 1 x cos y j 1 xz sin y k, 
S is the hemisphere x 2 1 y 2 1 z 2 − 16, y > 0, oriented in 
the direction of the positive y-axis

 4.  Fsx, y, zd − tan21sx 2 yz2d i 1 x 2y j 1 x 2z2 k,
   S is the cone x − sy 2 1 z2 , 0 < x < 2, oriented in the 

direction of the positive x-axis

 5.  Fsx, y, zd − xyz i 1 xy j 1 x 2 yz k, 
S consists of the top and the four sides (but not the bottom)  
of the cube with vertices s61, 61, 61d, oriented outward

 6.  Fsx, y, zd − e xy i 1 e xz j 1 x 2z k, 
S is the half of the ellipsoid 4x 2 1 y 2 1 4z 2 − 4 that lies to  
the right of the xz-plane, oriented in the direction of the 
positive y-axis

7–10 Use Stokes’ Theorem to evaluate yC F ! dr. In each case C 
is oriented counterclockwise as viewed from above.

 7.  Fsx, y, zd − sx 1 y 2 d i 1 sy 1 z2 d j 1 sz 1 x 2 d k,   
C is the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1)

 8.  Fsx, y, zd − i 1 sx 1 yzd j 1 sxy 2 sz d k,   
C is the boundary of the part of the plane 3x 1 2y 1 z − 1  
in the !rst octant

 9.  Fsx, y, zd − xy i 1 yz j 1 zx k, C is the boundary of the 
part of the paraboloid z − 1 2 x 2 2 y 2 in the !rst octant

 SECTION 16.8  Stokes’ Theorem 
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Solution: Replace this text with your solution. �

Exercise (16.8.7). Use Stokes’ Theorem to evaluate
∫
C
F·dr where F(x, y, z) =

(x+ y2)i + (y + z2)j + (z + x2)k and C is the triangle with vertices (1, 0, 0),
(0, 1, 0), and (0, 0, 1) oriented counterclockwise as viewed from above.

Solution: Replace this text with your solution. �

Exercise (16.8.13). Verify that Stokes’ Theorem is true for the vector field
F(x, y, z) = −yi + xj − 2k, where S is the cone z2 = x2 + y2, 0 ≤ z ≤ 4,
oriented downward.

Solution: Replace this text with your solution. �

Exercise (16.8.16). Let C be a simple closed smooth curve that lies in the
plane x+ y + z = 1. Show that the line integral∫

C

z dx− 2x dy + 3y dz

depends only on the area of the region enclosed by C and not on the shape
of C or its location in the plane.
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Solution: Replace this text with your solution. �

Exercise (16.8.19). If S is a sphere and F satisfies the hypotheses of Stokes’
Theorem, show that

∫∫
S

curlF · dS = 0.

Solution: Replace this text with your solution. �
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Exercise (16.9.18). Let F(x, y, z) = z tan−1(y2)i+ z3 ln(x2 + 1)j+ zk. Find
the flux of F across the part of the paraboloid x2 + y2 + z = 2 that lies above
the plane z = 1 and is oriented upward.

Solution: Replace this text with your solution. �

Exercise (16.9.24). Use the Divergence Theorem to evaluate∫∫
S

(2x+ 2y + z2) dS

where S is the sphere x2 + y2 + z2 = 1.

Solution: Replace this text with your solution. �

Exercise (16.9.25). Prove the identity∫∫
S

a · n dS = 0,

where a is a constant vector, assuming that S satisfies the conditions of the
Divergence Theorem and the components of the vector field have continuous
second-order partial derivatives.

Solution: Replace this text with your solution. �

Exercise (16.9.31). Suppose S and E satisfy the conditions of the Divergence
Theorem and f is a scalar function with continuous partial derivatives. Prove
that ∫∫

S

fn dS =

∫∫∫
E

∇f dV.

These surfaces and triple integrals of vector functions are vectors defined by
integrating each component function.
[Hint: Start by applying the Divergence Theorem to F = fc, where c is an
arbitrary constant vector.]

Solution: Replace this text with your solution. �

Exercise (16.9.32). A solid occupies a region E with surface S and is im-
mersed in a liquid with constant density ρ. We set up a coordinate system so
that the xy-plane coincides with the surface of the liquid, and positive values
of z are measured downward into the liquid. Then the pressure at depth z
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is p = ρgz, where g is the acceleration due to gravity (see Section 8.3). The
total buoyant force on the solid due to the pressure distribution is given by
the surface integral

F = −
∫∫

S

ρn dS

where n is the outer unit normal. Use the result of Exercise 16.9.31 to show
that F = −Wk, where W is the weight of the liquid displaced by the solid.
(Note that F is directed upward because z is directed downward.) The result
is Archimedes’ Principle: The buoyant force on an object equals the weight
of the displaced liquid.

Solution: Replace this text with your solution. �
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