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Chapter 1

Functions and Models

1.1 Four Ways to Represent a Function

Definition 1.1.1. A function f is a rule that assigns to each element x in a
set D exactly one element, called f(x), in a set E. The set D is called the
domain of the function. The number f(z) is the value of f at z. The set of all
possible values of f(x) as x varies throughout the domain is called the range.
A symbol that represents a number in the domain of a function f is called an
independent variable. A symbol that represents a number in the range of f is
called a dependent variable.

Definition 1.1.2. If f is a function with domain D, then its graph is the set
of ordered pairs

{(z, f(x)) |z € D}.

Example 1. The graph of a function f is shown in the figure. 5

(a) Find the values of f(1) and f(5).

(b) What are the domain and range of f?7 0




Calculus - 1.1 Four Ways to Represent a Function

Example 2. Sketch the graph and find the domain and range of each function.

(a) fla) =221

fla+h)— f(a)
- :

Example 3. If f(z) = 22? — 52 + 1 and h # 0, evaluate



Calculus - 1.1 Four Ways to Represent a Function

Example 4. When you turn on a hot-water faucet, the temperature 7' of the
water depends on how long the water has been running. Draw a rough graph
of T as a function of the time t that has elapsed since the faucet was turned
on.

Example 5. A rectangular storage container with an open top has a volume
of 10 m®. The length of its base is twice its width. Material for the base costs
$10 per square meter; material for the sides costs $6 per square meter. Express
the cost of materials as a function of the width of the base.



Calculus - 1.1 Four Ways to Represent a Function

Example 6. Find the domain of each function.

(a) f(x)=+x+2

Theorem 1.1.1 (Vertical Line Test). A curve in the xy-plane is the graph of
a function of x if and only if no vertical line intersects the curve more than
once.

Definition 1.1.3. Piecewise defined functions are defined by different formu-
las in different parts of their domains.

Example 7. A function f is defined by

Fla) = {12—1' if v < —1,

T if x > —1.

Evaluate f(—2), f(—1), and f(0) and sketch the graph.



Calculus - 1.1 Four Ways to Represent a Function

Definition 1.1.4. The absolute value of a number a, denoted by |al, is the
distance from a to 0 on the real number line.

a ifa>0,
la| = .
—a ifa<O.

Example 8. Sketch the graph of the absolute value function f(z) = |z|.

Example 9. Find a formula for the function f graphed in the Vi
figure.
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Example 10. The cost C(w) of mailing a large envelope with c
weight w is a piecewise defined function because, from the table
of values representing the function, 1.50 ¢
w (ounces) | C(w) (dollars) 100 |
0<w<1 0.98
T<w<?2 1.19 050l
2<w<3 1.40
3<w<A4 1.61
. . 0 1

we have )
098 if0<w<1,

119 if1<w <2,
C(w)=4{140 if2<w<3,
161 if3<w <4,

\

The graph is shown in the figure.

Remark 1. Functions similar to the one in the previous example
are called step functions.

Definition 1.1.5. If a function f satisfies f(—x) = f(x) for every number z
in its domain, then f is called an even function.

Remark 2. The function f(z) = z? is even because
f(=2) = (-2)* = 2" = f(z).

Definition 1.1.6. If a function f satisfies f(—z) = —f(x) for every number
x in its domain, then f is called an odd function.

Remark 3. The function f(z) = 2% is odd because
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Example 11. Determine whether each of the following functions is even, odd,
or neither even nor odd.

(a) f(z)=a°+x

(b) gla) =1—a*

(c) h(z) =2z — 2?

Definition 1.1.7. A function f is called increasing on an interval [ if
flz1) < f(x2) whenever 1 < x5 in I.
It is called decreasing on I if

f(z1) > f(x2) whenever 1 < x5 in I.
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1.2 Mathematical Models

Definition 1.2.1. We say y is a linear function of z if the graph of the function
is a line. The slope-intercept form of the equation of can be used to write a
formula for the function as

y=f(x)=mzx+b
where m is the slope of the line and b is the y-intercept.

Example 1. (a) Asdry air moves upward, it expands and cools. If the ground
temperature is 20°C and the temperature at a height of 1 km is 10°C,
express the temperature 7' (in °C) as a function of the height A (in kilo-
meters), assuming that a linear model is appropriate.

(b) Draw the graph of the function in part (a). What does the slope represent?

(c) What is the temperature at a height of 2.5 km?
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Definition 1.2.2. An empirical model is a model based entirely on collected

data.

Example 2. The table lists the average carbon dioxide
level in the atmosphere, measured in parts per million
at Mauna Loa Observatory from 1980 to 2012. Use the
data in the table to find a model for the carbon dioxide
level.

Year QOQ level Year QOQ level

(in ppm) (in ppm)
1980 338.7 1998 366.5
1982 341.2 2000 369.4
1984 344.4 2002 373.2
1986 347.2 2004 377.5
1988 351.5 2006 381.9
1990 354.2 2008 385.6
1992 356.3 2010 389.9
1994 358.6 2012 393.8
1996 362.4




Calculus - 1.2 Mathematical Models

Example 3. Use the linear model from the previous example to estimate the
average COs level for 1987 and to predict the level for the year 2020. According
to this model, when will the CO, level exceed 420 parts per million?

Definition 1.2.3. A function P is called a polynomial if
P(2) = ap2™ + ap12™ ' 4 -+ agx® + a1 + ag

where n is a nonnegative integer and the numbers ag, a1, as, ..., a, are con-
stants called the coefficients of the polynomial. If the leading coefficient a,, # 0,
then the degree of the polynomial is n.

Remark 1. The function
2
P(x) =225 — 2* + g:cg +V2

is a polynomial of degree 6.

Remark 2. A polynomial of degree 1 is of the form P(z) = mx + b and so it is
a linear function. A polynomial of degree 2 is of the form P(z) = az? +bx +c
and is called a quadratic function. A polynomial of degree 3 is of the form
P(z) = ax® + bx? + cx + d and is called a cubic function.

10
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Example 4. A ball is dropped from the upper observation deck
of the CN Tower, 450 m above the ground, and its height h above
the ground is recorded at 1-second intervals in the table. Find a
model to fit the data and use the model to predict the time at
which the ball hits the ground.

Time Height
(seconds) | (meters)
0 450
445
431
408
375
332
279
216
143
61

O| 0| J| O U =] W[ DO —

Definition 1.2.4. A function of the form f(z) = x%, where a
is a constant, is called a power function. If a = n, where n is a
positive integer, f(z) = 2™ is a polynomial. If a = 1/n, where
n is a positive integer, f(x) = z'/™ = /T is a root function. If
a=—1, f(x) = 27! = 1/z is a reciprocal function, as shown in
the figure.

Definition 1.2.5. A rational function f is a ratio of two polynomials:

where P and @) are polynomials.

(- I
| |

Remark 3. The function \j: :u
I
22 — 22+ 1 | 20 !
fla) =2 ]
x?—4 70 ;

| 2 X
is a rational function with domain {x | z # £2} and is graphed | |
in the figure. | |
| |

11
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Definition 1.2.6. A function f is called an algebraic function if it can be
constructed using algebraic operations (such as addition, subtraction, multi-
plication, division, and taking roots) starting with polynomials.

Remark 4. The functions

F0) = VERT gl = S 4 -V

are algebraic.

Definition 1.2.7. Trigonometric functions are functions of an angle that re-
late the angles of a triangle to the lengths of its sides.

Remark 5. The sine, cosine, and tangent functions are the most familiar
trigonometric functions. The convention in calculus is that radian measure
is always used, unless otherwise indicated.

Remark 6. For all values of x, we have
—1<sinzx <1 —1<cosx <1,

or equivalently,
|sinz| <1 |cosz| < 1.

Also, the periodic nature of these functions implies that
sin(xz + 27) = sinx cos(x + 2m) = cosx

for all values of z.
1 ?

Example 5. What is the domain of the function f(x) = T 9eonn’
—2cosw

12
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Definition 1.2.8. Exponential functions are functions of the form f(x) = ",

where the base b is a positive constant.

Definition 1.2.9. Logarithmic functions are functions of the form f(z) =
log, x, where the base b is a positive constant.

Remark 7. Logarithmic functions are inverse functions of exponential func-
tions.

Example 6. Classify the following functions as one of the types of functions
that we have discussed.

(a) f(z)=5"
(b) g(x) =2°
14+

(d) u(t)=1—1t+ 5t

13
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1.3 New Functions from Old Functions

Remark 1 (Vertical and Horizontal Shifts). Suppose ¢ > 0. To obtain the

= f(x) + ¢, shift the graph of y = f(z) a distance ¢ units upward

= f(z) — ¢, shift the graph of y = f(x) a distance ¢ units downward

y = f(x — ¢), shift the graph of y = f(z) a distance ¢ units to the right
( ()

y = f(z + c), shift the graph of y = f(z) a distance ¢ units to the left

Remark 2 (Vertical and Horizontal Stretching and Reflecting). Suppose ¢ > 1.
To obtain the graph of
y = cf(x), stretch the graph of y = f(z) vertically by a factor of ¢
y = (1/¢) f(x), shrink the graph of y = f(x) vertically by a factor of ¢
y = f(cx), shrink the graph of y = f(x) horizontally by a factor of ¢
= f(z/c), stretch the graph of y = f(x) horizontally by a factor of ¢
y = —f(x), reflect the graph of y = f(z) about the z-axis
y = f(—x), reflect the graph of y = f(z) about the y-axis

Example 1. Given the graph of y = /x, use transformations to graph y =

VT =2,y=Vr—=2y=—r,y=2/r,and y = V~z.

14
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Example 2. Sketch the graph of the function f(r) = 2? + 6x + 10.

Example 3. Sketch the graphs of the following functions.

(a) y = sin 2z

(b) y=1—sinx

15
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Example 4. The figure shows graphs of the number of hours of daylight as
functions of time of the year at several latitudes. Given that Philadelphia is
located at approximately 40°N latitude, find a function that models the length
of daylight at Philadelphia.

20
18 \c\
16 —0=
PAERRRN
14 s \0\\\
L
12
—o—  20°N
Hours 10 %M 30°N
\\0 400N
8 < 50°N
6 60°N
4
2

Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

16



Calculus - 1.3 New Functions from Old Functions

Example 5. Sketch the graph of the function y = |22 — 1|.

Definition 1.3.1. The sum and difference functions are defined by

(f+9)(@) = f(x) +9(z)  (f—9)(@) = f(x) - g(z).
Similarly, the product and quotient functions are defined by
U@ = 1@t (D)@ =10 ) 20

Definition 1.3.2. Given two functions f and g, the composite function f o g
(also called the composition of f and g) is defined by

(f o g)(x) = fg(x)).

Example 6. If f(z) = 2? and g(x) = x — 3, find the composite functions fog
and go f.

17
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Example 7. If f(z) = /z and g(z) = v/2 — x, find each of the following
functions and their domains.

(a) fog

(d) gog

Example 8. Find fogohif f(z) =z/(z+1), g(z) = 2'° and h(z) = x + 3.

Example 9. Given F(z) = cos?(z + 9), find functions f, g, and h such that
F=/fogoh.

18
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1.4 Exponential Functions

Theorem 1.4.1 (Laws of Exponents). If a and b are positive numbers and x
and y are any real numbers, then

T

b
L. b" Y = bp*bY 2.0V = w 3. (b%)Y = b™ 4. (ab)® = a™b"
Example 1. Sketch the graph of the function y = 3 — 2* and determine its
domain and range.

Example 2. Use a graphing calculator to compare the exponential function
f(z) = 2% and the power function g(z) = x?. Which function grows more

quickly when x is large?

Example 3. The half-life of strontium-90, %Sr, is 25 years. This means that
half of any given quantity of *°Sr will disintegrate in 25 years.

(a) If a sample of °Sr has a mass of 24 mg, find an expression for the mass
m(t) that remains after ¢ years.

19



Calculus - 1.4 Exponential Functions

(b) Find the mass remaining after 40 years, correct to the nearest milligram.

(c) Use a graphing calculator to graph m(t) and use the graph to estimate
the time required for the mass to be reduced to 5 mg.

Definition 1.4.1. We call the function f(z) = e* the natural exponential
function where e is the value of b in y = b resulting in a tangent line at (0, 1)
with slope 1.

Example 4. Graph the function y = %e ¥ — 1 and state the domain and

range.

Example 5. Use a graphing device to find the values of x for which e* >
1,000, 000.

20
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1.5 Inverse Functions and Logarithms

Definition 1.5.1. A function is a one-to-one function if it never takes on the
same value twice; that is,

fx1) # f(xe) whenever x; # xs.

Theorem 1.5.1 (Horizontal Line Test). A function is one-to-one if and only
if no horizontal line intersects its graph more than once.
3

Example 1. Is the function f(z) = x* one-to-one?

Example 2. Is the function g(x) = 22 one-to-one?

Definition 1.5.2. Let f be a one-to-one function with domain A and range
B. Then its inverse function f~! has domain B and range A and is defined by

Ty =z f(z)=y

for any y in B.
Example 3. If f(1) =5, f(3) =7, and f(8) = —10, find f~1(7), f~1(5), and
71 (=10).

Remark 1. The letter z is traditionally used as the independent variable, so
when we concentrate on f~! we usually reverse the roles of x and y to get

fTi@) =y e fly) ==
By substituting for x and y, we get the following cancellation equations:

' (f(x)) =2 forevery x in A
f(fY(z))=x forevery zin B

21
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Example 4. Find the inverse function of f(x) = 2 + 2.

Remark 2. The graph of f~! is obtained by reflecting the graph of f about
the line y = .

Example 5. Sketch the graphs of f(z) = v/—1 — 2 and its inverse function
using the same coordinate axes.

Definition 1.5.3. The logarithmic function with base b, denoted by log,, is
the inverse function of the exponential function f(x) = b* with b > 0 and
b+#1,ie.,

log,z =y < b’ = x.
Remark 3. By the cancellation equations,

log,(b°) =« for every z € R

bosv® = ¢ for every z > 0.

Theorem 1.5.2 (Laws of Logarithms). If x and y are positive numbers, then

1. log,(xy) = log, x + log, y
x

2. logb <—) = 10gb$ - 1Ogby
Yy

3. log,(x") = rlog, x (where r is any real number)

Example 6. Use the laws of logarithms to evaluate log, 80 — log, 5.

22
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Definition 1.5.4. The logarithm with base e is called the natural logarithm
and is denoted by

log,z =Inz.

Example 7. Find z if Inx = 5.

Example 8. Solve the equation *~3* = 10.

Example 9. Express Ina + %ln b as a single logarithm.

Theorem 1.5.3 (Change of Base Formula). For any positive numberb (b # 1),
we have

| Inx
og, r = —-.
8 Inb
Proof. Let y =log, x. Then
b =x
ylnb=1Inz
Inx
= —. O
Y= o

Example 10. Evaluate logg 5 correct to six decimal places.

23
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Example 11. Sketch the graph of the function y = In(z — 2) — 1.

Definition 1.5.5. The inverse sine function or arcsine function, denoted by
sin™!, is the inverse of the sine function on the restricted domain [~ /2, 7/2].

Remark 4. By the cancellation equations,

7T T
sin~'(sinz) =2 for — 5 <z< 5
sin(sin'z) =2 for —1 <z <1,

Example 12. Evaluate (a) sin™'(3) and (b) tan (arcsin §).

Definition 1.5.6. The inverse cosine function or arccosine function, denoted
by cos™!, is the inverse of the cosine function on the restricted domain [0, 7].

Remark 5. By the cancellation equations,

cos H(cosx)=x for0<z<n

cos(cos 'w)=x for —1 <z <1,

Definition 1.5.7. The inverse tangent function or arctangent function, de-
noted by tan!, is the inverse of the tangent function on the restricted domain

[—7/2,7/2].

24
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Example 13. Simplify the expression cos(tan™! z).

Remark 6. The remaining inverse trigonometric functions are

y=csc 'z (Jz|>1) <= cscy=2 and ye€ (0,7/2 U (rm,37/2]
y=sec 'z (Jz|>1) <= secy=z and y€[0,7/2)U]n,31/2)
y=cot 'z (Jr]€R) <= coty=z and ye€ (0,7).

25



Chapter 2

Limits and Derivatives

2.1 The Tangent and Velocity Problems

Remark 1. A tangent to a curve is a line that that touches the curve. A secant
is a line that cuts a curve more than once.

Example 1. Find an equation of the tangent line to the parabola y = 22 at
the point P(1,1).

26



Calculus - 2.1 The Tangent and Velocity Problems

Example 2. The flash unit on a camera operates by storing
charge on a capacitor and releasing it suddenly when the flash is
set off. The data in the table describe the charge () remaining on
the capacitor (measured in microcoulombs) at time ¢ (measured
in seconds after the flash goes off). Use the data to draw the
graph of this function and estimate the slope of the tangent line
at the point where ¢t = 0.04. [Note: The slope of the tangent line
represents the electric current flowing from the capacitor to the
flash bulb (measured in microamperes).]

27

t Q
0.00 | 100.0
0.02 | 81.87
0.04 | 67.03
0.06 | 54.88
0.08 | 44.93
0.10 | 36.76




Calculus - 2.1 The Tangent and Velocity Problems

Example 3. Suppose that a ball is dropped from the upper observation deck
of the CN Tower in Toronto, 450 m above the ground. Find the velocity of
the ball after 5 seconds. [If the distance fallen after ¢ seconds is denoted by
s(t) and measured in meters, then Galileo’s law that the distance fallen by any
freely falling body is proportional to the square of the time it has been falling
is expressed by the equation s(t) = 4.9¢2 ]

28
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2.2 The Limit of a Function

Definition 2.2.1. Suppose f(x) is defined when z is near the number a. Then
we write

lim f(z) =L

Tr—a

if we can make the values of f(z) arbitrarily close to L by restricting = to be
sufficiently close to a but not equal to a.

—1
Example 1. Guess the value of lim $2 .
r—1 4 — 1

Ve +9 -3
Example 2. Estimate the value of PH& ——; .
—

sin x

Example 3. Guess the value of lim
x—0 I

29



Calculus - 2.2 The Limit of a Function

s
Example 4. Investigate lim sin —.
z—0 x

5
Example 5. Find glclg(l) <x3 + fg,SOOxO)

Definition 2.2.2. We write

lim f(z)=1L

r—a~

if we can make the values of f(x) arbitrarily close to L by taking z to be
sufficiently close to a with = less than a. Similarly, if we require that = be

greater than a, we write
lim f(x)= L.

z—a™t

Example 6. Investigate the limit as ¢ approaches 0 of the Heaviside function

H, defined by
0 ift<O
Hit)=1{, 107
1 ift>0.

30



Calculus - 2.2 The Limit of a Function

Remark 1. lim f(z) = L if and only if lim f(z) = L and lim f(x) = L.

r—a T—a~ z—at

Example 7. Use the graph of g to state the values (if they exist)

y
of the following: 4t
3<>
(a) lim g() (b) lim g(z) T =g
T2~ z—2+ T /—O\
1<' L]
o 1 2 3 4 5 =
(c) lim g() (d) lim g(z)
(e) lim g() (f) lim g()

Definition 2.2.3. Let f be a function defined on both sides of a, except
possibly at a itself. Then

lim f(x) = o0

means that the values of f(x) can be made arbitrarily large by taking x suffi-
ciently close to a, but not equal to a. Similarly,

lim f(z) = —o0

r—a

means that the values of f(z) can be made arbitrarily large negative by taking
x sufficiently close to a, but not equal to a.

1
Example 8. Find lim — if it exists.
z—0 I
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Definition 2.2.4. The vertical line x = a is called a vertical asymptote of
the curve y = f(x) if at least one of the following statements is true:

lim f(z) = o0 lim f(z) =00 lim f(z) = o0
T—a T—a~ r—at
lim f(z) = —oc0 lim f(z) = —o0 lim f(z) = —o0
T—a T—a— rz—at
. . . 2z
Example 9. Find lim and lim .
=3t T — =3~ T —

Example 10. Find the vertical asymptotes of f(z) = tanx.
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2.3 Calculating Limits Using the Limit Laws

Theorem 2.3.1 (Limit Laws). Suppose that ¢ is a constant and the limits

lim f(x) and lim g(x)

T—a T—a

exist. Then

1 T (@) + g(x)] = lim f(z) + lim ()

Tr—a T—ra

2. im[f(z) — g(z)] = lim f(z) — lim g(z)

Tr—a r—a r—a

3. lim[ef(x)] = C};IECIL f(z)

r—ra

4. lim[f(2)g(x)] = lim f() - lim g(a)

r—ra r—a T—a

lim f(x)

Example 1. Use the Limit Laws and the graphs of f and g to
evaluate the following limits, if they exist.

(a) Jim [£(x) + 5g(x)

(b) im[f(z)g(z)]

rz—1

-

(z)

r—2 g :L‘)

—~
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Calculus - 2.3 Calculating Limits Using the Limit Laws

Theorem 2.3.2 (Power and Root Laws). By repeatedly applying the Product
Law and using some basic intuition we obtain the following:

Tr—a

6. lim[f(x)]" = {lim f(a:)} where n is a positive integer

7. limec=c
r—a

8 limz=a
r—a

n

9. limx"™ =a where n is a positive integer

Tr—a

10. lim /z = {/a where n is a positive integer

r—a
(If n is even, we assume that a > 0.)

11. lim {/f(z) = p/lim f(x where n s a positive integer
T—a

Tr—a

r—a

{Ifn is even, we assume that lim f(x) > 0.

Example 2. Evaluate the following limits and justify each step.

. 2
(a) JICIE)I})(Z.I 3z +4)

o422 —1
) i, TR
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Theorem 2.3.3 (Direct Substitution Property). If f is a polynomial or a
rational function and a is in the domain of f, then

lim f(2) = f(a).

Tr—a

) oot -1
Example 3. Find lim :

rz—1 ;{,‘—1

Remark 1. If f(z) = g(x) when x # a, then lim f(x) = lim g(z), provided the
Tr—a

r—a
limits exist.

Example 4. Find lirri g(z) where
r—r

g(x):{x+1 if x # 1,

T ifz=1.

. h)* -9
Example 5. Evaluate lim .
h—0 h
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Calculus - 2.3 Calculating Limits Using the Limit Laws

Example 6. Find lim t+—9_3

t—0 t2

Example 7. Show that 1in(1] |z| = 0.
x—

x
Example 8. Prove that lim u does not exist.
z—0 I

Example 9. If

f(m):{\/m—él if v > 4,

8 —2¢x ifx<4.

determine whether lirri f(x) exists.
T—r
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Example 10. The greatest integer function is defined by [z] = the largest
integer that is less than or equal to z. (For instance, [4] = 4, [4.8] = 4,
[7] =3, [V2] =1, [-3] = —1.) Show that lir%[[x]] does not exist.

z—

Theorem 2.3.4. If f(z) < g(x) when x is near a (except possibly at a) and
the limits of f and g both exist as x approaches a, then

lim f(z) < lim g(x).

Tr—ra T—a

Theorem 2.3.5 (The Squeeze Theorem). If f(z) < g(z) < h(z) when x is
near a (except possibly at a) and

lim f(z) = limh(z) = L

Tr—a Tr—a

then
lim g(z) = L.

r—a

1
Example 11. Show that lim 22 sin — = 0.
z—0 xT
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2.4 The Precise Definition of a Limit

Definition 2.4.1. Let f be a function defined on some open interval that
contains the number a, except possibly at a itself. Then we write

lim f(z) =L

Tr—a
if for every number € > 0 there is a number § > 0 such that
if 0<|z—a|l<d  then If(z) — L| <e.

Example 1. Use a graph to find a number  such that if x is within ¢ of 1,
then f(z) = 2® — 5z + 6 is within 0.2 of 2.
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Calculus - 2.4 The Precise Definition of a Limit

Example 2. Prove that lirr%(élw —-5)=".
z—

Definition 2.4.2.
lim f(z)=1L

Tr—a
if for every number € > 0 there is a number 6 > 0 such that
if a—d<z<a then |f(x) — L] <e.
Similarly,
lim f(x) =1L
r—a™t

if for every number € > 0 there is a number § > 0 such that

if a<zx<a+d  then |f(z) = L| <e.
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Example 3. Prove that lim /z = 0.

z—0t

Example 4. Prove that lin% 2 =09.
T—r
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Definition 2.4.3. Let f be a function defined on some open interval that
contains the number a, except possibly at a itself. Then

li =

lim f(z) = o0
means that for every positive number M there is a positive number § such

that
if 0<|z—a|<d  then f(z) > M.

Similarly,
lim f(z) = —o0

Tr—a

means that for every negative number N there is a positive number § such
that
if 0<|z—al<o  then f(z) < N.

1
Example 5. Prove that lim — = oo.
z—0 1
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2.5 Continuity

Definition 2.5.1. A function f is continuous at a number a if

lim f(x) = f(a).

We say that f is discontinuous at a (or f has a discontinuity at a) if f is not

continuous at a.

Example 1. Use the graph of the function f to determine the
numbers at which f is discontinuous.

(@) fla) = T2
.

) f@) =42 "7
1 ifx=0
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Calculus - 2.5 Continuity

?—x—-2 |
© f@)={ w2 17
1 ifx=2

Definition 2.5.2. A function f is continuous from the right at a number «a if
lim_ f(x) = f(a)
T—a
and f is continuous from the left at a if
lim f(z) = f(a)
r—a

Example 3. In which direction(s) is the function f(z) = [z] continuous?

Definition 2.5.3. A function f is continuous on an interval if it is continuous
at every number in the interval. (If f is defined only on one side of an endpoint
of the interval, we understand continuous at the endpoint to mean continuous
from the right or continuous from the left.)
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Calculus - 2.5 Continuity

Example 4. Show that the function f(z) = 1—+/1 — 2?2 is continuous on the
interval [—1, 1].

Theorem 2.5.1. If f and g are continuous at a and ¢ is a constant, then the
following functions are also continuous at a:

1. f+g 2. f—g 3. cf
4 fg 5 gz'fgm) £0

Proof. All of these results follow from the Limit Laws. For example, f + g is
continuous at a because
lim (f + g)(z) = lim[f(z) + g(x)]
r—a Tr—a
= lim f(x) + lim g(z)
Tr—a r—a
= f(a) +g(a)
= (f+9)(a). O

Theorem 2.5.2. (a) Any polynomial is continuous everywhere; that is, it is
continuous on R = (—o00, 00).

(b) Any rational function is continuous wherever it is defined; that is, it is
continuous on its domain.

Proof. (a) Let
P(z) = cpz™ +cp1a" '+t am+ g

be a polynomial where cg, ¢y, ..., c, are constants. Then

m

limz™ =a
r—ra

m=12,...,n

implies that the function f(z) = 2™ is continuous. Since

lim Co = Cp,
z—a
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Calculus - 2.5 Continuity

the constant function is continuous as well, and therefore the product
function g(x) = cz™ is continuous. Since P is a sum of functions of this
form, it is continuous as well.

(b) Rational functions are quotients of polynomials, i.e.,

P(x)

f(@) = ;

W= 0w
where P and () are polynomials. Thus the above result implies that they
are continuous on their domains. O]

3 2 2 1
Example 5. Find lim H—a:
r——2 5 -3z

Theorem 2.5.3. The following types of functions are continuous at every
number in their domains:
e polynomaials e rational functions e 7root functions
e trigonometric functions e inverse trigonometric functions
e cxponential functions e logarithmic functions
Inz +tan~'x

Example 6. Where is the function f(x) = — =1 continuous?
x j—

Example 7. Evaluate lim e
z—7m 2 4+ cosx
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Calculus - 2.5 Continuity

Theorem 2.5.4. If f is continuous at b and lim g(x) = b, then lim f(g(x)) =

Tr—a Tr—a
f(b), i.e.,

ti f(9(0) = £ (1 g(o))

Proof. Let € > 0. Since f is continuous at b, we have lim,_,;, f(y) = f(b) and
so there exists §; > 0 such that

if 0<|y—10] <o then |f(y) — f(b)] <e.
Since lim,_,, g(z) = b, there exists § > 0 such that
if 0<|r—al<é then lg(x) —b] < 4.

By letting y = g(z) in the first statement, we get that 0 < |z — a| < ¢ implies
that | f(g(z)) — f(b)] <&, ie., lim, ., f(g(x)) = f(D). O

1—
Example 8. Evaluate lim arcsin ( 1 \/5)

r—1 —

Theorem 2.5.5. If g is continuous at a and f is continuous at g(a), then the
composite function f o g given by (f o g)(xz) = f(g(x)) is continuous at a.

Proof. Since g is continuous at a, we have
lim g(z) = g(a).
T—a

Since f is continuous at g(a), we have

lim f(g(x)) = f (lim g(I)> = f(g(a)),

T—ra r—ra

which means f o g is continuous. O]
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Calculus - 2.5 Continuity

Example 9. Where are the following functions continuous?

(a) h(z) = sin(z?)

(b) F(x)=1In(1+ cosz)

Theorem 2.5.6 (Intermediate Value Theorem). Suppose that f is continuous
on the closed interval |a,b] and let N be any number between f(a) and f(b),
where f(a) # f(b). Then there exists a number c in (a,b) such that f(c) = N.

Example 10. Show that there is a root of the equation 423 — 622 +32x -2 =0
between 1 and 2.
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2.6 Limits at Infinity

Definition 2.6.1. Let f be a function defined on some interval (a,c0). Then

lim f(z) =L

T—00

means that the values of f(x) can be made arbitrarily close to L by requiring
x to be sufficiently large.

Definition 2.6.2. Let f be a function defined on some interval (—oo, a). Then

lim f(z)=1L

T—r—00

means that the values of f(x) can be made arbitrarily close to L by requiring
x to be sufficiently large negative.

Definition 2.6.3. The line y = L is called a horizontal asymptote of the
curve y = f(z) if either

lim f(x)=1L or lim f(z)=L.

T—r00 T—r—00

Example 1. Find the infinite limits, limits at infinity, and &

asymptotes for the function f whose graph is shown. |

1
Example 2. Find lim — and lim -.
T—00 I T——00 I
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Calculus - 2.6 Limits at Infinity

Theorem 2.6.1. If r > 0 is a rational number, then

If r > 0 is a rational number such that x" is defined for all x, then

1
lim — =0.

z——o0 T

Proof. By extending the limit laws to limits at infinity we get

lim i = lim {1} = [lim 1} =0"=0
rz—o0 T r—o0 | 21

T—00 I
1 1" 1"
lim — = lim [—] = [ lim —] =0"=0.
z——oo0 T r——00 | T T——00 I

Example 3. Evaluate
o 3 —ax—2
lim ———.
a—oo b + 4w + 1
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Example 4. Find the horizontal and vertical asymptotes of the graph of the
function
202 + 1

fo) =55
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Example 5. Compute lim (v22 + 1 — z).

T—00

1
Example 6. Evaluate lim arctan( )
r—21 xr—2

Example 7. Evaluate lim e'/.
z—0~

Example 8. Evaluate lim sinz.
Tr—00
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Example 9. Find lim 23 and lim 23

T—r00 Tr—r—00

Example 10. Find lim (2 — z).

T—r00

2
Example 11. Find lim v

z—00 3 — X

Example 12. Sketch the graph of y = (z — 2)*(z + 1)*(x — 1) by finding its
intercepts and its limits as * — oo and as * — —o0.
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Calculus - 2.6 Limits at Infinity

Definition 2.6.4. Let f be a function defined on some interval (a,oc0). Then

lim f(z) =L

T—00

means that for every € > 0 there is a corresponding number N such that
if >N then |f(z) —L| <e.
Definition 2.6.5. Let f be a function defined on some interval (—o0, a). Then

lim f(z)=1L

T—r—00

means that for every € > 0 there is a corresponding number N such that
if <N then |f(z) = L| <e.
Example 13. Use a graph to find a number N such that

32 —x—2

—— — 0.6
522 +4x +1

if >N then < 0.1.

1
Example 14. Prove that lim — = 0.

T—00 I
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Definition 2.6.6. Let f be a function defined on some interval (a, o). Then

Jim /() =00

means that for every positive number M there is a corresponding positive
number N such that

it >N then f(z) > M.
Definition 2.6.7. Let f be a function defined on some interval (a,c0). Then

lim f(z) = —o0

T—00

means that for every negative number M there is a corresponding positive
number N such that

if >N  then f(z) < M.

Definition 2.6.8. Let f be a function defined on some interval (—oo, a). Then

lim f(z) =00

T—r—00

means that for every positive number M there is a corresponding negative
number N such that

if x<N  then f(z) > M.

Definition 2.6.9. Let f be a function defined on some interval (—oo, a). Then

lim f(z)=—o0

T—r—00

means that for every negative number M there is a corresponding negative
number N such that

if <N  then f(z) < M.
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2.7 Derivatives and Rates of Change

Definition 2.7.1. The tangent line to the curve y = f(x) at the point
P(a, f(a)) is the line through P with slope

@)~ ()

T—a Tr—a
provided that this limit exists.

Example 1. Find an equation of the tangent line to the parabola y = 22 at
the point P(1,1).

Example 2. Use the alternative expression for the slope of a tangent line

e h) = f(@)

h—0 h

to find an equation of the tangent line to the hyperbola y = 3/z at the point
(3,1).
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Calculus - 2.7 Derivatives and Rates of Change

Definition 2.7.2. A function f describing the motion of an object along a
straight line is called a position function and has velocity

fla+h) - f(a)
h

o0 = f

at time ¢t = a.

Example 3. Suppose that a ball is dropped from the upper observation deck
of the CN Tower, 450 m above the ground. Recall that the distance (in meters)
fallen after ¢ seconds is 4.9¢2.

(a) What is the velocity of the ball after 5 seconds?

(b) How fast is the ball traveling when it hits the ground?
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Calculus - 2.7 Derivatives and Rates of Change

Definition 2.7.3. The derivative of a function f at a number a, denoted by

f'(a) is
o) = i ot D= S10)
or equivalently
) — 1 L8 =@

T—a Tr—a

if this limit exists.

Example 4. Find the derivative of the function f(z) = z? — 8z + 9 at the
number a.

Example 5. Find an equation of the tangent line to the parabola y = 22 —
8z + 9 at the point (3, —6).
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Calculus - 2.7 Derivatives and Rates of Change

Definition 2.7.4. Suppose y is a quantity that depends on another quantity
x. Then y is a function of x and we write y = f(x). If x changes from x; to
xg, then the change in z (also called the increment of x) is

AT =29 — 11
and the corresponding change in vy is
Ay = f(z2) — f(21).

The average rate of change of y with respect x over the interval [z, 25| is

& _ flx2) = f(=)

Az To — T1

and the instantaneous rate of change of y with respect to z is

lim ~Z = lim Jlrs) = ()
Az—0 Ax  z2—a Ty — T1

= f'(x).

Example 6. A manufacturer produces bolts of a fabric with a fixed width.
The cost of producing z yards of this fabric is C' = f(z) dollars.
(a) What is the meaning of the derivative of f/(x)? What are its units?

(b) In practical terms, what does it mean to say that f’(1000) = 97

(c) Which do you think is greater, f'(50) or f’(500)7 What about f’(5000)7
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Calculus - 2.7 Derivatives and Rates of Change

Example 7. Let D(t) be the US national debt at time t. The

table gives approximate values of this function by providing end t D)
: s 1985 | 1945.9

of year estimates, in billions of dollars, from 1985 to 2010. In-

terpret and estimate the value of D’(2000). 1990 | 33648
1995 | 4988.7
2000 | 5662.2
2005 | 81704
2010 | 14,025.2

Source: US Dept. of the Treasury
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2.8 The Derivative as a Function

Definition 2.8.1. The derivative of a function f is the function

o) — i L) = @)

h—0 h

if this limit exists.

Example 1. The graph of a function f is given. Use it to sketch

the graph of the derivative f’. Y= )

Example 2. (a) If f(z) = 2% — z, find a formula for f'(x).

(b) Hlustrate this formula by comparing the graphs of f and f’.
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Calculus - 2.8 The Derivative as a Function

Example 3. If f(z) = \/x, find the derivative of f. State the domain of f’.

1—=x
24 x

Example 4. Find f'if f(x) =

Definition 2.8.2. The symbols D and d/dx are called differentiation opera-
tors and are used as follows:

, LAy dy df d
= = ]_ —_— = = =
flz)=y reo Az dr dx dSBf

(r) = Df(x) = Dof ().

For fixed a, we use the notation

dy
dr|,_

dy

dr ], _

a a

Definition 2.8.3. A function f is differentiable at a if f'(a) exists. It is dif-
ferentiable on an open interval (a,b) [or (a,00) or (—o0,a) or (—oo,00)] if it
is differentiable at every number in the interval.
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Example 5. Where is the function f(x) = |z| differentiable?
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Calculus - 2.8 The Derivative as a Function

Theorem 2.8.1. If f is differentiable at a, then f is continuous at a.

Proof. 1f f is differentiable at a, we have

tinlf (o) = f(o)] = i T =L
el
= f'(a)-0=0.

Therefore,

lim f(z) = lim[f(a) + (f(z) = f(a))]
= lim f(a) + lim[f(2) — f(a)]
= f(a) +0 = f(a). -

Definition 2.8.4. If the derivative f’ of a function f has a derivative of its
own we call it the second derivative of f and denote it by

o d (dy\  dy
(f)—f—a(a)—@

Example 6. If f(x) = 2% — z, find and interpret f”(z).

Definition 2.8.5. The instantaneous rate of change of velocity with respect
to time is called the acceleration a(t) of an object. It is the derivative of the
velocity function, and therefore the second derivative of the position function:

a(t) =v'(t) = s"(t).
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Calculus - 2.8 The Derivative as a Function

Definition 2.8.6. The third derivative f”’ is the derivative of the second
derivative, denoted by

(f//)/ — f/,/-

Definition 2.8.7. The instantaneous rate of change of acceleration with re-
spect to time is called the jerk j(t) of an object. It is the derivative of the
acceleration function, and therefore the third derivative of the position func-
tion:

J(t) = d'(t) = v"(t) = s"(1).

Definition 2.8.8. The fourth derivative f” is usually denoted by f®*. In
general, the nth derivative of f is denoted by f™ and is obtained from f by
differentiating n times. If y = f(x), we write

d™y
(n) — £(n) — g
Y fre) =2

Example 7. If f(z) = 2% — z, find f”(z) and f¥(z).
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Chapter 3

Differentiation Rules

3.1 Derivatives of Polynomials and Exponen-
tials

Theorem 3.1.1. The derivative of a constant function f(x) = c is 0, i.e.,

%(c) =0.
Proof.
o) =gy PRI i S oo
Theorem 3.1.2.
%(m) =1 %(:ﬁ) = 2x %(wg) = 32° di;(le) = 423

Proof. All of these follow directly from the definition of the derivative, as
above. O

Theorem 3.1.3 (The Power Rule). If n is a positive integer, then

d

%(x”) =nz" L.

Proof. Since

" — " = (x_a)(xnfl+$n72a+_”+xanf2+an71>’
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Calculus - 3.1 Derivatives of Polynomials and Exponentials

we have
f'(a) = lim Jw) = fla) — lim = —¢
z—a T —a z—a T — a
=lim(z" '+ 2" Pa+ - +xa" 2 +a")
r—a

:an—l+an—2a+.._+aan—2+an

— anfl 4 anfl N _'_anfl + anfl
= na" L. m
Example 1. Find the derivative of each of the following:
(a) f(z) =a®
(b) y = 21000
() y=t'
(d) f(r) =17

Theorem 3.1.4 (The Power Rule (General Version)). If n is any real number,
then

d%;(x”) =na" 1
Example 2. Differentiate:
(a) f(z) = —
(b) y = Va?

Definition 3.1.1. The normal line to a curve C at a point P is the line
through P that is perpendicular to the tangent line at P.
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Example 3. Find equations of the tangent line and normal line to the curve
y = x/x at the point (1,1).

Theorem 3.1.5 (The Constant Multiple Rule). If ¢ is a constant and f is a
differentiable function, then

d d
lef@)) = e f (@)

Proof. Let g(z) = c¢f(x). Then

g/(l‘) - llzlir(l) h h—0
lime {f(x +h) - f(x)]
h—0 h
o Fah) = f(@)
h—0 h

= cf'(z). O
Example 4. Find:
d o4
(2) = (32)

Theorem 3.1.6 (The Sum Rule). If f and g are both differentiable, then

d d

1)+ 9()) = - f(@) + gla).
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Proof. Let F(x) = f(z) + g(z). Then

F(z +h) — F()

O

_ iy @)+ g(@ + h)] — [f(z) + g(2)]

h—0 h
=1 flx+h)— f(z)  glx+h)—g(x)

h—0 h h

Fath) —f@) . gleth) - o)

- h—0 h + ,llli% h
= F@) + (@) .

Theorem 3.1.7 (The Difference Rule). If f and g are both differentiable, then

d

[ d
dx

() — 9(a)] = - fa) — g(a).

d
Example 5. Find d—(:z:8 + 1225 — 42* 4+ 1023 — 62 + 5).
T

Example 6. Find the points on the curve y = 2* — 62% 4+ 4 where the tangent
line is horizontal.
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Example 7. The equation of motion of a particle is s = 2t3 — 5t? + 3t + 4,
where s is measured in centimeters and ¢ in seconds. Find the acceleration as
a function of time. What is the acceleration after 2 seconds?

h
-1
Definition 3.1.2. e is the number such that lim ¢ =1.
h—0 h
Th 3.1.8 d ) r
eorem 3.1.8. — (&%) = €*.
dx

Example 8. If f(z) =" — x, find f" and f”.

Example 9. At what point on the curve y = e” is the tangent line parallel to
the line y = 2x7?
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Calculus - 3.2 The Product and Quotient Rules

3.2 The Product and Quotient Rules

Theorem 3.2.1 (The Product Rule). If f and g are both differentiable, then

d d d

—f(@)g(@)] = f(2) 7 lg(2)] + g(z) [ f(2)].

Proof. By the definition of the derivative on the product,

1)) = iy L D) = ()
i JG g+ ) = (o Bg(a) + G+ gla) — F()g(e)
h—0
. flet+h)gle+h)— fle+h)glx) . flz+h)glz)— flx)g(r)
= i h + 2
oy SRl ) = g@)] | 9@l h) = ()

h—0 h h—0 h

+ oo iy £

L gz +h)—g(z)
B EA s —

= /(@) 5 lo()] + glo) )] 0

Example 1. (a) If f(x) = ze®, find f'(x).

(b) Find the nth derivative, f™(z).
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Calculus - 3.2 The Product and Quotient Rules

Example 2. Differentiate the function f(t) = v/t(a + bt).

Example 3. If f(z) = /xzg(x), where g(4) = 2 and ¢'(4) = 3, find f'(4).

Theorem 3.2.2 (The Quotient Rule). If f and g are differentiable, then

4 [ ()7 ()] - f<x>d%[g<x>y

l9(x)]?

Proof. Similar to the Product Rule, except we add and subtract f(x)g(z) in
the numerator when applying the definition of the derivative. m
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Calculus - 3.2 The Product and Quotient Rules

4+ x—2

e Find /.

Example 4. Let y =

Example 5. Find an equation of the tangent line to the curve y = e*/(1+ x?)
at the point (1, 3e).
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Calculus - 3.3 Derivatives of Trigonometric Functions

3.3 Derivatives of Trigonometric Functions

Theorem 3.3.1. The deriwative of the sine function is the cosine function,
1.€.,

—(sinx) = cosz.

dx

2

Example 1. Differentiate y = z°sin x.

Theorem 3.3.2. The derivative of the cosine function is the negative sine

function, 1i.e.,
d .
—(cosz) = —sinz.

dx

Theorem 3.3.3. The deriwative of the tangent function is the square of the
secant function, i.e.,

— (tanz) = sec? .
dm( )

Proof. By the Quotient Rule,

i(tanx) = i sinz
dx "~ dx \cosx

COs T (sinz) — sin T (cosx)

cos? x
CoS T - cos T — sinz(—sin x)

cos? x
2 . 9
Ccos“x +sm“x
cos? x

1
= 5— = sec? x. O
cos? x
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Calculus - 3.3 Derivatives of Trigonometric Functions

Theorem 3.3.4. The derivatives of the trigonometric functions are

e (sinx) = cosx e (cscx) = —cscxcotx
d d
%(COS xr) = —sinx %(sec x) =secxtanw
%(tan r) = sec’ x %(cot r) = —csc?x.
secx

Example 2. Differentiate f(x) . For what values of = does the

B 14+ tanx
graph of f have a horizontal tangent?

Example 3. An object at the end of a vertical spring is stretched to
4 cm beyond its reset position and released at time ¢ = 0. (See the
figure and note that the downward direction is positive.) Its position

at time ¢ is
s = f(t) =4cost.

Find the velocity and acceleration at time ¢ and use them to analyze the motion
of the object.
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Calculus - 3.3 Derivatives of Trigonometric Functions

Example 4. Find the 27th derivative of cos x.

in7
Example 5. Find lim ey
x—0 4.T

Example 6. Calculate hII(l) x cot x.
T—

5



Calculus - 3.4 The Chain Rule

3.4 The Chain Rule

Theorem 3.4.1 (The Chain Rule). If g is differentiable at x and f is differen-
tiable at g(x), then the composite function F' = fog defined by F(x) = f(g(x))
is differentiable at x and F' is given by the product

F'(z) = f(9(x)) - §'(z).
Example 1. Find F'(z) if F(z) = V2% + 1.

2

Example 2. Differentiate (a) y = sin(2?) and (b) y = sin® z.
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Calculus - 3.4 The Chain Rule

Theorem 3.4.2 (The Power Rule Combined with the Chain Rule). If n is
any real number and u = g(z) is differentiable, then

a4
dx

du
n n—1

Example 3. Differentiate y = (23 — 1)1%.

1

Example 4. Find f'(z) if f(z) = \?/?—1—1
R

Example 5. Find the derivative of the function

g(t) = (ztt;ﬁl)g
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Calculus - 3.4 The Chain Rule

Example 6. Differentiate y = (2z + 1)°(z® — z + 1)%.

Example 7. Differentiate y = 5%,

Theorem 3.4.3. The derivative of the exponential function is

d
—(b") = b"Inb.
d:L‘< ) "

Proof. Since

)

b = (elnb)a} _ e(lnb)az

the Chain Rule gives

d d
(b)) = — (Inbd)x
oo (b)) = - (e"7)
d
_ (lnb):p%(lnb)aj
_ e(lnb)z .Inbd
=b"Inb.
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Calculus - 3.4 The Chain Rule

d
E le 8. Find —(2%).
xample in dx( )

Example 9. Find f'(z) if f(z) = sin(cos(tanx)).

Example 10. Differentiate y = es¢%.
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Calculus - 3.5 Implicit Differentiation

3.5 Implicit Differentiation

Definition 3.5.1. Implicit differentiation is the method of differentiation both
sides of an equation with respect to x, and then solving the equation for 3/
when y = f(x).

dy

Example 1. (a) If 22 4+ y* = 25, find T
T

(b) Find an equation of the tangent to the circle 22 + y*> = 25 at the point
(3,4).
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Calculus - 3.5 Implicit Differentiation

Example 2. (a) Find ¢/ if 23 + y3 = 6xy.

(b) Find the tangent to the folium of Descartes x® + y> = 6xy at the point
(3,3).

(c) At what point in the first quadrant is the tangent line horizontal?
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Calculus - 3.5 Implicit Differentiation

Example 3. Find ¢/ if sin(z + y) = y? cos z.

Example 4. Find " if 2* + y* = 16.
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Calculus - 3.5 Implicit Differentiation

Theorem 3.5.1. The derivative of the arcsine function is

1
V1—22

%(sin_l x) =

Proof. Since y = sin"'z means siny = x and —7/2 < y < 7/2, we have
cosy > 0. Thus we can differentiate to obtain

siny =x
dy ]
cosy—— =
Yir
dy 1
dr  cosy
B 1
1 —sin?y
1
S — O
V1—a?
Theorem 3.5.2. The derwative of the arctangent function is
1
—(tan"' ) = .
dx< an”" ) 1+ a2
Proof. If y = tan~! z, then tany = z. Differentiating then gives us
tany =z
dy
2
-7 1
sec”y -
dy 1
dr  sec?y
B 1
1+ tan’y
1
= ) O
1422
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Calculus - 3.5 Implicit Differentiation

Example 5. Differentiate

(b) f(x) = xarctan /x.

Theorem 3.5.3. The derivatives of the Inverse Trigonometric Functions are

i(sirf1 x) = L i(cso’1 x) = IR
dz V1= a2 dz  a/rP—1
d 1 d 1
&N A= &Y e
d . 1 d . 1
—(t — — (cot _

x( ) 1+ a2 d:v(co 7) 1+ a2
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Calculus - 3.5 Implicit Differentiation

Theorem 3.5.4. Suppose f is a one-to-one differentiable function and its
inverse function f~1 is also differentiable. Then f~' has derivative

provided that the denominator is not 0.

Proof. Since (f o f~1)(x) = x, we have, by the chain rule,

(fofz)=2
(fof)(@)=1
U@ (@) =1
—1y/ o 1
(') = =) a

Example 6. If f(4) =5 and f'(4) = 2, find (f71)'(5).
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Calculus - 3.6 Derivatives of Logarithmic Functions

3.6 Derivatives of Logarithmic Functions

Theorem 3.6.1. The derivative of the logarithm function is

1
xlnb

d
%(logb T) =

Proof. Let y = log, x. Then b¥ = x, so by differentiating we get

==z
by(lnb);l—z =1
@_ 1
dr  bInb
1
 zlnd

Theorem 3.6.2. The derivative of the natural logarithm s
d 1
—(1 =—.
dx( nz) x

Example 1. Differentiate y = In(x3 + 1).

d
Example 2. Find d—ln(sin x).
T
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Calculus - 3.6 Derivatives of Logarithmic Functions

Example 3. Differentiate f(z) = vInz.

Example 4. Differentiate f(z) = log;(2 + sinx).

z+1

Vi —2

Example 5. Find i In
dx

Example 6. Find f'(z) if f(z) = In|z|.
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Calculus - 3.6 Derivatives of Logarithmic Functions

Definition 3.6.1. Logarithmic differentiation is the method of calculating
derivatives of functions by taking logarithms, differentiating implicitly, and
then solving the resulting equation for the derivative.

/422 + 1

Example 7. Differentiate y = Bz +2)
x

Theorem 3.6.3 (The Power Rule). If n is any real number and f(x) = z",
then
f'(x) = na" .

Proof. Let y = 2™. By logarithmic differentiation we get
y=a"
Infy| = In|z["
=nln|z| x#0

y'
Y
Y



Calculus - 3.7 Derivatives of Logarithmic Functions

Example 8. Differentiate y = zV*.

Theorem 3.6.4. The number e can be defined as the limit

1 n
e = lim (1 + —) .
n—oo n

Proof. If f(x) =Inz, then f'(1) =1, so

f(+h) = f(1) f(+x) - f(1)

! . . o .
== =
In(1 —1Inl 1

= lim n(l+a)—ln = lim — In(1 + )
z—0 x z—=0 T

= limIn(1 + 2)"/% = 1.
z—0

Thus
lim In(14x)/= z
e=c¢ = e(ﬁo ) ) = lim ™+ = lim (1 + )"/

x—0 z—0

Then if we let n = 1/x, n — oo as x — 0T, so we are done.
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Calculus - 3.7 Rates of Change in the Sciences

3.7 Rates of Change in the Sciences

Example 1. The position of a particle is given by the equation
s=f(t) =13 —6t>+ 9t

where ¢ is measured in seconds and s in meters.

(a) Find the velocity at time ¢.

(b) What is the velocity after 2 s? After 4 s?

(c) When is the particle at rest?

(d) When is the particle moving forward (that is, in the positive direction)?
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Calculus - 3.7 Rates of Change in the Sciences

(e) Draw a diagram to represent the motion of the particle.

(f) Find the total distance traveled by the particle during the first five seconds.

(g) Find the acceleration at time ¢ and after 4 s.

(h) Graph the position, velocity, and acceleration functions for 0 < ¢ < 5.
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Calculus - 3.7 Rates of Change in the Sciences

(i) When is the particle speeding up? When is it slowing down?

Example 2. If a rod or piece of wire is homogeneous, then its linear density is
uniform and is defined as the mass per unit length (p = m/l) and measured in
kilograms per meter. Suppose, however, that the rod is not homogeneous but
that its mass measured from its left end to a point z is m = f(x), as shown
in the figure.

| x |

[ [ [

“ ~ J xl xz

This part of the rod has mass f(x).

In this case the average density is the average rate of change over a given
interval, and the linear density is the limit of these average densities.

If m = f(z) = /x, where z is measured in meters and m in kilograms, find
the average density of the part of the rod given by 1 < x < 1.2 and the density
at v = 1.
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Calculus - 3.7 Rates of Change in the Sciences

Example 3. The average current during a time interval is the average rate
of change of the net charge over that interval, and the current at a given time
is the limit of the average current (the rate at which charge flows through a
surface, measured in units of charge per unit time). The quantity of charge
@ in coulombs (C) that has passed through a point in a wire up to time ¢
(measured in seconds) is given by Q(t) = 3 — 2t> + 6t + 2. [The unit of current
is an ampere (1 A =1 C/s).] Find the current when

(a) t=0.5s

(b) t=1s.

At what time is the current lowest?
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Calculus - 3.7 Rates of Change in the Sciences

Example 4. The concentration of a reactant A is the number of moles (1
mole = 6.022 x 10?* molecules) per liter and is denoted by [A] for a chemical
reaction

A+B— C.

The average rate of reaction during a time interval is the average rate of
change of the concentration of the product [C] over that interval, and the rate
of reaction at a given time is the limit of the average rate of reaction.

If one molecule of a product C is formed from one molecule of a reactant A
and one molecule of a reactant B, and the initial concentrations of A and B
have a common value [A] = [B] = a moles/L, then

B a’kt
- akt+1

€]

where k is a constant.

(a) Find the rate of reaction at time t.

(b) Show that if x = [C], then

94



Calculus - 3.7 Rates of Change in the Sciences

(c) What happens to the concentration as t — 0o?

(d) What happens to the rate of reaction as t — co?

(e) What do the results of parts (c¢) and (d) mean in practical terms?
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Calculus - 3.7 Rates of Change in the Sciences

Example 5. If a given substance is kept a constant temperature, then the
rate of change of its volume V' with respect to its pressure P is the derivative
dV/dP. The compressibility is defined by

1dv
isothermal compressibility = § = VP

The volume V (in cubic meters) of a sample of air at 25°C was found to be
related to the pressure P (in kilopascals) by the equation

2.3
V= o

Determine the compressibility when P = 50 kPa.

Example 6. Let n = f(¢) be the number of individuals in an animal or plant
population at time ¢t. The average rate of growth during a time period is the
average rate of change of the growth of the population over that time period,
and the rate of growth at a given time is the limit of the average rate of
growth.

Suppose that a population of bacteria doubles every hour. The population
function representing the bacteria’s growth can be found to be

n = ng2!

where ng is the initial population and the time ¢ is measured in hours.
Find the rate of growth for a colony of bacteria with an initial population
no = 100 after 4 hours.
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Calculus - 3.7 Rates of Change in the Sciences

Example 7. The shape of a blood vessel can be modeled by a cylindrical tube
with radius R and length [ as illustrated in the figure.

_\L__jIE_I’”___{_,_—\—’ ________
] ——
/ —7—

[

—

The relationship between the velocity v of the blood and the distance r from
the axis is given by the law of laminar flow

P

_ e o
v—4nl(R %)

where 7 is the viscosity of the blood and P is the pressure difference between
the ends of the tube. If P and [ are constant, then v is a function of r with
domain [0, R]. The velocity gradient at a given time is the limit of the average
rate of change of the velocity.

For one of the smaller human arteries we can take n = 0.027, R = 0.008 cm,
[ =2 cm, and P = 4000 dynes/cm?. Find the speed at which blood is flowing
at 7 = 0.002 and find the velocity gradient at that point.
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Calculus - 3.7 Rates of Change in the Sciences

Example 8. Suppose C(x) is the total cost that a company incurs in produc-
ing x units of a certain commodity. The function C' is called a cost function.
The instantaneous rate of change of cost with respect to the number of items
produced, called the marginal cost, is the limit of the average rate of change
of the cost.

Suppose a company has estimated that the cost (in dollars) of producing x
items is

C(x) = 10,000 4 5z + 0.012>.

Find the marginal cost at the production level of 500 items and compare it to
the actual cost of producing the 501st item.

98



Calculus - 3.8 Exponential Growth and Decay

3.8 Exponential Growth and Decay

Definition 3.8.1. The equation

dy _

s
ar Y

is called the law of natural growth (if £ > 0) or the law of natural decay (if
k < 0). It is called a differential equation because it involves an unknown
function y and its derivative dy/dt.

Theorem 3.8.1. The only solutions of the differential equation dy/dt = ky
are the exponential functions

y(t) = y(0)e™.
Definition 3.8.2. If P(t) is the size of a population at time ¢, then

_1dP

P=—
P dt

is the growth rate divided by population, called the relative growth rate.

Example 1. Use the fact that the world population was 2560 million in 1950
and 3040 million in 1960 to model the population of the world in the second
half of the 20th century. (Assume that the growth rate is proportional to the
population size.) What is the relative growth rate? Use the model to estimate
the world population in 1993 and to predict the population in the year 2020.
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Calculus - 3.8 Exponential Growth and Decay

Definition 3.8.3. If m(¢) is the mass remaining from an initial mass my of a
substance after time ¢, then the relative decay rate is

1 dm

m dt’
It follows that the mass decays exponentially according to the equation
m(t) = mee™,

where the rate of decay is expressed in terms of half-life, the time required for
half of any given quantity to decay.

Example 2. The half-life of radium-226 is 1590 years.

(a) A sample of radium-226 has a mass of 100 mg. Find a formula for the
mass of the sample that remains after ¢ years.

(b) Find the mass after 1000 years correct to the nearest milligram.

(c) When will the mass be reduced to 30 mg?
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Calculus - 3.8 Exponential Growth and Decay

Example 3. Newton’s Law of Cooling can be represented as a differential

equation T

E =k (T Ts)u
where T is the temperature of the object at time ¢ and T is the temperature
of the surroundings. The exponential function y(t) = y(0)e** is a solution to
this differential equation when y(t) = T'(t) — Ts.
A bottle of soda pop at room temperature (72°F) is placed in a refrigerator
where the temperature is 44°F. After half an hour the soda pop has cooled to
61°F.

(a) What is the temperature of the soda pop after another half hour?

(b) How long does it take for the soda pop to cool to 50°F?

101



Calculus - 3.8 Exponential Growth and Decay

Example 4. In general, if an amount Ay is invested at an interest rate r, then
after t years it is worth Ag(1 + r)’. Usually, however, interest is compounded
more frequently, say, n times a year. Then in each compounding period the
interest rate is r/n and there are nt compounding periods in ¢ years, so the

value of the investment is .
r
4 (1 N _) |
n

Therefore, taking limits gives us the amount after ¢ years as
A(t) = Age™

when interest is continuously compounded. Determine the value of an invest-
ment of $1000 after 3 years of continuously compounding 6% interest. Com-
pare this to the value of the same investment compounded annually instead.
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3.9 Related Rates

Example 1. Air is being pumped into a spherical balloon so that its volume
increases at a rate of 100 cm?/s. How fast is the radius of the balloon increasing
when the diameter is 50 cm?
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Calculus - 3.9 Related Rates

Example 2. A ladder 10 ft long rests against a vertical wall. If the bottom
of the ladder slides away from the wall at a rate of 1 ft/s, how fast is the top
of the ladder sliding down the wall when the bottom of the ladder is 6 ft from
the wall?
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Calculus - 3.9 Related Rates

Example 3. A water tank has the shape of an inverted circular cone with
base radius 2 m and height 4 m. If water is being pumped into the tank at
a rate of 2 m®/min, find the rate at which the water level is rising when the
water is 3 m deep.
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Calculus - 3.9 Related Rates

Example 4. Car A is traveling west at 50 mi/h and car B is traveling north
at 60 mi/h. Both are headed for the intersection of the two roads. At what
rate are the cars approaching each other when car A is 0.3 mi and car B is 0.4
mi from the intersection?
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Calculus - 3.9 Related Rates

Example 5. A man walks along a straight path at a speed of 4 ft/s. A
searchlight is located on the ground 20 ft from the path and is kept focused
on the man. At what rate is the searchlight rotating when the man is 15 ft
from the point on the path closest to the searchlight?

107



Calculus - 3.10 Linear Approximations and Differentials

3.10 Linear Approximations and Differentials

Definition 3.10.1. The approximation

f(z) = fa) + f'(a)(z — a)

is called the linear approximation or tangent line approximation of f at a. The
linear function whose graph is this tangent line, that is,

L(z) = f(a) + f'(a)(z — a)

is called the linearization of f at a.

Example 1. Find the linearization of the function f(x) = vz +3ata =1 and
use it to approximate the numbers v/3.98 and v/4.05. Are these approximations
overestimates or underestimates?
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Calculus - 3.10 Linear Approximations and Differentials

Example 2. For what values of x is the linear approximation

7
\/l’+3%1+£

accurate to within 0.57 What about accuracy to within 0.17

Definition 3.10.2. If y = f(z), where f is a differentiable func-
tion, then the differential dx is an independent variable; that is,

dx can be given the value of any real number. The differential

dy is then defined in terms of dz by the equation

dy = f'(x)dz.
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Example 3. Compare the values Ay and dy if y = f(z) = 2 +2* — 2z + 1
and z changes

(a) from 2 to 2.05

(b) from 2 to 2.01.

Example 4. The radius of a sphere was measured and found to be 21 cm with
a possible error in measurement of at most 0.05 cm. What is the maximum
error in using this value of the radius to compute the volume of the sphere?
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3.11 Hyperbolic Functions

Definition 3.11.1. Functions that have the same relationship to the hyper-
bola that trigonometric functions have to the circle are called hyperbolic func-
tions and are defined as follows

et —e "t 1
sinhy = ——— cschx =
2 sinh z
et +e” 1
coshy = ——— sechx =
2 cosh x
sinh x cosh x
tanhz = cothx = — .
cosh z sinh x

Theorem 3.11.1 (Hyperbolic Identities).

sinh(—z) = —sinhz cosh(—z) = cosh
cosh? z — sinh®z = 1 1 — tanh?*z = sech?
sinh(x + y) = sinh z cosh y + cosh x sinh y
cosh(z + y) = cosh z cosh y + sinh z sinh .

Example 1. Prove

(a) cosh?z —sinh?z =1

(b) 1 — tanh®2 = sech® z.
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Theorem 3.11.2 (Derivatives of Hyperbolic Functions).

%(sinh x) = coshx E(csch x) = —cschx cothz
%(cosh x) =sinhx %(sech r) = —sechztanhz
— (tanh ) = sech? —(cothz) = — csch® z.
o (tanh z) = sech” z o (coth z) csch™ x

d
Example 2. Find d—(cosh V).
T

Theorem 3.11.3 (Inverse Hyperbolic Functions).

sinh ™'z = In(z + Va2 + 1) reR

cosh™ o = In(z + Va2 — 1) x>1
1 1

tanh 'z = ~In T —l<z<l.
2 11—z

Example 3. Show that sinh ™'z = In(z + /22 + 1).
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Theorem 3.11.4 (Derivatives of Inverse Hyperbolic Functions).

—(sinh ™' 2) = 1 i(csch_1 x) = SN S
dx V14 g2 dx |z[va? + 1
d 1 d 1
—(cosh™ z) = ——— —(sech™'2) = ————n
dm(COS x) —— dx(sec x) T
d 1 d 1

%(tanh x) = T %(coth x) = Tl

Example 4. Prove that i(sinh_1 x) = !
ple 4. o i

d
Example 5. Find d—[tanh_l(sin x)].
T
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Chapter 4

Applications of Differentiation

4.1 Maximum and Minimum Values

Definition 4.1.1. Let ¢ be a number in the domain D of a function f. Then
f(c) is the absolute maximum value (or global maximum value) of f on D if
f(c) > f(z) for all x in D and f(c) is the absolute minimum value (or global
minimum value) of f on D if f(c) < f(x) for all x in D. These values are
called extreme values of f.

Definition 4.1.2. The number f(c) is a local maximum value of f if f(c) >
f(x) when x is near ¢ and a local minimum value of f if f(¢) < f(x) when x is
near c. When we say near, we mean on an open interval containing c. These
values are called local extreme values of f.

Example 1. For what values of = does f(z) = cosx take on its maximum
and minimum values?

Example 2. Find all of the extreme values of f(z) = 2.
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Example 3. Find all of the extreme values of f(x) = 3.

Example 4. Find all of the extreme values of f(r) = 3z* —162%+ 1822 within
the domain —1 < z < 4.

Theorem 4.1.1 (Extreme Value Theorem). If f is continuous on a closed
interval [a,b] then f attains an absolute maximum value f(c) and an absolute
minimum value f(d) at some numbers ¢ and d in |a, b].

Theorem 4.1.2 (Fermat’s Theorem). If f has a local maximum or minimum
at ¢, and if f'(c) exists, then f'(c) = 0.

Proof. Suppose f has a local maximum at c¢. Then, by definition, f(c) > f(x)
if x is near ¢, so if we let h > 0 be close to 0 we have

f(e) = fle+h)

fle+h)—f(c) <0
flet )~ f(0) _ 0
h =
T G ) el A O
h—0t h h—0t
f'(e) <0.

If h < 0, the direction of the inequality is reversed and we get f’(¢) > 0. Thus
combining these inequalities gives us f’(c) = 0. A similar argument can be
used to achieve the same result if f has a local minimum at c. n
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Example 5. Use the function f(z) = 2 to determine whether the converse
of Fermat’s theorem is true.

Example 6. Does Fermat’s theorem apply to the function f(z) = |z|?

Definition 4.1.3. A critical number of a function f is a number ¢ in the
domain of f such that either f'(c) =0 or f'(c) does not exist.

Example 7. Find the critical numbers of 2%/°(4 — ).
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Example 8. Find the absolute maximum and minimum values of the function

f(r)=2" -3z +1 ——<z<A4

N | —

Example 9. (a) Use a graphing device to estimate the absolute minimum
and maximum values of the function f(z) =x — 2sinz, 0 <z < 27.
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(b) Use calculus to find the exact minimum and maximum values.

Example 10. The Hubble Space Telescope was deployed on April 24, 1990,
by the space shuttle Discovery. A model for the velocity of the shuttle during
this mission, from liftoff at ¢ = 0 until the solid rocket boosters were jettisoned
at t = 126 seconds, is given by

v(t) = 0.001302t> — 0.09029¢* + 23.61¢ — 3.083

(in feet per second). Using this model, estimate the absolute maximum and
minimum values of the acceleration of the shuttle between liftoff and the jet-
tisoning of the boosters.
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4.2 The Mean Value Theorem

Theorem 4.2.1 (Rolle’s Theorem). Let f be a function that satisfies the fol-
lowing three hypotheses:

1. f is continuous on the closed interval [a,b.

2. f is differentiable on the open interval (a,b).

3. fla) = f(b).
Then there is a number ¢ in (a,b) such that f'(c) = 0.

Proof. If f(x) =k, a constant, then f'(z) =0 for all z € (a,b). If f(x) > f
for some z € (a, b) then f has a local maximum for a number ¢ € (a,b) b
the extreme value theorem. Since f is differentiable on (a,b), f'(¢) = 0 b
Fermat’s theorem. By the same reasoning, f'(c) =0 if f(z) < f(a). D

(a )

Example 1. How could Rolle’s theorem be applied to a position function that
models a ball thrown upward?

Example 2. Prove that the equation 23+ —1 = 0 has exactly one real root.
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Theorem 4.2.2 (The Mean Value Theorem). Let f be a function that satisfies
the following hypotheses:

1. f is continuous on the closed interval [a, b].

2. f is differentiable on the open interval (a,b).

Then there is a number ¢ in (a,b) such that

f(b) = f(a)

floy = H5—

or, equivalently,

f(b) = f(a) = f(c)(b — a).

Proof. Let h be the difference between f and the secant line to f on [a, b], i.e.,

Then h is continuous on [a, b] and differentiable on (a,b) because it is the sum
of f and a first-degree polynomial, which are both continuous on [a,b] and
differentiable on (a, b). Also,

h(a) = f(a) f(a)—ﬁ(a—a):o
) = 1)~ @) - 20Ty =

so h(a) = h(b). Therefore, by Rolle’s thereom, there is a number ¢ in (a,b)
such that A'(c) =0, i.e.,

b) —
0=#(e) = i) - LD
which is equivalent to
b) —
o = =10
as desired. O
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Example 3. Find a number ¢ in (0,2) such that the slope of the secant line

is equal to the slope of the tangent line for the function f(x) =23 — .

Example 4. What does the mean value theorem say about the velocity of an
object moving in a straight line?

Example 5. Suppose that f(0) = —3 and f'(z) < 5 for all values of x. How
large can f(2) possibly be?

Theorem 4.2.3. If f'(x) =0 for all x in an interval (a,b), then f is constant
on (a,b).

Proof. Let z1,x2 € (a,b) be such that 1 < xs. By the mean value theorem
for f on [z1,xs], we get

fxa) = f(x1) = f/(e) (w2 — 21),
for some ¢ € (z1,25). But f'(z) = 0 for all x in this interval, so f(z2) = f(x1).
Since x; and x5 were chosen arbitrarily, f is constant on (a, b). O
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Corollary 4.2.1. If f'(x) = ¢'(x) for all  in an interval (a,b), then f — g is
constant on (a,b); that is f(x) = g(z) 4+ ¢ where ¢ is a constant.

Proof. Let
F(x) = f(x) — g(x)
Then
Fi(z) = f'(z) — ¢'(x) =0,
so F'is constant by the previous theorem, and thus f — ¢ is constant. O

Example 6. Prove the identity tan™' z + cot ™'z = 7/2.
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4.3 Derivatives and the Shape of a Graph

Theorem 4.3.1 (Increasing/Decreasing Test).

(a) If f'(x) > 0 on an interval, then f is increasing on that interval.

(b) If f'(x) <0 on an interval, then f is decreasing on that interval.

Proof. Let x1, x5 be two numbers on an interval where f’(z) > 0 such that
x1 < x9. Then by the mean value theorem,

f@e) = f(z1) = f'(c)(z2 — 1)

for some c in the interval. But f'(¢) > 0 and zo —x; > 0, so f(x2) — f(z1) > 0,
ie.,

f(x2) > f(x1)

in the interval. Since z; and x5 were chosen arbitrarily, we are done, and the
second half of the theorem is proved similarly. O

Example 1. Find where the function f(z) = 3z* —42® — 1222 +5 is increasing
and where it is decreasing.
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Theorem 4.3.2 (The First Derivative Test). Suppose that c is a critical num-
ber of a continuous function f.

(a) If f' changes from positive to negative at ¢, then f has a local maximum
at c.

(b) If f' changes from negative to positive at ¢, then f has a local minimum
at c.

(c) If f' is positive to the left and to the right of c, or negative to the left and
to the right of ¢, then f has no local minimum or maximum at c.

Example 2. Find the local minimum and maximum values of the function f
in Example 1.

Example 3. Find the local maximum and minimum values of the function

g(x) =x 4 2sinx 0<zx<2m.

124



Calculus - 4.3 Derivatives and the Shape of a Graph

Definition 4.3.1. If the graph of f lies above all of its tangents on an interval
I, then it is called concave upward on I. If the graph of f lies below all of its
tangents on [, it is called concave downward on I.

Theorem 4.3.3 (Concavity Test).

(a) If f"(x) > 0 for all x in I, then the graph of f is concave upward on I.
(b) If f"(x) < 0 for all x in I, then the graph of f is concave downward on I.

Example 4. The figure shows a population graph for Cyprian honeybees
raised in an apiary. How does the rate of population increase change over
time? When is this rate highest? Over what intervals is P concave upward or
concave downward?

P
80 +
0 4
Number of bees 6
(in thousands)
40 +
20 +

0 3 ¢ 9 12 15 18 !

Time (in weeks)

125



Calculus - 4.3 Derivatives and the Shape of a Graph

Definition 4.3.2. A point P on a curve y = f(x) is called an inflection point
if f is continuous there and the curve changes from concave upward to concave
downward or from concave downward to concave upward at P.

Example 5. Sketch a possible graph of a function f that satisfies the following
conditions:

(i) f'(z) > 0on (—o0,1), f'(x) <0 on (1,00).
(ii) f"(x) >0 on (—o0,—2) and (2,00), f"(z) < 0 on (—2,2).
(iii) lim f(z) = -2, lim f(z) =0.

T—r—00 T—00

Theorem 4.3.4 (The Second Derivative Test). Suppose f' is continuous near
c.

(a) If f'(c) =0 and f"(c) > 0, then f has a local minimum at c.

(b) If f'(¢) =0 and f"(c) <0, then f has a local mazimum at c.
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Example 6. Discuss the curve y = 2* — 423 with respect to concavity, points
of inflection, and local maxima and minima. Use this information to sketch
the curve.
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Example 7. Sketch the graph of the function f(z) = x%/3(6 — x)'/3.
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Example 8. Use the first and second derivatives of f(z) = !/, together with
asymptotes, to sketch its graph.
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4.4 Indeterminate Forms and I’Hospital’s Rule

Theorem 4.4.1 (L’Hospital’s Rule). Suppose f and g are differentiable and
g'(z) # 0 on an open interval I that contains a (except possibly at a). Suppose
that

lim f(z) =0 and lim g(z) =0

Tr—a r—a

or that
lim f(x) = o0 and lim g(z) = £o0

Tr—a r—a

(In other words, we have an indeterminate form of type 8 or oo/o0.) Then

lim ) L)

m :
T—a g(:p) T—a g’(a})
if the limit on the right side exists (or is 00 or —o0).

1
Example 1. Find lim nr

x%l[)j'—l

T

Example 2. Calculate lim c.
T—00 I
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1
Example 3. Calculate lim ﬂ.
T—00 €T

t —
Example 4. Find lim M.
z—0 T3
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Example 5. Find lim &
z—r— 1 —cosx

Example 6. Evaluate lim zlnzx.
z—0t
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z—1t \Inz x-—1

1 1
Example 7. Compute lim (— — )

Example 8. Calculate lim (e” — z).
T—r00
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cotx

Example 9. Calculate lim (1 + sin4z)

z—0*t

Example 10. Find lim x*.

z—0t
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4.5 Summary of Curve Sketching

Use the following guidelines when sketching curves by hand:

A. Domain

B. Intercepts

C. Symmetry

D. Asymptotes

E. Intervals of Increase or Decrease

F. Local Maximum and Minimum Values

G. Concavity and Points of Inflection

Example 1. Use the guidelines to sketch the curve y = :1722 :B_Q T
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Example 2. Sketch the graph of f(z) = :
vr+1
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Example 3. Sketch the graph of f(z) = ze®.
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Example 4. Sketch the graph of f(z) = QiL_x.
sinx
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Example 5. Sketch the graph of y = In(4 — z?).
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Definition 4.5.1. If
lim [f(z) — (mz +b)] =0

T—00

where m # 0, then the line y = mx + b is called a slant asymptote because
the vertical distance between the curve y = f(z) and the line y = ma + b
approaches 0.

.1'3

Example 6. Sketch the graph of f(r) = —; 1
x
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4.6 Graphing with Calculus and Calculators

Example 1. Graph the polynomial f(z) = 22° + 32° + 323 — 222. Use the
graphs of f" and f” to estimate all maximum and minimum points and intervals
of concavity.
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Example 2. Draw the graph of the function

_:r;2+7:1:'—|—3
T a2

()

in a viewing rectangle that contains all the important features of the function.
Estimate the maximum and minimum values and the intervals of concavity.
Then use calculus to find these quantities exactly.
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r?(x+1)3
(z —2)*(x —4)*

Example 3. Graph the function f(z) =
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Example 4. Graph the function f(z) = sin(z + sin2z). For 0 < z < ,
estimate all maximum and minimum values, intervals of increase and decrease,
and inflection points.
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Example 5. How does the graph of f(z) = 1/(2? + 2z + ¢) vary as ¢ varies?
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4.7 Optimization Problems

Example 1. A farmer has 2400 ft of fencing and wants to fence off a rect-
angular field that borders a straight river. He needs no fence along the river.
What are the dimensions of the field that has the largest area?
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Example 2. A cylindrical can is to be made to hold 1 L of oil. Find the
dimensions that will minimize the cost of the metal to manufacture the can.
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Theorem 4.7.1 (First Derivative Test for Absolute Extreme Values). Suppose
that ¢ is a critical number of a continuous function f defined on an interval.

(a) If f'(x) > 0 for all x < ¢ and f'(x) < O for all x > ¢, then f(c) is the

absolute mazximum value of f.

(b) If f'(z) <0 for all x < ¢ and f'(x) > 0 for all x > ¢, then f(c) is the

absolute minimum value of f.

Example 3. Find the point on the parabola y? = 2x that is closest to the
point (1,4).
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Example 4. A man launches his boat from point A on a bank
of a straight river, 3 km wide, and wants to reach point B, 8 km
downstream on the opposite bank, as quickly as possible (see the
figure). He could row his boat directly across the river to point C
and then run to B, or he could row directly to B, or he could row
to some point D between C and B and then run to B. If he can row
6 km/h and run 8 km/h, where should he land to reach B as soon
as possible? (We assume that the speed of the water is negligible
compared with the speed at which the man rows.)
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Example 5. Find the area of the largest rectangle that can be inscribed in a
semicircle of radius 7.
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Definition 4.7.1. If p(x) is the price per unit that a company can charge if
it sells « units, then p is called the demand function (or price function).
If x units are sold, then the total revenue

R(x) = quantity x price = xp(z)

and R is called the revenue function. The derivative R’ of the revenue function
is called the marginal revenue function and is the rate of change of revenue
with respect to the number of units sold.
If x units are sold, then the total profit is

where C'is the cost function and P is called the profit function. The marginal
profit function is P’, the derivative of the profit function.

Example 6. A store has been selling 200 flat-screen TVs a week at $350
each. A market survey indicates that for each $10 rebate offered to buyers, the
number of TVs sold will increase by 20 a week. Find the demand function and
the revenue function. How large a rebate should the store offer to maximize
its revenue?
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4.8 Newton’s Method

Theorem 4.8.1 (Newton’s Method). If z,, is the nth approximation of a root
r for a function f then
f(xn)

n

Example 1. Starting with x; = 2, find the third approximation x3 to the
root of the equation z® — 22 — 5 = 0.
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Example 2. Use Newton’s method to find /2 to eight decimal places.
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Example 3. Find, correct to six decimal places, the root of the equation
cosT = .
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4.9 Antiderivatives

Definition 4.9.1. A function F' is called an antiderivative of f on an interval
I'if F'(z) = f(x) for all z in 1.

Theorem 4.9.1. If F is an antiderivative of f on an interval I, then the most
general antiderivative of f on I is

F(z)+C

where C' is an arbitrary constant.

Proof. Follows by Corollary 4.2.1 to the mean value theorem. O]

Example 1. Find the most general antiderivative of each of the following
functions.

(a) f(x) =sinz

(b) f(x) =1/

(¢) flz) =a" n#—1
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Example 2. Find all functions g such that

21° — \/x

g(z) =4sinz +
T

Example 3. Find f if f/(z) = e® + 20(1 + 2?)~! and f(0) = —2.
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Example 4. Find f if f"(x) = 1222 + 62 — 4, f(0) =4, and f(1) = 1.

Example 5. The graph of a function f is given in the figure. y
Make a rough sketch of an antiderivative F, given that F'(0) = 2.
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Example 6. A particle moves in a straight line and has acceleration given by
a(t) = 6t +4. Its initial velocity is v(0) = —6 cm/s and its initial displacement
is s(0) =9 cm. Find its position function s(t).
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Example 7. A ball is thrown upward with a speed of 48 ft /s from the edge of a
cliff 432 ft above the ground. Find its height above the ground ¢ seconds later.
When does it reach its maximum height? When does it hit the ground? [For
motion close to the ground we may assume that the downward acceleration ¢
is constant, its value being about 9.8 m/s? (or 32 ft/s?).]
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Chapter 5

Integrals

5.1 Areas and Distances

Example 1. Use rectangles to estimate the area under the parabola y = 22
from 0O to 1.
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Calculus - 5.1 Areas and Distances

Example 2. For the region in Example 1, show that the sum of the areas of

the upper approximating rectangles approaches %, that is,

. 1
Jim Fn = 3
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Definition 5.1.1. The area A of the region S that lies under the graph of the
continuous function f is the limit of the sum of the areas of approximating
rectangles:

A= lim R, = ILm [f(x)Ax+ f(z2)Az+- -+ f(z,)Az] = ILm En:f(a?z)ﬁx
i=1

n—oo

The last equality is an example of the use of sigma notation to write sums
with many terms more compactly.

Definition 5.1.2. Numbers ] in the ith subinterval [z;_1, z;] are called sam-
ple points. We form lower (and upper) sums by choosing the sample points z}
so that f(x}) is the minimum (and maximum) value of f on the ith subinterval.

y
Ax
T

:\ | I |

I T T ' ' !

| | 1 (| ]! :

| | L] | : | | I'\

| | L] |

| | Lo | | () | I

| | L] | I I I |

| | | | | | | | |

| | L] | I I I I

| | Ll | | | | |
0 a‘[ X, [ X, T X3 X1 ] X Xp—1 [ b X

xF X3 x5 xF X

Example 3. Let A be the area of the region that lies under the graph of
f(z) = e ® between z = 0 and = = 2.

(a) Using right endpoints, find an expression for A as a limit. Do not evaluate
the limit.
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(b) Estimate the area by taking the sample points to be midpoints and using
four subintervals and then ten subintervals.
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Example 4. Suppose the odometer on a car is broken. Estimate the distance
driven in feet over a 30-second time interval by using the speedometer readings
taken every five seconds and recorded in the following table:

Time (s) 0|5 [10]15 |20 |25 |30
Velocity (mi/h) | 17 | 21 | 24 | 29 | 32 | 31 | 28
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5.2 The Definite Integral

Definition 5.2.1. If f is a function defined for « < z < b, we divide the
interval [a,b] into n subintervals of equal width Az = (b — a)/n. We let
xo(= a),x1,xs,...,2,(= b) be the endpoints of these subintervals and we let
xi, x5, ..., 2, be any sample points in these subintervals, so z} lies in the ith
subinterval [x;_1,z;]. Then the definite integral of f from a to b is

[ sar= i 3 s
a i=1

provided that this limit exists and gives the same value for all possible choices
of sample points. If it does exist, we say that f is integrable on [a, b].

Definition 5.2.2. The symbol [ is called an integral sign. In the notation

fab f(z)dz, f(zx) is called the integrand and a and b are called the limits of
integration; a is the lower limit and b is the upper limit. The procedure of
calculating an integral is called integration.

Definition 5.2.3. The sum

n

> fa)Ax

i=1

is called a Riemann sum and it can be used to approximate the definite integral
of an integrable function within any desired degree of accuracy.

y
A y=1w)
*
|
|
|
|
|
a X7 b X 0 a b
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Calculus - 5.2 The Definite Integral

Definition 5.2.4. A definite integral can be interpreted as a net area, that
is, a difference of areas:

b
/ f(CU) dr = Al —AQ

where A; is the area of the region above the z-axis and below the graph of f,
and A, is the area of the region below the x-axis and the above the graph of

f.

VA YA
y= I y=f)
ﬂi}? 747"'4“ G +
0| a b x 0|a b x

Theorem 5.2.1. If f is continuous on [a,b], or if f has only a finite number of
Jump discontinuities, then f is integrable on [a,b]; that is, the definite integral
fabf(x)dx exists.

Theorem 5.2.2. If f is integrable on [a,b], then

b n
/ fla)de = lim Y f(x;)Ax

n—00 4

where
b—a )
Ar = and r; = a+ i1Ax.
n
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Example 1. Express
] 3 . 1 .
nhm El (x; + x;sinx;) Az

as an integral on the interval [0, 7].

Theorem 5.2.3. The following formulas are true when working with sigma
notation:
ii ~n(n+1)
2
=1
Zn:i2 _n(n+1)2n+1)
B 6

=1

i

3
3

i=1
i(aZ +b;) = iai + ib’
i=1 =1 =1



Calculus - 5.2 The Definite Integral

Example 2. (a) Evaluate the Riemann sum for f(z) = 2® — 6z, taking the
sample points to be right endpoints and a = 0, b = 3, and n = 6.

3
(b) Evaluate/ (z® — 62) dz.
0
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3
Example 3. (a) Set up an expression for / e’ dx as a limit of sums.
1

(b) Use a computer algebra system to evaluate the expression.
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Example 4. Evaluate the following integrals by interpreting each in terms of
areas.

(a) /01de

(b) /03(x C1)da
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Theorem 5.2.4 (Midpoint Rule).

b n
[ #a)dn =3 f@) A0 = Aalf@) -+ fla)

where ;
Ap = — a4

n
and

T, = 5(@_1 + ;) = midpoint of [x;_1, x;].

2
1

Example 5. Use the Midpoint Rule with n = 5 to approximate / —dzx.
LT
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Theorem 5.2.5 (Properties of the Definite Integral).

L!Abf@)ic:—iéaf@ﬁdx
| fa)d -

/ cdx = c¢(b— a), where c is any constant.

a

/ab[f(x) +g(@)] dr = /abf(x) dz + /abg(x) dr.

b
/ cf(z)dr = c/ f(x) dx, where ¢ is any constant.

/U( m_/f m—/()m
[ﬂ@m+[ﬂ@mzLV@m

1
Example 6. Use the properties of integrals to evaluate / (4 + 327) dz.
0

de

co

~

©

>

=
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10 8
Example 7. If it is known that f(z)dz =17 and / f(z)dx =12, find
0

/8 Y @) de. 0

Theorem 5.2.6 (Comparison Properties of the Integral).

8. If f(x) >0 fora <z <b, then/bf(a:)da:ZO.

b b
9. If f(x) > g(z) fora<x <D, then/ f(x)dx > / g(x)dx.

10. If m < f(x) < M fora <z <b, then
b
m(b— a) §/ flx)de < M(b—a).

1
Example 8. Use Property 10 to estimate / e dz.
0
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5.3 The Fundamental Theorem of Calculus

Example 1. If fis the function whose graph is shown in the
figure and g(x) = [ f(t)dt, find the values of g(0), g(1), g(2),
g(3), g(4), and g(5). Then sketch a rough graph of g. y=f1)

N <

Theorem 5.3.1 (The Fundamental Theorem of Calculus, Part 1). If f is
continuous on |a,b], then the function g defined by

:/f(t)dt a<zx<b

is continuous on |a,b] and differentiable on (a,b), and ¢'(x) = f(x).

Proof. 1f x and x + h are in (a,b), then

glx +h) — / f(t)dt — / f(®)
_ (/ f(t)dt+/x f(t)dt) _/azf(t)dt
_ / oy ar
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Calculus - 5.3 The Fundamental Theorem of Calculus

and so, for h ;é 0,

Y=F(x) 4~ /
For now let’s assume that A > 0. Since f is continuous on [z, x +
h], the Extreme Value Theorem says that there are numbers u y
and v in [z, x + h| such that f(u) =m and f(v) = M, where m
and M are the absolute minimum and maximum values of f on _/
[z, x + h]. (See the figure.)
Then 0 X u v=x+h X

h
mhg/’ Ft)dt < Mh

z+h
th/‘ £t dt < Fo)h
1 ’ z+h

ORI IOr 210

fluy < LEFW 29 oy

This inequality can be proved in a similar manner for the case where h < 0.
Now we let h — 0. Then v — x and v — x, since u and v lie between z and
x + h. Therefore

lim f(u) = lmn fu) = f(z)  and i f(v) = lim f(v) = /(2)

U—T h—0 u—x

because f is continuous at x. We conclude, from the Squeeze Theorem, that

gz +h) —g(x)

g'(z) = lim = [(x).

If x = a or b, then this equation can be interpreted as a one-sided limit, and
thus ¢ is continuous on [a, b]. O

Example 2. Find the derivative of the function g(x / V1+t2dt.
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Calculus - 5.3 The Fundamental Theorem of Calculus

Example 3. Find the derivative of the Fresnel function

S(z) = /Ox sin(7t?/2) dt

and compare its graph with that of S(z) to visually confirm the fundamental
theorem of calculus.

d [
Example 4. Find — / sectdt.
dz |,
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Calculus - 5.3 The Fundamental Theorem of Calculus

Theorem 5.3.2 (The Fundamental Theorem of Calculus, Part 2). If f is
continuous on |a,b|, then

/f@szﬂw—F@

where F is any antiderivative of f, that is, a function such that F' = f.

Proof. Let g(z) = [ f(t)dt. By Part 1, ¢'(z) = f(x); that is, g is an an-
tiderivative of f. If F is any other antiderivative of f on [a,b], then, by
Corollary 4.2.1,

F(z)=g(zx)+C

for a < x < b. By continuity, this is also true for z € [a, b], so again by Part 1,

mwsz@ﬁzo

and thus

—~

b) + C] = [g(a) + C]
+C-0-C

F(b) - F(a) = g
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Calculus - 5.3 The Fundamental Theorem of Calculus

Remark 1. We often use the notation
b
F(x)}a = F(b) — F(a).

So the equation of the Fundamental Theorem of Calculus Part 2 can be written
as

/bf(x) dr = F(x)}z where  F' = f.

b

Other common notations are F(z)[® and [F(z)].

Example 6. Find the area under the parabola y = 22 from 0 to 1.

6
d

Example 7. Evaluate / @
3 X
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Calculus - 5.3 The Fundamental Theorem of Calculus

Example 8. Find the area under the cosine curve from 0 to b, where
0<b<m/2

Example 9. What is wrong with the following calculation?

3
1 4

[
1z » 3 3
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Calculus - 5.4 Indefinite Integrals and the Net Change Theorem

5.4 Indefinite Integrals and the Net Change
Theorem

Definition 5.4.1. An antiderivative of f is called an indefinite integral where

/f(a:) dr = F(x) means  F'(z) = f(x).

Example 1. Find the general indefinite integral

/(10:174 — 2sec’ ) dz.

Example 2. Evaluate / (3'05296 do.

Sin

3
Example 3. Evaluate / (2% — 6x) d.
0
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Calculus - 5.4 Indefinite Integrals and the Net Change Theorem

2

3

Example 4. Find / (2x3 —6r + — 1) dr and interpret the result in
0 x

terms of areas.

9912 | 12
2t t*vt—1
Example 5. Evaluate / + tQ\/_ dt.
1
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Calculus - 5.4 Indefinite Integrals and the Net Change Theorem

Theorem 5.4.1 (Net Change Theorem). The integral of a rate of change is
the net change:

b
/ F'(z)dx = F(b) — F(a).

Example 6. A particle moves along a line so that its velocity at time ¢ is
v(t) = t* —t — 6 (measured in meters per second).

(a) Find the displacement of the particle during the time period 1 <t < 4.

(b) Find the distance traveled during this time period.
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Calculus - 5.4 Indefinite Integrals and the Net Change Theorem

Example 7. The figure shows the power consumption in the city of San Fran-
cisco for a day in September (P is measured in megawatts; ¢ is measured in
hours starting at midnight). Estimate the energy used on that day.

P

0 a0 YUYW,
800 ]
/ Ma
\\
600 N
/ \
N

400 | r’
200

0 3 6 9 12 15 18 21 t

Pacific Gas & Electric

183



Calculus - 5.5 The Substitution Rule

5.5 The Substitution Rule

Theorem 5.5.1 (The Substitution Rule). If u = g(x) is a differentiable func-
tion whose range is an interval I and f is continuous on I, then

/f(g(l‘))g’(x) dx—/f(u) du.

Proof. If f = F’, then, by the Chain Rule,

LIF)] = fg@)d (@)

Thus if u = g(x), then we have

[ Hoog (@) dz = Fglo) +€ = Fw +- = [ f(wdu

Example 1. Find /x3 cos(z! + 2) dx.

Example 2. Evaluate / V2x + 1dx.
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Calculus - 5.5 The Substitution Rule

T
Example 3. Find | ——dz.
P / V1 — 422

Example 4. Calculate / ™ dx.

Example 5. Find /\/1 + a22° du.
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Calculus - 5.5 The Substitution Rule

Example 6. Calculate / tanx dz.

Theorem 5.5.2 (The Substitution Rule for Definite Integrals). If ¢’ is con-
tinuous on |a,b] and f is continuous on the range of u = g(x), then

g(b)

b
/ oo wydz = [ sl dn

g(a

Proof. Let F' be an antiderivative of f. Then F(g(x)) is an antiderivative of
f(g(z))d'(x), so by part 2 of the fundamental theorem of calculus, we have

b
/ Flg(2)g'(x) da

I
!
—~
=
—~
8
~—
Pt
s
I
!
—
)
—
=
~—
~—
|
!
—
)
—
S
~—
~—

By applying part 2 a second time, we also have

9(b)
/( ) f)du = F(u)] 5 = F(9(b) = Flg(w). 0

g(a)
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Calculus - 5.5 The Substitution Rule

4
Example 7. Evaluate / V2x + 1dx.
0

2 de
Example 8. Evaluate / —_—.
1 (3—52)°

°1
Example 9. Calculate / ﬂdx.
.
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Theorem 5.5.3 (Integrals of Symmetric Functions). Suppose f is continuous
on [—a,al.

(a) If f is even [f(—x) = f(x)], then /a f(:t)dsz/oaf(x)dx.

(b) If fis odd [f(—z) = —f(x)], then /a f(z)dx =0.

Proof. First we split the integral:

/_zf(:r;)dx—/_if(x)dx+/0af(x)d:c——/Oaf(x)dxjt/oaf(m)dx.

By substituting © = —x we get du = —dx and u = a when x = —a, so

[t == [ o = [ a

and therefore
' f dr = ’ —u)du + ' f dz.

(a) If fis even then f(—u) = f(u),

[ = ["rwas [ seae=2 [ ) i

(b) If f is odd then f(—u) = —f(u), so

/_if(z)dx:—/Oaf(u)du+/0af(x)dx20. O

188



Calculus - 5.5 The Substitution Rule

2

Example 10. Evaluate / (z° +1) dx.
—2

! tan x

Example 11. Evaluate / 1 T2 x.
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Chapter 6

Applications of Integration

6.1 Areas Between Curves

Definition 6.1.1. The arca A of the region bounded by the
curves y = f(z), y = g(z), and the lines z = a, x = b, where f
and ¢ are continuous and f(x) > g(z) for all z in [a, b], is

b

A=l 317G~ ga)lde = [ [F(e) - gla)) e

a

V4 VA
an T
| al ]
\
) = g e ] |
| IHHRINE =
X T 1 ‘
0 } b X ol a } } } ‘7L7Z b X
Lb i =l ==
Ax
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Calculus - 6.1 Areas Between Curves

Example 1. Find the area of the region bounded above by y = e, bounded
below by y = z, and bounded on the sides by z = 0 and x = 1.

Example 2. Find the area of the region enclosed by the parabolas y = 22
and y = 2z — 2.
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Calculus - 6.1 Areas Between Curves

Example 3. Find the approximate area of the region bounded by the curves

y=xz/vVz:+1and y =2a2? —z.
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Calculus - 6.1 Areas Between Curves

Example 4. The figure shows the velocity curves for two cars,
A and B, that start side by side and move along the same road.
What does the area between the curves represent? Use the Mid-
point Rule to estimate it.
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Calculus - 6.1 Areas Between Curves

Example 5. The figure is an example of a pathogenesis curve for a measles
infection. It shows how the disease develops in an individual with no immunity
after the measles virus spreads to the bloodstream from the respiratory tract.

N
g 1500 +
3
a
=
[}
£
o
S
=}
= 1000 +
E
o}
(=9
E
=
]
8 5007
8
Lf Symptoms Pathogen
2 appear is cleared
E
; . o
0 10-11 12 17-18 21 t
! ! (days)
Pathogen Infectiousness Infectiousness
enters plasma begins ends

The patient becomes infectious to others once the concentration of infected
cells becomes great enough, and he or she remains infectious until the immune
system manages to prevent further transmission. However, symptoms don’t
develop until the “amount of infection” reaches a particular threshold. The
amount of infection needed to develop symptoms depends on both the con-
centration of infected cells and time, and corresponds to the area under the
pathogenesis curve until symptoms appear.

(a) The pathogenesis curve in the figure has been modeled by f(t) = —t(t —
21)(t+1). If infectiousness begins on day t; = 10 and ends on day t; = 18,
what are the corresponding concentration levels of infected cells?
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Calculus - 6.1 Areas Between Curves

(b) The level of infectiousness for an infected person is the area between
N = f(t) and the line through the points P;(t1, (f(t1)) and Py(ta, f(t2)),
measured in (cells/mL)- days. Compute the level of infectiousness for this
particular patient.
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Calculus - 6.1 Areas Between Curves

Definition 6.1.2. The area between the curves y = f(z) and y = g(z) and
between x = a and x = b is

b
A= [ (15w - gta)] do.

Example 6. Find the area of the region bounded by the curves y = sinz,
y=cosz,r=0,and x = 7/2.
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Calculus - 6.1 Areas Between Curves

Remark 1. Some regions are best treated by regarding = as a
function of y. If a region is bounded by curves with equations
x = fly), r = gly), y = ¢, and y = d, where f and g are
continuous and f(y) > g(y) for ¢ < y < d (see the figure), then
its area is

d
A =/ Lf(y) — g(y)] dy.

Example 7. Find the area enclosed by the line y = x — 1 and
the parabola y? = 2z + 6.
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Calculus - 6.2 Volumes

6.2 Volumes

Definition 6.2.1 (Definition of Volume). Let S be a solid that lies between
x = a and x = b. If the cross-sectional area of S in the plane P,, through
x and perpendicular to the z-axis, is A(x), where A is a continuous function,
then the volume of S is

n b
V= nh_)r{)lo Zl A(x])Ax = /a A(x) du.

Ax

P
X — =
)Ci/_1x;x< in b 0 a =X N X2 3 X4 Xs Xe n=b X

Example 1. Show that the volume of a sphere of radius r is V' = %7?7“3.
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Calculus - 6.2 Volumes

Example 2. Find the volume of the solid obtained by rotating about the x-
axis the region under the curve y = y/z from 0 to 1. Tllustrate the definition
of volume by sketching a typical approximating cylinder.

Example 3. Find the volume of the solid obtained by rotating the region
bounded by y = 23, y = 8, and 2 = 0 about the y-axis.
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Calculus - 6.2 Volumes

Example 4. The region Z enclosed by the curves y = x and y = 22 is rotated
about the z-axis. Find the volume of the resulting solid.

Example 5. Find the volume of the solid obtained by rotating the region in
Example 4 about the line y = 2.
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Calculus - 6.2 Volumes

Example 6. Find the volume of the solid obtained by rotating the region in
Example 4 about the line x = —1.

Example 7. The figure shows a solid with a circular base of
radius 1. Parallel cross-sections perpendicular to the base are
equilateral triangles. Find the volume of the solid.

\\\\
i

)
OQ‘:’

ol ““ N
’:"3“‘3\‘&“ \“ \

/,
7/
w,:"

\\

|

g
i
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Calculus - 6.2 Volumes

Example 8. Find the volume of a pyramid whose base is a square with side
L and whose height is h.

Example 9. A wedge is cut out of a circular cylinder of radius 4 by two planes.
One plane is perpendicular to the axis of the cylinder. The other intersects
the first at an angle of 30° along a diameter of the cylinder. Find the volume
of the wedge.
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Calculus - 6.3 Volumes by Cylindrical Shells

6.3 Volumes by Cylindrical Shells

Theorem 6.3.1 (Method of Cylindrical Shells). The volume of the solid in
the figure, obtained by rotating about the y-axis the region under the curve
y = f(x) from a to b, is

n b
— | T . . — < <
Vv nh_)r{)lo 2_1: 21z f (T;) Az / 2nx f(x) dx where 0 < a <b

a

and where Z; is the midpoint of the ith subinterval [x;_y, ;).

y

Example 1. Find the volume of the solid obtained by rotating about the
y-axis the region bounded by y = 222 — 2% and y = 0.
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Calculus - 6.3 Volumes by Cylindrical Shells

Example 2. Find the volume of the solid obtained by rotating about the
y-axis the region between y = z and y = 22

Example 3. Use cylindrical shells to find the volume of the solid obtained by
rotating about the x-axis the region under the curve y = 1/ from 0 to 1.
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Calculus - 6.3 Volumes by Cylindrical Shells

Example 4. Find the volume of the solid obtained by rotating the region
bounded by y = x — 2? and y = 0 about the line x = 2.
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Calculus - 6.4 Work

6.4 Work

Definition 6.4.1. In general, if an object moves along a straight line with
position function s(t), then the force ' on the object (in the same direction)
is given by Newton’s Second Law of Motion as the product of its mass m and
its acceleration a:

d*s
de?’
Definition 6.4.2. In the case of constant acceleration, the force F' is also

constant and the work done is defined to be the product of the force F' and
distance d that the object moves:

F=ma=m

W = Fd work = force x distance.

Example 1. (a) How much work is done in lifting a 1.2-kg book off the floor
to put it on a desk that is 0.7 m high? Use the fact that the acceleration
due to gravity is g = 9.8 m/s%

(b) How much work is done in lifting a 20-1b weight 6 ft off the ground?
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Calculus - 6.4 Work

Definition 6.4.3. If the force f(x) on an object is variable, then we define
the work done in moving the object from a to b as

n b
W:,}LIEOZL}C(‘I:)AQ:Z/ f(z)dz.
i=1 @

Example 2. When a particle is located a distance x feet from the origin, a
force of 2% + 2z pounds acts on it. How much work is done in moving it from
r=1toxr =37

Theorem 6.4.1 (Hooke’s Law). The force required to maintain a spring
stretched x units beyond its natural length is proportional to x:

f(x) =kx

where k is a positive constant called the spring constant (see the figure). Hooke’s
Law holds provided that x is not too large.

fx)=kx
—
frictionless 0 X 0 x X
surface
(a) Natural position of spring (b) Stretched position of spring
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Calculus - 6.4 Work

Example 3. A force of 40 N is required to hold a spring that has been
stretched from its natural length of 10 cm to a length of 15 cm. How much
work is done in stretching the spring from 15 cm to 18 cm?

Example 4. A 200-Ib cable is 100 ft long and hangs vertically from the top
of a tall building. How much work is required to lift the cable to the top of

the building?
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Calculus - 6.4 Work

Example 5. A tank has the shape of an inverted circular cone with height
10 m and base radius 4 m. It is filled with water to a height of 8 m. Find the
work required to empty the tank by pumping all of the water to the top of the
tank. (The density of water is 1000 kg/m?.)
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6.5 Average Value of a Function

Definition 6.5.1. The average value of a function f on the interval [a, b] is

1 b
fave:m/a f(l')di’

Example 1. Find the average value of the function f(z) = 1 + 2 on the
interval [—1,2].

Theorem 6.5.1 (The Mean Value Theorem for Integrals). If f is continuous
on [a,b], then there exists a number ¢ in |a,b] such that

F() = fuve = 72 / fa

/f F()(b - a).

Proof. By applying the Mean Value Theorem for derivatives to the function
F(z) = [ f(t)dt, we see that there exists a number ¢ in [a, b] such that

that is,

417 a]| - PP
1

£(0) = 5= [F(b) = F(a)

:bia/abf(x)dx. O
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Calculus - 6.5 Average Value of a Function

Example 2. Find a number ¢ in the interval [—1, 2] that satisfies the mean
value theorem for integrals for the function f(z) =1+ 2%

Example 3. Show that the average velocity of a car over a time interval [ty o]
is the same as the average of its velocities during the trip.
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Chapter 7

Techniques of Integration

7.1 Integration by Parts

Theorem 7.1.1 (Formula for Integration by Parts). If f and g are differen-
tiable functions then

/ f(2)g (2) dx = f(z)g(x) - / o)/ (z) da,

/udv:uv—/vdu

where u = f(x) and v = g(x).

or, equivalently,

Proof. By the Product Rule,

@] = F@)g (@) + g(2) ()
falg(o) = @) (2) + g(a) @) d
~ [t @ s+ [ g)(e) ds
[ H@)g @) ds = f@g(o) - [ gla)s (@) da =
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Calculus - 7.1 Integration by Parts

Example 1. Find /xsina:dx.

Example 2. Evaluate / Inx dzx.
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Calculus - 7.1 Integration by Parts

Example 3. Find /tht dt.
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Calculus - 7.1 Integration by Parts

Example 4. Evaluate / e’sinx dx.
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Calculus - 7.1 Integration by Parts

Theorem 7.1.2 (Formula for Definite Integration by Parts). If f and g are
differentiable on (a,b) and f' and g are continuous, then

| 1@ @ s = s, - [ g de

1
Example 5. Calculate / tan™! z da.
0
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Calculus - 7.1 Integration by Parts

Example 6. Prove the reduction formula

. 1 . n—1 )
/ sin"xdr = —— cosxsin® 'z + sin" 2z dx
n n

where n > 2 is an integer.
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Calculus - 7.2 Trigonometric Integrals

7.2 Trigonometric Integrals

Example 1. Evaluate / cos® z dz.

Example 2. Find / sin® z cos? = da.
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Calculus - 7.2 Trigonometric Integrals

Remark 1. Sometimes it is easier to use the half-angle identities
. 1 9 1
sin”z = 5(1 — cos 21) and cos’ r = 5(1 + cos 2x)
to evaluate an integral.

Example 3. Evaluate / sin? z dz.
0

Example 4. Find /sin4xdx.
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Calculus - 7.2 Trigonometric Integrals

Example 5. Evaluate / tan® x sec! z dx.

Example 6. Find /tan5 Osec’ O db.
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Calculus - 7.2 Trigonometric Integrals

Example 7. Find /tan3xdx.

Example 8. Find / sec® x du.
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Calculus - 7.2 Trigonometric Integrals

Remark 2. To evaluate the integrals (a) [ sinma cosna dz, (b) [ sinma sinnz dz,
or (¢) [ cosmaz cosnz dx, use the corresponding identity:

(a) sin Acos B = %[sin(A — B) +sin(A + B)]
(b) sin Asin B = %[COS(A — B) — cos(A + B)]

(c) cos Acos B = %[COS(A — B) + cos(A + B)].

Example 9. Evaluate / sin 4x cos Sz dx.
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7.3 Trigonometric Substitution

Table of Trigonometric Substitutions

Expression Substitution Identity
a2 — 12 T = asinf, _Egggg 1 —sin?6 = cos? 6
Va2 + 22 7 = atan, _gg gg 1+ tan?6 = sec® 0
x? —a? x:asecé’,OgeggorWSQS sec’ ) — 1 = tan’ ¢
Example 1. Evaluate / 9x—;352dx.
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Calculus - 7.3 Trigonometric Substitution

Example 2. Find the area enclosed by the ellipse

1.2 y2
St =1
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Calculus - 7.3 Trigonometric Substitution

1
—dx.
22?2 +4

Example 3. Find
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Calculus - 7.3 Trigonometric Substitution

T
Example 4. Find | —— dx.
P / Va2 44

dx

= =) where a > 0.

Example 5. Evaluate /

Ir~ —a
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Calculus - 7.3 Trigonometric Substitution

£L‘3

3v/3/2
Example 6. Find /0 m dz.
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Calculus - 7.3 Trigonometric Substitution

Example 7. Evaluate / S dx.
V3 —2x — x?

228



Calculus - 7.4 Integration by Partial Fractions

7.4 Integration by Partial Fractions

2+

xr —

dz.

Example 1. Find /
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Calculus - 7.4 Integration by Partial Fractions

2422 -1
Example 2. Evaluate / T dx.
223 + 312 — 2
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Calculus - 7.4 Integration by Partial Fractions

d
Q—xz, where a # 0.
2 —a

Example 3. Find /
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Calculus - 7.4 Integration by Partial Fractions

422244 1
Example 4. Find/z rorAr dx.

-2 —z+1
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Calculus - 7.4 Integration by Partial Fractions

Theorem 7.4.1.
/ dx 1 (7
— = —tan — | +C.
2+a? a a

2x% — 4
Example 5. Evaluate / &dm
3 + 4z
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Calculus - 7.4 Integration by Partial Fractions

402 — 3x + 2
E le 6. Evaluat —dx.
xample Vauae/4x2_4x+3 €T
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Calculus - 7.4 Integration by Partial Fractions

Example 7. Write out the form of the partial fraction decomposition of the
function
22+ 2241
vz —1) (22 + 2+ 1)(22 4+ 1)3

1— 222 — a3
Example 8. Evaluate / v v dz.
x(x? +1)2
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Calculus - 7.4 Integration by Partial Fractions

Vi +4

4
+ dz.
T

Example 9. Evaluate /
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7.5 Strategy for Integration

tan®

dzx.

Example 1. /

cos3 x

Example 2. /eﬁdx.
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Calculus - 7.5 Strategy for Integration

> 41
Example 3. / Tt dx.

23 — 322 — 10z
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Calculus - 7.5 Strategy for Integration

dx

zVInzx

Example 4. /

l1—2z
E le 5. 1/ dz.
xample / 5 T
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7.6 Integration Using Tables and CAS’s

Example 1. The region bounded by the curves y = arctanz, y = 0, and
x = 1 is rotated about the y-axis. Find the volume of the resulting solid.

1;2

Example 2. Use the Table of Integrals to find / —dx.
P & vVbH — 42
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Calculus - 7.6 Integration Using Tables and CAS’s

Example 3. Use the Table of Integrals to evaluate / 23 sinx dx.

Example 4. Use the Table of Integrals to find /x\/ x? 4+ 2x +4dx.
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Calculus - 7.6 Integration Using Tables and CAS’s

Example 5. Use a computer algebra system to find / Va2 + 2x +4dx.

Example 6. Use a CAS to evaluate /an(xz +5)% dx.

Example 7. Use a CAS to find /sin5 x cos? x da.
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7.7 Approximate Integration

Theorem 7.7.1 (Midpoint Rule). Ny
b
[ #a)dn My = Balf(@) + Flan) 4o+ £ -
a /: | |
where ; | : : I\
Ax=-""2 NERERN
n I O O
and AREEEE
T, = 5(@_1 + ;) = midpoint of [x;_1, x;]. 0 X X, X3 X, X
Theorem 7.7.2 (Trapezoidal Rule). y
P——
b Ax \
[ #a)dn = T = S0 +2f @) 42 o) 421 )+ (02)
where Ax = (b—a)/n and x; = a + iAx.
Example 1. Use (a) the Trapezoidal Rule and (b) the Midpoint
Rule with n = 5 to approximate the integral ff(l/x) dz.
0 Xo X X5 X3 Xy X
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Calculus - 7.7 Approximate Integration

Theorem 7.7.3 (Error Bounds). Suppose |f"(x)| < K fora <z <b. If Ep

and Ey; are the errors in the Trapezoidal and Midpoint Rules, then

K(b—a)
12n2

K(b—a)?

Er| <
|Er| < 24n?

and |En| <

Example 2. How large should we take n in order to guarantee that the Trape-
zoidal and Midpoint Rule approximations for [ 12(1 /) dx are accurate to within
0.00017
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Calculus - 7.7 Approximate Integration

Example 3. (a) Use the Midpoint Rule with n = 10 to approximate the
integral fol e dz.

(b) Give an upper bound for the error involved in this approximation.
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Calculus - 7.7 Approximate Integration

Theorem 7.7.4 (Simpson’s Rule).

[ #@)de 8, = S ) + 41 (00) + 27 () + 4o+

3
+ 2f(xn—2) + 4f(Tn-1) + f(2n)]

where n is even and Az = (b— a)/n.

T T T
0 a=x, X X, X3 Xy X5 X¢=Db X

Example 4. Use Simpson’s Rule with n = 10 to approximate ff(l Jx)dx.
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Calculus - 7.7 Approximate Integration

Example 5. The figure shows data traffic on the link from the United States
to SWITCH, the Swiss academic and research network, on February 10, 1998.
D(t) is the data throughput, measured in megabits per second (Mb/s). Use
Simpson’s Rule to estimate the total amount of data transmitted on the link
from midnight to noon on that day.

D
8+

6-.

0 3 6 9 12 15 18 21 24 !(hours)
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Theorem 7.7.5 (Error Bound for Simpson’s Rule). Suppose that | f™(z)| <
K fora <x <b. If Es is the error involved in using Simpson’s Rule, then
K(b—a)®
Egl < ——.
1Bs| < —gop

Example 6. How large should we take n in order to guarantee that the Simp-
son’s Rule approximation for [ 12(1 /) dx is accurate to within 0.00017
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Calculus - 7.7 Approximate Integration

Example 7. (a) Use Simpson’s Rule with n = 10 to approximate the integral
1 .2
Jy € dx.

(b) Estimate the error involved in this approximation.
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7.8 Improper Integrals

Definition 7.8.1 (Definition of an Improper Integral of Type 1).

(a) If fat f(x) dx exists for every number t > a, then

/:O flz)dx = tli}rgo/atf(x) dx

provided this limit exists (as a finite number).

(b) If ftb f(x) dx exists for every number ¢ < b, then

’ f(z)dz = lim bf(x)dx
[ = m |

provided this limit exists (as a finite number).

The improper integrals [ f(z)dz and f_boo f(z)dz are called convergent if
the corresponding limit exists and divergent if the limit does not exist.

(c) If both [ f(z)dz and [“_ f(z)dz are convergent, then we define

/_Zf(:l:)dx:/_;f(x)dx+/aoof(x)dx_

In part (¢) any real number a can be used.

Example 1. Determine whether the integral [;~(1/z)dz is convergent or
divergent.
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0
Example 2. Evaluate / xe' dx.

—0o0
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Calculus - 7.8 Improper Integrals

o 1
1+ 22

Example 3. Evaluate / dx.

—00
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Calculus - 7.8 Improper Integrals

Example 4. For what values of p is the integral

> 1
/ —dx
1 2P

convergent?

253
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Definition 7.8.2 (Definition of an Improper Integral of Type 2).

(a) If f is continuous on [a,b) and is discontinuous at b, then

/ f(z)dr = lim [ f(x)dx

t—=b" J,
if this limit exists (as a finite number).

(b) If f is continuous on (a, b] and is discontinuous at a, then

tAbf@ﬂdx::hmllbf@ﬁdx

t—at

if this limit exists (as a finite number).

The improper integral fab f(x) dx is called convergent if the corresponding limit
exists and divergent if the limit does not exist.

(¢) If f has a discontinuity at ¢, where a < ¢ < b, and both [ f(z) dz and
fcb f(x)dx are convergent, then we define

[ﬂ@m;é%@m+l%@w.
|

Example 5. Find
P /2 VT — 2

dz.
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/2
Example 6. Determine whether / sec x dx converges or diverges.
0

3
Example 7. Evaluate / :cl if possible.
0

xr —
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1
Example 8. / Inxdx.
0
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Theorem 7.8.1 (Comparison Theorem). Suppose that f and g are continuous
functions with f(x) > g(xz) > 0 for x > a.

(a) If [ f(x)dx is convergent, then [ g(x)dx is convergent.

(b) If [ g(x)dx is divergent, then [° f(x)dx is divergent.

Example 9. Show that / e " dr is convergent.
0

1+e*
T

Example 10. Determine whether / dx converges or diverges.
1
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Chapter 8

Further Applications of
Integration

8.1 Arc Length

Definition 8.1.1. The length L of the curve C' with equation y = f(z),
a<x<bis

L= JLH;OZI [Py P

where P; is the point (z;, f(x;)).

VA

P,
v
P,
Py
0 a x X, b ;
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Calculus - 8.1 Arc Length

Theorem 8.1.1 (The Arc Length Formula). If f’ is continuous on [a, b], then
the length of the curve y = f(z), a < x <b, is

L:/abmdx:/ab,/1+<j_i)2dx.

Proof. Let Ay; = y; — y;—1. By the Mean Value Theorem, there is a number
x; between x;_; and z; such that

f(@i) = f(zica) = f/(@7) (2 — zio1)

Therefore,
|Pii Pl =/ (A2)? + (Ay:)? = V/(Ax)? + [f(7) Ax]?
= V1+[f(2)2V(Az)? = /1 + [f'(a])]PAx.
Hence

n n b
liw Y0 IRuR| = lim 3 VIFPEDPA: = [ VT F@Rde O

y
Example 1. Find the length of the arc of the semicubical

parabola y* = x® between the points (1,1) and (4,8). (See the
figure.)
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Calculus - 8.1 Arc Length

Remark 1. If a curve has the equation x = ¢(y), ¢ < y < d, and ¢'(y) is
continuous, then by interchanging the roles of z and y in the Arc Length
Formula, we obtain the following formula for its length:

L:/Cd\/mdyz/cd,/H(j—i)Qdy.

Example 2. Find the length of the arc of the parabola y* =  from (0,0) to

(1,1).
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Calculus - 8.1 Arc Length

Example 3. (a) Set up an integral for the length of the arc of the hyperbola
xy = 1 from the point (1,1) to the point (2, %)

(b) Use Simpson’s Rule with n = 10 to estimate the arc length.

Theorem 8.1.2. If a smooth curve C' (a curve that has a continuous deriva-
tive) has the equation y = f(z), a < x < b, then s(x), the distance along C
from the initial point (a, f(a)) to the point (x, f(x)), is called the arc length
function and is given by

s(z) = / VI FOP dt.
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Calculus - 8.1 Arc Length

Example 4. Find the arc length function for the curve y = 2% — % In x taking
(1,1) as the starting point.
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Calculus - 8.2 Area of a Surface of Revolution

8.2 Area of a Surface of Revolution

Definition 8.2.1. In the case where f is positive and has
a continuous derivative, we define the surface area of the
surface obtained by rotating the curve y = f(z), a <z <,
about the z-axis as

5= lim 3" 2 f(a) /1T [Pl Aa
- [ 2@ VI PP e

Example 1. The curve y = v4 — 22, —1 < x < 1, is an arc of
the circle 2% + y? = 4. Find the area of the surface obtained by
rotating this arc about the z-axis. (The surface is a portion of a
sphere of radius 2. See the bottom figure.)

263

0




Calculus - 8.2 Area of a Surface of Revolution

Example 2. The arc of the parabola y = 2 from (1,1) to (2,4) is rotated
about the y-axis. Find the area of the resulting surface.
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Calculus - 8.2 Area of a Surface of Revolution

Example 3. Find the area of the surface generated by rotating the curve
y=-¢" 0<z <1, about the z-axis.
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8.3 Applications to Physics and Engineering

Definition 8.3.1. In general, the hydrostatic force exerted on a thin plate
with area A square meters submerged in a fluid with density p kilograms per
cubic meter at a depth d meters below the surface of the fluid is

F =mg = pgAd

where m is the mass and ¢ is the acceleration due to gravity. The pressure P
(in pascals) on the plate is defined to be the force per unit area:

F
P == = pgd.
1= P9

Example 1. A dam has the shape of the trapezoid shown in

top and 30 m at the bottom. Find the force on the dam due to
hydrostatic pressure if the water level is 4 m from the top of the
dam.
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the figure. The height is 20 m and the width is 50 m at the \
30 m

!

20 m
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Calculus - 8.3 Applications to Physics and Engineering

Example 2. Find the hydrostatic force on one end of a cylindrical drum with
radius 3 ft if the drum is submerged in water 10 ft deep.
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Calculus - 8.3 Applications to Physics and Engineering

Definition 8.3.2. In general, for a system of n particles with masses

my, Mo, ..., m, located at the points x1,xs, ..., z, on the xr-axis,
X X X,
0 Vi — - AN X
m X=X X, — X My

the center of mass T is the point on which a thin plate of any given shape
balances horizontally, and can be shown to be
D iy MU

==l v
m

where m;z; are called the moments of the masses m; and m = > m; is the
total mass of the system.
The sum of the individual moments

n
i=1

is called the moment of the system about the origin.

Definition 8.3.3. In general, for a system of n particles with masses

my, Mo, ..., m, located at the points (z1,y1), (T2,%2), ..., (Tn,ys) in the zy-
plane
y
Xy
£t
Y3 :yl
0 :y2 X
i

we define the moment of the system about the y-axis to be

n
My: E m;x;
=1

and the moment of the system about the x-axis to be

=1

The coordinates (Z,y) of the center of mass are given by

M, M,
T=— y=—-.
m m
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Calculus - 8.3 Applications to Physics and Engineering

Example 3. Find the moments and center of mass of the system of objects
that have masses 3, 4, and 8 at the points (—1,1), (2,—1), and (3, 2), respec-

tively.

Definition 8.3.4. The center of mass of a lamina (a flat
plate) with uniform density p and area A that occupies a
region # of the plane is called the centroid of #Z and is
located at the point (z,7), where

=t [owa 5= [ e

Remark 1. The symmetry principle says that if # is sym-
metric about a line [, then the centroid of & lies on I.
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Calculus - 8.3 Applications to Physics and Engineering

Example 4. Find the center of mass of a semicircular plate of radius 7.

Example 5. Find the centroid of the region bounded by the curves y = cosz,
y=0,x=0,and x = 7/2.
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Calculus - 8.3 Applications to Physics and Engineering

Theorem 8.3.1. If the region X lies between two curves
y = f(x) and y = g(x), where f(x) > g(x), then the cen-
troid of # is (z,y) where

—/ )] dz
=—/ L@ - @)} do.

&I
||

y

Example 6. Find the centroid of the region bounded by the line y = x and

the parabola y = 2.
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Calculus - 8.3 Applications to Physics and Engineering

Theorem 8.3.2 (Theorem of Pappus). Let Z be a plane region that lies en-
tirely on one side of a line | in the plane. If Z is rotated about I, then the
volume of the resulting solid is the product of the area A of Z and the distance
d traveled by the centroid of Z.

Example 7. A torus is formed by rotating a circle of radius r about a line in
the plane of the circle that is a distance R (> r) from the center of the circle.
Find the volume of the torus.
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8.4 Applications to Economics and Biology

Definition 8.4.1. The consumer surplus for a commodity
is defined as

[ ) - Pl

where p(z) is the demand function, and P is the current
selling price for the amount of the commodity X that can
currently be sold.

Example 1. The demand for a product, in dollars, is
p = 1200 — 0.2z — 0.0001z2.

Find the consumer surplus when the sales level is 500.
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Calculus - 8.4 Applications to Economics and Biology

Definition 8.4.2. The cardiac output of the heart is the volume of blood
pumped by the heart per unit time, that is, the rate of flow into the aorta. It
is given by

A
[ e(t)dt
where A is the amount of dye injected into the right atrium, [0, 7] is the time

interval until the dye has cleared, and ¢(t) is the concentration of the dye at
time ¢.

Example 2. A 5-mg bolus of dye is injected into a right atrium.
The concentration of the dye (in milligrams per liter) is mea-
sured in the aorta at one-second intervals as shown in the table.
Estimate the cardiac output.

c(t)
0
0.4
2.8
6.5
9.8
8.9
6.1
4.0
2.3
1.1
0

O 0| || U x| W[ N | O =+

—_
)

274



Calculus - 8.5 Probability

8.5 Probability

Definition 8.5.1. The probability density function f of a continuous random
variable X (a quantity whose values range over an interval of real numbers) is
given by:

P(aSng):/bf(x)dx

where f(x) > 0 for all  and
/ f(z)dx =1.

Example 1. Let f(x) = 0.0062(10 — z) for 0 < z < 10 and f(z) = 0 for all
other values of z.

(a) Verify that f is a probability density function.

(b) Find P(4 < X < 8)
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Calculus - 8.5 Probability

Example 2. Phenomena such as waiting times and equipment failure times
are commonly modeled by exponentially decreasing probability density func-
tions. Find the exact form of such a function.
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Calculus - 8.5 Probability

Definition 8.5.2. In general, the mean of any probability density function f
is defined to be

u:/:xf@)dx.

Example 3. Find the mean of the exponential distribution of Example 2:

0 ift <O,
t p—
/) {ce“j if t > 0.
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Calculus - 8.5 Probability

Example 4. Suppose the average waiting time for a customer’s call to be
answered by a company representative is five minutes.

(a) Find the probability that a call is answered during the first minute, as-
suming that an exponential distribution is appropriate.

(b) Find the probability that a customer waits more than five minutes to be
answered.
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Calculus - 8.5 Probability

Definition 8.5.3. When random phenomena are modeled by a normal distri-
bution this means that the probability density function of the random variable
X is a member of the family of functions

1

o\ 2T

o~ (=) (20%)

fz) =

where the positive constant o is called the standard deviation (a measure of
how spread out the values of X are).

Example 5. Intelligence Quotient (IQ) scores are distributed y

normally with mean 100 and standard deviation 15. (The figure
shows the corresponding probability density function.) 0027
(a) What percentage of the population has an IQ score between oo
85 and 1157 y
0 60 80 100 120 140 X

(b) What percentage of the population has an 1Q above 1407
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Chapter 9

Differential Equations

9.1 Modeling with Differential Equations

Definition 9.1.1. In general, a differential equation is an equation that con-
tains an unknown function and one or more of its derivatives. The order of a
differential equation is the order of the highest derivative that occurs in the
equation. A function f is called a solution of a differential equation if the
equation is satisfied when y = f(z) and its derivatives are substituted into the
equation.

Example 1. Show that every member of the family of functions

_ 14 ce!
1 — cet

Y

is a solution of the differential equation y’ = %(yQ —1).
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Calculus - 9.1 Modeling with Differential Equations

Example 2. Find a solution of the differential equation 3’ = %(y2 — 1) that
satisfies the initial condition y(0) = 2.
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9.2 Direction Fields and Euler’s Method

Definition 9.2.1. In general, suppose we have a first-order differential equa-
tion of the form

y' = F(z,y)
where F'(z,y) is some expression in x and y. If we draw short line segments

with slope F'(x,y) at several points (z,y), the result is called a direction field
(or slope field).

Example 1.

(a) Sketch the direction field for the differential equation 3’ = z? + y* — 1.

(b) Use part (a) to sketch the solution curve that passes through the origin.

282



Calculus - 9.2 Direction Fields and Euler’s Method

Example 2. Suppose that in the simple circuit of the figure the
resistance is 12 €2, the inductance is 4 H, and a battery gives a

constant voltage of 60 V.
(a) Draw a direction field for

dl
L— +RI=E(t

with these values.

(b) What can you say about the limiting value of the current?

(c) Identify any equilibrium solutions.

(d) If the switch is closed when ¢ = 0 so the current starts with
I(0) = 0, use the direction field to sketch the solution curve.
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Calculus - 9.2 Direction Fields and Euler’s Method

Theorem 9.2.1 (Euler’s Method). Approzimate values for the solution of the
initial-value problem y' = F(x,y), y(zo) = yo with step size h, at x, = x,_1+h,
are

Yn = Yn—1 + hF(Tp_1,Yn1) n=123,....

Example 3. Use Euler’s method with step size 0.1 to construct a table of
approximate values for the solution of the initial-value problem

y=z+y y0)=1
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Calculus - 9.2 Direction Fields and Euler’s Method

Example 4. In Example 2 we discussed a simple electric circuit with resistance
12 €2, inductance 4 H, and a battery with voltage 60 V. If the switch is closed
when ¢ = 0, we modeled the current I at time ¢ by the initial-value problem

dl
- = 1 - I I - .

Estimate the current in the circuit half a second after the switch is closed.
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9.3 Separable Equations

Definition 9.3.1. A separable equation is a first-order differential equation
in which the expression for dy/dx can be factored as a function of = times a
function of y. In other words, it can be written in the form

dy
2 = 9@)(y).
. . . dy  a?
Example 1. (a) Solve the differential equation R
r Yy

(b) Find the solution of this equation that satisfies the initial condition y(0) =
2.
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. ) ) dy 612
Example 2. Solve the differential equation — = ———.
dr 2y 4+ cosy

Example 3. Solve the equation v’ = 2%y.
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Calculus - 9.3 Separable Equations

Example 4. In Section 9.2 we modeled the current /(¢) in the
electric circuit shown in the figure by the differential equation

dl
L— + RI = E(t).
o (t)
Find an expression for the current in a circuit where the resis-
tance is 12 V, the inductance is 4 H, a battery gives a constant
voltage of 60 V, and the switch is turned on when ¢ = 0. What

is the limiting value of the current?
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Calculus - 9.3 Separable Equations

Definition 9.3.2. An orthogonal trajectory of a family of curves
is a curve that intersects each curve of the family orthogonally,
that is, at right angles (see the figure).

Example 5. Find the orthogonal trajectories of the family of
curves x = ky?, where k is an arbitrary constant.

orthogonal
trajectory

289



Calculus - 9.3 Separable Equations

Example 6. A tank contains 20 kg of salt dissolved in 5000 L of water. Brine
that contains 0.03 kg of salt per liter of water enters the tank at a rate of 25
L/min. The solution is kept thoroughly mixed and drains from the tank at
the same rate. How much salt remains in the tank after half an hour?
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9.4 Models for Population Growth

Definition 9.4.1. In general, if P(t) is the value of a quantity y at time ¢ and
if the rate of change of P with respect to ¢ is proportional to its size P(t) at

any time, then

dP
— =kP
dt

where k is a constant. This equation is sometimes called the law of natural
growth.

Theorem 9.4.1. The solution of the initial-value problem

dP

. —kP  PO)=R

dt () 0
18

P(t) = Pye*.

Proof. The law of natural growth is a separable differential equation, so

dP

= —kp

dt

dP

— = [ kdt
/%]
In|P|=kt+C

|P| — ekt+C — ecekt

P = AeM,

where A (= £¢e% or 0) is an arbitrary constant. Since P(0) = A, P(t) =
Poekt. O

Definition 9.4.2. The model for population growth known as the logistic

differential equation is
(i 1Y,

dt M

where M is the carrying capacity, the maximum population that the environ-
ment is capable of sustaining in the long run.
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Example 1. Draw a direction field for the logistic equation with £ = 0.08
and carrying capacity M = 1000. What can you deduce about the solutions?
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Calculus - 9.4 Models for Population Growth

Theorem 9.4.2. The solution to the logistic equation is

M M — F
P(t) = m ’LUh@’I"eA: PO .

Proof. The logistic equation is separable, so using partial fractions, we get

: ( )
/Pl—P/M
/%dp:/m

/(%ﬂLMl_P)dP:/k:dt

In|P|—In|M — P|=kt+C
M—-P

1 =—kt-C
o 2 ‘
M — P‘ _ efkth’ _ efcefkt
M- P
= Ae™H
M
F — 1= Aeikt
M
F =1 + Ae_kt
M
P=———
1+ Ae—kt’
where A = +e7¢. If t = 0, we have
M — P,
= A’ = A.
2 ¢
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Calculus - 9.4 Models for Population Growth

Example 2. Write the solution of the initial-value problem
dpP P
— =0.08P1— — P0)=1
dt 0.08 ( 1000) (0) 00

and use it to find the population sizes P(40) and P(80). At what time does
the population reach 9007
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Example 3. In the 1930s the biologist G. F. Gause conducted an experiment
with the protozoan Paramecium and used a logistic equation to model his
data. The table gives his daily count of the population of protozoa. He esti-
mated the initial relative growth rate to be 0.7944 and the carrying capacity

to be 64.
t (days) o112 1|34 |5|6|7|8&|9 10111213 |14|15] 16
P (observed) | 2 |3 |22 |16 |39 |52 |54 |47 |50 | 76|69 |51 |57 |70 (53|59 |57

Find the exponential and logistic models for Gause’s data. Compare the pre-
dicted values with the observed values and comment on the fit.
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9.5 Linear Equations

Definition 9.5.1. A first-order linear differential equation is one that can be
put into the form

Y4 Py = Q)

where P and @) are continuous functions on a given interval.

Theorem 9.5.1. To solve the linear differential equation y' + P(x)y = Q(x),
multiply both sides by the integrating factor I(x) = e/ P@dz gnd integrate both
sides.

d
Example 1. Solve the differential equation d_y + 32y = 62°.
T
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Example 2. Find the solution of the initial-value problem

2y +ay=1 x>0 y(l)=2.
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Example 3. Solve ¢ + 2zy = 1.
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Calculus - 9.5 Linear Equations

Example 4. Suppose that in the simple circuit of the figure the
resistance is 12 V and the inductance is 4 H. If a battery gives a
constant voltage of 60 V and the switch is closed when ¢ = 0 so
the current starts with 7(0) = 0, find

(a) 1(),

(b) the current after 1 second, and

(c) the limiting value of the current.
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Calculus - 9.5 Linear Equations

Example 5. Suppose that the resistance and inductance remain as in Example
4 but, instead of the battery, we use a generator that produces a variable
voltage of E(t) = 60sin 30t volts. Find I(t).
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9.6 Predator-Prey Systems

Definition 9.6.1. The equations

@:kR—aRW A

—_— = b
I 7 rW + bRW

are known as the predator-prey equations, or the Lotka-Volterra equations. A
solution of this system of equations is a pair of functions R(¢) and W (t) that
describe the populations of prey and predators as functions of time.

Example 1. Suppose that populations of rabbits and wolves are described
by the Lotka-Volterra equations with & = 0.08, a = 0.001, » = 0.02, and
b = 0.00002. The time t is measured in months.

(a) Find the constant solutions (called the equilibrium solutions) and interpret
the answer.
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Calculus - 9.6 Predator-Prey Systems

(b) Use the system of differential equations to find an expression for dW/dR.

(c) Draw a direction field for the resulting differential equation in the RW-
plane. Then use that direction field to sketch some solution curves.
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(d) Suppose that, at some point in time, there are 1000 rabbits and 40 wolves.
Draw the corresponding solution curve and use it to describe the changes
in both population levels.

(e) Use part (d) to make sketches of R and W as functions of t.
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Chapter 10

Parametric Equations and Polar
Coordinates

10.1 Curves Defined by Parametric Equations

Definition 10.1.1. Suppose that = and y are both given as functions of a
third variable ¢ (called a parameter) by the equations

x = f(t) = g(t)

(called parametric equations). Each value of ¢ determines a point (z,y), which
we can plot in a coordinate plane. As ¢ varies, the point (x,y) = (f(t),9(t))
varies and traces out a curve C, which we call a parametric curve.

Example 1. Sketch and identify the curve defined by the parametric equations

r=1t"—-2t y=t+1.
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Calculus - 10.1 Curves Defined by Parametric Equations

Definition 10.1.2. In general, the curve with parametric equations
z=f(t) y=g90t) a<t<bh

has initial point (f(a), g(a)) and terminal point (f(b), g(b)).

Example 2. What curve is represented by the following parametric equations?

T = cost y =sint 0<t<2m.

Example 3. What curve is represented by the given parametric equations?

T = sin 2t Yy = cos 2t 0<t<2m.
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Calculus - 10.1 Curves Defined by Parametric Equations

Example 4. Find parametric equations for the circle with center (h, k) and
radius r.

Example 5. Sketch the curve with parametric equations x = sint, y = sin®¢.
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Calculus - 10.1 Curves Defined by Parametric Equations

Example 6. Use a graphing device to graph the curve z = y* — 3y2.

Example 7. The curve traced out by a point P on the circumference of a
circle as the circle rolls along a straight line is called a cycloid (see the figure).
If the circle has radius r and rolls along the z-axis and if one position of P is
the origin, find parametric equations for the cycloid.

N KGO N N

S >
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Calculus - 10.1 Curves Defined by Parametric Equations

Example 8. Investigate the family of curves with parametric equations
T = a4 cost y = atant 4 sint.

What do these curves have in common? How does the shape change as a
increases?
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Calculus - 10.2 Calculus with Parametric Curves

10.2 Calculus with Parametric Curves

Theorem 10.2.1. Suppose f and g are differentiable functions. Then for a
point on the parametric curve x = f(t), y = g(t), where y is also a differen-
tiable function of x, we have

dy
dy  qt L dx
v de T 7"
dt

Proof. Since y is a differentiable function of x, we have, by the Chain Rule,

dy _dy dv

dt  dr dt’

Then if Ccll—f # 0 we can divide by it, so

dy
dy_%
dt

Theorem 10.2.2. Suppose f and g are differentiable functions. Then for a
point on the parametric curve x = f(t), y = g(t), where y is also a differen-
tiable function of x, we have

i (i)
2y dt \dz . dw
dt

Proof. By the previous theorem,

d (dy)
2y d [dy dt \ dr dx
-4 (W)= if — £ 0. O
dz® ~ da <da:) dr e
dt
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Example 1. A curve C is defined by the parametric equations v = t2, y =
t3 — 3t.

(a) Show that C' has two tangents at the point (3,0) and find their equations

(b) Find the points on C where the tangent is horizontal or vertical.

(c) Determine where the curve is concave upward or downward.

(d) Sketch the curve.
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Example 2.

(a) Find the tangent to the cycloid x = (6 — sinf), y = r(1 — cosf) at the
point where 6 = 7/3.

(b) At what points is the tangent horizontal? When is it vertical?
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Theorem 10.2.3. If a curve is traced out once by the parametric equations
x=f(t) and y = g(t), « <t < B, then the area under the curve is given by

6 [0
A= / o(t)f/(8) dt [ /ﬁ g(t)f’(t)dt]-

Proof. Since the area under the curve y = F'(x) from a to bis A = fab F(z)dz,
we can use the Substitution Rule for Definite Integrals with y = g(¢) and
dx = f'(t) dt to get

B

A:/abyda::/ o (0 /(1) dt. =

Example 3. Find the area under one arch of the cycloid y
z=r1(0 —sind) y=r(l—cos?h). W

0‘ 2mr X
(See the figure.)
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Calculus - 10.2 Calculus with Parametric Curves

Theorem 10.2.4. If a curve C' is described by the parametric equations r =
f(t), y=g(t), a <t <p, where f' and ¢’ are continuous on |«, 5] and C' is
traversed exactly once as t increases from a to [, then the length of C is

= [+ () o

Example 4. (a) Use the representation of the unit circle given by

T = cost y =sint 0<t<2m

to find its arc length.

(b) Use the representation of the unit circle given by
T = sin 2t Yy = cos 2t 0<t<2r

to find its arc length.
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Example 5. Find the length of one arch of the cycloid x = r(6 — sin#),
y=r(1—cos?).
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Theorem 10.2.5. Suppose a curve C' is given by the parametric equations
x = f(t),y=g), a <t <p, where f', ¢ are continuous, ¢'(t) > 0, is
rotated about the x-axis. If C is traversed exactly once as t increases from «
to B3, then the area of the resulting surface is given by

A dr\? dy 2
s= [ o () (%)

Example 6. Show that the surface area of a sphere of radius r is 4mr?2.
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10.3 Polar Coordinates

Definition 10.3.1. The polar coordinate system consists of a
point called the pole (or origin) O, a ray starting at the pole
called the polar axis, and other points P represented by (r,0)
where r is the distance from O to P and 6 is the angle (usually
measured in radians) between the polar axis and the line OP as
in the figure. r, 6 are called polar coordinates of P.

Example 1. Plot the points whose polar coordinates are given.

(a) (1,57/4)

(b) (2,3m)

(c) (2,—27/3)

(d) (=3,37/4)
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Calculus - 10.3 Polar Coordinates

Theorem 10.3.1. If the point P has Cartesian coordinates (x,y) and polar
coordinates (r,0), then

x =rcosf y =rsinf

and

r? =%+ tanf = 2.
x

Example 2. Convert the point (2, 7/3) from polar to Cartesian coordinates.

Example 3. Represent the point with Cartesian coordinates (1, —1) in terms
of polar coordinates.

Example 4. What curve is represented by the polar equation r = 27
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Calculus - 10.3 Polar Coordinates

Example 5. Sketch the polar curve 6 = 1.

Example 6. (a) Sketch the curve with polar equation r = 2 cos 6.

(b) Find a Cartesian equation for this curve.
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Example 7. Sketch the curve r =1 + sin 6.

Example 8. Sketch the curve r = cos 26.
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Calculus - 10.3 Polar Coordinates

Theorem 10.3.2. The slope of the tangent line to a polar curve r = f() is

dy %Sineqtrcose
=4
dz d—gcosﬁ—rsine

Proof. Regard 0 as a parameter and write
x=rcosf = f(0)cosd y=rsinfd = f(0)sind.

Then by Theorem 10.2.1 and the product rule, we have

dy ro
d — —sinf + rcos
ay _ do _ db ' ]
dz d_:c ﬁcos@—rsin&

db df

Example 9.

(a) For the cardioid r = 1 4 sin @ of Example 7, find the slope of the tangent
line when 6 = 7/3.
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Calculus - 10.3 Polar Coordinates

(b) Find the points on the cardioid where the tangent line is horizontal or
vertical.

Example 10. Graph the curve r = sin(86/5).
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Calculus - 10.3 Polar Coordinates

Example 11. Investigate the family of polar curves given by r = 1 + ¢sin 6.
How does the shape change as ¢ changes? (These curves are called limagons,
after a French word for snail, because of the shape of the curves for certain
values of ¢.)
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10.4 Areas and Lengths in Polar Coordinates

Theorem 10.4.1. Let Z be the region, illustrated in the figure,
bounded by the polar curve r = f(6) and by the rays 0 = a
and 6 = b, where f is a positive continuous function and where
0<b—a<2r. The area A of the polar region X% is

b1
A:/—T’Zde.
0 2

Example 1. Find the area enclosed by one loop of the four-leaved rose r =
cos 20.
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Calculus - 10.4 Areas and Lengths in Polar Coordinates

Example 2. Find the area of the region that lies inside the circle r = 3sin 6
and outside the cardioid r = 1 4 sin 6.

Example 3. Find all points of intersection of the curves r = cos 20 and r = 1

[\

324



Calculus - 10.4 Areas and Lengths in Polar Coordinates

Theorem 10.4.2. The length of a curve with polar equation r = f(0), a <

0 <b, is a
b dr\ 2
L= 2 — | df
[y ()

Proof. Regard 0 as a parameter and write
x =rcost = f(0)cosb y=rsinfd = f(0)sin0.

Then by the product rule, we have
dy dr dx dr

= —sinf + rcosb = —cosf —rsinf.

do ~ do do — do

Since cos? @ +sin? 6 = 1,

dz\? dy 2 dr\? 9 dr ) 9 . o
(@) + <@) = (@) Ccos 9—2T@C08981n0+7’ sin” 0

2
+ (%) sin’ @ + 27“% sin @ cos 0 + r2 cos® 6

= ﬁ24—1”2
-\ ’
b dz\? dy\* b dr\?
= — - = 2 —_
e [ () = [ ()W

SO

325



Calculus - 10.4 Areas and Lengths in Polar Coordinates

Example 4. Find the length of the cardioid » = 1 + sin 6.
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Calculus - 10.5 Conic Sections

10.5 Conic Sections

Definition 10.5.1. Parabolas, ellipses, and hyperbolas are called conic sec-
tions, or conics, because they result from intersecting a cone with a plane as
shown in the figure.

parabola hyperbola

Definition 10.5.2. A parabola is the set of points in a plane
that are equidistant from a fixed point F (called the focus) and
a fixed line (called the directrix). This definition is illustrated
by the figure. Notice that the point halfway between the focus
and the directrix lies on the parabola; it is called the vertex. The
line through the focus perpendicular to the directrix is called the
axis of the parabola. vertex

axis parabola

|
N

focus |
NE

7

|
LN
| directrix
Theorem 10.5.1. An equation of the parabola with focus (0,p) and directriz
Y= —pis

z? = 4dpy.
Theorem 10.5.2. An equation of the parabola with focus (p,0) and directriz
Tr=—pis

y? = 4px.
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Calculus - 10.5 Conic Sections

Example 1. Find the focus and directrix of the parabola y? + 10z = 0 and
sketch the graph.

Definition 10.5.3. An ellipse is the set of points in a plane the
sum of whose distances from two fixed points F} and F, is a
constant (see the figure). These two fixed points are called the
foci (plural of focus).

Definition 10.5.4. If (—¢,0) and (c,0) are the foci of an ellipse, the sum of
the distances from a point on the ellipse to the foci are 2a > 0, and b = a?—c?,
then the points (a,0) and (—a,0) are called the vertices of ellipse and the line
segment joining the vertices is called the major axis. The line segment joining
(0,b) and (0, —b) is the minor axis.

Theorem 10.5.3. The ellipse

2 2
SHm=1l azb>0
a

has foci (+c,0), where ¢* = a®> — b%, and vertices (+a,0).

Theorem 10.5.4. The ellipse
r +==1 a>b>0

has foci (0, +c), where ¢ = a* — b*, and vertices (0, +a).

328



Calculus - 10.5 Conic Sections

Example 2. Sketch the graph of 922 + 16y? = 144 and locate the foci.

Example 3. Find an equation of the ellipse with foci (0, £2) and vertices
(0, £3).

329



Calculus - 10.5 Conic Sections

Definition 10.5.5. A hyperbola is the set of all points in a plane
the difference of whose distances from two fixed points F; and
F, (the foci) is a constant. This definition is illustrated in the
figure.

Theorem 10.5.5. The hyperbola

has foci (+c,0), where ¢ = a* + b?, vertices (+a,0), and asymptotes y

+(b/a)x.
Theorem 10.5.6. The hyperbola

has foci (0,4c), where ¢ = a* + b?, vertices (0,4a), and asymptotes y

+(a/b)x.

Example 4. Find the foci and asymptotes of the hyperbola 922 — 16y? = 144

and sketch its graph.
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Calculus - 10.5 Conic Sections

Example 5. Find the foci and equation of the hyperbola with vertices (0, 41)
and asymptote y = 2.

Example 6. Find an equation of the ellipse with foci (2, —2), (4, —2), and
vertices (1, —2), (5, —2).

Example 7. Sketch the conic 922 — 4y* — 72x + 8y + 176 = 0 and find its foci.
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10.6 Conic Sections in Polar Coordinates

Theorem 10.6.1. Let F be a fized point (called the focus) and

[ be a fized line (called the directriz) in a plane. Let e be a fized directri
positive number (called the eccentricity). The set of all points P P (directrix)
in the plane such that
PF /! =
| Pl ¥
F |
(that is, the ratio of the distance from F' to the distance from [ cos 6 x
is the constant e) is a conic section. The conic is p
(a) an ellipse if e < 1
C
(b) a parabola if e = 1
(¢) a hyperbola if e > 1
Theorem 10.6.2. A polar equation of the form
ed ed
r=-— or r=—
1+ ecosf 1+ esinf
represents a conic section with eccentricity e. The conic is an ellipse if e < 1,
a parabola if e =1, or a hyperbola if e > 1.
Y4 y
V4 Y
y=d x=—d y=d directrix
\ directrix directrix / \ /
> F x
F X F X 7 >
/ \ y=—d directrix
_ed o ed L ed o ed
(a)r_l-f—ecosﬁ ®) 1—ecos 6 © 1+esin @ > 1 —esin 6

Example 1. Find a polar equation for a parabola that has its focus at the
origin and whose directrix is the line y = —6.
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Calculus - 10.6 Conic Sections in Polar Coordinates

Example 2. A conic is given by the polar equation

10

"= 3—2cosh’

Find the eccentricity, identify the conic, locate the directrix, and sketch the
conic.

12

Example 3. Sketch the conic r = 2T 5o

333



Calculus - 10.6 Conic Sections in Polar Coordinates

Example 4. If the ellipse of Example 2 is rotated through an angle 7/4 about

the origin, find a polar equation and graph the resulting ellipse.

Theorem 10.6.3. The polar equation of an ellipse with focus at the origin,
semimajor axis a, eccentricity e, and directrix x = d can be written in the form

a(l —e?)
r=—"7
1+ecosd

Definition 10.6.1. The positions of a planet that are closest
to and farthest from the sun are called its perihelion and aphe-

lion, respectively, and correspond to the vertices of the ellipse
(see the figure). The distances from the sun to the perihelion
and aphelion are called the perihelion distance and aphelion dis-

planet

0

tance, respectively.

Theorem 10.6.4. The perihelion distance from a planet to the
sun is a(l — e) and the aphelion distance is a(1 + €).

aphelion perihelion

Proof. If the sun is at the focus F, at perihelion we have ¢ = 0, so

a(l—e€*) a(l—e)(1+e)
T = o
1+ecos0 1+e

=a(l—e).

Similarly, at aphelion § = 7 and r = a(1 + e).
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Calculus - 10.6 Conic Sections in Polar Coordinates

Example 5. (a) Find an approximate polar equation for the elliptical orbit
of the earth around the sun (at one focus) given that the eccentricity is
about 0.017 and the length of the major axis is about 2.99 x 108 km.

(b) Find the distance from the earth to the sun at perihelion and at aphelion.
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Chapter 11

Infinite Sequences and Series

11.1 Sequences

Definition 11.1.1. A sequence can be thought of as a list of numbers written
in a definite order:
a1,02,A3,A4y ... Apy. ...

The number a; is called the first term, ay is the second term, and in general
a, 1s the nth term.

A sequence can also be defined as a function whose domain is the set of positive
integers. However, we usually write a,, instead of the function notation f(n)
for the value of the function at the number n.

The sequence {aq, as, as, ...} is also denoted by

{an} or {an}iil-

Example 1. Some sequences can be defined by giving a formula for the nth
term. In the following examples we give three descriptions of the sequence:
one by using the preceding notation, another by using the defining formula,
and a third by writing out the terms of the sequence. Notice that n doesn’t
have to start at 1.
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Calculus - 11.1 Sequences

n o n 1 234 n
(a‘) ap = PSR ERER] 3
n+1), _, n+1 2°3°4°5 n+1
) { D) C(=)"(n+1) 23 45  (-)(n+)
3n " 3n 3’9" 27’8177 3n
(c){ n—3 - ap =+vVn—3,n>3 {0,1,\/5,\/3,..., n — 3, }
n=3

Example 2. Find a formula for the general term a,, of the sequence

3 4 5 6 7
5 2571257 625731257

assuming that the pattern of the first few terms continues.
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Calculus - 11.1 Sequences

Example 3. Here are some sequences that don’t have a simple defining equa-
tion.

(a) The sequence {p,}, where p, is the population of the world as of January
1 in the year n.

(b) If we let a, be the digit in the nth decimal place of the number e, then
{a,} is a well-defined sequence whose first few terms are

{7,1,8,2,8,1,8,2,4,5,...}.

(¢) The Fibonacci sequence {f,} is defined recursively by the conditions

f1:1 f2:1 fn:fnfl"i_fan n > 3.

Each term is the sum of the two preceding terms. The first few terms are
{1,1,2,3,5,8,13,21,...}

This sequence arose when the 13th-century Italian mathematician known
as Fibonacci solved a problem concerning the breeding of rabbits.

Definition 11.1.2. A sequence {a,} has the limit L and we write

lim a, = L or a, — Lasn— o0
n—oo

if we can make the terms a,, as close to L as we like by taking n sufficiently
large. If lim, . exists, we say the sequence converges (or is convergent).
Otherwise, we say the sequence diverges (or is divergent).

Definition 11.1.3 (Precise Definition of the Limit of a Sequence). A sequence
{a,} has the limit L and we write

lim a, = L or a, — Lasn— oo
n—oo

if for every £ > 0 there is a corresponding integer N such that
if n>N then la, — L] < e.

Theorem 11.1.1. Iflim, . f(z) = L and f(n) = a, when n is an integer,
then lim,, o a,, = L.

Definition 11.1.4. lim,, ., a,, = oo means that for every positive number M
there is an integer N such that

if n>N then a, > M.
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Theorem 11.1.2 (Limit Laws for Sequences). If{a,} and {b,} are convergent
sequences and ¢ 1S a constant, then

lim (a, + b,) = lim a, + lim b,

n—oo n—oo n—o0

lim (a, — b,) = lim a, — lim b,

n—oo n—oo n—oo
lim ca,, = ¢ lim a, lim c=c¢c
n—oo n—oo n—oo

lim (a,b,) = lim a, - lim b,

n—00 n—00 n—00
e, e
lim — ==—"—— if lim b, #0
n—oo by, lim b, n—00
n—oo

P
lim af = [lim an] if p >0 and a, > 0.
n—oo

n—oo

Theorem 11.1.3 (Squeeze Theorem for Sequences). If a, < b, < ¢, for
n > ng and lim a, = lim ¢, = L, then lim b, = L.
n—oo n—oo n—oo

Theorem 11.1.4. If lim |a,| =0, then lim a, = 0.

Proof. Since lim,,_,« |a,| = 0,

lim —|a,| =0= — lim |a,| = 0.
n—00 n—oo

But —|a,| < a, < l|a,| for all n, so by the squeeze theorem for sequences,
lim,, o a, = 0. ]

Example 4. Find lim :
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n
Example 5. Is the sequence a, = T convergent or divergent?
n

1
Example 6. Calculate lim an
n—oo M

Example 7. Determine whether the sequence a, = (—1)" is convergent or
divergent.
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—1)"
Example 8. Evaluate lim u if it exists.

n—oo n

Theorem 11.1.5. If lim a, = L and the function f is continuous at L, then

n—o0

lim f(a,) = f(L).

n—oo

Proof. Choose a particular n, say ng. By the definition of a limit of a sequence,
given €; > 0 there exists an integer N, such that |a,, — L| < &; for ny > N.
Similarly, by the definition of continuity, the limit of f exists at L, so for g5 > 0
there exists e; > 0 such that if |a,, — L| < €1 then |f(an,) — f(L)| < 2. This
is true for arbitrary 5 > 0, so lim,_,o f(a,) = f(L). O
Example 9. Find lim sin(7/n).

n—o0
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Example 10. Discuss the convergence of the sequence a, = n!/n", where
n!:1.2.3.....fn_

Example 11. For what values of r is the sequence {r"} convergent?
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Definition 11.1.5. A sequence {a,} is called increasing if a, < a,.; for all
n > 1, that is, a; < as < ag < ---. It is called decreasing if a,, > a,,, for all
n > 1. A sequence is monotonic if it is either increasing or decreasing.

Example 12. Is the sequence { 5} increasing or decreasing?

n

Example 13. Show that the sequence a,, = 27:_ ] is decreasing.
n
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Definition 11.1.6. A sequence {a,} is bounded above if there is a number
M such that

an < M for all n > 1.

It is bounded below if there is a number m such that

m < a, for all n > 1.

If it is bounded above and below, then {a,} is a bounded sequence.

Theorem 11.1.6 (Monotonic Sequence theorem). Every bounded, monotonic
sequence is convergent.

Example 14. Investigate the sequence {a, } defined by the recurrence relation

1
a; =2 an+1:§(an+6) forn=1,2,3,....
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11.2 Series

Definition 11.2.1. In general, if we try to add the terms of an infinite se-
quence {a,}>° , we get an expression of the form

a1+a2+a3+---+an—l—--~

which is called an infnite series (or just a series) and is denoted, for short, by
the symbol

Sa o Y,
n=1
Definition 11.2.2. Given a series Zf;l an = a1 +as+ag+---,let s, denote

its nth partial sum:
n
sn:Zai:a1+a2+---—l—an.
i=1

If the sequence {s,} is convergent and lim, ., S, = s exists as a real number,
then the series ) a,, is called convergent and we write

n=1

The number s is called the sum of the series. If the sequence {s,} is divergent,
then the series is called divergent.

Example 1. Find the sum of the series > .~ | a, if the sum of the first n terms

of the series is
2n

T3 +5

Sp,=a; +ag+---+ay
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Example 2. Find the sum of the geometric series

a+a7“—|—a7“2—|—a7‘3—|—----|—ar”—1+...:Zar”_l a#0

n=1

where each term is obtained from the preceding one by multiplying it by the
common ratio 7.
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Example 3. Find the sum of the geometric series

o0
Example 4. Is the series > 2?"3!™" convergent or divergent?
n=1
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Example 5. A drug is administered to a patient at the same time every day.
Suppose the concentration of the drug is C,, (measured in mg/mL) after the
injection on the nth day. Before the injection the next day, only 30% of the
drug remains in the bloodstream and the daily dose raises the concentration
by 0.2 mg/mL.

(a) Find the concentration after three days.

(b) What is the concentration after the nth dose?

(c) What is the limiting concentration?
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Example 6. Write the number 2.317 = 2.3171717. .. as a ratio of integers.

Example 7. Find the sum of the series > x™, where |z| < 1.
n=0
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1

Example 8. Show that the series Z m
n(n

is convergent, and find its

n=1
sum.
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Example 9. Show that the harmonic series

i1—1+3+1+1+
n 2 3 4

n=1

is divergent.
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Theorem 11.2.1. If the series > a, is convergent, then lim a, = 0.

n=1 n—oo

Proof. Let s, = a1 +ay + -+ + a,. Then a, = s, — s,_1. Since »_ a,
is convergent, the sequence {s,} is convergent. Let lim, .. S, = s. Since
n—1— 0o as n — 0o, we also have lim,,_, s,,_1 = s. Therefore

lim a, = lim (s, — $,_1) = lim s, — lim s, 1 =s—s=0. H
n—oo n—oo n—0o0 n—oo

Corollary 11.2.1 (Test for Divergence). If lim a,, does not ezist or if lim a,, #
n—00 n—00

0, then the series Y a, is divergent.
n=1

Proof. 1f the series is not divergent, then it is convergent, and so lim,, o, a,, = 0
by Theorem 11.2.1. The result follows by contrapositive. O

TL2

5n? +4

Example 10. Show that the series Z diverges.
n=1
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Theorem 11.2.2. If > a, and »_ b, are convergent series, then so are the
series y . ca,, (where c is a constant), Y (a, + b,), and > (a, —by), and

(i) ican = cian
n=1 n=1
(i) > (an+b) =Y an+ Y by
n=1 n=1 n=1
(111) i(an —b,) = ian - ibn
n=1 n=1 n=1

- 1
Example 11. Find the sum of the series Z ( ey 2—)
(n

n=1

Remark 1. A finite number of terms doesn’t affect the convergence or diver-
gence of a series. For instance, suppose that we were able to show that the

series
o0

n
;n?’jtl

is convergent. Since

> 1
I At R Pt

it follows that the entire series > >°  n/(n® + 1) is convergent. Similarly, if it
is known that the series >~ . a, converges, then the full series

00 N 00
D= ant Y
n=1 n=1

n=N-+1

is also convergent.
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11.3 The Integral Test and Estimates of Sums

Theorem 11.3.1 (The Integral Test). Suppose f is a continuous, positive,
decreasing function on [1,00) and a, = f(n). The the series Y -, a, is con-
vergent if and only if the improper integral floo f(z)dx is convergent. In other
words:

o0

(i) If / f(z)dx is convergent, then Y a, is convergent.
1

n=1

o)

(i1) If/ f(z)dx is divergent, then »_ a, is divergent.
1 =1

n

Proof.

(i) If floo f(z) dz is convergent, then comparing the areas of the
rectangles with the area under y = f(x) from 1 to n in the
top figure, we see that

n

Zai:a2+a3+--~+anS/nf(:p)dxg/oof(x)dx
1 1

=2 0

since f(x) > 0. Therefore
Sy = a1 —l—Zai <a +/ f(z)dx = M, say.
i=2 1

Since s, < M for all n, the sequence {s,} is bounded above. Also
Spn+1 = Sn + Ap+1 2 Sn

since a,4+1 = f(n+1) > 0. Thus {s,} is an increasing bounded sequence
and so it is convergent by the Monotonic Sequence Theorem.
(ii) If [° f(z) dz is divergent, then []* f(z)dz — oo as n — oo

because f(z) > 0. But the bottom figure shows that ’

n n—1
/ f@)de <aj+ay+- + a1 =Y a;=s,_1
1 =1

and so s,_1 — oo, implying that s, — oc. O
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oo
1
Example 1. Test the series Z for convergence or divergence.
n=

2
n +1

o0

1
Example 2. For what values of p is the series E - convergent? (This series
n
n=1
is called the p-series.)
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Example 3. Determine whether each series converges or diverges.

1 1 1 1 1
@)D a=pmtmtmtat

5
&
Ql
§|

o0
Inn
Example 4. Determine whether the series —— converges or diverges.
n

n=1
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Definition 11.3.1. The remainder
Rn:S_Sn:an+1+an+2+an+3+"'

is the error made when s,,, the sum of the first n terms, is used as an approx-
imation to the total sum.

Theorem 11.3.2 (Remainder Estimate for the Integral Test).
Suppose f(k) = ag, where f is a continuous, positive, decreasing y=£)
function for x > n and > a, is convergent. If R, = s —s,, then

~

/oo f(x)de < R, < /OO f(x) da.
nt1 n

a
ntl|dy g

Proof. Comparing the rectangles with the area under y = f(z)
for x > n in the top figure, we see that

R, = apy1 + Qpio + - S/ f(z) du.

Similarly, we see from the bottom figure that

Ap+1

An+2

n+1

anan+1+an+z+---2/ f(z)dz. O
n+1

Example 5. (a) Approximate the sum of the series > 1/n3 by using the sum
of the first 10 terms. Estimate the error involved in this approximation.
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(b) How many terms are required to ensure that the sum is accurate to within
0.00057

Corollary 11.3.1. Suppose f(k) = ap, where [ is a continuous, positive,
decreasing function for x > n and >_ a, is convergent. Then

sn—l—/n:f(m)dxgsgsn—i—/noof(:c)dx.

Example 6. Use Corollary 11.3.1 with n = 10 to estimate the sum of the

[e%S)
i 1
series E —3-
n

n=1
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11.4 The Comparison Tests

Theorem 11.4.1 (The Comparison Test). Suppose that > a, and > b, are
series with positive terms.

(1) If > by, is convergent and a,, < b, for alln, then Y a, is also convergent.

(11) If > b, is divergent and a, > b, for all n, then > a, is also divergent.

Proof. (i) Let

n n oo
sn:Zai tn:ZbZ t:an

i=1 i=1 n=1
Since both series have positive terms, the sequences {s,} and {¢,} are
increasing (8,41 = Sp+ani1 > Sp). Alsot, = t,sot, <t forall n. Since
a; < b;, we have s, < t,. Thus s,, <t for all n. This means that {s,} is
increasing and bounded above and therefore converges by the Monotonic
Sequence Theorem. Thus ) a, converges.

(i) If > by, is divergent, then ¢, — oo (since {t¢,} is increasing). But a; > b;

SO 8, > t,,. Thus s, — oo. Therefore > a,, diverges. O
Example 1. Determine whether the series i L converges or di
p ) — 2n2 +4n + 3 &

verges.
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~Ink
Example 2. Test the series Z HT for convergence or divergence.

k=1

Theorem 11.4.2 (The Limit Comparison Test). Suppose that > a,, and ) b,
are series with positive terms. If

lim — =c¢
n—oo by,

where ¢ is a finite number and ¢ > 0, then either both series converge or both
diverge.

Proof. Let m and M be positive numbers such that m < ¢ < M. Because
a, /by, is close to ¢ for large n, there is an integer N such that

a
m<b—n<M when n > N,
n

and so
mb, < a, < Mb, when n > N.

If > b, converges, so does > Mb,. Thus > a, converges by part (i) of the
Comparison Test. If > b, diverges, so does Y mb, and part (ii) of the Com-
parison Test shows that ) a, diverges. O
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o0

1
Example 3. Test the series Z 5

] for convergence or divergence.

n=1

(e 9]

2n? + 3
Example 4. Determine whether the series E et on
n=1

— V5 +nd

converges or diverges.
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Example 5. Use the sum of the first 100 terms to approximate the sum of
the series > 1/(n3 + 1). Estimate the error involved in this approximation.
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11.5 Alternating Series

Definition 11.5.1. An alternating series is a series whose terms are alter-
nately positive and negative.

Theorem 11.5.1 (Alternating Series Test). If the alternating series

S (=1 by =by byt by —bytbs—bg+ - by >0

n=1

satisfies

(1) bpi1 < b, for alln
(1) nh—>r20 b, =0

then the series is convergent.

Proof.
b,
— b2
+ b,
— b,
| — bs
. >
0 S5 Sy Se s Ss S5 5
We first consider the even partial sums:
So=b; —by >0 since by < by
S4 = So + (bg — b4) Z S9 since b4 S b3.
In general
Son = Son—2 + (Dan—1 — ban) > Son—2 since by, < byp—1.
Thus

0<s$2<84<5< "< 89 < -0

But we can also write
Sop = by — (52 - b3) - <b4 - b5) — (banQ - 62n71> — bay,.
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Every term in parenthesis is positive, so sg, < by for all n. Therefore, the
sequence {sy,} of even partial sums is increasing and bounded above. It is
therefore convergent by the Monotonic Sequence Theorem. Let’s call its limit
s, that is,

lim sy, = s.
n—o0

Now we compute the limit of the odd partial sums:

lim 9,11 = lim (89, + bopi1)
= lim Son + lim b2n+l
=s+4+0
= 5.

Since both the even and odd partial sums converge to s, we have lim,, .o, s, = s
and so the series is convergent. O]

Example 1. Determine whether the alternating harmonic series

1 1 1 = (—=1)" !
1l— 4+ - Z1...= A
2+3 4+ ; n

converges or diverges.
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o0

-1)"3
Example 2. Determine whether the series Z % converges or diverges.
n p—

Example 3. Test the series z:(—l)’”r1

n=1

for convergence or divergence.
n3 +1
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Theorem 11.5.2 (Alternating Series Estimation Theorem). If s = Y (—1)""1b,,
where b, > 0, is the sum of an alternating series that satisfies

(1) bpi1 < by and (i) lim b, =0
n—oo

then
|Rn| = |5 — sn| < bpya-

Proof. We know from the proof of the Alternating Series Test that s lies be-
tween any two consecutive partial sums s, and s,41. (There we showed that
s is larger than all the even partial sums. A similar argument shows that s is
smaller than all the odd sums.) It follows that

‘S_Sn‘ < ’3n+1_sn‘ :anrl- O

(=D"

n!

Example 4. Find the sum of the series Z correct to three decimal

n=0
places.
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11.6 Absolute Convergence, Ratio and Root
Tests

Definition 11.6.1. A series ) _ a, is called absolutely convergent if the series
of absolute values ) |a,| is convergent.

Example 1. Is the series

(=1t 11 1
2 Tlemtme et

n=1

absolutely convergent?

Example 2. Is the series

i(—ml_l 1+1 1+
n 2 3 4

n=1

absolutely convergent?
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Definition 11.6.2. A series ) a,, is called conditionally convergent if it is
convergent but not absolutely convergent.

Theorem 11.6.1. If a series Y a, is absolutely convergent, then it is conver-
gent.

Proof. Observe that the inequality
0 < a, + |an| < 2]ay|

is true because |a,| is either a,, or —a,. If > a, is absolutely convergent, then
> |a,| is convergent, so Y 2|a,| is convergent. Therefore, by the Comparison
Test, > (a, + |a,|) is convergent. Then

Zan = Z(an + ’anD - Z |an‘

is the difference of two convergent series and is therefore convergent. O]

Example 3. Determine whether the series

o0

cosn cosl cos2 cos3
> o T T

n=1

is convergent or divergent.
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Theorem 11.6.2 (The Ratio Test).

(1) If li_}rn

Qp+1
G,

= L < 1, then the series Zan 15 absolutely convergent

n=1

(and therefore convergent).

%) 1F o,

divergent.

(iii) If lim
n—oo

an+1

Qn

Qp+1
G,

an+1

=L >1 or lim
n—oo

o
= 00, then the series E a, 18

a
n n=1

=1, the Ratio Test is inconclusive; that is, no conclusion

can be drawn about the convergence or divergence of . a,.

3

Example 4. Test the series Z(—l)”% for absolute convergence.
n=1

n
Example 5. Test the convergence of the series Z —.

o0 n

n!
n=1
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Theorem 11.6.3 (The Root Test).

(i) If lim {/|a,| = L < 1, then the series Zan 15 absolutely convergent
n—oo
n=1
(and therefore convergent).

(11) If lim {/|a,| = L > 1 or lim {/|a,| = oo, then the series Zan is

n=1
divergent.

(iii) If lim {
n—o0

a,| =1, the Root Test is inconclusive.

Example 6. Test the convergence of the series Z (3n i 2) .
n
n=1
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Definition 11.6.3. By a rearrangement of an infinite series ) a,, we mean a
series obtained by simply changing the order of the terms.

Remark 1. If > a, is an absolutely convergent series with sum s, then any
rearrangement of » " a, has the same sum s.

Remark 2. 1If Y a, is a conditionally convergent series and r is any real number
whatsoever, then there is a rearrangement of » a,, that has a sum equal to 7.
For example, if we multiply the alternating harmonic series

R U S SN NS U N SN
5 "37 175 67 8 -

by%,weget
(SN UNE N S SN
2 4 6 8 2
Then inserting zeros between the terms of this series gives
1 1 1 1 1
0+§+0—Z+0+6+0—§+”':51112,

and we can add this to the alternating harmonic series to get

UL S S S
3 2577 1 D

which is a rearrangement of the alternating harmonic series with a different
sum.
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11.7 Strategy for Testing Series

n—1
2n+1

Example 1. Z
n=1

nd+1

Example 2. Z m
n=1

Example 3. Zne’"z.

n=1
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Example 4. Z(—l)"

n=1

nt+1

Example 5. Z o

n=1

= 1
Example 6. Z —.
“—~2+3
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11.8 Power Series

Definition 11.8.1. A power series is a series of the form

oo
n __ 2 3
E Ch = Co+ 1« + cx” +c3x” + - -

n=0

where x is a variable and the ¢,’s are constants called the coefficients of the
series.
More generally, a series of the form

ch(x—a)" =co+c(r—a)+cyr—a)+---
n=0

is called a power series in (r — a) or a power series centered at a or a power
series about a.

o0

Example 1. For what values of x is the series Z nlz™ convergent?
n=0
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o0

_ 3\
Example 2. For what values of x does the series Z (x— converge?
n

n=1

Example 3. Find the domain of the Bessel function of order 0 defined by

2 (—1)ma?n
Jo(x) = Z%

n=0
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Theorem 11.8.1. For a given power series Z cn(x—a)", there are only three
n=0
possibilities:

(i) The series converges only when r = a.
(i) The series converges for all x.

(iii) There is a positive number R such that the series converges if |t —a| < R
and diverges if |x — a| > R.

Definition 11.8.2. The number R in case (iii) is called the radius of conver-
gence of the power series. By convention, the radius of convergence is R = 0 in
case (i) and R = oo in case (ii). The interval of convergence of a power series
is the interval that consists of all values of x for which the series converges.

Example 4. Find the radius of convergence and interval of convergence of

the series
n

— (=3)"x
Z n+1

n=0
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Example 5. Find the radius of convergence and interval of convergence of
the series -
Z n(x + 2)"
n+1 :
n=0 3
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11.9 Representations of Functions as Power
Series

Example 1. Express 1/(1 + z?) as the sum of a power series and find the
interval of convergence.

Example 2. Find a power series representation for 1/(x + 2).
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Example 3. Find a power series representation of 23/(x + 2).

Theorem 11.9.1. If the power series Y cp(x — a)™ has radius of convergence
R > 0, then the function f defined by

f(z) =co+cr(z—a)+cy(x —a)? chx—a

n=0

is differentiable (and therefore continuous) on the interval (a — R,a+ R) and

(i) f'(z) = c1+2co(x — a) + 3cz(x — a)? chn r—a) !

(z —a)

(1) /f(x)dIZC'—l—co(x—a)—i—cl + ¢y 4.

2 3
—C—i—ch r—a)

n+1

The radii of convergence of the power series in Equations (i) and (ii) are both

R.
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Example 4. Find the derivative of the Bessel function

2 (=1)"a2n
Jo(x) = Z (2%#

n=0

Example 5. Express 1/(1 —x)? as a power series using differentiation. What
is the radius of convergence?
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Example 6. Find a power series representation for In(1+ z) and its radius of
convergence.

Example 7. Find a power series representation for f(x) = tan™! x.
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Example 8. (a) Evaluate [[1/(1+ z")]dx as a power series.

(b) Use part (a) to approximate foo's[l/(l + 27)]dz correct to within 1077,
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11.10 Taylor and Maclaurin Series

Theorem 11.10.1. If f has a power series representation (expansion) at a,
that is, if

f(:c):ch(:c—a)” |z —a| < R
n=0
then its coefficients are given by the formula

7 (a)

n!

Cp =

Definition 11.10.1. The Taylor series of the function f at a (or about a or
centered at a) is

0 £ (g
f) =3 W gy
:f(a)+@(x—a)+%(!a)(:v—a)sz%(ﬁ)@—a)g%----

For the special case a = 0 the Taylor series becomes

© (n) / " "
f(x) = Z / nfo)xn = f(0) + f1<|0)x + f2(|0)$2 + / 3('0)$3 +oen
n=0 : : . !

which we call the Maclaurin Series.

Example 1. Find the Maclaurin series of the function f(z) = e* and its radius
of convergence.
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Theorem 11.10.2. If f(z) = T,,(z)+ R, (), where T,, is the nth-degree Taylor
polynomial of f at a, R, is the remainder of the Taylor series, and

lim R,(z) =0

n—o0

for |x —al < R, then f is equal to the sum of its Taylor series on the interval
|z —al < R.

Theorem 11.10.3 (Taylor’s Inequality). If |f™V(z)| < M for |z — a| < d,
then the remainder R,(x) of the Taylor series satisfies the inequality

M
|R,(z)| < m|x —a|"t? for |z —a| < d.

Example 2. Prove that e” is equal to the sum of its Maclaurin series.
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Example 3. Find the Taylor series f(z) = ¢® at a = 2.

Example 4. Find the Maclaurin series for sinx and prove that it represents
sinz for all x.
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Example 5. Find the Maclaurin series for cos .

Example 6. Find the Maclaurin series for the function f(z) = z cosz.
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Example 7. Represent f(z) = sinz as the sum of its Taylor series centered
at /3.
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Example 8. Find the Maclaurin series for f(z) = (1 + x)*, where k is any
real number.

388



Calculus - 11.10 Taylor and Maclaurin Series

Theorem 11.10.4 (The Binomial Series). If k is any real number and |z| < 1,
then

> -1 E(k —1)(k—2
e =3 (F)or 1 hos HE D BEZDE=2)
—~\n 21 3!

where the coefficients

(k) Kk —1)(k—2) - (k—n+1)

are called the binomial coefficients.

Example 9. Find the Maclaurin series for the function f(x) =

its radius of convergence.
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1
Example 10. Find the sum of the series - +

1-2 2-22 3.

Example 11. (a) Evaluate [ e~ dz as an infinite series.

(b) Evaluate fol e~ dx correct to within an error of 0.001.
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T __ 1 _
Example 12. Evaluate lim #.
z—0 xT
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Example 13. Find the first three nonzero terms in the Maclaurin series for

(a) e*sinx

(b) tanz
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11.11 Applications of Taylor Polynomials

Example 1. (a) Approximate the function f(z) = /= by a Taylor polyno-
mial of degree 2 at a = 8.

(b) How accurate is this approximation when 7 < z < 97
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Example 2. (a) What is the maximum error possible in using the approxi-

mation

3 2

sSinr ~x — 5 + 5
when —0.3 < x < 0.37 Use this approximation to find sin 12° correct to

six decimal places.

(b) For what values of z is this approximation accurate to within 0.000057?
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Example 3. In Einstein’s theory of special relativity the mass of an object

moving with velocity v is
mo

V1—=v?/c?
where my is the mass of an object when at rest and c is the speed of light.

The kinetic energy of the object is the difference between its total energy and
its energy at rest:

K = mc? — moc?®.

(a) Show that when v is very small compared with ¢, this expression for K
agrees with classical Newtonian physics: K = %movz.
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(b) Use Taylor’s Inequality to estimate the difference in these expressions for
K when |v| <100 m/s.
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absolute maximum, 114
absolute minimum, 114
absolute value, 5
absolutely convergent, 367
acceleration, 63
algebraic function, 12
alternating series, 363
alternating series test, 363
antiderivative, 155
aphelion, 334
arc length, 258
arccosine function, 24
arcsine function, 24
arctangent function, 24
area, 162
asymptote

horizontal, 48

slant, 140

vertical, 32
average rate of change, 58
average value of a function, 210

binomial coefficients, 389
bounded above, 344
bounded below, 344
bounded sequence, 344

cancellation equations, 21
cardiac output, 274
carrying capacity, 291
center of mass, 268
centroid, 269

chain rule, 76

common ratio, 346
comparison test, 359

composite function, 17
composition, 17
concave downward, 125
concave upward, 125
conditionally convergent, 368
conic sections, 327
conics, 327
consumer surplus, 273
continuous
at a point, 42
from the left, 43
from the right, 43
on an interval, 43
continuous random variable, 275
convergent, 250
absolutely, 367
conditionally, 368
integral, 254
sequence, 338
series, 345
critical number, 116
cubic function, 10
cycloid, 307

decreasing sequence, 343
definite integral, 165
demand function, 151
dependent variable, 1
derivative

at a point, 57

as a function, 60

of a parametric curve, 309

of an inverse function, 85

second, 63

third, 64
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differentiable, 61
differential, 109
differential equation, 99, 280

equilibrium solutions, 301

linear, 296

logistic, 291

order, 280

separable, 286

solution, 280
differentiation operators, 61
direction field, 282
discontinuity, 42
disk method for volume, 198
divergent, 250

integral, 254

sequence, 338

series, 345
domain, 1

eccentricity, 332
ellipse, 328
foci, 328
major axis, 328
minor axis, 328
vertices, 328
empirical model, 9
Euler’s method, 284
even function, 6
exponential function, 13
extreme value theorem, 115
extreme values, 114

Fermat’s theorem, 115
Fibonacci sequence, 338
first derivative test, 124
force, 206
Fresnel function, 176
function, 1
algebraic, 12
arccosine, 24
arcsine, 24
arctangent, 24
composition, 17

cubic, 10

even, 6
exponential, 13
hyperbolic, 111
inverse, 21

inverse cosine, 24
inverse sine, 24
inverse tangent, 24
linear, 8
logarithmic, 13, 22
natural exponential, 20
odd, 6

one-to-one, 21
piecewise, 4
power, 11
quadratic, 10
rational, 11
reciprocal, 11
root, 11

step, 6
trigonometric, 12

fundamental theorem of calculus, 174

geometric series, 346
greatest integer function, 37

half-life, 100

harmonic series, 351
horizontal asymptote, 48
horizontal line test, 21
hyperbolic functions, 111

implicit differentiation, 80
increasing sequence, 343
increment, 58

indefinite integral, 180
independent variable, 1
infinite series, 345

initial point, 305

instantaneous rate of change, 58

integrable, 165
integral
definite, 165
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improper, 250
indefinite, 180
symmetric function, 188
integral sign, 165
integral test, 354
integrand, 165
integrating factor, 296
integration, 165
error bounds, 244
integration by parts, 212
intermediate value theorem, 47
interval of convergence, 376
inverse cosine function, 24
inverse function, 21
inverse sine function, 24
inverse tangent function, 24

jerk, 64

L’Hospital’s rule, 130
law of natural decay, 99
law of natural growth, 99, 291
length, 258
limagon, 322
limit, 29

at infinity, 48

infinite, 31

laws, 33

of a sequence, 338

precise definition, 38
limit comparison test, 360
limits of integration, 165
linear approximation, 108
linear differential equation, 296
linear function, 8
linearization, 108
local extreme, 114
local maximum, 114
local minimum, 114
logarithmic differentiation, 88
logarithmic function, 13, 22
logistic differential equation, 291
Lotka-Volterra equations, 301

lower limit, 165
lower sum, 162

Maclaurin series, 383
marginal profit function, 151
marginal revenue function, 151
maximum, 114
mean, 277
mean value theorem, 120

for integrals, 210
midpoint rule, 171, 243
minimum, 114
moment, 268
monotonic, 343

natural exponential function, 20
natural logarithm, 23

net area, 166

Newton’s method, 152

normal line, 66

odd function, 6
one-to-one function, 21
orthogonal trajectory, 289

p-series, 355
parabola, 327

axis, 327

directrix, 327

focus, 327

vertex, 327
parameter, 304
parametric equations, 304
partial sum, 345
perihelion, 334
piecewise function, 4
polar axis, 316
polar coordinates, 316

directrix, 332

focus, 332
polynomial, 10
position function, 56
power function, 11
power rule, 65, 88
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power series, 374

preator-prey equations, 301
pressure, 266

price function, 151

probability density function, 275
product rule, 70

profit function, 151

quadratic function, 10
quotient rule, 71

radius of convergence, 376
range, 1
ratio test, 369
rational function, 11
rearrangement, 371
reciprocal function, 11
relative growth rate, 99
remainder, 357

Taylor series, 384
revenue function, 151
Riemann sum, 165
Rolle’s theorem, 119
root function, 11
root test, 370

sample points, 162
second derivative, 63
second derivative test, 126
sequence, 336
series, 345
alternating, 363
coefficients, 374
geometric, 346
harmonic, 351
Maclaurin, 383
p-series, 355
power, 374
sum, 345
Taylor, 383
shell method for volume, 203
sigma notation, 162
Simpson’s rule, 246

slant asymptote, 140
slope field, 282
spring constant, 207
squeeze theorem, 37

for sequences, 339
step function, 6
substitution rule, 184
surface area, 263
symmetry principle, 269

tangent line, 55

tangent line approximation, 108
Taylor polynomial, 384

Taylor series, 383

terminal point, 305

test for divergence, 352

third derivative, 64

trapezoidal rule, 243
trigonometric function, 12

upper limit, 165
upper sum, 162

value of a function, 1
velocity, 56

vertical asymptote, 32
vertical line test, 4
volume, 198

washer method for volume, 200
work, 206
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