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Chapter 1

Functions and Models

1.1 Four Ways to Represent a Function

Definition 1.1.1. A function f is a rule that assigns to each element x in a
set D exactly one element, called f(x), in a set E. The set D is called the
domain of the function. The number f(x) is the value of f at x. The set of all
possible values of f(x) as x varies throughout the domain is called the range.
A symbol that represents a number in the domain of a function f is called an
independent variable. A symbol that represents a number in the range of f is
called a dependent variable.

Definition 1.1.2. If f is a function with domain D, then its graph is the set
of ordered pairs

{(x, f(x)) | x ∈ D}.

 SECTION 1.1  Four Ways to Represent a Function 11

It’s helpful to think of a function as a machine (see Figure 2). If x is in the domain of 
the function f, then when x enters the machine, it’s accepted as an input and the machine 
produces an output f sxd according to the rule of the function. Thus we can think of the 
domain as the set of all possible inputs and the range as the set of all possible outputs.

The preprogrammed functions in a calculator are good examples of a function as a 
machine. For example, the square root key on your calculator computes such a function. 
You press the key labeled s   (or sx ) and enter the input x. If x , 0, then x is not in the 
domain of this function; that is, x is not an acceptable input, and the calculator will indi-
cate an error. If x > 0, then an approximation to sx  will appear in the display. Thus the 
sx  key on your calculator is not quite the same as the exact mathematical function f  
de!ned by f sxd − sx .

Another way to picture a function is by an arrow diagram as in Figure 3. Each arrow 
connects an element of D to an element of E. The arrow indicates that f sxd is associated 
with x, f sad is associated with a, and so on.

The most common method for visualizing a function is its graph. If f  is a function 
with domain D, then its graph is the set of ordered pairs

hsx, f sxdd | x [ Dj

(Notice that these are input-output pairs.) In other words, the graph of f  consists of all 
points sx, yd in the coordinate plane such that y − f sxd and x is in the domain of f.

The graph of a function f  gives us a useful picture of the behavior or “life history” 
of a function. Since the y-coordinate of any point sx, yd on the graph is y − f sxd, we can 
read the value of f sxd from the graph as being the height of the graph above the point x 
(see Figure 4). The graph of f  also allows us to picture the domain of f  on the x-axis and 
its range on the y-axis as in Figure 5.

0

y ! ƒ(x)

domain

range

{x, ƒ}

ƒ

f(1)
f(2)

0 1 2 x xx

y y

EXAMPLE 1 The graph of a function f  is shown in Figure 6.
(a) Find the values of f s1d and f s5d.
(b) What are the domain and range of f ?

SOLUTION
(a) We see from Figure 6 that the point s1, 3d lies on the graph of f, so the value of f  
at 1 is f s1d − 3. (In other words, the point on the graph that lies above x − 1 is 3 units 
above the x-axis.)

When x − 5, the graph lies about 0.7 units below the x-axis, so we estimate that 
f s5d < 20.7.

(b) We see that f sxd is de!ned when 0 < x < 7, so the domain of f  is the closed inter-
val f0, 7g. Notice that f  takes on all values from 22 to 4, so the range of f  is

 hy | 22 < y < 4j − f22, 4g Q

x
(input)

ƒ
(output)

f

FIGURE 2
Machine diagram for a function f  

fD E

ƒ

f(a)a

x

FIGURE 3
Arrow diagram for f  

FIGURE 4 FIGURE 5

x

y

0

1

1

FIGURE 6

The notation for intervals is given in 
Appendix A.
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Example 1. The graph of a function f is shown in the figure.

(a) Find the values of f(1) and f(5).

(b) What are the domain and range of f?

1
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Example 2. Sketch the graph and find the domain and range of each function.

(a) f(x) = 2x− 1

(b) g(x) = x2

Example 3. If f(x) = 2x2 − 5x+ 1 and h 6= 0, evaluate
f(a+ h)− f(a)

h
.

2
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Example 4. When you turn on a hot-water faucet, the temperature T of the
water depends on how long the water has been running. Draw a rough graph
of T as a function of the time t that has elapsed since the faucet was turned
on.

Example 5. A rectangular storage container with an open top has a volume
of 10 m3. The length of its base is twice its width. Material for the base costs
$10 per square meter; material for the sides costs $6 per square meter. Express
the cost of materials as a function of the width of the base.

3



Calculus - 1.1 Four Ways to Represent a Function

Example 6. Find the domain of each function.

(a) f(x) =
√
x+ 2

(b) g(x) =
1

x2 − x

Theorem 1.1.1 (Vertical Line Test). A curve in the xy-plane is the graph of
a function of x if and only if no vertical line intersects the curve more than
once.

Definition 1.1.3. Piecewise defined functions are defined by different formu-
las in different parts of their domains.

Example 7. A function f is defined by

f(x) =

{
1− x if x ≤ −1,

x2 if x > −1.

Evaluate f(−2), f(−1), and f(0) and sketch the graph.

4
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Definition 1.1.4. The absolute value of a number a, denoted by |a|, is the
distance from a to 0 on the real number line.

|a| =

{
a if a ≥ 0,

−a if a < 0.

Example 8. Sketch the graph of the absolute value function f(x) = |x|.

 SECTION 1.1  Four Ways to Represent a Function  17

Point-slope form of the equation of 
a line:

y 2 y1 − msx 2 x1 d
See Appendix B.

EXAMPLE 9 Find a formula for the function f  graphed in Figure 17.

SOLUTION The line through s0, 0d and s1, 1d has slope m − 1 and y-intercept b − 0, 
so its equation is y − x. Thus, for the part of the graph of f  that joins s0, 0d to s1, 1d, 
we have

f sxd − x    if  0 < x < 1

The line through s1, 1d and s2, 0d has slope m − 21, so its point-slope form is

y 2 0 − s21dsx 2 2d    or    y − 2 2 x

So we have  f sxd − 2 2 x    if  1 , x < 2

We also see that the graph of f  coincides with the x-axis for x . 2. Putting this infor-
mation together, we have the following three-piece formula for f :

f sxd − Hx
2 2 x
0

if  0 < x < 1
if  1 , x < 2
if  x . 2 Q

EXAMPLE 10 In Example C at the beginning of this section we considered the cost 
Cswd of mailing a large envelope with weight w. In effect, this is a piecewise de!ned 
function because, from the table of values on page 13, we have

Cswd −    

0.98
1.19
1.40
1.61

if  0 , w < 1
if  1 , w < 2
if  2 , w < 3
if  3 , w < 4

 ∙
 ∙
 ∙

 The graph is shown in Figure 18. You can see why functions similar to this one are 
called step functions—they jump from one value to the next. Such functions will be 
studied in Chapter 2. Q

Symmetry
If a function f  satis!es f s2xd − f sxd for every number x in its domain, then f  is called 
an even function. For instance, the function f sxd − x 2 is even because

f s2xd − s2xd2 − x 2 − f sxd

The geometric signi!cance of an even function is that its graph is symmetric with respect 
to the y-axis (see Figure 19). This means that if we have plotted the graph of f  for x > 0, 
we obtain the entire graph simply by re#ecting this portion about the y-axis.

If f  satis!es f s2xd − 2f sxd for every number x in its domain, then f  is called an odd 
function. For example, the function f sxd − x 3 is odd because

f s2xd − s2xd3 − 2x 3 − 2f sxd

x

y

0 1

1

FIGURE 17

FIGURE 19  
An even function

0 x_x
f(_x) ƒ

x

y

C

0.50

1.00

1.50

0 1 2 3 54 w

FIGURE 18
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Example 9. Find a formula for the function f graphed in the
figure.
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Example 10. The cost C(w) of mailing a large envelope with
weight w is a piecewise defined function because, from the table
of values representing the function,

w (ounces) C(w) (dollars)
0 < w ≤ 1 0.98
1 < w ≤ 2 1.19
2 < w ≤ 3 1.40
3 < w ≤ 4 1.61

...
...

we have

C(w) =



0.98 if 0 < w ≤ 1,

1.19 if 1 < w ≤ 2,

1.40 if 2 < w ≤ 3,

1.61 if 3 < w ≤ 4,
...

The graph is shown in the figure.

Remark 1. Functions similar to the one in the previous example
are called step functions.

Definition 1.1.5. If a function f satisfies f(−x) = f(x) for every number x
in its domain, then f is called an even function.

Remark 2. The function f(x) = x2 is even because

f(−x) = (−x)2 = x2 = f(x).

Definition 1.1.6. If a function f satisfies f(−x) = −f(x) for every number
x in its domain, then f is called an odd function.

Remark 3. The function f(x) = x3 is odd because

f(−x) = (−x)3 = −x3 = −f(x).

6
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Example 11. Determine whether each of the following functions is even, odd,
or neither even nor odd.

(a) f(x) = x5 + x

(b) g(x) = 1− x4

(c) h(x) = 2x− x2

Definition 1.1.7. A function f is called increasing on an interval I if

f(x1) < f(x2) whenever x1 < x2 in I.

It is called decreasing on I if

f(x1) > f(x2) whenever x1 < x2 in I.

7



Calculus - 1.2 Mathematical Models

1.2 Mathematical Models

Definition 1.2.1. We say y is a linear function of x if the graph of the function
is a line. The slope-intercept form of the equation of can be used to write a
formula for the function as

y = f(x) = mx+ b

where m is the slope of the line and b is the y-intercept.

Example 1. (a) As dry air moves upward, it expands and cools. If the ground
temperature is 20°C and the temperature at a height of 1 km is 10°C,
express the temperature T (in °C) as a function of the height h (in kilo-
meters), assuming that a linear model is appropriate.

(b) Draw the graph of the function in part (a). What does the slope represent?

(c) What is the temperature at a height of 2.5 km?

8



Calculus - 1.2 Mathematical Models

Definition 1.2.2. An empirical model is a model based entirely on collected
data.

Year
CO2 level
(in ppm)

Year
CO2 level
(in ppm)

1980 338.7 1998 366.5
1982 341.2 2000 369.4
1984 344.4 2002 373.2
1986 347.2 2004 377.5
1988 351.5 2006 381.9
1990 354.2 2008 385.6
1992 356.3 2010 389.9
1994 358.6 2012 393.8
1996 362.4

Example 2. The table lists the average carbon dioxide
level in the atmosphere, measured in parts per million
at Mauna Loa Observatory from 1980 to 2012. Use the
data in the table to find a model for the carbon dioxide
level.

9



Calculus - 1.2 Mathematical Models

Example 3. Use the linear model from the previous example to estimate the
average CO2 level for 1987 and to predict the level for the year 2020. According
to this model, when will the CO2 level exceed 420 parts per million?

Definition 1.2.3. A function P is called a polynomial if

P (x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0

where n is a nonnegative integer and the numbers a0, a1, a2, . . . , an are con-
stants called the coefficients of the polynomial. If the leading coefficient an 6= 0,
then the degree of the polynomial is n.

Remark 1. The function

P (x) = 2x6 − x4 +
2

5
x3 +

√
2

is a polynomial of degree 6.

Remark 2. A polynomial of degree 1 is of the form P (x) = mx+ b and so it is
a linear function. A polynomial of degree 2 is of the form P (x) = ax2 + bx+ c
and is called a quadratic function. A polynomial of degree 3 is of the form
P (x) = ax3 + bx2 + cx+ d and is called a cubic function.

10



Calculus - 1.2 Mathematical Models

Time
(seconds)

Height
(meters)

0 450
1 445
2 431
3 408
4 375
5 332
6 279
7 216
8 143
9 61

Example 4. A ball is dropped from the upper observation deck
of the CN Tower, 450 m above the ground, and its height h above
the ground is recorded at 1-second intervals in the table. Find a
model to fit the data and use the model to predict the time at
which the ball hits the ground.

30 CHAPTER 1  Functions and Models

parabola x − y 2. [See Figure 13(a).] For other even values of n, the graph of y − sn x  is 
similar to that of y − sx . For n − 3 we have the cube root function f sxd − s3 x  whose 
domain is R (recall that every real number has a cube root) and whose graph is shown 
in Figure 13(b). The graph of y − sn x  for n odd sn . 3d is similar to that of y − s3 x .

(b) ƒ=Œ„x

x

y

0
(1, 1)

(a) ƒ=œ„x

x

y

0
(1, 1)

(iii) a − 21
The graph of the reciprocal function f sxd − x21 − 1yx is shown in Figure 14. Its 
graph has the equation y − 1yx, or xy − 1, and is a hyperbola with the coordinate axes 
as its asymptotes. This function arises in physics and chemistry in connection with 
Boyle’s Law, which says that, when the temperature is constant, the volume V  of a gas 
is inversely proportional to the pressure P:

V −
C
P

where C is a constant. Thus the graph of V  as a function of P (see Figure 15) has the 
same general shape as the right half of Figure 14.

Power functions are also used to model species-area relationships (Exercises 30–31), 
illumination as a function of distance from a light source (Exercise 29), and the period 
of revolution of a planet as a function of its distance from the sun (Exercise 32).

Rational Functions
A rational function f  is a ratio of two polynomials:

f sxd −
Psxd
Qsxd

where P and Q are polynomials. The domain consists of all values of x such that Qsxd ± 0. 
A simple example of a rational function is the function f sxd − 1yx, whose domain is 
hx | x ± 0j; this is the reciprocal function graphed in Figure 14. The function

f sxd −
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x 2 2 4

is a rational function with domain hx | x ± 62j. Its graph is shown in Figure 16.

Algebraic Functions
A function f  is called an algebraic function if it can be constructed using algebraic 
operations (such as addition, subtraction, multiplication, division, and taking roots) start-
ing with polynomials. Any rational function is automatically an algebraic function. Here 
are two more examples:
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Definition 1.2.4. A function of the form f(x) = xa, where a
is a constant, is called a power function. If a = n, where n is a
positive integer, f(x) = xn is a polynomial. If a = 1/n, where
n is a positive integer, f(x) = x1/n = n

√
x is a root function. If

a = −1, f(x) = x−1 = 1/x is a reciprocal function, as shown in
the figure.

Definition 1.2.5. A rational function f is a ratio of two polynomials:

f(x) =
P (x)

Q(x)

where P and Q are polynomials.
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parabola x − y 2. [See Figure 13(a).] For other even values of n, the graph of y − sn x  is 
similar to that of y − sx . For n − 3 we have the cube root function f sxd − s3 x  whose 
domain is R (recall that every real number has a cube root) and whose graph is shown 
in Figure 13(b). The graph of y − sn x  for n odd sn . 3d is similar to that of y − s3 x .
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The graph of the reciprocal function f sxd − x21 − 1yx is shown in Figure 14. Its 
graph has the equation y − 1yx, or xy − 1, and is a hyperbola with the coordinate axes 
as its asymptotes. This function arises in physics and chemistry in connection with 
Boyle’s Law, which says that, when the temperature is constant, the volume V  of a gas 
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Power functions are also used to model species-area relationships (Exercises 30–31), 
illumination as a function of distance from a light source (Exercise 29), and the period 
of revolution of a planet as a function of its distance from the sun (Exercise 32).
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operations (such as addition, subtraction, multiplication, division, and taking roots) start-
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Remark 3. The function

f(x) =
2x4 − x2 + 1

x2 − 4

is a rational function with domain {x | x 6= ±2} and is graphed
in the figure.
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Calculus - 1.2 Mathematical Models

Definition 1.2.6. A function f is called an algebraic function if it can be
constructed using algebraic operations (such as addition, subtraction, multi-
plication, division, and taking roots) starting with polynomials.

Remark 4. The functions

f(x) =
√
x2 + 1 g(x) =

x4 − 16x2

x+
√
x

+ (x− 2) 3
√
x+ 1

are algebraic.

Definition 1.2.7. Trigonometric functions are functions of an angle that re-
late the angles of a triangle to the lengths of its sides.

Remark 5. The sine, cosine, and tangent functions are the most familiar
trigonometric functions. The convention in calculus is that radian measure
is always used, unless otherwise indicated.

Remark 6. For all values of x, we have

−1 ≤ sinx ≤ 1 − 1 ≤ cosx ≤ 1,

or equivalently,
| sinx| ≤ 1 | cosx| ≤ 1.

Also, the periodic nature of these functions implies that

sin(x+ 2π) = sin x cos(x+ 2π) = cos x

for all values of x.

Example 5. What is the domain of the function f(x) =
1

1− 2 cosx
?
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Calculus - 1.2 Mathematical Models

Definition 1.2.8. Exponential functions are functions of the form f(x) = bx,
where the base b is a positive constant.

Definition 1.2.9. Logarithmic functions are functions of the form f(x) =
logb x, where the base b is a positive constant.

Remark 7. Logarithmic functions are inverse functions of exponential func-
tions.

Example 6. Classify the following functions as one of the types of functions
that we have discussed.

(a) f(x) = 5x

(b) g(x) = x5

(c) h(x) =
1 + x

1−
√
x

(d) u(t) = 1− t+ 5t4

13



Calculus - 1.3 New Functions from Old Functions

1.3 New Functions from Old Functions

Remark 1 (Vertical and Horizontal Shifts). Suppose c > 0. To obtain the
graph of
y = f(x) + c, shift the graph of y = f(x) a distance c units upward
y = f(x)− c, shift the graph of y = f(x) a distance c units downward
y = f(x− c), shift the graph of y = f(x) a distance c units to the right
y = f(x+ c), shift the graph of y = f(x) a distance c units to the left

Remark 2 (Vertical and Horizontal Stretching and Reflecting). Suppose c > 1.
To obtain the graph of
y = cf(x), stretch the graph of y = f(x) vertically by a factor of c
y = (1/c)f(x), shrink the graph of y = f(x) vertically by a factor of c
y = f(cx), shrink the graph of y = f(x) horizontally by a factor of c
y = f(x/c), stretch the graph of y = f(x) horizontally by a factor of c
y = −f(x), reflect the graph of y = f(x) about the x-axis
y = f(−x), reflect the graph of y = f(x) about the y-axis

Example 1. Given the graph of y =
√
x, use transformations to graph y =√

x− 2, y =
√
x− 2, y = −

√
x, y = 2

√
x, and y =

√
−x.

14



Calculus - 1.3 New Functions from Old Functions

Example 2. Sketch the graph of the function f(x) = x2 + 6x+ 10.

Example 3. Sketch the graphs of the following functions.

(a) y = sin 2x

(b) y = 1− sinx

15



Calculus - 1.3 New Functions from Old Functions

Example 4. The figure shows graphs of the number of hours of daylight as
functions of time of the year at several latitudes. Given that Philadelphia is
located at approximately 40°N latitude, find a function that models the length
of daylight at Philadelphia.

 SECTION 1.3  New Functions from Old Functions 39

EXAMPLE 3 Sketch the graphs of the following functions.
(a) y − sin 2x (b) y − 1 2 sin x

SOLUTION
(a) We obtain the graph of y − sin 2x from that of y − sin x by compressing horizon-
tally by a factor of 2. (See Figures 6 and 7.) Thus, whereas the period of y − sin x is  
2!, the period of y − sin 2x is 2!y2 − !.

x0

y

1

π
2

π
4

π

y=sin 2x

FIGURE 7

(b) To obtain the graph of y − 1 2 sin x, we again start with y − sin x. We re!ect  
about the x-axis to get the graph of y − 2sin x and then we shift 1 unit upward to get 
y − 1 2 sin x. (See Figure 8.)

x

1
2

y

π0 2π

y=1-sin x

π
2

3π
2  Q

EXAMPLE 4 Figure 9 shows graphs of the number of hours of daylight as functions of 
the time of the year at several latitudes. Given that Philadelphia is located at approxi-
mately 408N latitude, "nd a function that models the length of daylight at Philadelphia.
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FIGURE 9 
 Graph of the length of daylight from 

March 21 through December 21  
at various latitudes 

Source: Adapted from L. Harrison,  
Daylight, Twilight, Darkness and Time   
(New York: Silver, Burdett, 1935), 40.
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Calculus - 1.3 New Functions from Old Functions

Example 5. Sketch the graph of the function y = |x2 − 1|.

Definition 1.3.1. The sum and difference functions are defined by

(f + g)(x) = f(x) + g(x) (f − g)(x) = f(x)− g(x).

Similarly, the product and quotient functions are defined by

(fg)(x) = f(x)g(x)

(
f

g

)
(x) =

f(x)

g(x)
, g(x) 6= 0.

Definition 1.3.2. Given two functions f and g, the composite function f ◦ g
(also called the composition of f and g) is defined by

(f ◦ g)(x) = f(g(x)).

Example 6. If f(x) = x2 and g(x) = x−3, find the composite functions f ◦ g
and g ◦ f .
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Calculus - 1.3 New Functions from Old Functions

Example 7. If f(x) =
√
x and g(x) =

√
2− x, find each of the following

functions and their domains.

(a) f ◦ g

(b) g ◦ f

(c) f ◦ f

(d) g ◦ g

Example 8. Find f ◦ g ◦h if f(x) = x/(x+ 1), g(x) = x10, and h(x) = x+ 3.

Example 9. Given F (x) = cos2(x + 9), find functions f , g, and h such that
F = f ◦ g ◦ h.

18



Calculus - 1.4 Exponential Functions

1.4 Exponential Functions

Theorem 1.4.1 (Laws of Exponents). If a and b are positive numbers and x
and y are any real numbers, then

1. bx+y = bxby 2. bx−y =
bx

by
3. (bx)y = bxy 4. (ab)x = axbx

Example 1. Sketch the graph of the function y = 3 − 2x and determine its
domain and range.

Example 2. Use a graphing calculator to compare the exponential function
f(x) = 2x and the power function g(x) = x2. Which function grows more
quickly when x is large?

Example 3. The half-life of strontium-90, 90Sr, is 25 years. This means that
half of any given quantity of 90Sr will disintegrate in 25 years.

(a) If a sample of 90Sr has a mass of 24 mg, find an expression for the mass
m(t) that remains after t years.
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Calculus - 1.4 Exponential Functions

(b) Find the mass remaining after 40 years, correct to the nearest milligram.

(c) Use a graphing calculator to graph m(t) and use the graph to estimate
the time required for the mass to be reduced to 5 mg.

Definition 1.4.1. We call the function f(x) = ex the natural exponential
function where e is the value of b in y = bx resulting in a tangent line at (0, 1)
with slope 1.

Example 4. Graph the function y = 1
2
e−x − 1 and state the domain and

range.

Example 5. Use a graphing device to find the values of x for which ex >
1, 000, 000.
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Calculus - 1.5 Inverse Functions and Logarithms

1.5 Inverse Functions and Logarithms

Definition 1.5.1. A function is a one-to-one function if it never takes on the
same value twice; that is,

f(x1) 6= f(x2) whenever x1 6= x2.

Theorem 1.5.1 (Horizontal Line Test). A function is one-to-one if and only
if no horizontal line intersects its graph more than once.

Example 1. Is the function f(x) = x3 one-to-one?

Example 2. Is the function g(x) = x2 one-to-one?

Definition 1.5.2. Let f be a one-to-one function with domain A and range
B. Then its inverse function f−1 has domain B and range A and is defined by

f−1(y) = x⇔ f(x) = y

for any y in B.

Example 3. If f(1) = 5, f(3) = 7, and f(8) = −10, find f−1(7), f−1(5), and
f−1(−10).

Remark 1. The letter x is traditionally used as the independent variable, so
when we concentrate on f−1 we usually reverse the roles of x and y to get

f−1(x) = y ⇔ f(y) = x.

By substituting for x and y, we get the following cancellation equations:

f−1(f(x)) = x for every x in A

f(f−1(x)) = x for every x in B
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Calculus - 1.5 Inverse Functions and Logarithms

Example 4. Find the inverse function of f(x) = x3 + 2.

Remark 2. The graph of f−1 is obtained by reflecting the graph of f about
the line y = x.

Example 5. Sketch the graphs of f(x) =
√
−1− x and its inverse function

using the same coordinate axes.

Definition 1.5.3. The logarithmic function with base b, denoted by logb, is
the inverse function of the exponential function f(x) = bx with b > 0 and
b 6= 1, i.e.,

logb x = y ⇔ by = x.

Remark 3. By the cancellation equations,

logb(b
x) = x for every x ∈ R

blogb x = x for every x > 0.

Theorem 1.5.2 (Laws of Logarithms). If x and y are positive numbers, then

1. logb(xy) = logb x+ logb y

2. logb

(
x

y

)
= logb x− logb y

3. logb(x
r) = r logb x (where r is any real number)

Example 6. Use the laws of logarithms to evaluate log2 80− log2 5.
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Calculus - 1.5 Inverse Functions and Logarithms

Definition 1.5.4. The logarithm with base e is called the natural logarithm
and is denoted by

loge x = lnx.

Example 7. Find x if ln x = 5.

Example 8. Solve the equation e5−3x = 10.

Example 9. Express ln a+ 1
2

ln b as a single logarithm.

Theorem 1.5.3 (Change of Base Formula). For any positive number b (b 6= 1),
we have

logb x =
lnx

ln b
.

Proof. Let y = logb x. Then

by = x

y ln b = lnx

y =
lnx

ln b
.

Example 10. Evaluate log8 5 correct to six decimal places.
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Calculus - 1.5 Inverse Functions and Logarithms

Example 11. Sketch the graph of the function y = ln(x− 2)− 1.

Definition 1.5.5. The inverse sine function or arcsine function, denoted by
sin−1, is the inverse of the sine function on the restricted domain [−π/2, π/2].

Remark 4. By the cancellation equations,

sin−1(sinx) = x for − π

2
≤ x ≤ π

2
sin(sin−1 x) = x for − 1 ≤ x ≤ 1.

Example 12. Evaluate (a) sin−1(1
2
) and (b) tan

(
arcsin 1

3

)
.

Definition 1.5.6. The inverse cosine function or arccosine function, denoted
by cos−1, is the inverse of the cosine function on the restricted domain [0, π].

Remark 5. By the cancellation equations,

cos−1(cosx) = x for 0 ≤ x ≤ π

cos(cos−1 x) = x for − 1 ≤ x ≤ 1.

Definition 1.5.7. The inverse tangent function or arctangent function, de-
noted by tan−1, is the inverse of the tangent function on the restricted domain
[−π/2, π/2].
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Calculus - 1.5 Inverse Functions and Logarithms

Example 13. Simplify the expression cos(tan−1 x).

Remark 6. The remaining inverse trigonometric functions are

y = csc−1 x (|x| ≥ 1) ⇐⇒ csc y = x and y ∈ (0, π/2] ∪ (π, 3π/2]

y = sec−1 x (|x| ≥ 1) ⇐⇒ sec y = x and y ∈ [0, π/2) ∪ [π, 3π/2)

y = cot−1 x (|x| ∈ R) ⇐⇒ cot y = x and y ∈ (0, π).
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Chapter 2

Limits and Derivatives

2.1 The Tangent and Velocity Problems

Remark 1. A tangent to a curve is a line that that touches the curve. A secant
is a line that cuts a curve more than once.

Example 1. Find an equation of the tangent line to the parabola y = x2 at
the point P (1, 1).
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Calculus - 2.1 The Tangent and Velocity Problems

t Q
0.00 100.0
0.02 81.87
0.04 67.03
0.06 54.88
0.08 44.93
0.10 36.76

Example 2. The flash unit on a camera operates by storing
charge on a capacitor and releasing it suddenly when the flash is
set off. The data in the table describe the charge Q remaining on
the capacitor (measured in microcoulombs) at time t (measured
in seconds after the flash goes off). Use the data to draw the
graph of this function and estimate the slope of the tangent line
at the point where t = 0.04. [Note: The slope of the tangent line
represents the electric current flowing from the capacitor to the
flash bulb (measured in microamperes).]
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Calculus - 2.1 The Tangent and Velocity Problems

Example 3. Suppose that a ball is dropped from the upper observation deck
of the CN Tower in Toronto, 450 m above the ground. Find the velocity of
the ball after 5 seconds. [If the distance fallen after t seconds is denoted by
s(t) and measured in meters, then Galileo’s law that the distance fallen by any
freely falling body is proportional to the square of the time it has been falling
is expressed by the equation s(t) = 4.9t2.]
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Calculus - 2.2 The Limit of a Function

2.2 The Limit of a Function

Definition 2.2.1. Suppose f(x) is defined when x is near the number a. Then
we write

lim
x→a

f(x) = L

if we can make the values of f(x) arbitrarily close to L by restricting x to be
sufficiently close to a but not equal to a.

Example 1. Guess the value of lim
x→1

x− 1

x2 − 1
.

Example 2. Estimate the value of lim
t→0

√
t2 + 9− 3

t2
.

Example 3. Guess the value of lim
x→0

sinx

x
.
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Calculus - 2.2 The Limit of a Function

Example 4. Investigate lim
x→0

sin
π

x
.

Example 5. Find lim
x→0

(
x3 +

cos 5x

10, 000

)
.

Definition 2.2.2. We write

lim
x→a−

f(x) = L

if we can make the values of f(x) arbitrarily close to L by taking x to be
sufficiently close to a with x less than a. Similarly, if we require that x be
greater than a, we write

lim
x→a+

f(x) = L.

Example 6. Investigate the limit as t approaches 0 of the Heaviside function
H, defined by

H(t) =

{
0 if t < 0,

1 if t ≥ 0.
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Calculus - 2.2 The Limit of a Function

Remark 1. lim
x→a

f(x) = L if and only if lim
x→a−

f(x) = L and lim
x→a+

f(x) = L.

y

0 x

y=©

1 2 3 4 5

1

3

4
Example 7. Use the graph of g to state the values (if they exist)
of the following:

(a) lim
x→2−

g(x) (b) lim
x→2+

g(x)

(c) lim
x→2

g(x) (d) lim
x→5−

g(x)

(e) lim
x→5+

g(x) (f) lim
x→5

g(x)

Definition 2.2.3. Let f be a function defined on both sides of a, except
possibly at a itself. Then

lim
x→a

f(x) =∞

means that the values of f(x) can be made arbitrarily large by taking x suffi-
ciently close to a, but not equal to a. Similarly,

lim
x→a

f(x) = −∞

means that the values of f(x) can be made arbitrarily large negative by taking
x sufficiently close to a, but not equal to a.

Example 8. Find lim
x→0

1

x2
if it exists.
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Calculus - 2.2 The Limit of a Function

Definition 2.2.4. The vertical line x = a is called a vertical asymptote of
the curve y = f(x) if at least one of the following statements is true:

lim
x→a

f(x) =∞ lim
x→a−

f(x) =∞ lim
x→a+

f(x) =∞

lim
x→a

f(x) = −∞ lim
x→a−

f(x) = −∞ lim
x→a+

f(x) = −∞

Example 9. Find lim
x→3+

2x

x− 3
and lim

x→3−

2x

x− 3
.

Example 10. Find the vertical asymptotes of f(x) = tan x.

32



Calculus - 2.3 Calculating Limits Using the Limit Laws

2.3 Calculating Limits Using the Limit Laws

Theorem 2.3.1 (Limit Laws). Suppose that c is a constant and the limits

lim
x→a

f(x) and lim
x→a

g(x)

exist. Then

1. lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x)

2. lim
x→a

[f(x)− g(x)] = lim
x→a

f(x)− lim
x→a

g(x)

3. lim
x→a

[cf(x)] = c lim
x→a

f(x)

4. lim
x→a

[f(x)g(x)] = lim
x→a

f(x) · lim
x→a

g(x)

5. lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)
if lim

x→a
g(x) 6= 0

x

y

0

f

g
1

1

Example 1. Use the Limit Laws and the graphs of f and g to
evaluate the following limits, if they exist.
(a) lim

x→−2
[f(x) + 5g(x)]

(b) lim
x→1

[f(x)g(x)]

(c) lim
x→2

f(x)

g(x)
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Calculus - 2.3 Calculating Limits Using the Limit Laws

Theorem 2.3.2 (Power and Root Laws). By repeatedly applying the Product
Law and using some basic intuition we obtain the following:

6. lim
x→a

[f(x)]n =

[
lim
x→a

f(x)

]n
where n is a positive integer

7. lim
x→a

c = c

8. lim
x→a

x = a

9. lim
x→a

xn = an where n is a positive integer

10. lim
x→a

n
√
x = n
√
a where n is a positive integer

(If n is even, we assume that a > 0.)

11. lim
x→a

n
√
f(x) = n

√
lim
x→a

f(x) where n is a positive integer[
If n is even, we assume that lim

x→a
f(x) > 0.

]
Example 2. Evaluate the following limits and justify each step.

(a) lim
x→5

(2x2 − 3x+ 4)

(b) lim
x→−2

x3 + 2x2 − 1

5− 3x
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Calculus - 2.3 Calculating Limits Using the Limit Laws

Theorem 2.3.3 (Direct Substitution Property). If f is a polynomial or a
rational function and a is in the domain of f , then

lim
x→a

f(x) = f(a).

Example 3. Find lim
x→1

x2 − 1

x− 1
.

Remark 1. If f(x) = g(x) when x 6= a, then lim
x→a

f(x) = lim
x→a

g(x), provided the

limits exist.

Example 4. Find lim
x→1

g(x) where

g(x) =

{
x+ 1 if x 6= 1,

π if x = 1.

Example 5. Evaluate lim
h→0

(3 + h)2 − 9

h
.

35



Calculus - 2.3 Calculating Limits Using the Limit Laws

Example 6. Find lim
t→0

√
t2 + 9− 3

t2
.

Example 7. Show that lim
x→0
|x| = 0.

Example 8. Prove that lim
x→0

|x|
x

does not exist.

Example 9. If

f(x) =

{√
x− 4 if x > 4,

8− 2x if x < 4.

determine whether lim
x→4

f(x) exists.
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Calculus - 2.3 Calculating Limits Using the Limit Laws

Example 10. The greatest integer function is defined by JxK = the largest
integer that is less than or equal to x. (For instance, J4K = 4, J4.8K = 4,
JπK = 3, J

√
2K = 1, J−1

2
K = −1.) Show that lim

x→3
JxK does not exist.

Theorem 2.3.4. If f(x) ≤ g(x) when x is near a (except possibly at a) and
the limits of f and g both exist as x approaches a, then

lim
x→a

f(x) ≤ lim
x→a

g(x).

Theorem 2.3.5 (The Squeeze Theorem). If f(x) ≤ g(x) ≤ h(x) when x is
near a (except possibly at a) and

lim
x→a

f(x) = lim
x→a

h(x) = L

then
lim
x→a

g(x) = L.

Example 11. Show that lim
x→0

x2 sin
1

x
= 0.
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Calculus - 2.4 The Precise Definition of a Limit

2.4 The Precise Definition of a Limit

Definition 2.4.1. Let f be a function defined on some open interval that
contains the number a, except possibly at a itself. Then we write

lim
x→a

f(x) = L

if for every number ε > 0 there is a number δ > 0 such that

if 0 < |x− a| < δ then |f(x)− L| < ε.

Example 1. Use a graph to find a number δ such that if x is within δ of 1,
then f(x) = x3 − 5x+ 6 is within 0.2 of 2.
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Example 2. Prove that lim
x→3

(4x− 5) = 7.

Definition 2.4.2.
lim
x→a−

f(x) = L

if for every number ε > 0 there is a number δ > 0 such that

if a− δ < x < a then |f(x)− L| < ε.

Similarly,
lim
x→a+

f(x) = L

if for every number ε > 0 there is a number δ > 0 such that

if a < x < a+ δ then |f(x)− L| < ε.
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Example 3. Prove that lim
x→0+

√
x = 0.

Example 4. Prove that lim
x→3

x2 = 9.
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Definition 2.4.3. Let f be a function defined on some open interval that
contains the number a, except possibly at a itself. Then

lim
x→a

f(x) =∞

means that for every positive number M there is a positive number δ such
that

if 0 < |x− a| < δ then f(x) > M.

Similarly,
lim
x→a

f(x) = −∞

means that for every negative number N there is a positive number δ such
that

if 0 < |x− a| < δ then f(x) < N.

Example 5. Prove that lim
x→0

1

x2
=∞.
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2.5 Continuity

Definition 2.5.1. A function f is continuous at a number a if

lim
x→a

f(x) = f(a).

We say that f is discontinuous at a (or f has a discontinuity at a) if f is not
continuous at a.

y

0 x1 2 3 4 5

Example 1. Use the graph of the function f to determine the
numbers at which f is discontinuous.

Example 2. Where are each of the following functions discontinuous?

(a) f(x) =
x2 − x− 2

x− 2

(b) f(x) =


1

x2
if x 6= 0

1 if x = 0
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(c) f(x) =


x2 − x− 2

x− 2
if x 6= 2

1 if x = 2

(d) f(x) = JxK

Definition 2.5.2. A function f is continuous from the right at a number a if

lim
x→a+

f(x) = f(a)

and f is continuous from the left at a if

lim
x→a−

f(x) = f(a).

Example 3. In which direction(s) is the function f(x) = JxK continuous?

Definition 2.5.3. A function f is continuous on an interval if it is continuous
at every number in the interval. (If f is defined only on one side of an endpoint
of the interval, we understand continuous at the endpoint to mean continuous
from the right or continuous from the left.)
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Example 4. Show that the function f(x) = 1−
√

1− x2 is continuous on the
interval [−1, 1].

Theorem 2.5.1. If f and g are continuous at a and c is a constant, then the
following functions are also continuous at a:

1. f + g 2. f − g 3. cf

4. fg 5.
f

g
if g(a) 6= 0

Proof. All of these results follow from the Limit Laws. For example, f + g is
continuous at a because

lim
x→a

(f + g)(x) = lim
x→a

[f(x) + g(x)]

= lim
x→a

f(x) + lim
x→a

g(x)

= f(a) + g(a)

= (f + g)(a).

Theorem 2.5.2. (a) Any polynomial is continuous everywhere; that is, it is
continuous on R = (−∞,∞).

(b) Any rational function is continuous wherever it is defined; that is, it is
continuous on its domain.

Proof. (a) Let
P (x) = cnx

n + cn−1x
n−1 + · · ·+ c1x+ c0

be a polynomial where c0, c1, . . . , cn are constants. Then

lim
x→a

xm = am m = 1, 2, . . . , n

implies that the function f(x) = xm is continuous. Since

lim
x→a

c0 = c0,
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the constant function is continuous as well, and therefore the product
function g(x) = cxm is continuous. Since P is a sum of functions of this
form, it is continuous as well.

(b) Rational functions are quotients of polynomials, i.e.,

f(x) =
P (x)

Q(x)
,

where P and Q are polynomials. Thus the above result implies that they
are continuous on their domains.

Example 5. Find lim
x→−2

x3 + 2x2 − 1

5− 3x
.

Theorem 2.5.3. The following types of functions are continuous at every
number in their domains:
• polynomials • rational functions • root functions
• trigonometric functions • inverse trigonometric functions
• exponential functions • logarithmic functions

Example 6. Where is the function f(x) =
lnx+ tan−1 x

x2 − 1
continuous?

Example 7. Evaluate lim
x→π

sinx

2 + cos x
.
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Calculus - 2.5 Continuity

Theorem 2.5.4. If f is continuous at b and lim
x→a

g(x) = b, then lim
x→a

f(g(x)) =

f(b), i.e.,

lim
x→a

f(g(x)) = f

(
lim
x→a

g(x)

)
.

Proof. Let ε > 0. Since f is continuous at b, we have limy→b f(y) = f(b) and
so there exists δ1 > 0 such that

if 0 < |y − b| < δ1 then |f(y)− f(b)| < ε.

Since limx→a g(x) = b, there exists δ > 0 such that

if 0 < |x− a| < δ then |g(x)− b| < δ1.

By letting y = g(x) in the first statement, we get that 0 < |x− a| < δ implies
that

∣∣f(g(x))− f(b)
∣∣ < ε, i.e., limx→a f(g(x)) = f(b).

Example 8. Evaluate lim
x→1

arcsin

(
1−
√
x

1− x

)
.

Theorem 2.5.5. If g is continuous at a and f is continuous at g(a), then the
composite function f ◦ g given by (f ◦ g)(x) = f(g(x)) is continuous at a.

Proof. Since g is continuous at a, we have

lim
x→a

g(x) = g(a).

Since f is continuous at g(a), we have

lim
x→a

f(g(x)) = f

(
lim
x→a

g(x)

)
= f(g(a)),

which means f ◦ g is continuous.
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Calculus - 2.5 Continuity

Example 9. Where are the following functions continuous?

(a) h(x) = sin(x2)

(b) F (x) = ln(1 + cosx)

Theorem 2.5.6 (Intermediate Value Theorem). Suppose that f is continuous
on the closed interval [a, b] and let N be any number between f(a) and f(b),
where f(a) 6= f(b). Then there exists a number c in (a, b) such that f(c) = N .

Example 10. Show that there is a root of the equation 4x3−6x2 +3x−2 = 0
between 1 and 2.
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2.6 Limits at Infinity

Definition 2.6.1. Let f be a function defined on some interval (a,∞). Then

lim
x→∞

f(x) = L

means that the values of f(x) can be made arbitrarily close to L by requiring
x to be sufficiently large.

Definition 2.6.2. Let f be a function defined on some interval (−∞, a). Then

lim
x→−∞

f(x) = L

means that the values of f(x) can be made arbitrarily close to L by requiring
x to be sufficiently large negative.

Definition 2.6.3. The line y = L is called a horizontal asymptote of the
curve y = f(x) if either

lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L.

0 x

y

2

2

Example 1. Find the infinite limits, limits at infinity, and
asymptotes for the function f whose graph is shown.

Example 2. Find lim
x→∞

1

x
and lim

x→−∞

1

x
.
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Theorem 2.6.1. If r > 0 is a rational number, then

lim
x→∞

1

xr
= 0.

If r > 0 is a rational number such that xr is defined for all x, then

lim
x→−∞

1

xr
= 0.

Proof. By extending the limit laws to limits at infinity we get

lim
x→∞

1

xr
= lim

x→∞

[
1

x

]r
=

[
lim
x→∞

1

x

]r
= 0r = 0

lim
x→−∞

1

xr
= lim

x→−∞

[
1

x

]r
=

[
lim

x→−∞

1

x

]r
= 0r = 0.

Example 3. Evaluate

lim
x→∞

3x2 − x− 2

5x2 + 4x+ 1
.
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Calculus - 2.6 Limits at Infinity

Example 4. Find the horizontal and vertical asymptotes of the graph of the
function

f(x) =

√
2x2 + 1

3x− 5
.
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Example 5. Compute lim
x→∞

(
√
x2 + 1− x).

Example 6. Evaluate lim
x→2+

arctan

(
1

x− 2

)
.

Example 7. Evaluate lim
x→0−

e1/x.

Example 8. Evaluate lim
x→∞

sinx.
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Example 9. Find lim
x→∞

x3 and lim
x→−∞

x3.

Example 10. Find lim
x→∞

(x2 − x).

Example 11. Find lim
x→∞

x2 + x

3− x
.

Example 12. Sketch the graph of y = (x− 2)4(x + 1)3(x− 1) by finding its
intercepts and its limits as x→∞ and as x→ −∞.
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Definition 2.6.4. Let f be a function defined on some interval (a,∞). Then

lim
x→∞

f(x) = L

means that for every ε > 0 there is a corresponding number N such that

if x > N then |f(x)− L| < ε.

Definition 2.6.5. Let f be a function defined on some interval (−∞, a). Then

lim
x→−∞

f(x) = L

means that for every ε > 0 there is a corresponding number N such that

if x < N then |f(x)− L| < ε.

Example 13. Use a graph to find a number N such that

if x > N then

∣∣∣∣∣ 3x2 − x− 2

5x2 + 4x+ 1
− 0.6

∣∣∣∣∣ < 0.1.

Example 14. Prove that lim
x→∞

1

x
= 0.
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Calculus - 2.6 Limits at Infinity

Definition 2.6.6. Let f be a function defined on some interval (a,∞). Then

lim
x→∞

f(x) =∞

means that for every positive number M there is a corresponding positive
number N such that

if x > N then f(x) > M.

Definition 2.6.7. Let f be a function defined on some interval (a,∞). Then

lim
x→∞

f(x) = −∞

means that for every negative number M there is a corresponding positive
number N such that

if x > N then f(x) < M.

Definition 2.6.8. Let f be a function defined on some interval (−∞, a). Then

lim
x→−∞

f(x) =∞

means that for every positive number M there is a corresponding negative
number N such that

if x < N then f(x) > M.

Definition 2.6.9. Let f be a function defined on some interval (−∞, a). Then

lim
x→−∞

f(x) = −∞

means that for every negative number M there is a corresponding negative
number N such that

if x < N then f(x) < M.
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Calculus - 2.7 Derivatives and Rates of Change

2.7 Derivatives and Rates of Change

Definition 2.7.1. The tangent line to the curve y = f(x) at the point
P (a, f(a)) is the line through P with slope

m = lim
x→a

f(x)− f(a)

x− a

provided that this limit exists.

Example 1. Find an equation of the tangent line to the parabola y = x2 at
the point P (1, 1).

Example 2. Use the alternative expression for the slope of a tangent line

m = lim
h→0

f(a+ h)− f(a)

h

to find an equation of the tangent line to the hyperbola y = 3/x at the point
(3, 1).
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Calculus - 2.7 Derivatives and Rates of Change

Definition 2.7.2. A function f describing the motion of an object along a
straight line is called a position function and has velocity

v(a) = lim
h→0

f(a+ h)− f(a)

h

at time t = a.

Example 3. Suppose that a ball is dropped from the upper observation deck
of the CN Tower, 450 m above the ground. Recall that the distance (in meters)
fallen after t seconds is 4.9t2.
(a) What is the velocity of the ball after 5 seconds?

(b) How fast is the ball traveling when it hits the ground?
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Calculus - 2.7 Derivatives and Rates of Change

Definition 2.7.3. The derivative of a function f at a number a, denoted by
f ′(a) is

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
,

or equivalently

f ′(a) = lim
x→a

f(x)− f(a)

x− a
if this limit exists.

Example 4. Find the derivative of the function f(x) = x2 − 8x + 9 at the
number a.

Example 5. Find an equation of the tangent line to the parabola y = x2 −
8x+ 9 at the point (3,−6).
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Calculus - 2.7 Derivatives and Rates of Change

Definition 2.7.4. Suppose y is a quantity that depends on another quantity
x. Then y is a function of x and we write y = f(x). If x changes from x1 to
x2, then the change in x (also called the increment of x) is

∆x = x2 − x1

and the corresponding change in y is

∆y = f(x2)− f(x1).

The average rate of change of y with respect x over the interval [x1, x2] is

∆y

∆x
=
f(x2)− f(x1)

x2 − x1

and the instantaneous rate of change of y with respect to x is

lim
∆x→0

∆y

∆x
= lim

x2→x1

f(x2)− f(x1)

x2 − x1

= f ′(x).

Example 6. A manufacturer produces bolts of a fabric with a fixed width.
The cost of producing x yards of this fabric is C = f(x) dollars.
(a) What is the meaning of the derivative of f ′(x)? What are its units?

(b) In practical terms, what does it mean to say that f ′(1000) = 9?

(c) Which do you think is greater, f ′(50) or f ′(500)? What about f ′(5000)?
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Calculus - 2.7 Derivatives and Rates of Change

t D(t)
1985 1945.9
1990 3364.8
1995 4988.7
2000 5662.2
2005 8170.4
2010 14, 025.2

Source: US Dept. of the Treasury

Example 7. Let D(t) be the US national debt at time t. The
table gives approximate values of this function by providing end
of year estimates, in billions of dollars, from 1985 to 2010. In-
terpret and estimate the value of D′(2000).
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2.8 The Derivative as a Function

Definition 2.8.1. The derivative of a function f is the function

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

if this limit exists.

x

y

10

1

y=ƒ

FIGURE 1 

Example 1. The graph of a function f is given. Use it to sketch
the graph of the derivative f ′.

Example 2. (a) If f(x) = x3 − x, find a formula for f ′(x).

(b) Illustrate this formula by comparing the graphs of f and f ′.
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Calculus - 2.8 The Derivative as a Function

Example 3. If f(x) =
√
x, find the derivative of f . State the domain of f ′.

Example 4. Find f ′ if f(x) =
1− x
2 + x

.

Definition 2.8.2. The symbols D and d/dx are called differentiation opera-
tors and are used as follows:

f ′(x) = y′ = lim
∆x→0

∆y

∆x
=
dy

dx
=
df

dx
=

d

dx
f(x) = Df(x) = Dxf(x).

For fixed a, we use the notation

dy

dx

∣∣∣∣
x=a

or
dy

dx

]
x=a

Definition 2.8.3. A function f is differentiable at a if f ′(a) exists. It is dif-
ferentiable on an open interval (a, b) [or (a,∞) or (−∞, a) or (−∞,∞)] if it
is differentiable at every number in the interval.
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Example 5. Where is the function f(x) = |x| differentiable?
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Theorem 2.8.1. If f is differentiable at a, then f is continuous at a.

Proof. If f is differentiable at a, we have

lim
x→a

[f(x)− f(a)] = lim
x→a

f(x)− f(a)

x− a
(x− a)

= lim
x→a

f(x)− f(a)

x− a
· lim
x→a

(x− a)

= f ′(a) · 0 = 0.

Therefore,

lim
x→a

f(x) = lim
x→a

[f(a) + (f(x)− f(a))]

= lim
x→a

f(a) + lim
x→a

[f(x)− f(a)]

= f(a) + 0 = f(a).

Definition 2.8.4. If the derivative f ′ of a function f has a derivative of its
own we call it the second derivative of f and denote it by

(f ′)′ = f ′′ =
d

dx

(
dy

dx

)
=
d2y

dx2

Example 6. If f(x) = x3 − x, find and interpret f ′′(x).

Definition 2.8.5. The instantaneous rate of change of velocity with respect
to time is called the acceleration a(t) of an object. It is the derivative of the
velocity function, and therefore the second derivative of the position function:

a(t) = v′(t) = s′′(t).
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Definition 2.8.6. The third derivative f ′′′ is the derivative of the second
derivative, denoted by

(f ′′)′ = f ′′′.

Definition 2.8.7. The instantaneous rate of change of acceleration with re-
spect to time is called the jerk j(t) of an object. It is the derivative of the
acceleration function, and therefore the third derivative of the position func-
tion:

j(t) = a′(t) = v′′(t) = s′′′(t).

Definition 2.8.8. The fourth derivative f ′′′′ is usually denoted by f (4). In
general, the nth derivative of f is denoted by f (n) and is obtained from f by
differentiating n times. If y = f(x), we write

y(n) = f (n)(x) =
dny

dxn

Example 7. If f(x) = x3 − x, find f ′′′(x) and f (4)(x).
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Chapter 3

Differentiation Rules

3.1 Derivatives of Polynomials and Exponen-

tials

Theorem 3.1.1. The derivative of a constant function f(x) = c is 0, i.e.,

d

dx
(c) = 0.

Proof.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

c− c
h

= lim
h→0

0 = 0.

Theorem 3.1.2.

d

dx
(x) = 1

d

dx
(x2) = 2x

d

dx
(x3) = 3x2 d

dx
(x4) = 4x3

Proof. All of these follow directly from the definition of the derivative, as
above.

Theorem 3.1.3 (The Power Rule). If n is a positive integer, then

d

dx
(xn) = nxn−1.

Proof. Since

xn − an = (x− a)(xn−1 + xn−2a+ · · ·+ xan−2 + an−1),
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we have

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

x→a

xn − an

x− a
= lim

x→a
(xn−1 + xn−2a+ · · ·+ xan−2 + an−1)

= an−1 + an−2a+ · · ·+ aan−2 + an−1

= an−1 + an−1 + · · ·+ an−1 + an−1︸ ︷︷ ︸
n

= nan−1.

Example 1. Find the derivative of each of the following:
(a) f(x) = x6

(b) y = x1000

(c) y = t4

(d) f(r) = r3

Theorem 3.1.4 (The Power Rule (General Version)). If n is any real number,
then

d

dx
(xn) = nxn−1.

Example 2. Differentiate:

(a) f(x) =
1

x2

(b) y =
3
√
x2

Definition 3.1.1. The normal line to a curve C at a point P is the line
through P that is perpendicular to the tangent line at P .
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Example 3. Find equations of the tangent line and normal line to the curve
y = x

√
x at the point (1, 1).

Theorem 3.1.5 (The Constant Multiple Rule). If c is a constant and f is a
differentiable function, then

d

dx
[cf(x)] = c

d

dx
f(x).

Proof. Let g(x) = cf(x). Then

g′(x) = lim
h→0

g(x+ h)− g(x)

h
= lim

h→0

cf(x+ h)− cf(x)

h

= lim
h→0

c

[
f(x+ h)− f(x)

h

]
= c lim

h→0

f(x+ h)− f(x)

h
= cf ′(x).

Example 4. Find:

(a)
d

dx
(3x4)

(b)
d

dx
(−x)

Theorem 3.1.6 (The Sum Rule). If f and g are both differentiable, then

d

dx
[f(x) + g(x)] =

d

dx
f(x) +

d

dx
g(x).
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Proof. Let F (x) = f(x) + g(x). Then

F ′(x) = lim
h→0

F (x+ h)− F (x)

h

= lim
h→0

[f(x+ h) + g(x+ h)]− [f(x) + g(x)]

h

= lim
h→0

[
f(x+ h)− f(x)

h
+
g(x+ h)− g(x)

h

]
= lim

h→0

f(x+ h)− f(x)

h
+ lim

h→0

g(x+ h)− g(x)

h
= f ′(x) + g′(x).

Theorem 3.1.7 (The Difference Rule). If f and g are both differentiable, then

d

dx
[f(x)− g(x)] =

d

dx
f(x)− d

dx
g(x).

Example 5. Find
d

dx
(x8 + 12x5 − 4x4 + 10x3 − 6x+ 5).

Example 6. Find the points on the curve y = x4− 6x2 + 4 where the tangent
line is horizontal.
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Example 7. The equation of motion of a particle is s = 2t3 − 5t2 + 3t + 4,
where s is measured in centimeters and t in seconds. Find the acceleration as
a function of time. What is the acceleration after 2 seconds?

Definition 3.1.2. e is the number such that lim
h→0

eh − 1

h
= 1.

Theorem 3.1.8.
d

dx
(ex) = ex.

Example 8. If f(x) = ex − x, find f ′ and f ′′.

Example 9. At what point on the curve y = ex is the tangent line parallel to
the line y = 2x?
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3.2 The Product and Quotient Rules

Theorem 3.2.1 (The Product Rule). If f and g are both differentiable, then

d

dx
[f(x)g(x)] = f(x)

d

dx
[g(x)] + g(x)

d

dx
[f(x)].

Proof. By the definition of the derivative on the product,

d

dx
[f(x)g(x)] = lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)

h

= lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x) + f(x+ h)g(x)− f(x)g(x)

h

= lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x)

h
+ lim

h→0

f(x+ h)g(x)− f(x)g(x)

h

= lim
h→0

f(x+ h)[g(x+ h)− g(x)]

h
+ lim

h→0

g(x)[f(x+ h)− f(x)]

h

= lim
h→0

f(x+ h) lim
h→0

g(x+ h)− g(x)

h
+ lim

h→0
g(x) lim

h→0

f(x+ h)− f(x)

h

= f(x)
d

dx
[g(x)] + g(x)

d

dx
[f(x)].

Example 1. (a) If f(x) = xex, find f ′(x).

(b) Find the nth derivative, f (n)(x).
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Example 2. Differentiate the function f(t) =
√
t(a+ bt).

Example 3. If f(x) =
√
xg(x), where g(4) = 2 and g′(4) = 3, find f ′(4).

Theorem 3.2.2 (The Quotient Rule). If f and g are differentiable, then

d

dx

[
f(x)

g(x)

]
=
g(x)

d

dx
[f(x)]− f(x)

d

dx
[g(x)]

[g(x)]2
.

Proof. Similar to the Product Rule, except we add and subtract f(x)g(x) in
the numerator when applying the definition of the derivative.
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Example 4. Let y =
x2 + x− 2

x3 + 6
. Find y′.

Example 5. Find an equation of the tangent line to the curve y = ex/(1+x2)
at the point (1, 1

2
e).
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3.3 Derivatives of Trigonometric Functions

Theorem 3.3.1. The derivative of the sine function is the cosine function,
i.e.,

d

dx
(sinx) = cos x.

Example 1. Differentiate y = x2 sinx.

Theorem 3.3.2. The derivative of the cosine function is the negative sine
function, i.e.,

d

dx
(cosx) = − sinx.

Theorem 3.3.3. The derivative of the tangent function is the square of the
secant function, i.e.,

d

dx
(tanx) = sec2 x.

Proof. By the Quotient Rule,

d

dx
(tanx) =

d

dx

(
sinx

cosx

)

=
cosx

d

dx
(sinx)− sinx

d

dx
(cosx)

cos2 x

=
cosx · cosx− sinx(− sinx)

cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
= sec2 x.
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Theorem 3.3.4. The derivatives of the trigonometric functions are

d

dx
(sinx) = cos x

d

dx
(cscx) = − cscx cotx

d

dx
(cosx) = − sinx

d

dx
(secx) = secx tanx

d

dx
(tanx) = sec2 x

d

dx
(cotx) = − csc2 x.

Example 2. Differentiate f(x) =
secx

1 + tan x
. For what values of x does the

graph of f have a horizontal tangent?
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EXAMPLE 2 Differentiate f sxd −
sec x

1 1 tan x
. For what values of x does the graph  

of f  have a horizontal tangent?

SOLUTION The Quotient Rule gives 

  f 9sxd −
s1 1 tan xd 

d
dx

 ssec xd 2 sec x 
d
dx

 s1 1 tan xd

s1 1 tan xd2

 −
s1 1 tan xd sec x tan x 2 sec x ? sec2x

s1 1 tan xd2

 −
sec x stan x 1 tan2x 2 sec2xd

s1 1 tan xd2

 −
sec x stan x 2 1d

s1 1 tan xd2

In simplifying the answer we have used the identity tan2x 1 1 − sec2x.
Since sec x is never 0, we see that f 9sxd − 0 when tan x − 1, and this occurs when 

x − n ! 1 !y4, where n  is an integer (see Figure 4). ■

Trigonometric functions are often used in modeling real-world phenomena. In par-
ticular, vibrations, waves, elastic motions, and other quantities that vary in a periodic 
manner can be described using trigonometric functions. In the following example we 
discuss an instance of simple harmonic motion.

EXAMPLE 3 An object at the end of a vertical spring is stretched 4 cm beyond its rest 
position and released at time t − 0. (See Figure 5 and note that the downward direction 
is positive.) Its position at time t is

s − f std − 4 cos t

Find the velocity and acceleration at time t and use them to analyze the motion of the 
object.

SOLUTION The velocity and acceleration are

v −
ds
dt

−
d
dt

 s4 cos td − 4 
d
dt

 scos td − 24 sin t

a −
dv
dt

−
d
dt

 s24 sin td − 24 
d
dt

 ssin td − 24 cos t

The object oscillates from the lowest point ss − 4 cmd to the highest point 
ss − 24 cmd. The period of the oscillation is 2!, the period of cos t.

The speed is | v | − 4| sin t |, which is greatest when | sin t | − 1, that is, when 
cos t − 0. So the object moves fastest as it passes through its equilibrium position 
ss − 0d. Its speed is 0 when sin t − 0, that is, at the high and low points.

The acceleration a − 24 cos t − 0 when s − 0. It has greatest magnitude at the 
high and low points. See the graphs in Figure 6. ■

3

_3

_3 5

FIGURE 4 
 The horizontal tangents in Example 2 

s

0

4

FIGURE 5

2

_2

√
s a

π 2π t0

FIGURE 6
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Example 3. An object at the end of a vertical spring is stretched to
4 cm beyond its reset position and released at time t = 0. (See the
figure and note that the downward direction is positive.) Its position
at time t is

s = f(t) = 4 cos t.

Find the velocity and acceleration at time t and use them to analyze the motion
of the object.
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Example 4. Find the 27th derivative of cosx.

Example 5. Find lim
x→0

sin 7x

4x
.

Example 6. Calculate lim
x→0

x cotx.
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3.4 The Chain Rule

Theorem 3.4.1 (The Chain Rule). If g is differentiable at x and f is differen-
tiable at g(x), then the composite function F = f ◦g defined by F (x) = f(g(x))
is differentiable at x and F ′ is given by the product

F ′(x) = f ′(g(x)) · g′(x).

Example 1. Find F ′(x) if F (x) =
√
x2 + 1.

Example 2. Differentiate (a) y = sin(x2) and (b) y = sin2 x.
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Theorem 3.4.2 (The Power Rule Combined with the Chain Rule). If n is
any real number and u = g(x) is differentiable, then

d

dx
(un) = nun−1du

dx
.

Example 3. Differentiate y = (x3 − 1)100.

Example 4. Find f ′(x) if f(x) =
1

3
√
x2 + x+ 1

.

Example 5. Find the derivative of the function

g(t) =

(
t− 2

2t+ 1

)9

.
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Example 6. Differentiate y = (2x+ 1)5(x3 − x+ 1)4.

Example 7. Differentiate y = esinx.

Theorem 3.4.3. The derivative of the exponential function is

d

dx
(bx) = bx ln b.

Proof. Since
bx = (eln b)x = e(ln b)x,

the Chain Rule gives

d

dx
(bx) =

d

dx
(e(ln b)x)

= e(ln b)x d

dx
(ln b)x

= e(ln b)x · ln b
= bx ln b.
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Example 8. Find
d

dx
(2x).

Example 9. Find f ′(x) if f(x) = sin(cos(tan x)).

Example 10. Differentiate y = esec 3θ.
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3.5 Implicit Differentiation

Definition 3.5.1. Implicit differentiation is the method of differentiation both
sides of an equation with respect to x, and then solving the equation for y′

when y = f(x).

Example 1. (a) If x2 + y2 = 25, find
dy

dx
.

(b) Find an equation of the tangent to the circle x2 + y2 = 25 at the point
(3, 4).
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Example 2. (a) Find y′ if x3 + y3 = 6xy.

(b) Find the tangent to the folium of Descartes x3 + y3 = 6xy at the point
(3, 3).

(c) At what point in the first quadrant is the tangent line horizontal?
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Example 3. Find y′ if sin(x+ y) = y2 cosx.

Example 4. Find y′′ if x4 + y4 = 16.
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Calculus - 3.5 Implicit Differentiation

Theorem 3.5.1. The derivative of the arcsine function is

d

dx
(sin−1 x) =

1√
1− x2

.

Proof. Since y = sin−1 x means sin y = x and −π/2 ≤ y ≤ π/2, we have
cos y ≥ 0. Thus we can differentiate to obtain

sin y = x

cos y
dy

dx
= 1

dy

dx
=

1

cos y

=
1√

1− sin2 y

=
1√

1− x2
.

Theorem 3.5.2. The derivative of the arctangent function is

d

dx
(tan−1 x) =

1

1 + x2
.

Proof. If y = tan−1 x, then tan y = x. Differentiating then gives us

tan y = x

sec2 y
dy

dx
= 1

dy

dx
=

1

sec2 y

=
1

1 + tan2 y

=
1

1 + x2
.
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Example 5. Differentiate

(a) y =
1

sin−1 x

(b) f(x) = x arctan
√
x.

Theorem 3.5.3. The derivatives of the Inverse Trigonometric Functions are

d

dx
(sin−1 x) =

1√
1− x2

d

dx
(csc−1 x) = − 1

x
√
x2 − 1

d

dx
(cos−1 x) = − 1√

1− x2

d

dx
(sec−1 x) =

1

x
√
x2 − 1

d

dx
(tan−1 x) =

1

1 + x2

d

dx
(cot−1 x) = − 1

1 + x2
.
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Theorem 3.5.4. Suppose f is a one-to-one differentiable function and its
inverse function f−1 is also differentiable. Then f−1 has derivative

(f−1)′(x) =
1

f ′(f−1(x))

provided that the denominator is not 0.

Proof. Since (f ◦ f−1)(x) = x, we have, by the chain rule,

(f ◦ f−1)(x) = x

(f ◦ f−1)′(x) = 1

f ′(f−1(x))(f−1)′(x) = 1

(f−1)′(x) =
1

f ′(f−1(x))
.

Example 6. If f(4) = 5 and f ′(4) = 2
3
, find (f−1)′(5).
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3.6 Derivatives of Logarithmic Functions

Theorem 3.6.1. The derivative of the logarithm function is

d

dx
(logb x) =

1

x ln b
.

Proof. Let y = logb x. Then by = x, so by differentiating we get

by = x

by(ln b)
dy

dx
= 1

dy

dx
=

1

by ln b

=
1

x ln b
.

Theorem 3.6.2. The derivative of the natural logarithm is

d

dx
(lnx) =

1

x
.

Example 1. Differentiate y = ln(x3 + 1).

Example 2. Find
d

dx
ln(sinx).
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Example 3. Differentiate f(x) =
√

lnx.

Example 4. Differentiate f(x) = log10(2 + sin x).

Example 5. Find
d

dx
ln

x+ 1√
x− 2

.

Example 6. Find f ′(x) if f(x) = ln |x|.
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Definition 3.6.1. Logarithmic differentiation is the method of calculating
derivatives of functions by taking logarithms, differentiating implicitly, and
then solving the resulting equation for the derivative.

Example 7. Differentiate y =
x3/4
√
x2 + 1

(3x+ 2)5
.

Theorem 3.6.3 (The Power Rule). If n is any real number and f(x) = xn,
then

f ′(x) = nxn−1.

Proof. Let y = xn. By logarithmic differentiation we get

y = xn

ln |y| = ln |x|n

= n ln |x| x 6= 0

y′

y
=
n

x

y′ = n
y

x

= n
xn

x
= nxn−1.
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Example 8. Differentiate y = x
√
x.

Theorem 3.6.4. The number e can be defined as the limit

e = lim
n→∞

(
1 +

1

n

)n
.

Proof. If f(x) = ln x, then f ′(1) = 1, so

f ′(1) = lim
h→0

f(1 + h)− f(1)

h
= lim

x→0

f(1 + x)− f(1)

x

= lim
x→0

ln(1 + x)− ln 1

x
= lim

x→0

1

x
ln(1 + x)

= lim
x→0

ln(1 + x)1/x = 1.

Thus

e = e1 = e

(
lim
x→0

ln(1+x)1/x
)

= lim
x→0

eln(1+x)1/x = lim
x→0

(1 + x)1/x.

Then if we let n = 1/x, n→∞ as x→ 0+, so we are done.
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3.7 Rates of Change in the Sciences

Example 1. The position of a particle is given by the equation

s = f(t) = t3 − 6t2 + 9t

where t is measured in seconds and s in meters.

(a) Find the velocity at time t.

(b) What is the velocity after 2 s? After 4 s?

(c) When is the particle at rest?

(d) When is the particle moving forward (that is, in the positive direction)?
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(e) Draw a diagram to represent the motion of the particle.

(f) Find the total distance traveled by the particle during the first five seconds.

(g) Find the acceleration at time t and after 4 s.

(h) Graph the position, velocity, and acceleration functions for 0 ≤ t ≤ 5.
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(i) When is the particle speeding up? When is it slowing down?

Example 2. If a rod or piece of wire is homogeneous, then its linear density is
uniform and is defined as the mass per unit length (ρ = m/l) and measured in
kilograms per meter. Suppose, however, that the rod is not homogeneous but
that its mass measured from its left end to a point x is m = f(x), as shown
in the figure.

226 CHAPTER 3  Differentiation Rules

( i) The particle speeds up when the velocity is positive and increasing (v and a are  
both positive) and also when the velocity is negative and decreasing (v and a are both 
negative). In other words, the particle speeds up when the velocity and acceleration  
have the same sign. (The particle is pushed in the same direction it is moving.) From 
Figure 3 we see that this happens when 1 , t , 2 and when t . 3. The particle slows 
down when v and a have opposite signs, that is, when 0 < t , 1 and when 2 , t , 3. 
Figure 4 summarizes the motion of the particle.

1

5

_5

√
s

a

forward

slows
down

slows
down

backward

speeds
up

speeds
up

forward

t0

■

EXAMPLE 2 If a rod or piece of wire is homogeneous, then its linear density is uniform 
and is defined as the mass per unit length s! − myld and measured in kilograms per 
meter. Suppose, however, that the rod is not homogeneous but that its mass measured 
from its left end to a point x is m − f sxd, as shown in Figure 5.

x¡ x™
This part of the rod has mass ƒ. 

x

The mass of the part of the rod that lies between x − x1 and x − x2 is given by 
Dm − f sx2 d 2 f sx1d, so the average density of that part of the rod is

average density −
Dm
Dx

−
 f sx2 d 2 f sx1d

x2 2 x1

If we now let Dx l 0 (that is, x2 l x1), we are computing the average density over 
smaller and smaller intervals. The linear density ! at x1 is the limit of these average 
densities as Dx l 0; that is, the linear density is the rate of change of mass with 
respect to length. Symbolically, 

! − lim
Dx l 0

 
Dm
Dx

−
dm
dx

Thus the linear density of the rod is the derivative of mass with respect to length.
For instance, if m − f sxd − sx , where x is measured in meters and m in kilograms, 

then the average density of the part of the rod given by 1 < x < 1.2 is

Dm
Dx

−
 f s1.2d 2 f s1d

1.2 2 1
−

s1.2 2 1
0.2

< 0.48 kgym

TEC In Module 3.7 you can see 
an animation of Figure 4 with an 
expression for s that you can choose 
yourself.

FIGURE 4

FIGURE 5
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In this case the average density is the average rate of change over a given
interval, and the linear density is the limit of these average densities.
If m = f(x) =

√
x, where x is measured in meters and m in kilograms, find

the average density of the part of the rod given by 1 ≤ x ≤ 1.2 and the density
at x = 1.

92



Calculus - 3.7 Rates of Change in the Sciences

Example 3. The average current during a time interval is the average rate
of change of the net charge over that interval, and the current at a given time
is the limit of the average current (the rate at which charge flows through a
surface, measured in units of charge per unit time). The quantity of charge
Q in coulombs (C) that has passed through a point in a wire up to time t
(measured in seconds) is given by Q(t) = t3−2t2 +6t+2. [The unit of current
is an ampere (1 A = 1 C/s).] Find the current when
(a) t = 0.5 s

(b) t = 1 s.

At what time is the current lowest?
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Example 4. The concentration of a reactant A is the number of moles (1
mole = 6.022× 1023 molecules) per liter and is denoted by [A] for a chemical
reaction

A + B→ C.

The average rate of reaction during a time interval is the average rate of
change of the concentration of the product [C] over that interval, and the rate
of reaction at a given time is the limit of the average rate of reaction.
If one molecule of a product C is formed from one molecule of a reactant A
and one molecule of a reactant B, and the initial concentrations of A and B
have a common value [A] = [B] = a moles/L, then

[C] =
a2kt

akt+ 1

where k is a constant.

(a) Find the rate of reaction at time t.

(b) Show that if x = [C], then

dx

dt
= k(a− x)2.
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(c) What happens to the concentration as t→∞?

(d) What happens to the rate of reaction as t→∞?

(e) What do the results of parts (c) and (d) mean in practical terms?
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Example 5. If a given substance is kept a constant temperature, then the
rate of change of its volume V with respect to its pressure P is the derivative
dV/dP . The compressibility is defined by

isothermal compressibility = β = − 1

V

dV

dP
.

The volume V (in cubic meters) of a sample of air at 25°C was found to be
related to the pressure P (in kilopascals) by the equation

V =
5.3

P
.

Determine the compressibility when P = 50 kPa.

Example 6. Let n = f(t) be the number of individuals in an animal or plant
population at time t. The average rate of growth during a time period is the
average rate of change of the growth of the population over that time period,
and the rate of growth at a given time is the limit of the average rate of
growth.
Suppose that a population of bacteria doubles every hour. The population
function representing the bacteria’s growth can be found to be

n = n02t

where n0 is the initial population and the time t is measured in hours.
Find the rate of growth for a colony of bacteria with an initial population
n0 = 100 after 4 hours.
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Example 7. The shape of a blood vessel can be modeled by a cylindrical tube
with radius R and length l as illustrated in the figure.

230 CHAPTER 3  Differentiation Rules

In Section 3.4 we showed that

d
dx

 sbx d − bx ln b

So the rate of growth of the bacteria population at time t is

dn
dt

−
d
dt

 sn02td − n02t ln 2

For example, suppose that we start with an initial population of n0 − 100 bacteria. 
Then the rate of growth after 4 hours is

dn
dt

 Z
t−4

− 100 ? 24 ln 2 − 1600 ln 2 < 1109

This means that, after 4 hours, the bacteria population is growing at a rate of about 
1109 bacteria per hour. ■

EXAMPLE 7 When we consider the flow of blood through a blood vessel, such as a 
vein or artery, we can model the shape of the blood vessel by a cylindrical tube with 
radius R and length l as illustrated in Figure 8.

R r

l

Because of friction at the walls of the tube, the velocity v of the blood is greatest along 
the central axis of the tube and decreases as the distance r from the axis increases until 
v becomes 0 at the wall. The relationship between v and r is given by the law of lami-
nar flow discovered by the French physician Jean-Louis-Marie Poiseuille in 1840. This 
law states that

1   v −
P

4!l
 sR2 2 r 2 d

where ! is the viscosity of the blood and P is the pressure difference between the ends 
of the tube. If P and l are constant, then v is a function of r with domain f0, Rg.

The average rate of change of the velocity as we move from r − r1 outward to 
r − r2 is given by

Dv
Dr

−
vsr2 d 2 vsr1d

r2 2 r1

and if we let Dr l 0, we obtain the velocity gradient, that is, the instantaneous rate of 
change of velocity with respect to r:

velocity gradient − lim
Dr l 0

 
Dv
Dr

−
dv
dr

Using Equation 1, we obtain

dv
dr

−
P

4!l
 s0 2 2rd − 2

Pr
2!l

FIGURE 8  
Blood flow in an artery

For more detailed information, see  
W. Nichols and M. O’Rourke (eds.), 
McDonald’s Blood Flow in Arteries: 
Theoretical, Experimental, and Clinical 
Principles, 5th ed. (New York, 2005).
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The relationship between the velocity v of the blood and the distance r from
the axis is given by the law of laminar flow

v =
P

4ηl
(R2 − r2)

where η is the viscosity of the blood and P is the pressure difference between
the ends of the tube. If P and l are constant, then v is a function of r with
domain [0, R]. The velocity gradient at a given time is the limit of the average
rate of change of the velocity.
For one of the smaller human arteries we can take η = 0.027, R = 0.008 cm,
l = 2 cm, and P = 4000 dynes/cm2. Find the speed at which blood is flowing
at r = 0.002 and find the velocity gradient at that point.
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Example 8. Suppose C(x) is the total cost that a company incurs in produc-
ing x units of a certain commodity. The function C is called a cost function.
The instantaneous rate of change of cost with respect to the number of items
produced, called the marginal cost, is the limit of the average rate of change
of the cost.
Suppose a company has estimated that the cost (in dollars) of producing x
items is

C(x) = 10, 000 + 5x+ 0.01x2.

Find the marginal cost at the production level of 500 items and compare it to
the actual cost of producing the 501st item.
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3.8 Exponential Growth and Decay

Definition 3.8.1. The equation

dy

dt
= ky

is called the law of natural growth (if k > 0) or the law of natural decay (if
k < 0). It is called a differential equation because it involves an unknown
function y and its derivative dy/dt.

Theorem 3.8.1. The only solutions of the differential equation dy/dt = ky
are the exponential functions

y(t) = y(0)ekt.

Definition 3.8.2. If P (t) is the size of a population at time t, then

k =
1

P

dP

dt

is the growth rate divided by population, called the relative growth rate.

Example 1. Use the fact that the world population was 2560 million in 1950
and 3040 million in 1960 to model the population of the world in the second
half of the 20th century. (Assume that the growth rate is proportional to the
population size.) What is the relative growth rate? Use the model to estimate
the world population in 1993 and to predict the population in the year 2020.
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Definition 3.8.3. If m(t) is the mass remaining from an initial mass m0 of a
substance after time t, then the relative decay rate is

− 1

m

dm

dt
.

It follows that the mass decays exponentially according to the equation

m(t) = m0e
kt,

where the rate of decay is expressed in terms of half-life, the time required for
half of any given quantity to decay.

Example 2. The half-life of radium-226 is 1590 years.

(a) A sample of radium-226 has a mass of 100 mg. Find a formula for the
mass of the sample that remains after t years.

(b) Find the mass after 1000 years correct to the nearest milligram.

(c) When will the mass be reduced to 30 mg?
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Example 3. Newton’s Law of Cooling can be represented as a differential
equation

dT

dt
= k(T − Ts),

where T is the temperature of the object at time t and Ts is the temperature
of the surroundings. The exponential function y(t) = y(0)ekt is a solution to
this differential equation when y(t) = T (t)− Ts.
A bottle of soda pop at room temperature (72°F) is placed in a refrigerator
where the temperature is 44°F. After half an hour the soda pop has cooled to
61°F.

(a) What is the temperature of the soda pop after another half hour?

(b) How long does it take for the soda pop to cool to 50°F?
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Example 4. In general, if an amount A0 is invested at an interest rate r, then
after t years it is worth A0(1 + r)t. Usually, however, interest is compounded
more frequently, say, n times a year. Then in each compounding period the
interest rate is r/n and there are nt compounding periods in t years, so the
value of the investment is

A0

(
1 +

r

n

)nt
.

Therefore, taking limits gives us the amount after t years as

A(t) = A0e
rt

when interest is continuously compounded. Determine the value of an invest-
ment of $1000 after 3 years of continuously compounding 6% interest. Com-
pare this to the value of the same investment compounded annually instead.
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3.9 Related Rates

Example 1. Air is being pumped into a spherical balloon so that its volume
increases at a rate of 100 cm3/s. How fast is the radius of the balloon increasing
when the diameter is 50 cm?
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Example 2. A ladder 10 ft long rests against a vertical wall. If the bottom
of the ladder slides away from the wall at a rate of 1 ft/s, how fast is the top
of the ladder sliding down the wall when the bottom of the ladder is 6 ft from
the wall?
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Example 3. A water tank has the shape of an inverted circular cone with
base radius 2 m and height 4 m. If water is being pumped into the tank at
a rate of 2 m3/min, find the rate at which the water level is rising when the
water is 3 m deep.
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Example 4. Car A is traveling west at 50 mi/h and car B is traveling north
at 60 mi/h. Both are headed for the intersection of the two roads. At what
rate are the cars approaching each other when car A is 0.3 mi and car B is 0.4
mi from the intersection?

106



Calculus - 3.9 Related Rates

Example 5. A man walks along a straight path at a speed of 4 ft/s. A
searchlight is located on the ground 20 ft from the path and is kept focused
on the man. At what rate is the searchlight rotating when the man is 15 ft
from the point on the path closest to the searchlight?
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3.10 Linear Approximations and Differentials

Definition 3.10.1. The approximation

f(x) ≈ f(a) + f ′(a)(x− a)

is called the linear approximation or tangent line approximation of f at a. The
linear function whose graph is this tangent line, that is,

L(x) = f(a) + f ′(a)(x− a)

is called the linearization of f at a.

Example 1. Find the linearization of the function f(x) =
√
x+ 3 at a = 1 and

use it to approximate the numbers
√

3.98 and
√

4.05. Are these approximations
overestimates or underestimates?
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Example 2. For what values of x is the linear approximation

√
x+ 3 ≈ 7

4
+
x

4

accurate to within 0.5? What about accuracy to within 0.1?

254 CHAPTER 3  Di!erentiation Rules

ics textbooks obtain the expression aT − 2t sin !  for tangential acceleration and then 
replace sin !  by !  with the remark that sin !  is very close to !  if !  is not too large. [See, 
for exam ple, Physics: Calculus, 2d ed., by Eugene Hecht (Paci!c Grove, CA: Brooks/
Cole, 2000), p. 431.] You can verify that the linearization of the function f sxd − sin x at 
a − 0 is Lsxd − x and so the lin ear approximation at 0 is

sin x < x

(see Exercise 42). So, in effect, the derivation of the formula for the period of a pendulum 
uses the tangent line approximation for the sine function.

Another example occurs in the theory of optics, where light rays that arrive at shallow 
angles relative to the optical axis are called paraxial rays. In paraxial (or Gaussian) optics,  
both sin ! and cos ! are replaced by their linearizations. In other words, the linear  
approximations

sin ! < !    and    cos ! < 1

are used because ! is close to 0. The results of calculations made with these approxima-
tions became the basic theoretical tool used to design lenses. [See Optics, 4th ed., by 
Eugene Hecht (San Francisco, 2002), p. 154.]

In Section 11.11 we will present several other applications of the idea of linear approxi-
mations to physics and engineering.

Di!erentials
The ideas behind linear approximations are sometimes formulated in the terminology and 
notation of differentials. If y − f sxd, where f  is a differentiable function, then the differ-
ential dx is an independent variable; that is, dx can be given the value of any real number. 
The differential dy is then de!ned in terms of dx by the equation

3   dy − f 9sxd dx

So dy is a dependent variable; it depends on the values of x and dx. If dx is given a spe-
ci!c value and x is taken to be some speci!c number in the domain of f , then the numer-
ical value of dy is determined.

The geometric meaning of differentials is shown in Figure 5. Let Psx, f sxdd and 
Qsx 1 Dx, f sx 1 Dxdd be points on the graph of f  and let dx − Dx. The corresponding 
change in y is

Dy − f sx 1 Dxd 2 f sxd

The slope of the tangent line PR is the derivative f 9sxd. Thus the directed distance from 
S to R is f 9sxd dx − dy. Therefore dy represents the amount that the tangent line rises or 
falls (the change in the linearization), whereas Dy represents the amount that the curve 
y − f sxd rises or falls when x changes by an amount dx.

EXAMPLE 3 Compare the values of Dy and dy if y − f sxd − x 3 1 x 2 2 2x 1 1 and  
x changes (a) from 2 to 2.05 and (b) from 2 to 2.01.

SOLUTION 
(a) We have

 f s2d − 23 1 22 2 2s2d 1 1 − 9

  f s2.05d − s2.05d3 1 s2.05d2 2 2s2.05d 1 1 − 9.717625

 Dy − f s2.05d 2 f s2d − 0.717625

If dx ± 0, we can divide both sides of  
Equation 3 by dx to obtain

dy
dx

− f 9sxd

We have seen similar equations before, 
but now the left side can genuinely be 
interpreted as a ratio of differentials.

R

0 x

y

Îy

x

P

Q

dx=Îx

x+Îx

y=ƒ

S

dy

FIGURE 5
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Definition 3.10.2. If y = f(x), where f is a differentiable func-
tion, then the differential dx is an independent variable; that is,
dx can be given the value of any real number. The differential
dy is then defined in terms of dx by the equation

dy = f ′(x)dx.
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Example 3. Compare the values ∆y and dy if y = f(x) = x3 + x2 − 2x + 1
and x changes

(a) from 2 to 2.05

(b) from 2 to 2.01.

Example 4. The radius of a sphere was measured and found to be 21 cm with
a possible error in measurement of at most 0.05 cm. What is the maximum
error in using this value of the radius to compute the volume of the sphere?
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3.11 Hyperbolic Functions

Definition 3.11.1. Functions that have the same relationship to the hyper-
bola that trigonometric functions have to the circle are called hyperbolic func-
tions and are defined as follows

sinhx =
ex − e−x

2
cschx =

1

sinhx

coshx =
ex + e−x

2
sechx =

1

coshx

tanhx =
sinhx

coshx
cothx =

coshx

sinhx
.

Theorem 3.11.1 (Hyperbolic Identities).

sinh(−x) = − sinhx cosh(−x) = cosh x

cosh2 x− sinh2 x = 1 1− tanh2 x = sech2 x

sinh(x+ y) = sinhx cosh y + coshx sinh y

cosh(x+ y) = cosh x cosh y + sinhx sinh y.

Example 1. Prove

(a) cosh2 x− sinh2 x = 1

(b) 1− tanh2 x = sech2 x.
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Theorem 3.11.2 (Derivatives of Hyperbolic Functions).

d

dx
(sinhx) = cosh x

d

dx
(cschx) = − cschx cothx

d

dx
(coshx) = sinhx

d

dx
(sechx) = − sechx tanhx

d

dx
(tanhx) = sech2 x

d

dx
(cothx) = − csch2 x.

Example 2. Find
d

dx
(cosh

√
x).

Theorem 3.11.3 (Inverse Hyperbolic Functions).

sinh−1 x = ln(x+
√
x2 + 1) x ∈ R

cosh−1 x = ln(x+
√
x2 − 1) x ≥ 1

tanh−1 x =
1

2
ln

(
1 + x

1− x

)
− 1 < x < 1.

Example 3. Show that sinh−1 x = ln(x+
√
x2 + 1).
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Theorem 3.11.4 (Derivatives of Inverse Hyperbolic Functions).

d

dx
(sinh−1 x) =

1√
1 + x2

d

dx
(csch−1 x) = − 1

|x|
√
x2 + 1

d

dx
(cosh−1 x) =

1√
x2 − 1

d

dx
(sech−1 x) = − 1

x
√

1− x2

d

dx
(tanh−1 x) =

1

1− x2

d

dx
(coth−1 x) =

1

1− x2
.

Example 4. Prove that
d

dx
(sinh−1 x) =

1√
1 + x2

.

Example 5. Find
d

dx
[tanh−1(sinx)].
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Chapter 4

Applications of Differentiation

4.1 Maximum and Minimum Values

Definition 4.1.1. Let c be a number in the domain D of a function f . Then
f(c) is the absolute maximum value (or global maximum value) of f on D if
f(c) ≥ f(x) for all x in D and f(c) is the absolute minimum value (or global
minimum value) of f on D if f(c) ≤ f(x) for all x in D. These values are
called extreme values of f .

Definition 4.1.2. The number f(c) is a local maximum value of f if f(c) ≥
f(x) when x is near c and a local minimum value of f if f(c) ≤ f(x) when x is
near c. When we say near, we mean on an open interval containing c. These
values are called local extreme values of f .

Example 1. For what values of x does f(x) = cosx take on its maximum
and minimum values?

Example 2. Find all of the extreme values of f(x) = x2.
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Example 3. Find all of the extreme values of f(x) = x3.

Example 4. Find all of the extreme values of f(x) = 3x4−16x3 +18x2 within
the domain −1 ≤ x ≤ 4.

Theorem 4.1.1 (Extreme Value Theorem). If f is continuous on a closed
interval [a, b] then f attains an absolute maximum value f(c) and an absolute
minimum value f(d) at some numbers c and d in [a, b].

Theorem 4.1.2 (Fermat’s Theorem). If f has a local maximum or minimum
at c, and if f ′(c) exists, then f ′(c) = 0.

Proof. Suppose f has a local maximum at c. Then, by definition, f(c) ≥ f(x)
if x is near c, so if we let h > 0 be close to 0 we have

f(c) ≥ f(c+ h)

f(c+ h)− f(c) ≤ 0

f(c+ h)− f(c)

h
≤ 0

h

lim
h→0+

f(c+ h)− f(c)

h
≤ lim

h→0+
0

f ′(c) ≤ 0.

If h < 0, the direction of the inequality is reversed and we get f ′(c) ≥ 0. Thus
combining these inequalities gives us f ′(c) = 0. A similar argument can be
used to achieve the same result if f has a local minimum at c.

115



Calculus - 4.1 Maximum and Minimum Values

Example 5. Use the function f(x) = x3 to determine whether the converse
of Fermat’s theorem is true.

Example 6. Does Fermat’s theorem apply to the function f(x) = |x|?

Definition 4.1.3. A critical number of a function f is a number c in the
domain of f such that either f ′(c) = 0 or f ′(c) does not exist.

Example 7. Find the critical numbers of x3/5(4− x).
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Example 8. Find the absolute maximum and minimum values of the function

f(x) = x3 − 3x2 + 1 − 1

2
≤ x ≤ 4.

Example 9. (a) Use a graphing device to estimate the absolute minimum
and maximum values of the function f(x) = x− 2 sinx, 0 ≤ x ≤ 2π.
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(b) Use calculus to find the exact minimum and maximum values.

Example 10. The Hubble Space Telescope was deployed on April 24, 1990,
by the space shuttle Discovery. A model for the velocity of the shuttle during
this mission, from liftoff at t = 0 until the solid rocket boosters were jettisoned
at t = 126 seconds, is given by

v(t) = 0.001302t3 − 0.09029t2 + 23.61t− 3.083

(in feet per second). Using this model, estimate the absolute maximum and
minimum values of the acceleration of the shuttle between liftoff and the jet-
tisoning of the boosters.
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4.2 The Mean Value Theorem

Theorem 4.2.1 (Rolle’s Theorem). Let f be a function that satisfies the fol-
lowing three hypotheses:

1. f is continuous on the closed interval [a, b].

2. f is differentiable on the open interval (a, b).

3. f(a) = f(b).

Then there is a number c in (a, b) such that f ′(c) = 0.

Proof. If f(x) = k, a constant, then f ′(x) = 0 for all x ∈ (a, b). If f(x) > f(a)
for some x ∈ (a, b) then f has a local maximum for a number c ∈ (a, b) by
the extreme value theorem. Since f is differentiable on (a, b), f ′(c) = 0 by
Fermat’s theorem. By the same reasoning, f ′(c) = 0 if f(x) < f(a).

Example 1. How could Rolle’s theorem be applied to a position function that
models a ball thrown upward?

Example 2. Prove that the equation x3 +x−1 = 0 has exactly one real root.
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Theorem 4.2.2 (The Mean Value Theorem). Let f be a function that satisfies
the following hypotheses:

1. f is continuous on the closed interval [a, b].

2. f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that

f ′(c) =
f(b)− f(a)

b− a

or, equivalently,
f(b)− f(a) = f ′(c)(b− a).

Proof. Let h be the difference between f and the secant line to f on [a, b], i.e.,

h(x) = f(x)−
[
f(a) +

f(b)− f(a)

b− a
(x− a)

]
.

Then h is continuous on [a, b] and differentiable on (a, b) because it is the sum
of f and a first-degree polynomial, which are both continuous on [a, b] and
differentiable on (a, b). Also,

h(a) = f(a)− f(a)− f(b)− f(a)

b− a
(a− a) = 0

h(b) = f(b)− f(a)− f(b)− f(a)

b− a
(b− a) = 0,

so h(a) = h(b). Therefore, by Rolle’s thereom, there is a number c in (a, b)
such that h′(c) = 0, i.e.,

0 = h′(c) = f ′(c)− f(b)− f(a)

b− a
,

which is equivalent to

f ′(c) =
f(b)− f(a)

b− a
as desired.

120



Calculus - 4.2 The Mean Value Theorem

Example 3. Find a number c in (0, 2) such that the slope of the secant line
is equal to the slope of the tangent line for the function f(x) = x3 − x.

Example 4. What does the mean value theorem say about the velocity of an
object moving in a straight line?

Example 5. Suppose that f(0) = −3 and f ′(x) ≤ 5 for all values of x. How
large can f(2) possibly be?

Theorem 4.2.3. If f ′(x) = 0 for all x in an interval (a, b), then f is constant
on (a, b).

Proof. Let x1, x2 ∈ (a, b) be such that x1 < x2. By the mean value theorem
for f on [x1, x2], we get

f(x2)− f(x1) = f ′(c)(x2 − x1),

for some c ∈ (x1, x2). But f ′(x) = 0 for all x in this interval, so f(x2) = f(x1).
Since x1 and x2 were chosen arbitrarily, f is constant on (a, b).
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Corollary 4.2.1. If f ′(x) = g′(x) for all x in an interval (a, b), then f − g is
constant on (a, b); that is f(x) = g(x) + c where c is a constant.

Proof. Let
F (x) = f(x)− g(x).

Then
F ′(x) = f ′(x)− g′(x) = 0,

so F is constant by the previous theorem, and thus f − g is constant.

Example 6. Prove the identity tan−1 x+ cot−1 x = π/2.
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4.3 Derivatives and the Shape of a Graph

Theorem 4.3.1 (Increasing/Decreasing Test).

(a) If f ′(x) > 0 on an interval, then f is increasing on that interval.

(b) If f ′(x) < 0 on an interval, then f is decreasing on that interval.

Proof. Let x1, x2 be two numbers on an interval where f ′(x) > 0 such that
x1 < x2. Then by the mean value theorem,

f(x2)− f(x1) = f ′(c)(x2 − x1)

for some c in the interval. But f ′(c) > 0 and x2−x1 > 0, so f(x2)−f(x1) > 0,
i.e.,

f(x2) > f(x1)

in the interval. Since x1 and x2 were chosen arbitrarily, we are done, and the
second half of the theorem is proved similarly.

Example 1. Find where the function f(x) = 3x4−4x3−12x2 +5 is increasing
and where it is decreasing.
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Theorem 4.3.2 (The First Derivative Test). Suppose that c is a critical num-
ber of a continuous function f .

(a) If f ′ changes from positive to negative at c, then f has a local maximum
at c.

(b) If f ′ changes from negative to positive at c, then f has a local minimum
at c.

(c) If f ′ is positive to the left and to the right of c, or negative to the left and
to the right of c, then f has no local minimum or maximum at c.

Example 2. Find the local minimum and maximum values of the function f
in Example 1.

Example 3. Find the local maximum and minimum values of the function

g(x) = x+ 2 sinx 0 ≤ x ≤ 2π.
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Definition 4.3.1. If the graph of f lies above all of its tangents on an interval
I, then it is called concave upward on I. If the graph of f lies below all of its
tangents on I, it is called concave downward on I.

Theorem 4.3.3 (Concavity Test).

(a) If f ′′(x) > 0 for all x in I, then the graph of f is concave upward on I.

(b) If f ′′(x) < 0 for all x in I, then the graph of f is concave downward on I.

Example 4. The figure shows a population graph for Cyprian honeybees
raised in an apiary. How does the rate of population increase change over
time? When is this rate highest? Over what intervals is P concave upward or
concave downward?

296 CHAPTER 4  Applications of Differentiation

In Figure 6 tangents to these curves have been drawn at several points. In (a) the curve 
lies above the tangents and f  is called concave upward on sa, bd. In (b) the curve lies 
below the tangents and t is called concave downward on sa, bd.

 Definition If the graph of f  lies above all of its tangents on an interval I, then it is 
called concave upward on I. If the graph of f  lies below all of its tangents on I, it 
is called concave downward on I.

Figure 7 shows the graph of a function that is concave upward (abbreviated CU) on 
the intervals sb, cd, sd, ed, and se, pd and concave downward (CD) on the intervals sa, bd, 
sc, dd, and sp, q d.

a b c d e p q

B C

D
P

x

y

0

CD CU CD CU CDCU

FIGURE 7 

Let’s see how the second derivative helps determine the intervals of concavity. Look-
ing at Figure 6(a), you can see that, going from left to right, the slope of the tangent 
increas es. This means that the derivative f 9 is an increasing function and therefore its 
derivative f 0 is positive. Likewise, in Figure 6(b) the slope of the tangent decreases from 
left to right, so f 9 decreases and therefore f 0 is negative. This reasoning can be reversed 
and suggests that the following theorem is true. A proof is given in Appendix F with the 
help of the Mean Value Theorem.

Concavity Test
(a) If f 0sxd . 0 for all x in I, then the graph of f  is concave upward on I.

(b) If f 0sxd , 0 for all x in I, then the graph of f  is concave downward on I.

EXAMPLE 4 Figure 8 shows a population graph for Cyprian honeybees raised in an  
apiary. How does the rate of population increase change over time? When is this rate 
highest? Over what intervals is P concave upward or concave downward?

t

P

3

20

0
Time (in weeks)

6 9 12 15

40

60

80

Number of bees
(in thousands)

18

g

A

B

x

y

0

f

A

B

x

y

0

(a) Concave upward

(b) Concave downward

FIGURE 6  

FIGURE 8  
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Definition 4.3.2. A point P on a curve y = f(x) is called an inflection point
if f is continuous there and the curve changes from concave upward to concave
downward or from concave downward to concave upward at P .

Example 5. Sketch a possible graph of a function f that satisfies the following
conditions:

(i) f ′(x) > 0 on (−∞, 1), f ′(x) < 0 on (1,∞).

(ii) f ′′(x) > 0 on (−∞,−2) and (2,∞), f ′′(x) < 0 on (−2, 2).

(iii) lim
x→−∞

f(x) = −2, lim
x→∞

f(x) = 0.

Theorem 4.3.4 (The Second Derivative Test). Suppose f ′ is continuous near
c.

(a) If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c.

(b) If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c.
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Example 6. Discuss the curve y = x4− 4x3 with respect to concavity, points
of inflection, and local maxima and minima. Use this information to sketch
the curve.
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Example 7. Sketch the graph of the function f(x) = x2/3(6− x)1/3.
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Example 8. Use the first and second derivatives of f(x) = e1/x, together with
asymptotes, to sketch its graph.
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4.4 Indeterminate Forms and l’Hospital’s Rule

Theorem 4.4.1 (L’Hospital’s Rule). Suppose f and g are differentiable and
g′(x) 6= 0 on an open interval I that contains a (except possibly at a). Suppose
that

lim
x→a

f(x) = 0 and lim
x→a

g(x) = 0

or that
lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞

(In other words, we have an indeterminate form of type 0
0

or ∞/∞.) Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

if the limit on the right side exists (or is ∞ or −∞).

Example 1. Find lim
x→1

lnx

x− 1
.

Example 2. Calculate lim
x→∞

ex

x2
.

130



Calculus - 4.4 Indeterminate Forms and l’Hospital’s Rule

Example 3. Calculate lim
x→∞

lnx√
x

.

Example 4. Find lim
x→0

tanx− x
x3

.
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Example 5. Find lim
x→π−

sinx

1− cosx
.

Example 6. Evaluate lim
x→0+

x lnx.
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Example 7. Compute lim
x→1+

(
1

lnx
− 1

x− 1

)
.

Example 8. Calculate lim
x→∞

(ex − x).
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Example 9. Calculate lim
x→0+

(1 + sin 4x)cotx.

Example 10. Find lim
x→0+

xx.

134



Calculus - 4.5 Summary of Curve Sketching

4.5 Summary of Curve Sketching

Use the following guidelines when sketching curves by hand:

A. Domain

B. Intercepts

C. Symmetry

D. Asymptotes

E. Intervals of Increase or Decrease

F. Local Maximum and Minimum Values

G. Concavity and Points of Inflection

Example 1. Use the guidelines to sketch the curve y =
2x2

x2 − 1
.
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Example 2. Sketch the graph of f(x) =
x2

√
x+ 1

.
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Example 3. Sketch the graph of f(x) = xex.
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Example 4. Sketch the graph of f(x) =
cosx

2 + sin x
.
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Example 5. Sketch the graph of y = ln(4− x2).
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Definition 4.5.1. If
lim
x→∞

[f(x)− (mx+ b)] = 0

where m 6= 0, then the line y = mx + b is called a slant asymptote because
the vertical distance between the curve y = f(x) and the line y = mx + b
approaches 0.

Example 6. Sketch the graph of f(x) =
x3

x2 + 1
.
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4.6 Graphing with Calculus and Calculators

Example 1. Graph the polynomial f(x) = 2x6 + 3x5 + 3x3 − 2x2. Use the
graphs of f ′ and f ′′ to estimate all maximum and minimum points and intervals
of concavity.
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Example 2. Draw the graph of the function

f(x) =
x2 + 7x+ 3

x2

in a viewing rectangle that contains all the important features of the function.
Estimate the maximum and minimum values and the intervals of concavity.
Then use calculus to find these quantities exactly.
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Example 3. Graph the function f(x) =
x2(x+ 1)3

(x− 2)2(x− 4)4
.
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Example 4. Graph the function f(x) = sin(x + sin 2x). For 0 ≤ x ≤ π,
estimate all maximum and minimum values, intervals of increase and decrease,
and inflection points.
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Example 5. How does the graph of f(x) = 1/(x2 + 2x+ c) vary as c varies?
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4.7 Optimization Problems

Example 1. A farmer has 2400 ft of fencing and wants to fence off a rect-
angular field that borders a straight river. He needs no fence along the river.
What are the dimensions of the field that has the largest area?
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Example 2. A cylindrical can is to be made to hold 1 L of oil. Find the
dimensions that will minimize the cost of the metal to manufacture the can.
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Theorem 4.7.1 (First Derivative Test for Absolute Extreme Values). Suppose
that c is a critical number of a continuous function f defined on an interval.

(a) If f ′(x) > 0 for all x < c and f ′(x) < 0 for all x > c, then f(c) is the
absolute maximum value of f .

(b) If f ′(x) < 0 for all x < c and f ′(x) > 0 for all x > c, then f(c) is the
absolute minimum value of f .

Example 3. Find the point on the parabola y2 = 2x that is closest to the
point (1, 4).
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334 CHAPTER 4  Applications of Differentiation

(You should convince yourself that the minimum of d occurs at the same point as the 
minimum of d2, but d2 is easier to work with.) Note that there are no restrictions on y, 
so the domain is all real numbers. Differentiating, we obtain

f 9syd − 2s1
2 y 2 2 1dy 1 2sy 2 4d − y 3 2 8

so f 9syd − 0 when y − 2. Observe that f 9syd , 0 when y , 2 and f 9syd . 0 when 
y . 2, so by the First Derivative Test for Absolute Extreme Values, the absolute mini-
mum occurs when y − 2. (Or we could simply say that because of the geometric nature 
of the problem, it’s obvious that there is a closest point but not a farthest point.) The 
corresponding value of x is x − 1

2 y 2 − 2. Thus the point on y 2 − 2x closest to s1, 4d is 
s2, 2d. [The distance between the points is d − sf s2d − s5 .] Q

EXAMPLE 4  A man launches his boat from point A on a bank of a straight river, 3 km 
wide, and wants to reach point B, 8 km downstream on the opposite bank, as quickly as 
possible (see Figure 7). He could row his boat directly across the river to point C and 
then run to B, or he could row directly to B, or he could row to some point D between 
C and B and then run to B. If he can row 6 kmyh and run 8 kmyh, where should he 
land to reach B as soon as possible? (We assume that the speed of the water is negli-
gible compared with the speed at which the man rows.)

SOLUTION If we let x be the distance from C to D, then the running distance is 
| DB | − 8 2 x and the Pythagorean Theorem gives the rowing distance as

| AD | − sx 2 1 9 . We use the equation

time −
distance

rate

Then the rowing time is sx 2 1 9 y6 and the running time is s8 2 xdy8, so the total time 
T  as a function of x is

Tsxd −
sx 2 1 9 

6
1

8 2 x
8

The domain of this function T  is f0, 8g. Notice that if x − 0, he rows to C and if x − 8, 
he rows directly to B. The derivative of T  is

T9sxd −
x

6sx 2 1 9 
2

1
8

Thus, using the fact that x > 0, we have

T9sxd − 0  &?  
x

6sx 2 1 9 
−

1
8

  &?  4x − 3sx 2 1 9  

  &?  16x 2 − 9sx 2 1 9d  &?  7x 2 − 81

  &?  x −
9

s7 

The only critical number is x − 9ys7 . To see whether the minimum occurs at this 
critical number or at an endpoint of the domain f0, 8g, we follow the Closed Interval 

8 km

C

D

B

A

3 km

x

FIGURE 7 
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Example 4. A man launches his boat from point A on a bank
of a straight river, 3 km wide, and wants to reach point B, 8 km
downstream on the opposite bank, as quickly as possible (see the
figure). He could row his boat directly across the river to point C
and then run to B, or he could row directly to B, or he could row
to some point D between C and B and then run to B. If he can row
6 km/h and run 8 km/h, where should he land to reach B as soon
as possible? (We assume that the speed of the water is negligible
compared with the speed at which the man rows.)
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Example 5. Find the area of the largest rectangle that can be inscribed in a
semicircle of radius r.
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Definition 4.7.1. If p(x) is the price per unit that a company can charge if
it sells x units, then p is called the demand function (or price function).
If x units are sold, then the total revenue

R(x) = quantity× price = xp(x)

and R is called the revenue function. The derivative R′ of the revenue function
is called the marginal revenue function and is the rate of change of revenue
with respect to the number of units sold.
If x units are sold, then the total profit is

P (x) = R(x)− C(x)

where C is the cost function and P is called the profit function. The marginal
profit function is P ′, the derivative of the profit function.

Example 6. A store has been selling 200 flat-screen TVs a week at $350
each. A market survey indicates that for each $10 rebate offered to buyers, the
number of TVs sold will increase by 20 a week. Find the demand function and
the revenue function. How large a rebate should the store offer to maximize
its revenue?
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4.8 Newton’s Method

Theorem 4.8.1 (Newton’s Method). If xn is the nth approximation of a root
r for a function f then

xn+1 = xn −
f(xn)

f ′(xn)
.

Example 1. Starting with x1 = 2, find the third approximation x3 to the
root of the equation x3 − 2x− 5 = 0.
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Example 2. Use Newton’s method to find 6
√

2 to eight decimal places.
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Example 3. Find, correct to six decimal places, the root of the equation
cosx = x.
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4.9 Antiderivatives

Definition 4.9.1. A function F is called an antiderivative of f on an interval
I if F ′(x) = f(x) for all x in I.

Theorem 4.9.1. If F is an antiderivative of f on an interval I, then the most
general antiderivative of f on I is

F (x) + C

where C is an arbitrary constant.

Proof. Follows by Corollary 4.2.1 to the mean value theorem.

Example 1. Find the most general antiderivative of each of the following
functions.

(a) f(x) = sinx

(b) f(x) = 1/x

(c) f(x) = xn, n 6= −1
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Example 2. Find all functions g such that

g′(x) = 4 sinx+
2x5 −

√
x

x
.

Example 3. Find f if f ′(x) = ex + 20(1 + x2)−1 and f(0) = −2.
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Example 4. Find f if f ′′(x) = 12x2 + 6x− 4, f(0) = 4, and f(1) = 1.

354 CHAPTER 4  Applications of Differentiation

EXAMPLE 5  The graph of a function f  is given in Figure 3. Make a rough sketch of 
an antiderivative F, given that Fs0d − 2.

SOLUTION We are guided by the fact that the slope of y − Fsxd is f sxd. We start at the 
point s0, 2d and draw F as an initially decreasing function since f sxd is negative when 
0 , x , 1. Notice that f s1d − f s3d − 0, so F has horizontal tangents when x − 1 and 
x − 3. For 1 , x , 3, f sxd is positive and so F is increasing. We see that F has a local 
minimum when x − 1 and a local maximum when x − 3. For x . 3, f sxd is negative 
and so F is decreasing on s3, `d. Since f sxd l 0 as x l `, the graph of F becomes 
flatter as x l `. Also notice that F0sxd − f 9sxd changes from positive to negative at 
x − 2 and from negative to positive at x − 4, so F has inflection points when x − 2 and 
x − 4. We use this information to sketch the graph of the antiderivative in Figure 4. Q

Rectilinear Motion
Antidifferentiation is particularly useful in analyzing the motion of an object moving in 
a straight line. Recall that if the object has position function s − f std, then the velocity 
function is vstd − s9std. This means that the position function is an antiderivative of the 
velocity function. Likewise, the acceleration function is astd − v9std, so the velocity 
function is an antiderivative of the acceleration. If the acceleration and the initial values ss0d 
and vs0d are known, then the position function can be found by antidifferentiating twice.

EXAMPLE 6 A particle moves in a straight line and has acceleration given by 
astd − 6t 1 4. Its initial velocity is vs0d − 2 6 cmys and its initial displacement is 
ss0d − 9 cm. Find its position function sstd.

SOLUTION Since v9std − astd − 6t 1 4, antidifferentiation gives

vstd − 6 
t 2

2
1 4t 1 C − 3t 2 1 4t 1 C

Note that vs0d − C. But we are given that vs0d − 2 6, so C − 2 6 and

vstd − 3t 2 1 4t 2 6

Since vstd − s9std, s is the antiderivative of v:

sstd − 3 
t 3

3
1 4 

t 2

2
2 6t 1 D − t 3 1 2t 2 2 6t 1 D

This gives ss0d − D. We are given that ss0d − 9, so D − 9 and the required position 
function is

 sstd − t 3 1 2t 2 2 6t 1 9 Q

An object near the surface of the earth is subject to a gravitational force that produces 
a downward acceleration denoted by t. For motion close to the ground we may assume 
that t is constant, its value being about 9.8 mys2 (or 32 ftys2).

EXAMPLE 7 A ball is thrown upward with a speed of 48 ftys from the edge of a cliff 
432 ft above the ground. Find its height above the ground t seconds later. When does it 
reach its maximum height? When does it hit the ground?

1 2 30 4 x

y

y=ƒ

FIGURE 3 

x

y

1

2

0

y=F(x)

1

FIGURE 4 
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Example 5. The graph of a function f is given in the figure.
Make a rough sketch of an antiderivative F , given that F (0) = 2.
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Example 6. A particle moves in a straight line and has acceleration given by
a(t) = 6t+4. Its initial velocity is v(0) = −6 cm/s and its initial displacement
is s(0) = 9 cm. Find its position function s(t).
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Example 7. A ball is thrown upward with a speed of 48 ft/s from the edge of a
cliff 432 ft above the ground. Find its height above the ground t seconds later.
When does it reach its maximum height? When does it hit the ground? [For
motion close to the ground we may assume that the downward acceleration g
is constant, its value being about 9.8 m/s2 (or 32 ft/s2).]
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Chapter 5

Integrals

5.1 Areas and Distances

Example 1. Use rectangles to estimate the area under the parabola y = x2

from 0 to 1.
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Example 2. For the region in Example 1, show that the sum of the areas of
the upper approximating rectangles approaches 1

3
, that is,

lim
n→∞

Rn =
1

3
.
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Definition 5.1.1. The area A of the region S that lies under the graph of the
continuous function f is the limit of the sum of the areas of approximating
rectangles:

A = lim
n→∞

Rn = lim
n→∞

[f(x1)∆x+f(x2)∆x+ · · ·+f(xn)∆x] = lim
n→∞

n∑
i=1

f(xi)∆x.

The last equality is an example of the use of sigma notation to write sums
with many terms more compactly.

Definition 5.1.2. Numbers x∗i in the ith subinterval [xi−1, xi] are called sam-
ple points. We form lower (and upper) sums by choosing the sample points x∗i
so that f(x∗i ) is the minimum (and maximum) value of f on the ith subinterval.

 SECTION 5.1  Areas and Distances 371

2   De!nition The area A of the region S that lies under the graph of the contin-
uous function f  is the limit of the sum of the areas of approximating rectangles:

A − lim
n l `

 Rn − lim
n l ` 

f f sx1d Dx 1 f sx2 d Dx 1 ∙ ∙ ∙ 1 f sxn d Dxg

It can be proved that the limit in De"nition 2 always exists, since we are assuming that 
f  is continuous. It can also be shown that we get the same value if we use left endpoints:

 A − lim
n l `

 Ln − lim
n l `

 f f sx0 d Dx 1 f sx1d Dx 1 ∙ ∙ ∙ 1 f sxn21d Dxg

In fact, instead of using left endpoints or right endpoints, we could take the height of 
the ith rectangle to be the value of f  at any number xi* in the ith subinterval fxi21, xig. 
We call the numbers x1*, x2*, . . . , xn* the sample points. Figure 13 shows approximating 
rectangles when  the sample points are not chosen to be endpoints. So a more general 
expression for the area of S is

 A − lim
n l ` 

f f sx1*d Dx 1 f sx2*d Dx 1 ∙ ∙ ∙ 1 f sxn* d Dxg

xixi-10

y

xa bx2⁄ ‹ xn-1

x¡* x™* x£* xn*xi*

Îx

f(xi*)

NOTE It can be shown that an equivalent de"nition of area is the following: A is the 
unique number that is smaller than all the upper sums and bigger than all the lower sums.
We saw in Examples 1 and 2, for instance, that the area sA − 1

3d is trapped between 
all the left approximating sums Ln and all the right approximating sums Rn. The function 
in those examples, f sxd − x 2, happens to be increasing on f0, 1g and so the lower sums 
arise from left endpoints and the upper sums from right endpoints. (See Figures 8 and 9.) 
In gen eral, we form lower (and upper) sums by choosing the sample points xi* so that 
f sxi*d is the minimum (and maximum) value of f  on the ith subinterval. (See Figure 14 
and Exercises 7–8.)

0

y

xa b

3

4

FIGURE 13

FIGURE 14
Lower sums (short rectangles) and 

upper sums (tall rectangles)
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Example 3. Let A be the area of the region that lies under the graph of
f(x) = e−x between x = 0 and x = 2.

(a) Using right endpoints, find an expression for A as a limit. Do not evaluate
the limit.
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(b) Estimate the area by taking the sample points to be midpoints and using
four subintervals and then ten subintervals.
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Example 4. Suppose the odometer on a car is broken. Estimate the distance
driven in feet over a 30-second time interval by using the speedometer readings
taken every five seconds and recorded in the following table:

Time (s) 0 5 10 15 20 25 30
Velocity (mi/h) 17 21 24 29 32 31 28
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5.2 The Definite Integral

Definition 5.2.1. If f is a function defined for a ≤ x ≤ b, we divide the
interval [a, b] into n subintervals of equal width ∆x = (b − a)/n. We let
x0(= a), x1, x2, . . . , xn(= b) be the endpoints of these subintervals and we let
x∗1, x

∗
2, . . . , x

∗
n be any sample points in these subintervals, so x∗i lies in the ith

subinterval [xi−1, xi]. Then the definite integral of f from a to b is

ˆ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗i )∆x

provided that this limit exists and gives the same value for all possible choices
of sample points. If it does exist, we say that f is integrable on [a, b].

Definition 5.2.2. The symbol
´

is called an integral sign. In the notation´ b
a
f(x)dx, f(x) is called the integrand and a and b are called the limits of

integration; a is the lower limit and b is the upper limit. The procedure of
calculating an integral is called integration.

Definition 5.2.3. The sum

n∑
i=1

f(x∗i )∆x

is called a Riemann sum and it can be used to approximate the definite integral
of an integrable function within any desired degree of accuracy.

 SECTION 5.2  The De!nite Integral 379

 yb
a  f sxd dx, f sxd is called the integrand and a and b are called the limits of integration; 

a is the lower limit and b is the upper limit. For now, the symbol dx has no meaning by 
itself; yb

a  f sxd dx is all one symbol. The dx simply indicates that the independent vari able 
is x. The procedure of calculating an integral is called integration.

NOTE 2 The de!nite integral yb
a  f sxd dx is a number; it does not depend on x. In fact, 

we could use any letter in place of x without changing the value of the integral:

yb

a
 f sxd dx − yb

a
 f std dt − yb

a
 f srd dr

NOTE 3 The sum

o
n

i−1
 f sxi*d Dx

that occurs in De!nition 2 is called a Riemann sum after the German mathematician 
Bernhard Riemann (1826 –1866). So De!nition 2 says that the de!nite integral of an 
integrable function can be approximated to within any desired degree of accuracy by a 
Riemann sum.

We know that if f  happens to be positive, then the Riemann sum can be interpreted 
as a sum of areas of approximating rectangles (see Figure 1). By comparing De!nition 2 
with the de!nition of area in Section 5.1, we see that the de!nite integral yb

a  f sxd dx can 
be interpreted as the area under the curve y − f sxd from a to b. (See Figure 2.)

xi*0

y

xa

Îx y=ƒ

0

y

xab b

FIGURE 1  
If f sxd > 0, the Riemann sum o  f sxi*d Dx  
is the sum of areas of rectangles.

FIGURE 2  
If f sxd > 0, the integral yb

a f sxd dx is the  
area under the curve y − f sxd from a to b.

If f  takes on both positive and negative values, as in Figure 3, then the Riemann sum 
is the sum of the areas of the rectangles that lie above the x-axis and the negatives of the 
areas of the rectangles that lie below the x-axis (the areas of the blue rectangles minus 
the areas of the gold rectangles). When we take the limit of such Riemann sums, we get 
the situation illustrated in Figure 4. A de!nite integral can be interpreted as a net area, 
that is, a difference of areas:

yb

a
 f sxd dx − A1 2 A2

where A1 is the area of the region above the x-axis and below the graph of f , and A2 is 
the area of the region below the x-axis and above the graph of f .

NOTE 4 Although we have de!ned yb
a  f sxd dx by dividing fa, bg into subintervals of 

equal width, there are situations in which it is advantageous to work with subintervals of 
unequal width. For instance, in Exercise 5.1.16, NASA provided velocity data at times 
that were not equally spaced, but we were still able to estimate the distance traveled. And 
there are methods for numerical integration that take advantage of unequal subintervals.

Riemann
Bernhard Riemann received his Ph.D. 
under the direction of the legendary 
Gauss at the University of Göttingen and 
remained there to teach. Gauss, who 
was not in the habit of praising other 
mathematicians, spoke of Riemann’s  
“creative, active, truly mathematical 
mind and gloriously fertile originality.” 
The de!nition (2) of an integral that we 
use is due to Riemann. He also made 
major contributions to the theory of 
functions of a complex variable, math-
ematical physics, number theory, and 
the foundations of geometry. Riemann’s 
broad concept of space and geometry 
turned out to be the right setting, 50  
years later, for Einstein’s general rela-
tivity theory. Riemann’s health was poor  
throughout his life, and he died of 
tuberculosis at the age of 39.

0

y=ƒ
y

a b x

FIGURE 3  

o  f sxi*d Dx is an approximation 
  to the net area.

y=ƒ
y

xa b0

FIGURE 4  

yb

a
 f sxd dx is the net area.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

165



Calculus - 5.2 The Definite Integral

Definition 5.2.4. A definite integral can be interpreted as a net area, that
is, a difference of areas:

ˆ b

a

f(x) dx = A1 − A2

where A1 is the area of the region above the x-axis and below the graph of f ,
and A2 is the area of the region below the x-axis and the above the graph of
f .

 SECTION 5.2  The De!nite Integral 379

 yb
a  f sxd dx, f sxd is called the integrand and a and b are called the limits of integration; 

a is the lower limit and b is the upper limit. For now, the symbol dx has no meaning by 
itself; yb

a  f sxd dx is all one symbol. The dx simply indicates that the independent vari able 
is x. The procedure of calculating an integral is called integration.

NOTE 2 The de!nite integral yb
a  f sxd dx is a number; it does not depend on x. In fact, 

we could use any letter in place of x without changing the value of the integral:

yb

a
 f sxd dx − yb

a
 f std dt − yb

a
 f srd dr

NOTE 3 The sum

o
n

i−1
 f sxi*d Dx

that occurs in De!nition 2 is called a Riemann sum after the German mathematician 
Bernhard Riemann (1826 –1866). So De!nition 2 says that the de!nite integral of an 
integrable function can be approximated to within any desired degree of accuracy by a 
Riemann sum.

We know that if f  happens to be positive, then the Riemann sum can be interpreted 
as a sum of areas of approximating rectangles (see Figure 1). By comparing De!nition 2 
with the de!nition of area in Section 5.1, we see that the de!nite integral yb

a  f sxd dx can 
be interpreted as the area under the curve y − f sxd from a to b. (See Figure 2.)

xi*0

y

xa

Îx y=ƒ

0

y

xab b

FIGURE 1  
If f sxd > 0, the Riemann sum o  f sxi*d Dx  
is the sum of areas of rectangles.

FIGURE 2  
If f sxd > 0, the integral yb

a f sxd dx is the  
area under the curve y − f sxd from a to b.

If f  takes on both positive and negative values, as in Figure 3, then the Riemann sum 
is the sum of the areas of the rectangles that lie above the x-axis and the negatives of the 
areas of the rectangles that lie below the x-axis (the areas of the blue rectangles minus 
the areas of the gold rectangles). When we take the limit of such Riemann sums, we get 
the situation illustrated in Figure 4. A de!nite integral can be interpreted as a net area, 
that is, a difference of areas:

yb

a
 f sxd dx − A1 2 A2

where A1 is the area of the region above the x-axis and below the graph of f , and A2 is 
the area of the region below the x-axis and above the graph of f .

NOTE 4 Although we have de!ned yb
a  f sxd dx by dividing fa, bg into subintervals of 

equal width, there are situations in which it is advantageous to work with subintervals of 
unequal width. For instance, in Exercise 5.1.16, NASA provided velocity data at times 
that were not equally spaced, but we were still able to estimate the distance traveled. And 
there are methods for numerical integration that take advantage of unequal subintervals.

Riemann
Bernhard Riemann received his Ph.D. 
under the direction of the legendary 
Gauss at the University of Göttingen and 
remained there to teach. Gauss, who 
was not in the habit of praising other 
mathematicians, spoke of Riemann’s  
“creative, active, truly mathematical 
mind and gloriously fertile originality.” 
The de!nition (2) of an integral that we 
use is due to Riemann. He also made 
major contributions to the theory of 
functions of a complex variable, math-
ematical physics, number theory, and 
the foundations of geometry. Riemann’s 
broad concept of space and geometry 
turned out to be the right setting, 50  
years later, for Einstein’s general rela-
tivity theory. Riemann’s health was poor  
throughout his life, and he died of 
tuberculosis at the age of 39.
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yb

a
 f sxd dx − yb

a
 f std dt − yb

a
 f srd dr
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o
n

i−1
 f sxi*d Dx
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Theorem 5.2.1. If f is continuous on [a, b], or if f has only a finite number of
jump discontinuities, then f is integrable on [a, b]; that is, the definite integral´ b
a
f(x)dx exists.

Theorem 5.2.2. If f is integrable on [a, b], then

ˆ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(xi)∆x

where

∆x =
b− a
n

and xi = a+ i∆x.
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Example 1. Express

lim
n→∞

n∑
i=1

(x3
i + xi sinxi)∆x

as an integral on the interval [0, π].

Theorem 5.2.3. The following formulas are true when working with sigma
notation:

n∑
i=1

i =
n(n+ 1)

2

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =

[
n(n+ 1)

2

]2

n∑
i=1

c = nc

n∑
i=1

cai = c
n∑
i=1

ai

n∑
i=1

(ai + bi) =
n∑
i=1

ai +
n∑
i=1

bi

n∑
i=1

(ai − bi) =
n∑
i=1

ai −
n∑
i=1

bi.
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Example 2. (a) Evaluate the Riemann sum for f(x) = x3 − 6x, taking the
sample points to be right endpoints and a = 0, b = 3, and n = 6.

(b) Evaluate

ˆ 3

0

(x3 − 6x) dx.
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Example 3. (a) Set up an expression for

ˆ 3

1

ex dx as a limit of sums.

(b) Use a computer algebra system to evaluate the expression.
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Example 4. Evaluate the following integrals by interpreting each in terms of
areas.

(a)

ˆ 1

0

√
1− x2 dx

(b)

ˆ 3

0

(x− 1) dx
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Theorem 5.2.4 (Midpoint Rule).

ˆ b

a

f(x) dx ≈
n∑
i=1

f(x̄i)∆x = ∆x[f(x̄1) + · · ·+ f(x̄n)]

where

∆x =
b− a
n

and

x̄i =
1

2
(xi−1 + xi) = midpoint of [xi−1, xi].

Example 5. Use the Midpoint Rule with n = 5 to approximate

ˆ 2

1

1

x
dx.
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Theorem 5.2.5 (Properties of the Definite Integral).

1.

ˆ b

a

f(x) dx = −
ˆ a

b

f(x) dx.

2.

ˆ a

a

f(x) dx = 0.

3.

ˆ b

a

c dx = c(b− a), where c is any constant.

4.

ˆ b

a

[f(x) + g(x)] dx =

ˆ b

a

f(x) dx+

ˆ b

a

g(x) dx.

5.

ˆ b

a

cf(x) dx = c

ˆ b

a

f(x) dx, where c is any constant.

6.

ˆ b

a

[f(x)− g(x)] dx =

ˆ b

a

f(x) dx−
ˆ b

a

g(x) dx.

7.

ˆ c

a

f(x) dx+

ˆ b

c

f(x) dx =

ˆ b

a

f(x) dx.

Example 6. Use the properties of integrals to evaluate

ˆ 1

0

(4 + 3x2) dx.
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Example 7. If it is known that

ˆ 10

0

f(x) dx = 17 and

ˆ 8

0

f(x) dx = 12, find
ˆ 10

8

f(x) dx.

Theorem 5.2.6 (Comparison Properties of the Integral).

8. If f(x) ≥ 0 for a ≤ x ≤ b, then

ˆ b

a

f(x) dx ≥ 0.

9. If f(x) ≥ g(x) for a ≤ x ≤ b, then

ˆ b

a

f(x) dx ≥
ˆ b

a

g(x) dx.

10. If m ≤ f(x) ≤M for a ≤ x ≤ b, then

m(b− a) ≤
ˆ b

a

f(x) dx ≤M(b− a).

Example 8. Use Property 10 to estimate

ˆ 1

0

e−x
2

dx.
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5.3 The Fundamental Theorem of Calculus

392 CHAPTER 5  Integrals

The Fundamental Theorem of Calculus is appropriately named because it establishes a  
con nection between the two branches of calculus: differential calculus and integral 
calculus. Differential calculus arose from the tangent problem, whereas integral calcu-
lus arose from a seemingly unrelated problem, the area problem. Newton’s mentor at 
Cambridge, Isaac Barrow (1630 –1677), discovered that these two problems are actu-
ally closely related. In fact, he realized that differentiation and integration are inverse 
processes. The Fundamental Theorem of Calculus gives the precise inverse relationship 
between the derivative and the integral. It was Newton and Leibniz who exploited this 
relationship and used it to develop calculus into a systematic mathema tical method. In 
particular, they saw that the Fundamental Theorem enabled them to compute areas and 
integrals very easily without having to compute them as limits of sums as we did in Sec-
tions 5.1 and 5.2.

The first part of the Fundamental Theorem deals with functions defined by an equa-
tion of the form

tsxd − y x

a
 f std dt

where f  is a continuous function on fa, bg and x varies between a and b. Observe that t 
depends only on x, which appears as the variable upper limit in the integral. If x is a fixed 
number, then the integral yx

a f std dt is a definite number. If we then let x vary, the number 
yx
a f std dt also varies and defines a function of x denoted by tsxd.

If f  happens to be a positive function, then tsxd can be interpreted as the area under the 
graph of f  from a to x, where x can vary from a to b. (Think of t as the “area so far” 
function; see Figure 1.)

EXAMPLE 1  If f  is the function whose graph is shown in Figure 2 and 
tsxd − yx

0 f std dt, find the values of ts0d, ts1d, ts2d, ts3d, ts4d, and ts5d. Then sketch a 
rough graph of t.

SOLUTION First we notice that ts0d − y0
0 f std dt − 0. From Figure 3 we see that ts1d is 

the area of a triangle:

ts1d − y1

0
 f std dt − 1

2 s1 ? 2d − 1

1

0

y

ta bx

area=©

y=f(t)

FIGURE 1  

t0

1

1

22

42

y

y=f(t)

FIGURE 2  

of x at which tsxd starts to decrease. [Unlike the integral in Problem 2, it is impossible 
to evaluate the integral defining t to obtain an explicit expression for tsxd.]

(c)  Use the integration command on your calculator or computer to estimate ts0.2d, 
ts0.4d, ts0.6d, . . . , ts1.8d, ts2d. Then use these values to sketch a graph of t.

(d)  Use your graph of t from part (c) to sketch the graph of t9 using the interpretation of 
t9sxd as the slope of a tangent line. How does the graph of t9 compare with the graph 
of f ?

 4.  Suppose f  is a continuous function on the interval fa, bg and we define a new function t 
by the equation

tsxd − yx

a
 f std dt

Based on your results in Problems 1–3, conjecture an expression for t9sxd.
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Example 1. If f is the function whose graph is shown in the
figure and g(x) =

´ x
0
f(t) dt, find the values of g(0), g(1), g(2),

g(3), g(4), and g(5). Then sketch a rough graph of g.

Theorem 5.3.1 (The Fundamental Theorem of Calculus, Part 1). If f is
continuous on [a, b], then the function g defined by

g(x) =

ˆ x

a

f(t) dt a ≤ x ≤ b

is continuous on [a, b] and differentiable on (a, b), and g′(x) = f(x).

Proof. If x and x+ h are in (a, b), then

g(x+ h)− g(x) =

ˆ x+h

a

f(t) dt−
ˆ x

a

f(t) dt

=

(ˆ x

a

f(t) dt+

ˆ x+h

x

f(t) dt

)
−
ˆ x

a

f(t) dt

=

ˆ x+h

x

f(t) dt
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Intuitively, we therefore expect that

t9sxd − lim
h  l 0

 
tsx 1 h d 2 tsxd

h
− f sxd

The fact that this is true, even when f  is not necessarily positive, is the first part of the 
Fun damental Theorem of Calculus.

 The Fundamental Theorem of Calculus, Part 1 If f  is continuous on fa, bg, then 
the function t defined by

tsxd − y x

a
 f std dt    a < x < b

is continuous on fa, bg and differentiable on sa, bd, and t9sxd − f sxd.

PROOF If x and x 1 h  are in sa, bd, then

  tsx 1 h d 2 tsxd − y x1h

a
 f std dt 2 y x

a
 f std dt

  − Sy x

a
 f std dt 1 y x1h

x
 f std dtD 2 y x

a
 f std dt    (by Property 5)

  − y x1h

x
 f std dt

and so, for h ± 0,

tsx 1 h d 2 tsxd
h

−
1
h

 y x1h

x
 f std dt

For now let’s assume that h . 0. Since f  is continuous on fx, x 1 h g, the Extreme 
Value Theorem says that there are numbers u  and v in fx, x 1 h g such that f su d − m 
and f svd − M, where m and M are the absolute minimum and maximum values of f  on 
fx, x 1 h g. (See Figure 6.)

By Property 8 of integrals, we have

 mh < y x1h

x
 f std dt < Mh

that is,  f su dh < yx1h

x
 f std dt < f svdh

Since h . 0, we can divide this inequality by h :

f su d <
1
h

 y x1h

x
 f std dt < f svd

Now we use Equation 2 to replace the middle part of this inequality:

f su d <
tsx 1 h d 2 tsxd

h
< f svd

Inequality 3 can be proved in a similar manner for the case where h , 0. (See Exer-
cise 77.)

We abbreviate the name of this theorem 
as FTC1. In words, it says that the 
derivative of a definite integral with 
respect to its upper limit is the inte-
grand evaluated at the upper limit.

0

y

xx u √=x+h

y=ƒ

m
M

FIGURE 6 

2

3

TEC Module 5.3 provides visual  
evidence for FTC1.
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and so, for h 6= 0,
g(x+ h)− g(x)

h
=

1

h

ˆ x+h

x

f(t) dt.

For now let’s assume that h > 0. Since f is continuous on [x, x+
h], the Extreme Value Theorem says that there are numbers u
and v in [x, x+ h] such that f(u) = m and f(v) = M , where m
and M are the absolute minimum and maximum values of f on
[x, x+ h]. (See the figure.)
Then

mh ≤
ˆ x+h

x

f(t) dt ≤Mh

f(u)h ≤
ˆ x+h

x

f(t) dt ≤ f(v)h

f(u) ≤ 1

h

ˆ x+h

x

f(t) dt ≤ f(v)

f(u) ≤ g(x+ h)− g(x)

h
≤ f(v).

This inequality can be proved in a similar manner for the case where h < 0.
Now we let h → 0. Then u → x and v → x, since u and v lie between x and
x+ h. Therefore

lim
h→0

f(u) = lim
u→x

f(u) = f(x) and lim
h→0

f(v) = lim
u→x

f(v) = f(x)

because f is continuous at x. We conclude, from the Squeeze Theorem, that

g′(x) = lim
h→0

g(x+ h)− g(x)

h
= f(x).

If x = a or b, then this equation can be interpreted as a one-sided limit, and
thus g is continuous on [a, b].

Example 2. Find the derivative of the function g(x) =

ˆ x

0

√
1 + t2 dt.
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Example 3. Find the derivative of the Fresnel function

S(x) =

ˆ x

0

sin(πt2/2) dt

and compare its graph with that of S(x) to visually confirm the fundamental
theorem of calculus.

Example 4. Find
d

dx

ˆ x4

1

sec t dt.
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Theorem 5.3.2 (The Fundamental Theorem of Calculus, Part 2). If f is
continuous on [a, b], then

ˆ b

a

f(x) dx = F (b)− F (a)

where F is any antiderivative of f , that is, a function such that F ′ = f .

Proof. Let g(x) =
´ x
a
f(t) dt. By Part 1, g′(x) = f(x); that is, g is an an-

tiderivative of f . If F is any other antiderivative of f on [a, b], then, by
Corollary 4.2.1,

F (x) = g(x) + C

for a < x < b. By continuity, this is also true for x ∈ [a, b], so again by Part 1,

g(a) =

ˆ a

a

f(t) dt = 0

and thus

F (b)− F (a) = [g(b) + C]− [g(a) + C]

= g(b) + C − 0− C
= g(b)

=

ˆ b

a

f(t) dt.

Example 5. Evaluate the integral

ˆ 3

1

ex dx.

177



Calculus - 5.3 The Fundamental Theorem of Calculus

Remark 1. We often use the notation

F (x)
]b
a

= F (b)− F (a).

So the equation of the Fundamental Theorem of Calculus Part 2 can be written
as ˆ b

a

f(x) dx = F (x)
]b
a

where F ′ = f.

Other common notations are F (x)|ba and [F (x)]ba.

Example 6. Find the area under the parabola y = x2 from 0 to 1.

Example 7. Evaluate

ˆ 6

3

dx

x
.
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Example 8. Find the area under the cosine curve from 0 to b, where
0 ≤ b ≤ π/2.

Example 9. What is wrong with the following calculation?

ˆ 3

−1

1

x2
dx =

x−1

−1

]3

−1

= −1

3
− 1 = −4

3
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5.4 Indefinite Integrals and the Net Change

Theorem

Definition 5.4.1. An antiderivative of f is called an indefinite integral where

ˆ
f(x) dx = F (x) means F ′(x) = f(x).

Example 1. Find the general indefinite integral

ˆ
(10x4 − 2 sec2 x) dx.

Example 2. Evaluate

ˆ
cos θ

sin2 θ
dθ.

Example 3. Evaluate

ˆ 3

0

(x3 − 6x) dx.
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Example 4. Find

ˆ 2

0

(
2x3 − 6x+

3

x2 + 1

)
dx and interpret the result in

terms of areas.

Example 5. Evaluate

ˆ 9

1

2t2 + t2
√
t− 1

t2
dt.
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Theorem 5.4.1 (Net Change Theorem). The integral of a rate of change is
the net change: ˆ b

a

F ′(x) dx = F (b)− F (a).

Example 6. A particle moves along a line so that its velocity at time t is
v(t) = t2 − t− 6 (measured in meters per second).

(a) Find the displacement of the particle during the time period 1 ≤ t ≤ 4.

(b) Find the distance traveled during this time period.
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Example 7. The figure shows the power consumption in the city of San Fran-
cisco for a day in September (P is measured in megawatts; t is measured in
hours starting at midnight). Estimate the energy used on that day.

408 CHAPTER 5  Integrals

EXAMPLE 7  Figure 4 shows the power consumption in the city of San Francisco for 
a day in September (P is measured in megawatts; t is measured in hours starting at 
midnight). Estimate the energy used on that day.

P

0 181512963 t21

400

600

800

200

Pacific Gas & Electric

SOLUTION Power is the rate of change of energy: Pstd − E9std. So, by the Net Change 
Theorem,

y24

0
 Pstd dt − y24

0
 E9std dt − Es24d 2 Es0d

is the total amount of energy used on that day. We approximate the value of the integral 
using the Midpoint Rule with 12 subintervals and Dt − 2:

 y24

0
 Pstd dt < fPs1d 1 Ps3d 1 Ps5d 1 ∙ ∙ ∙ 1 Ps21d 1 Ps23dg Dt

 < s440 1 400 1 420 1 620 1 790 1 840 1 850

1 840 1 810 1 690 1 670 1 550ds2d

− 15,840

The energy used was approximately 15,840 megawatt-hours. ■

How did we know what units to use for energy in Example 7? The integral y24
0  Pstd dt 

is defined as the limit of sums of terms of the form Psti*d Dt. Now Psti*d is measured in 
megawatts and Dt is measured in hours, so their product is measured in megawatt-hours. 
The same is true of the limit. In general, the unit of measurement for yb

a f sxd dx is the 
product of the unit for f sxd and the unit for x.

FIGURE 4

A note on units

1–4 Verify by differentiation that the formula is correct.

 1. y 
1

x 2s1 1 x 2 
 dx − 2

s1 1 x 2 

x
1 C

 2. y cos2 x dx − 1
2 x 1 1

4 sin 2x 1 C

 3. y tan2 x dx − tan x 2 x 1 C

 4. y xsa 1 bx  dx −
2

15b2 s3bx 2 2adsa 1 bxd3y2 1 C

5–18 Find the general indefinite integral.

 5. y sx1.3 1 7x 2.5d dx

 6. y s4 x5  dx
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5.5 The Substitution Rule

Theorem 5.5.1 (The Substitution Rule). If u = g(x) is a differentiable func-
tion whose range is an interval I and f is continuous on I, then

ˆ
f(g(x))g′(x) dx =

ˆ
f(u) du.

Proof. If f = F ′, then, by the Chain Rule,

d

dx
[F (g(x))] = f(g(x))g′(x).

Thus if u = g(x), then we have

ˆ
f(g(x))g′(x) dx = F (g(x)) + C = F (u) + C =

ˆ
f(u) du.

Example 1. Find

ˆ
x3 cos(x4 + 2) dx.

Example 2. Evaluate

ˆ √
2x+ 1 dx.
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Example 3. Find

ˆ
x√

1− 4x2
dx.

Example 4. Calculate

ˆ
e5x dx.

Example 5. Find

ˆ √
1 + x2x5 dx.
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Example 6. Calculate

ˆ
tanx dx.

Theorem 5.5.2 (The Substitution Rule for Definite Integrals). If g′ is con-
tinuous on [a, b] and f is continuous on the range of u = g(x), then

ˆ b

a

f(g(x))g′(x) dx =

ˆ g(b)

g(a)

f(u) du.

Proof. Let F be an antiderivative of f . Then F (g(x)) is an antiderivative of
f(g(x))g′(x), so by part 2 of the fundamental theorem of calculus, we have

ˆ b

a

f(g(x))g′(x) dx = F (g(x))
]b
a

= F (g(b))− F (g(a)).

By applying part 2 a second time, we also have

ˆ g(b)

g(a)

f(u) du = F (u)
]g(b)
g(a)

= F (g(b))− F (g(a)).
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Example 7. Evaluate

ˆ 4

0

√
2x+ 1 dx.

Example 8. Evaluate

ˆ 2

1

dx

(3− 5x)2
.

Example 9. Calculate

ˆ e

1

lnx

x
dx.
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Theorem 5.5.3 (Integrals of Symmetric Functions). Suppose f is continuous
on [−a, a].

(a) If f is even [f(−x) = f(x)], then

ˆ a

−a
f(x) dx = 2

ˆ a

0

f(x) dx.

(b) If f is odd [f(−x) = −f(x)], then

ˆ a

−a
f(x) dx = 0.

Proof. First we split the integral:

ˆ a

−a
f(x) dx =

ˆ 0

−a
f(x) dx+

ˆ a

0

f(x) dx = −
ˆ −a

0

f(x) dx+

ˆ a

0

f(x) dx.

By substituting u = −x we get du = −dx and u = a when x = −a, so

−
ˆ −a

0

f(x) dx = −
ˆ a

0

f(−u) (−du) =

ˆ a

0

f(−u) du

and therefore ˆ a

−a
f(x) dx =

ˆ a

0

f(−u) du+

ˆ a

0

f(x) dx.

(a) If f is even then f(−u) = f(u), so

ˆ a

−a
f(x) dx =

ˆ a

0

f(u) du+

ˆ a

0

f(x) dx = 2

ˆ a

0

f(x) dx.

(b) If f is odd then f(−u) = −f(u), so

ˆ a

−a
f(x) dx = −

ˆ a

0

f(u) du+

ˆ a

0

f(x) dx = 0.

188



Calculus - 5.5 The Substitution Rule

Example 10. Evaluate

ˆ 2

−2

(x6 + 1) dx.

Example 11. Evaluate

ˆ 1

−1

tanx

1 + x2 + x4
dx.
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Chapter 6

Applications of Integration

6.1 Areas Between Curves

428 CHAPTER 6  Applications of Integration

In Chapter 5 we de!ned and calculated areas of regions that lie under the graphs of func-
tions. Here we use integrals to !nd areas of regions that lie between the graphs of two 
functions.

Consider the region S that lies between two curves y − f sxd and y − tsxd and 
between the vertical lines x − a and x − b, where f  and t are continuous functions and 
f sxd > tsxd for all x in fa, bg. (See Figure 1.)

Just as we did for areas under curves in Section 5.1, we divide S into n strips of equal 
width and then we approximate the ith strip by a rectangle with base Dx and height 
f sxi*d 2 tsxi*d. (See Figure 2. If we like, we could take all of the sample points to be 
right endpoints, in which case xi* − xi.) The Riemann sum

o
n

i−1
 f f sxi*d 2 tsxi*dg Dx

is therefore an approximation to what we intuitively think of as the area of S.

(a) Typical rectangle

x

y

b0 a

f(x i*)
f(x i*) -g(x i*)

_g(x i*)
x i*

Îx

(b) Approximating rectangles

x

y

b0 a

This approximation appears to become better and better as n l `. Therefore we 
de!ne the area A of the region S as the limiting value of the sum of the areas of these 
approxi mating rectangles.

A − lim
n l `

 o
n

i−1
 f f sxi*d 2 tsxi*dg Dx

We recognize the limit in (1) as the de!nite integral of f 2 t. Therefore we have the 
fol lowing formula for area.

2   The area A of the region bounded by the curves y − f sxd, y − tsxd, and the 
lines x − a, x − b, where f  and t are continuous and f sxd > tsxd for all x in 
fa, bg, is

A − yb

a
 f f sxd 2 tsxdg dx

Notice that in the special case where tsxd − 0, S is the region under the graph of f  and 
our general de!nition of area (1) reduces to our previous de!nition (De!nition 5.1.2).

FIGURE 1 
S − hsx, yd | a < x < b, 
tsxd < y < f sxdj

0
y=©

y=ƒ

S

x

y

ba

FIGURE 2 

1
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Definition 6.1.1. The area A of the region bounded by the
curves y = f(x), y = g(x), and the lines x = a, x = b, where f
and g are continuous and f(x) ≥ g(x) for all x in [a, b], is

A = lim
n→∞

n∑
i=1

[f(x∗i )− g(x∗i )]∆x =

ˆ b

a

[f(x)− g(x)] dx.
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Calculus - 6.1 Areas Between Curves

Example 1. Find the area of the region bounded above by y = ex, bounded
below by y = x, and bounded on the sides by x = 0 and x = 1.

Example 2. Find the area of the region enclosed by the parabolas y = x2

and y = 2x− x2.
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Example 3. Find the approximate area of the region bounded by the curves
y = x/

√
x2 + 1 and y = x4 − x.
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430 CHAPTER 6  Applications of Integration

Sometimes it’s difficult, or even impossible, to find the points of intersection of two 
curves exactly. As shown in the following example, we can use a graphing calculator 
or computer to find approximate values for the intersection points and then proceed as 
before.

EXAMPLE 3  Find the approximate area of the region bounded by the curves
y − xysx 2 1 1 and y − x 4 2 x.

SOLUTION If we were to try to find the exact intersection points, we would have to 
solve the equation

x

sx 2 1 1
− x 4 2 x

This looks like a very difficult equation to solve exactly (in fact, it’s impossible), so 
instead we use a graphing device to draw the graphs of the two curves in Figure 7. One 
intersection point is the origin. We zoom in toward the other point of intersection and 
find that x < 1.18. (If greater accuracy is required, we could use Newton’s method or 
solve numerically on our graphing device.) So an approximation to the area between 
the curves is

A < y1.18

0
 F x

sx 2 1 1
2 sx 4 2 xdG dx

To integrate the first term we use the substitution u − x 2 1 1. Then du − 2x dx, and 
when x − 1.18, we have u < 2.39; when x − 0, u − 1. So

 A < 1
2 y2.39

1
 

du

su  2 y1.18

0
 sx 4 2 xd dx

 − su  g
1

2.39

2 F x 5

5
2

x 2

2 G0

1.18

 − s2.39 2 1 2
s1.18d5

5
1

s1.18d2

2

  < 0.785  n

EXAMPLE 4  Figure 8 shows velocity curves for two cars, A and B, that start side by 
side and move along the same road. What does the area between the curves represent? 
Use the Midpoint Rule to estimate it.

SOLUTION We know from Section 5.4 that the area under the velocity curve A rep-
resents the distance traveled by car A during the first 16 seconds. Similarly, the area 
under curve B is the distance traveled by car B during that time period. So the area 
between these curves, which is the difference of the areas under the curves, is the 
distance between the cars after 16 seconds. We read the velocities from the graph and 
convert them to feet per second s1 miyh − 5280

3600 ftysd.

t 0   2   4   6   8 10 12 14 16

vA 0 34 54 67 76 84 89 92 95

vB 0 21 34 44 51 56 60 63 65

vA 2 vB 0 13 20 23 25 28 29 29 30

1.5

_1

_1 2
y=x$-x

x
œ„„„„„≈+1

y=

FIGURE 7 
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Example 4. The figure shows the velocity curves for two cars,
A and B, that start side by side and move along the same road.
What does the area between the curves represent? Use the Mid-
point Rule to estimate it.
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Calculus - 6.1 Areas Between Curves

Example 5. The figure is an example of a pathogenesis curve for a measles
infection. It shows how the disease develops in an individual with no immunity
after the measles virus spreads to the bloodstream from the respiratory tract.

 SECTION 6.1  Areas Between Curves 431

We use the Midpoint Rule with n − 4 intervals, so that Dt − 4. The midpoints of 
the intervals are t1 − 2, t2 − 6, t3 − 10, and t4 − 14. We estimate the distance between 
the cars after 16 seconds as follows:

 y16

0
 svA 2 vBd dt < Dt f13 1 23 1 28 1 29g

  − 4s93d − 372 ft  n

EXAMPLE 5  Figure 9 is an example of a pathogenesis curve for a measles infection. 
It shows how the disease develops in an individual with no immunity after the measles 
virus spreads to the bloodstream from the respiratory tract.
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The patient becomes infectious to others once the concentration of infected cells 
becomes great enough, and he or she remains infectious until the immune system 
manages to prevent further transmission. However, symptoms don’t develop until the 
“amount of infection” reaches a particular threshold. The amount of infection needed 
to develop symptoms depends on both the concentration of infected cells and time, 
and corresponds to the area under the pathogenesis curve until symptoms appear. (See 
Exercise 5.1.19.)
(a) The pathogenesis curve in Figure 9 has been modeled by f std − 2tst 2 21dst 1 1d. 
If infectiousness begins on day t1 − 10 and ends on day t2 − 18, what are the corre-
sponding concentration levels of infected cells?
(b) The level of infectiousness for an infected person is the area between N − f std and 
the line through the points P1st1, f st1dd and P2st2, f st2dd, measured in (cellsymL) ? days. 
(See Figure 10.) Compute the level of infectiousness for this particular patient.

SOLUTION
(a) Infectiousness begins when the concentration reaches f s10d − 1210 cellsymL and 
ends when the concentration reduces to f s18d − 1026 cellsymL.

FIGURE 9 
Measles pathogenesis curve 

Source: J. M. Heffernan et al., “An In-Host Model 
of Acute Infection: Measles as a Case Study,” 

Theoretical Population Biology  
73 (2008): 134–47.
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The patient becomes infectious to others once the concentration of infected
cells becomes great enough, and he or she remains infectious until the immune
system manages to prevent further transmission. However, symptoms don’t
develop until the “amount of infection” reaches a particular threshold. The
amount of infection needed to develop symptoms depends on both the con-
centration of infected cells and time, and corresponds to the area under the
pathogenesis curve until symptoms appear.

(a) The pathogenesis curve in the figure has been modeled by f(t) = −t(t −
21)(t+1). If infectiousness begins on day t1 = 10 and ends on day t2 = 18,
what are the corresponding concentration levels of infected cells?
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(b) The level of infectiousness for an infected person is the area between
N = f(t) and the line through the points P1(t1, (f(t1)) and P2(t2, f(t2)),
measured in (cells/mL)· days. Compute the level of infectiousness for this
particular patient.
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Definition 6.1.2. The area between the curves y = f(x) and y = g(x) and
between x = a and x = b is

A =

ˆ b

a

|f(x)− g(x)| dx.

Example 6. Find the area of the region bounded by the curves y = sinx,
y = cosx, x = 0, and x = π/2.
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 SECTION 6.1  Areas Between Curves 433

Observe that cos x > sin x when 0 < x < !y4 but sin x > cos x when 
!y4 < x < !y2. Therefore the required area is

 A − y!y2

0
 | cos x 2 sin x | dx − A1 1 A2

 − y!y4

0
 scos x 2 sin xd dx 1 y!y2

!y4
 ssin x 2 cos xd dx

 − fsin x 1 cos xg0

!y4
1 f2cos x 2 sin xg!y4

!y2

 − S 1

s2
1

1

s2
2 0 2 1D 1 S20 2 1 1

1

s2
1

1

s2D
 − 2s2 2 2

In this particular example we could have saved some work by noticing that the 
region is symmetric about x − !y4 and so

 A − 2A1 − 2 y!y4

0
 scos x 2 sin xd dx Q

Some regions are best treated by regarding x as a function of y. If a region is bounded 
by curves with equations x − f syd, x − tsyd, y − c, and y − d, where f  and t are con-
tinuous and f syd > tsyd for c < y < d (see Figure 13), then its area is

A − yd

c
 f f syd 2 tsydg dy

If we write xR for the right boundary and xL for the left boundary, then, as Fig ure 14 
illustrates, we have

A − yd

c
 sxR 2 xLd dy

Here a typical approximating rectangle has dimensions xR 2 xL and Dy.

EXAMPLE 7  Find the area enclosed by the line y − x 2 1 and the parabola 
y 2 − 2x 1 6.

SOLUTION By solving the two equations we !nd that the points of intersection are 
s21, 22d and s5, 4d. We solve the equation of the parabola for x and notice from  
Fig ure 15 that the left and right boundary curves are

xL − 1
2 y 2 2 3    and    xR − y 1 1

x

y

_2

4

0

(_1, _2)

(5, 4)

xR=y+1

1
2xL= ¥-3

FIGURE 13 
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Remark 1. Some regions are best treated by regarding x as a
function of y. If a region is bounded by curves with equations
x = f(y), x = g(y), y = c, and y = d, where f and g are
continuous and f(y) ≥ g(y) for c ≤ y ≤ d (see the figure), then
its area is

A =

ˆ d

c

[f(y)− g(y)] dy.

Example 7. Find the area enclosed by the line y = x − 1 and
the parabola y2 = 2x+ 6.
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6.2 Volumes

Definition 6.2.1 (Definition of Volume). Let S be a solid that lies between
x = a and x = b. If the cross-sectional area of S in the plane Px, through
x and perpendicular to the x-axis, is A(x), where A is a continuous function,
then the volume of S is

V = lim
n→∞

n∑
i=1

A(x∗i )∆x =

ˆ b

a

A(x) dx.

SeCtion 6.2  Volumes 439

Let’s divide S into n “slabs” of equal width Dx by using the planes Px1, Px2 , . . . to slice 
the solid. (Think of slicing a loaf of bread.) If we choose sample points xi* in fxi21, xig, 
we can approximate the ith slab Si (the part of S that lies between the planes Pxi21 and Pxi)  
by a cylinder with base area Asxi*d and “height” Dx. (See Figure 3.)

xi-1 xi

y

0 xx*i

Îx

S

a b

y

0 xx¶=ba=x¸ ⁄ x™ ‹ x¢ x∞ xß

The volume of this cylinder is Asxi*d Dx, so an approximation to our intuitive concep-
tion of the volume of the ith slab Si is

VsSid < Asxi*d Dx

Adding the volumes of these slabs, we get an approximation to the total volume (that is, 
what we think of intuitively as the volume): 

V < o
n

i−1
 Asxi*d Dx

This approximation appears to become better and better as n l `. (Think of the slices 
as becoming thinner and thinner.) Therefore we define the volume as the limit of these 
sums as n l `. But we recognize the limit of Riemann sums as a definite integral and 
so we have the following definition.

 Definition of Volume Let S be a solid that lies between x − a and x − b. If the 
cross-sectional area of S in the plane Px, through x and perpendicular to the x-axis, 
is Asxd, where A is a continuous function, then the volume of S is

V − lim
n l `

 o
n

i−1
Asxi*d Dx − yb

a
 Asxd dx

When we use the volume formula V − yb
a  Asxd dx, it is important to remember that

Asxd is the area of a moving cross-section obtained by slicing through x perpendicular 
to the x-axis.

Notice that, for a cylinder, the cross-sectional area is constant: Asxd − A for all x. So 
our definition of volume gives V − yb

a  A dx − Asb 2 ad; this agrees with the formula 
V − Ah.

ExamplE 1  Show that the volume of a sphere of radius r is V − 4
3 �r 3.

SoLUtion If we place the sphere so that its center is at the origin, then the plane Px 
intersects the sphere in a circle whose radius (from the Pythagorean Theorem) is 

FIGURE 3� 

It can be proved that this definition is 
independent of how S is situated with 
respect to the x-axis. In other words, 
no matter how we slice S with parallel 
planes, we always get the same answer 
for V.
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Example 1. Show that the volume of a sphere of radius r is V = 4
3
πr3.
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Example 2. Find the volume of the solid obtained by rotating about the x-
axis the region under the curve y =

√
x from 0 to 1. Illustrate the definition

of volume by sketching a typical approximating cylinder.

Example 3. Find the volume of the solid obtained by rotating the region
bounded by y = x3, y = 8, and x = 0 about the y-axis.
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Example 4. The region R enclosed by the curves y = x and y = x2 is rotated
about the x-axis. Find the volume of the resulting solid.

Example 5. Find the volume of the solid obtained by rotating the region in
Example 4 about the line y = 2.
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Example 6. Find the volume of the solid obtained by rotating the region in
Example 4 about the line x = −1.

444 CHAPTER 6  Applications of Integration

EXAMPLE 6  Find the volume of the solid obtained by rotating the region in  
Example 4 about the line x − 21.

SOLUTION Figure 11 shows a horizontal cross-section. It is a washer with inner radius 
1 1 y and outer radius 1 1 sy  , so the cross-sectional area is

 Asyd − !souter radiusd2 2 !sinner radiusd2

 − ! (1 1 sy )2 2 !s1 1 yd2

The volume is

 V − y1

0
 Asyd dy − ! y1

0
 fs1 1 sy d2 2 s1 1 yd2 g dy

− ! y1

0
 s2sy 2 y 2 y 2 d dy − !F 4y 3y2

3
2

 y 2

2
2

 y 3

3 G0

1

−
!

2

 x=_1

y

y

x0

x=œ„y

y

x=y

y

1 y
1+y

1+œ„

 n

We now find the volumes of three solids that are not solids of revolution.

EXAMPLE 7  Figure 12 shows a solid with a circular base of radius 1. Parallel cross- 
sections perpendicular to the base are equilateral triangles. Find the volume of the solid.

SOLUTION Let’s take the circle to be x 2 1 y 2 − 1. The solid, its base, and a typical 
cross-section at a distance x from the origin are shown in Figure 13.

Since B lies on the circle, we have y − s1 2 x 2  and so the base of the triangle ABC 
is | AB | − 2y − 2s1 2 x 2 . Since the triangle is equilateral, we see from Figure 13(c) 

TEC Visual 6.2C shows how the  
solid in Figure 12 is generated.

FIGURE 12  
Computer-generated picture 
of the solid in Example 7
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Example 7. The figure shows a solid with a circular base of
radius 1. Parallel cross-sections perpendicular to the base are
equilateral triangles. Find the volume of the solid.
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Example 8. Find the volume of a pyramid whose base is a square with side
L and whose height is h.

Example 9. A wedge is cut out of a circular cylinder of radius 4 by two planes.
One plane is perpendicular to the axis of the cylinder. The other intersects
the first at an angle of 30° along a diameter of the cylinder. Find the volume
of the wedge.
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6.3 Volumes by Cylindrical Shells

Theorem 6.3.1 (Method of Cylindrical Shells). The volume of the solid in
the figure, obtained by rotating about the y-axis the region under the curve
y = f(x) from a to b, is

V = lim
n→∞

n∑
i=1

2πx̄if(x̄i)∆x =

ˆ b

a

2πxf(x) dx where 0 ≤ a ≤ b

and where x̄i is the midpoint of the ith subinterval [xi−1, xi].

450 Chapter 6  Applications of Integration

r2, and height h. Its volume V  is calculated by subtracting the volume V1 of the inner 
cylinder from the volume V2 of the outer cylinder:

V − V2 2 V1

− �r 2
2 h 2 �r 2

1 h − �sr 2
2 2 r 2

1 dh

− �sr2 1 r1dsr2 2 r1dh

− 2�
r2 1 r1

2
hsr2 2 r1d

If we let Dr − r2 2 r1 (the thickness of the shell) and r − 1
2 sr2 1 r1d (the average radius 

of the shell), then this formula for the volume of a cylindrical shell becomes

V − 2�rh Dr1�

and it can be remembered as

V − [circumference][height][thickness]

Now let S be the solid obtained by rotating about the y-axis the region bounded by 
y − f sxd [where f sxd > 0], y − 0, x − a,  and x − b, where b . a > 0. (See Figure 3.)

x

y

a b0

y=ƒ

a b x

y

0

y=ƒ

We divide the interval fa, bg into n subintervals fxi21, xig of equal width Dx and let xi

be the midpoint of the ith subinterval. If the rectangle with base fxi21, xig and height f sxid 
is rotated about the y-axis, then the result is a cylindrical shell with average radius xi , 
height f sxid, and thickness Dx (see Figure 4). So by Formula 1 its volume is

Vi − s2�xidf f sxidg Dx

x

y

a b0

y=ƒ

xi–

a b0 x

y

xi-1
xi

y=ƒ

x

y

a b0

y=ƒ

Therefore an approximation to the volume V  of S is given by the sum of the volumes of 

FIGURE 3�

FIGURE 4�
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Example 1. Find the volume of the solid obtained by rotating about the
y-axis the region bounded by y = 2x2 − x3 and y = 0.
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Calculus - 6.3 Volumes by Cylindrical Shells

Example 2. Find the volume of the solid obtained by rotating about the
y-axis the region between y = x and y = x2.

Example 3. Use cylindrical shells to find the volume of the solid obtained by
rotating about the x-axis the region under the curve y =

√
x from 0 to 1.
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Calculus - 6.3 Volumes by Cylindrical Shells

Example 4. Find the volume of the solid obtained by rotating the region
bounded by y = x− x2 and y = 0 about the line x = 2.
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6.4 Work

Definition 6.4.1. In general, if an object moves along a straight line with
position function s(t), then the force F on the object (in the same direction)
is given by Newton’s Second Law of Motion as the product of its mass m and
its acceleration a:

F = ma = m
d2s

dt2
.

Definition 6.4.2. In the case of constant acceleration, the force F is also
constant and the work done is defined to be the product of the force F and
distance d that the object moves:

W = Fd work = force× distance.

Example 1. (a) How much work is done in lifting a 1.2-kg book off the floor
to put it on a desk that is 0.7 m high? Use the fact that the acceleration
due to gravity is g = 9.8 m/s2.

(b) How much work is done in lifting a 20-lb weight 6 ft off the ground?
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Calculus - 6.4 Work

Definition 6.4.3. If the force f(x) on an object is variable, then we define
the work done in moving the object from a to b as

W = lim
n→∞

n∑
i=1

f(x∗i )∆x =

ˆ b

a

f(x) dx.

Example 2. When a particle is located a distance x feet from the origin, a
force of x2 + 2x pounds acts on it. How much work is done in moving it from
x = 1 to x = 3?

Theorem 6.4.1 (Hooke’s Law). The force required to maintain a spring
stretched x units beyond its natural length is proportional to x:

f(x) = kx

where k is a positive constant called the spring constant (see the figure). Hooke’s
Law holds provided that x is not too large. SECTION 6.4 Work 457

W − y0.08

0.05
 800x dx − 800 

x 2

2 G0.05

0.08

− 400fs0.08d2 2 s0.05d2g − 1.56 J Q

EXAMPLE 4  A 200-lb cable is 100 ft long and hangs vertically from the top of a tall 
building. How much work is required to lift the cable to the top of the building?

SOLUTION Here we don’t have a formula for the force function, but we can use an 
argument similar to the one that led to Definition 4.

Let’s place the origin at the top of the building and the x-axis pointing downward as 
in Figure 2. We divide the cable into small parts with length Dx. If xi* is a point in the 
ith such interval, then all points in the interval are lifted by approximately the same 
amount, namely xi*. The cable weighs 2 pounds per foot, so the weight of the ith part is 
(2 lbyft)(Dx ft) − 2Dx lb. Thus the work done on the ith part, in foot-pounds, is 

s2Dxd ? xi* − 2xi* Dx
force distance

We get the total work done by adding all these approximations and letting the num-
ber of parts become large (so Dx l 0):

W − lim
n l `

 o
n

i−1
 2xi*Dx − y100

0
 2x dx

− x 2g100

0 − 10,000 ft-lb Q

EXAMPLE 5  A tank has the shape of an inverted circular cone with height 10 m and 
base radius 4 m. It is filled with water to a height of 8 m. Find the work required to 
empty the tank by pumping all of the water to the top of the tank. (The density of water 
is 1000 kgym3.)

x0frictionless
surface

x0 x

ƒ=kx

(a) Natural position of spring (b) Stretched position of spring

0

100

x*i

x

Îx

FIGURE 2 

If we had placed the origin at the 
bottom of the cable and the x-axis 
upward, we would have gotten

W − y100

0
 2s100 2 xd dx

which gives the same answer.
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Calculus - 6.4 Work

Example 3. A force of 40 N is required to hold a spring that has been
stretched from its natural length of 10 cm to a length of 15 cm. How much
work is done in stretching the spring from 15 cm to 18 cm?

Example 4. A 200-lb cable is 100 ft long and hangs vertically from the top
of a tall building. How much work is required to lift the cable to the top of
the building?
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Calculus - 6.4 Work

Example 5. A tank has the shape of an inverted circular cone with height
10 m and base radius 4 m. It is filled with water to a height of 8 m. Find the
work required to empty the tank by pumping all of the water to the top of the
tank. (The density of water is 1000 kg/m3.)
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Calculus - 6.5 Average Value of a Function

6.5 Average Value of a Function

Definition 6.5.1. The average value of a function f on the interval [a, b] is

fave =
1

b− a

ˆ b

a

f(x) dx.

Example 1. Find the average value of the function f(x) = 1 + x2 on the
interval [−1, 2].

Theorem 6.5.1 (The Mean Value Theorem for Integrals). If f is continuous
on [a, b], then there exists a number c in [a, b] such that

f(c) = fave =
1

b− a

ˆ b

a

f(x) dx,

that is, ˆ b

a

f(x) dx = f(c)(b− a).

Proof. By applying the Mean Value Theorem for derivatives to the function
F (x) =

´ x
a
f(t)dt, we see that there exists a number c in [a, b] such that

F ′(c) =
F (b)− F (a)

b− a
d

dx

[ˆ x

a

f(t) dt

]∣∣∣∣∣
c

=
F (b)− F (a)

b− a

f(c) =
1

b− a
[F (b)− F (a)]

=
1

b− a

ˆ b

a

f(x) dx.
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Calculus - 6.5 Average Value of a Function

Example 2. Find a number c in the interval [−1, 2] that satisfies the mean
value theorem for integrals for the function f(x) = 1 + x2.

Example 3. Show that the average velocity of a car over a time interval [t1, t2]
is the same as the average of its velocities during the trip.
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Chapter 7

Techniques of Integration

7.1 Integration by Parts

Theorem 7.1.1 (Formula for Integration by Parts). If f and g are differen-
tiable functions then

ˆ
f(x)g′(x) dx = f(x)g(x)−

ˆ
g(x)f ′(x) dx,

or, equivalently, ˆ
u dv = uv −

ˆ
v du

where u = f(x) and v = g(x).

Proof. By the Product Rule,

d

dx
[f(x)g(x)] = f(x)g′(x) + g(x)f ′(x)

f(x)g(x) =

ˆ
[f(x)g′(x) + g(x)f ′(x)] dx

=

ˆ
f(x)g′(x) dx+

ˆ
g(x)f ′(x) dx

ˆ
f(x)g′(x) dx = f(x)g(x)−

ˆ
g(x)f ′(x) dx
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Calculus - 7.1 Integration by Parts

Example 1. Find

ˆ
x sinx dx.

Example 2. Evaluate

ˆ
lnx dx.
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Calculus - 7.1 Integration by Parts

Example 3. Find

ˆ
t2et dt.
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Calculus - 7.1 Integration by Parts

Example 4. Evaluate

ˆ
ex sinx dx.
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Calculus - 7.1 Integration by Parts

Theorem 7.1.2 (Formula for Definite Integration by Parts). If f and g are
differentiable on (a, b) and f ′ and g′ are continuous, then

ˆ b

a

f(x)g′(x) dx = f(x)g(x)
]b
a
−
ˆ b

a

g(x)f ′(x) dx.

Example 5. Calculate

ˆ 1

0

tan−1 x dx.
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Calculus - 7.1 Integration by Parts

Example 6. Prove the reduction formula

ˆ
sinn x dx = − 1

n
cosx sinn−1 x+

n− 1

n

ˆ
sinn−2 x dx

where n ≥ 2 is an integer.
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Calculus - 7.2 Trigonometric Integrals

7.2 Trigonometric Integrals

Example 1. Evaluate

ˆ
cos3 x dx.

Example 2. Find

ˆ
sin5 x cos2 x dx.
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Calculus - 7.2 Trigonometric Integrals

Remark 1. Sometimes it is easier to use the half-angle identities

sin2 x =
1

2
(1− cos 2x) and cos2 x =

1

2
(1 + cos 2x)

to evaluate an integral.

Example 3. Evaluate

ˆ π

0

sin2 x dx.

Example 4. Find

ˆ
sin4 x dx.
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Calculus - 7.2 Trigonometric Integrals

Example 5. Evaluate

ˆ
tan6 x sec4 x dx.

Example 6. Find

ˆ
tan5 θ sec7 θ dθ.
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Calculus - 7.2 Trigonometric Integrals

Example 7. Find

ˆ
tan3 x dx.

Example 8. Find

ˆ
sec3 x dx.

221



Calculus - 7.2 Trigonometric Integrals

Remark 2. To evaluate the integrals (a)
´

sinmx cosnx dx, (b)
´

sinmx sinnx dx,
or (c)

´
cosmx cosnx dx, use the corresponding identity:

(a) sinA cosB =
1

2
[sin(A−B) + sin(A+B)]

(b) sinA sinB =
1

2
[cos(A−B)− cos(A+B)]

(c) cosA cosB =
1

2
[cos(A−B) + cos(A+B)].

Example 9. Evaluate

ˆ
sin 4x cos 5x dx.
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7.3 Trigonometric Substitution

Table of Trigonometric Substitutions

Expression Substitution Identity

√
a2 − x2 x = a sin θ, −π

2
≤ θ ≤ π

2
1− sin2 θ = cos2 θ

√
a2 + x2 x = a tan θ, −π

2
≤ θ ≤ π

2
1 + tan2 θ = sec2 θ

√
x2 − a2

x = a sec θ, 0 ≤ θ ≤ π

2
or π ≤ θ ≤ 3π

2
sec2 θ − 1 = tan2 θ

Example 1. Evaluate

ˆ √
9− x2

x2
dx.
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Calculus - 7.3 Trigonometric Substitution

Example 2. Find the area enclosed by the ellipse

x2

a2
+
y2

b2
= 1.
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Calculus - 7.3 Trigonometric Substitution

Example 3. Find

ˆ
1

x2
√
x2 + 4

dx.
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Calculus - 7.3 Trigonometric Substitution

Example 4. Find

ˆ
x√
x2 + 4

dx.

Example 5. Evaluate

ˆ
dx√
x2 − a2

, where a > 0.

226



Calculus - 7.3 Trigonometric Substitution

Example 6. Find

ˆ 3
√

3/2

0

x3

(4x2 + 9)3/2
dx.

227



Calculus - 7.3 Trigonometric Substitution

Example 7. Evaluate

ˆ
x√

3− 2x− x2
dx.
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7.4 Integration by Partial Fractions

Example 1. Find

ˆ
x3 + x

x− 1
dx.
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Calculus - 7.4 Integration by Partial Fractions

Example 2. Evaluate

ˆ
x2 + 2x− 1

2x3 + 3x2 − 2x
dx.

230



Calculus - 7.4 Integration by Partial Fractions

Example 3. Find

ˆ
dx

x2 − a2
, where a 6= 0.
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Calculus - 7.4 Integration by Partial Fractions

Example 4. Find

ˆ
x4 − 2x2 + 4x+ 1

x3 − x2 − x+ 1
dx.
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Calculus - 7.4 Integration by Partial Fractions

Theorem 7.4.1. ˆ
dx

x2 + a2
=

1

a
tan−1

(
x

a

)
+ C.

Example 5. Evaluate

ˆ
2x2 − x+ 4

x3 + 4x
dx.
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Calculus - 7.4 Integration by Partial Fractions

Example 6. Evaluate

ˆ
4x2 − 3x+ 2

4x2 − 4x+ 3
dx.
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Calculus - 7.4 Integration by Partial Fractions

Example 7. Write out the form of the partial fraction decomposition of the
function

x3 + x2 + 1

x(x− 1)(x2 + x+ 1)(x2 + 1)3
.

Example 8. Evaluate

ˆ
1− x+ 2x2 − x3

x(x2 + 1)2
dx.
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Calculus - 7.4 Integration by Partial Fractions

Example 9. Evaluate

ˆ √
x+ 4

x
dx.
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Calculus - 7.5 Strategy for Integration

7.5 Strategy for Integration

Example 1.

ˆ
tan3 x

cos3 x
dx.

Example 2.

ˆ
e
√
x dx.
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Calculus - 7.5 Strategy for Integration

Example 3.

ˆ
x5 + 1

x3 − 3x2 − 10x
dx.
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Calculus - 7.5 Strategy for Integration

Example 4.

ˆ
dx

x
√

lnx
.

Example 5.

ˆ √
1− x
1 + x

dx.
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7.6 Integration Using Tables and CAS’s

Example 1. The region bounded by the curves y = arctanx, y = 0, and
x = 1 is rotated about the y-axis. Find the volume of the resulting solid.

Example 2. Use the Table of Integrals to find

ˆ
x2

√
5− 4x2

dx.
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Calculus - 7.6 Integration Using Tables and CAS’s

Example 3. Use the Table of Integrals to evaluate

ˆ
x3 sinx dx.

Example 4. Use the Table of Integrals to find

ˆ
x
√
x2 + 2x+ 4 dx.
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Calculus - 7.6 Integration Using Tables and CAS’s

Example 5. Use a computer algebra system to find

ˆ
x
√
x2 + 2x+ 4 dx.

Example 6. Use a CAS to evaluate

ˆ
x(x2 + 5)8 dx.

Example 7. Use a CAS to find

ˆ
sin5 x cos2 x dx.
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7.7 Approximate Integration

 SECTION 7.7  Approximate Integration 515

example, it is impossible to evaluate the following integrals exactly:

y1

0
 ex 2 

dx      y1

21
 s1 1 x 3  dx

The second situation arises when the function is determined from a scienti!c experi-
ment through instrument readings or collected data. There may be no formula for the 
function (see Example 5).

In both cases we need to !nd approximate values of de!nite integrals. We already 
know one such method. Recall that the de!nite integral is de!ned as a limit of Riemann 
sums, so any Riemann sum could be used as an approximation to the integral: If we 
divide fa, bg into n subintervals of equal length Dx − sb 2 adyn, then we have

yb

a
 f sxd dx < o

n

i−1
 f sxi*d Dx

where x i* is any point in the ith subinterval fxi21, xig. If x i* is chosen to be the left end-
point of the interval, then x i* − xi21 and we have

yb

a
 f sxd dx < Ln − o

n

i−1
 f sxi21d Dx

If f sxd > 0, then the integral represents an area and (1) represents an approximation of 
this area by the rectangles shown in Figure 1(a). If we choose x i* to be the right endpoint, 
then x i* − xi and we have

yb

a
 f sxd dx < Rn − o

n

i−1
 f sxid Dx

[See Figure 1(b).] The approximations Ln and Rn de!ned by Equations 1 and 2 are called 
the left endpoint approximation and right endpoint approximation, respectively.

In Section 5.2 we also considered the case where x i* is chosen to be the midpoint xi 
of the subinterval fxi21, xig. Figure 1(c) shows the midpoint approximation Mn, which 
appears to be better than either Ln or Rn.

Midpoint Rule 

yb

a
 f sxd dx < Mn − Dx f f sx1d 1 f sx2 d 1 ∙ ∙ ∙ 1 f sxn dg

where  Dx −
b 2 a

n

and  xi − 1
2 sxi21 1 xid − midpoint of fxi21, xig

Another approximation, called the Trapezoidal Rule, results from averaging the 
approximations in Equations 1 and 2:

 yb

a
 f sxd dx <

1
2

 Fo
n

i−1
 f sxi21 d Dx 1 o

n

i−1
 f sxid DxG −

Dx
2

 Fo
n

i−1
 s f sxi21 d 1 f sxiddG

 −
Dx
2

 fs f sx0 d 1 f sx1dd 1 s f sx1d 1 f sx2 dd 1 ∙ ∙ ∙ 1 s f sxn21d 1 f sxn ddg

 −
Dx
2

 f f sx0 d 1 2 f sx1d 1 2 f sx2 d 1 ∙ ∙ ∙ 1 2 f sxn21d 1 f sxn dg

1

⁄ ¤– – ––

(a) Left endpoint approximation

y

x¸ ⁄ ¤ ‹ x¢

x¸ ⁄ ¤ ‹ x¢

‹ x¢

x0

(b) Right endpoint approximation

y

x0

x

(c) Midpoint approximation

y

0

FIGURE 1 

2
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Theorem 7.7.1 (Midpoint Rule).

ˆ b

a

f(x) dx ≈Mn = ∆x[f(x̄1) + f(x̄2) + · · ·+ f(x̄n)]

where

∆x =
b− a
n

and

x̄i =
1

2
(xi−1 + xi) = midpoint of [xi−1, xi]. 516 CHAPTER 7  Techniques of Integration

Trapezoidal Rule 

yb

a
 f sxd dx < Tn −

Dx
2

 f f sx0 d 1 2 f sx1d 1 2 f sx2 d 1 ∙ ∙ ∙ 1 2 f sxn21d 1 f sxn dg

where Dx − sb 2 adyn and xi − a 1 i Dx.

The reason for the name Trapezoidal Rule can be seen from Figure 2, which illustrates 
the case with f sxd > 0 and n − 4. The area of the trapezoid that lies above the ith sub-
interval is

Dx S  f sxi21d 1 f sxid
2 D −

Dx
2

 f f sxi21d 1 f sxidg

and if we add the areas of all these trapezoids, we get the right side of the Trapezoidal 
Rule.

EXAMPLE 1  Use (a) the Trapezoidal Rule and (b) the Midpoint Rule with n − 5 to  
approximate the integral y2

1
 s1yxd dx.

SOLUTION
(a) With n − 5, a − 1, and b − 2, we have Dx − s2 2 1dy5 − 0.2, and so the Trape-
zoidal Rule gives

 y2

1
 
1
x

 dx < T5 −
0.2
2

 f f s1d 1 2 f s1.2d 1 2 f s1.4d 1 2 f s1.6d 1 2 f s1.8d 1 f s2dg

 − 0.1S 1
1

1
2

1.2
1

2
1.4

1
2

1.6
1

2
1.8

1
1
2D

 < 0.695635

This approximation is illustrated in Figure 3.

(b) The midpoints of the "ve subintervals are 1.1, 1.3, 1.5, 1.7, and 1.9, so the Mid-
point Rule gives

 y2

1
 
1
x

 dx < Dx f f s1.1d 1 f s1.3d 1 f s1.5d 1 f s1.7d 1 f s1.9dg

 −
1
5

 S 1
1.1

1
1

1.3
1

1
1.5

1
1

1.7
1

1
1.9D

 < 0.691908

This approximation is illustrated in Figure 4. Q

In Example 1 we deliberately chose an integral whose value can be computed explic-
itly so that we can see how accurate the Trapezoidal and Midpoint Rules are. By the 
Fundamental Theorem of Calculus,

y2

1
 
1
x

 dx − ln xg 1

2
− ln 2 − 0.693147 . . .

The error in using an approximation is de"ned to be the amount that needs to be added 
to the approximation to make it exact. From the values in Example 1 we see that the 

0

y

xx¸ ⁄ ¤ ‹ x¢

1 2

1 2

1
xy=

1
xy=

FIGURE 2  
Trapezoidal approximation

FIGURE 3  

FIGURE 4  

yb

a
 f sxd dx − approximation 1 error
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Theorem 7.7.2 (Trapezoidal Rule).

ˆ b

a

f(x) dx ≈ Tn =
∆x

2
[f(x0)+2f(x1)+2f(x2)+· · ·+2f(xn−1)+f(xn)]

where ∆x = (b− a)/n and xi = a+ i∆x.

Example 1. Use (a) the Trapezoidal Rule and (b) the Midpoint

Rule with n = 5 to approximate the integral
´ 2

1
(1/x) dx.
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Calculus - 7.7 Approximate Integration

Theorem 7.7.3 (Error Bounds). Suppose |f ′′(x)| ≤ K for a ≤ x ≤ b. If ET
and EM are the errors in the Trapezoidal and Midpoint Rules, then

|ET | ≤
K(b− a)3

12n2
and |EM | ≤

K(b− a)3

24n2
.

Example 2. How large should we take n in order to guarantee that the Trape-
zoidal and Midpoint Rule approximations for

´ 2

1
(1/x) dx are accurate to within

0.0001?
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Calculus - 7.7 Approximate Integration

Example 3. (a) Use the Midpoint Rule with n = 10 to approximate the

integral
´ 1

0
ex

2
dx.

(b) Give an upper bound for the error involved in this approximation.
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Calculus - 7.7 Approximate Integration

Theorem 7.7.4 (Simpson’s Rule).

ˆ b

a

f(x) dx ≈ Sn =
∆x

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·

+ 2f(xn−2) + 4f(xn−1) + f(xn)]

where n is even and ∆x = (b− a)/n.

 SECTION 7.7  Approximate Integration 519

EXAMPLE 3  
(a) Use the Midpoint Rule with n − 10 to approximate the integral y1

0 e
x 2

dx.
(b) Give an upper bound for the error involved in this approximation.

SOLUTION
(a) Since a − 0, b − 1, and n − 10, the Midpoint Rule gives

 y1

0
 ex 2

dx < Dx f f s0.05d 1 f s0.15d 1 ∙ ∙ ∙ 1 f s0.85d 1 f s0.95dg

 − 0.1fe 0.0025 1 e 0.0225 1 e 0.0625 1 e 0.1225 1 e 0.2025 1 e 0.3025

    1 e 0.4225 1 e 0.5625 1 e 0.7225 1 e 0.9025g

 < 1.460393

Figure 6 illustrates this approximation.

(b) Since f sxd − ex 2
, we have f 9sxd − 2xex 2

 and f 0sxd − s2 1 4x 2dex 2
. Also, since 

0 < x < 1, we have x 2 < 1 and so

0 < f 0sxd − s2 1 4x 2dex 2
< 6e

Taking K − 6e, a − 0, b − 1, and n − 10 in the error estimate (3), we see that an 
upper bound for the error is

 
6es1d3

24s10d2 −
e

400
< 0.007 Q

Simpson’s Rule
Another rule for approximate integration results from using parabolas instead of straight 
line segments to approximate a curve. As before, we divide fa, bg into n subintervals  
of equal length h − Dx − sb 2 adyn, but this time we assume that n is an even number. 
Then on each consecutive pair of intervals we approximate the curve y − f sxd > 0  
by a parabola as shown in Figure 7. If yi − f sxid, then Pisxi, yid is the point on the curve 
lying above xi. A typical parabola passes through three consecutive points Pi, Pi11,  
and Pi12.

0

y

xa=x¸ ⁄ x™ x¢x£ xß=bx∞

P¸ P¡

P™
P¢

P£

PßP∞

0

y

xh_h

P¸(_h, y¸) P¡(0, ›)

P™(h, fi)

To simplify our calculations, we "rst consider the case where x0 − 2h, x1 − 0, and 
x2 − h. (See Figure 8.) We know that the equation of the parabola through P0, P1, and 

FIGURE 6 

0

y

x1

y=ex2

Error estimates give upper bounds 
for the error. They are theoretical, 
worst-case scenarios. The actual 
error in this case turns out to be 
about 0.0023.

FIGURE 7 FIGURE 8
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Example 4. Use Simpson’s Rule with n = 10 to approximate
´ 2

1
(1/x) dx.

246



Calculus - 7.7 Approximate Integration

Example 5. The figure shows data traffic on the link from the United States
to SWITCH, the Swiss academic and research network, on February 10, 1998.
D(t) is the data throughput, measured in megabits per second (Mb/s). Use
Simpson’s Rule to estimate the total amount of data transmitted on the link
from midnight to noon on that day.

 SECTION 7.7  Approximate Integration 521

EXAMPLE 4  Use Simpson’s Rule with n − 10 to approximate y2
1  s1yxd dx.

SOLUTION Putting f sxd − 1yx, n − 10, and Dx − 0.1 in Simpson’s Rule, we obtain

 y2

1
 
1
x

 dx < S10

 −
Dx
3

 f f s1d 1 4 f s1.1d 1 2 f s1.2d 1 4 f s1.3d 1 ∙ ∙ ∙ 1 2 f s1.8d 1 4 f s1.9d 1 f s2dg

 −
0.1
3

 S 1
1

1
4

1.1
1

2
1.2

1
4

1.3
1

2
1.4

1
4

1.5
1

2
1.6

1
4

1.7
1

2
1.8

1
4

1.9
1

1
2D

< 0.693150 Q

Notice that, in Example 4, Simpson’s Rule gives us a much  better approximation 
sS10 < 0.693150d to the true value of the integral sln 2 < 0.693147. . .d than does the 
Trapezoidal Rule sT10 < 0.693771d or the Midpoint Rule sM10 < 0.692835d. It turns out 
(see Exercise 50) that the approximations in Simpson’s Rule are weighted averages of 
those in the Trapezoidal and Midpoint Rules:

S2 n − 1
3 Tn 1 2

3 Mn

(Recall that ET and EM usually have opposite signs and | EM | is about half the size of 
| ET |.)

In many applications of calculus we need to evaluate an integral even if no explicit 
formula is known for y as a function of x. A function may be given graphically or as a 
table of values of collected data. If there is evidence that the values are not changing 
rapidly, then the Trapezoidal Rule or Simpson’s Rule can still be used to find an approxi-
mate value for yb

a y dx, the integral of y with respect to x. 

EXAMPLE 5  Figure 9 shows data traffic on the link from the United States to 
SWITCH, the Swiss academic and research network, on February 10, 1998. Dstd is the 
data throughput, measured in megabits per second sMbysd. Use Simpson’s Rule to esti-
mate the total amount of data transmitted on the link from midnight to noon on that day.

0

2

4

6

D
8

3 6 9 12 15 18 21 24 t (hours)

SOLUTION Because we want the units to be consistent and Dstd is measured in mega-
bits per second, we convert the units for t from hours to seconds. If we let Astd be the  
amount of data (in megabits) transmitted by time t, where t is measured in seconds, 
then A9std − Dstd. So, by the Net Change Theorem (see Section 5.4), the total amount 

FIGURE 9 
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Calculus - 7.7 Approximate Integration

Theorem 7.7.5 (Error Bound for Simpson’s Rule). Suppose that |f (4)(x)| ≤
K for a ≤ x ≤ b. If ES is the error involved in using Simpson’s Rule, then

|ES| ≤
K(b− a)5

180n4
.

Example 6. How large should we take n in order to guarantee that the Simp-
son’s Rule approximation for

´ 2

1
(1/x) dx is accurate to within 0.0001?
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Calculus - 7.7 Approximate Integration

Example 7. (a) Use Simpson’s Rule with n = 10 to approximate the integral´ 1

0
ex

2
dx.

(b) Estimate the error involved in this approximation.
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Calculus - 7.8 Improper Integrals

7.8 Improper Integrals

Definition 7.8.1 (Definition of an Improper Integral of Type 1).

(a) If
´ t
a
f(x) dx exists for every number t ≥ a, then

ˆ ∞
a

f(x) dx = lim
t→∞

ˆ t

a

f(x) dx

provided this limit exists (as a finite number).

(b) If
´ b
t
f(x) dx exists for every number t ≤ b, then

ˆ b

−∞
f(x) dx = lim

t→−∞

ˆ b

t

f(x) dx

provided this limit exists (as a finite number).

The improper integrals
´∞
a
f(x) dx and

´ b
−∞ f(x) dx are called convergent if

the corresponding limit exists and divergent if the limit does not exist.

(c) If both
´∞
a
f(x) dx and

´ a
−∞ f(x) dx are convergent, then we define

ˆ ∞
−∞

f(x) dx =

ˆ a

−∞
f(x) dx+

ˆ ∞
a

f(x) dx.

In part (c) any real number a can be used.

Example 1. Determine whether the integral
´∞

1
(1/x) dx is convergent or

divergent.
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Calculus - 7.8 Improper Integrals

Example 2. Evaluate

ˆ 0

−∞
xex dx.
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Calculus - 7.8 Improper Integrals

Example 3. Evaluate

ˆ ∞
−∞

1

1 + x2
dx.
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Example 4. For what values of p is the integral

ˆ ∞
1

1

xp
dx

convergent?
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Calculus - 7.8 Improper Integrals

Definition 7.8.2 (Definition of an Improper Integral of Type 2).

(a) If f is continuous on [a, b) and is discontinuous at b, then

ˆ b

a

f(x) dx = lim
t→b−

ˆ t

a

f(x) dx

if this limit exists (as a finite number).

(b) If f is continuous on (a, b] and is discontinuous at a, then

ˆ b

a

f(x) dx = lim
t→a+

ˆ b

t

f(x) dx

if this limit exists (as a finite number).

The improper integral
´ b
a
f(x) dx is called convergent if the corresponding limit

exists and divergent if the limit does not exist.

(c) If f has a discontinuity at c, where a < c < b, and both
´ c
a
f(x) dx and´ b

c
f(x) dx are convergent, then we define

ˆ b

a

f(x) dx =

ˆ c

a

f(x) dx+

ˆ b

c

f(x) dx.

Example 5. Find

ˆ 5

2

1√
x− 2

dx.
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Calculus - 7.8 Improper Integrals

Example 6. Determine whether

ˆ π/2

0

secx dx converges or diverges.

Example 7. Evaluate

ˆ 3

0

dx

x− 1
if possible.
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Calculus - 7.8 Improper Integrals

Example 8.

ˆ 1

0

lnx dx.
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Calculus - 7.8 Improper Integrals

Theorem 7.8.1 (Comparison Theorem). Suppose that f and g are continuous
functions with f(x) ≥ g(x) ≥ 0 for x ≥ a.

(a) If
´∞
a
f(x) dx is convergent, then

´∞
a
g(x) dx is convergent.

(b) If
´∞
a
g(x) dx is divergent, then

´∞
a
f(x) dx is divergent.

Example 9. Show that

ˆ ∞
0

e−x
2

dx is convergent.

Example 10. Determine whether

ˆ ∞
1

1 + e−x

x
dx converges or diverges.
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Chapter 8

Further Applications of
Integration

8.1 Arc Length

Definition 8.1.1. The length L of the curve C with equation y = f(x),
a ≤ x ≤ b, is

L = lim
n→∞

n∑
i=1

|Pi−1Pi|

where Pi is the point (xi, f(xi)).

544 CHAPTER 8  Further Applications of Integration

What do we mean by the length of a curve? We might think of !tting a piece of string to 
the curve in Figure 1 and then measuring the string against a ruler. But that might be dif-
!cult to do with much accuracy if we have a complicated curve. We need a precise de!ni-
tion for the length of an arc of a curve, in the same spirit as the de!nitions we developed 
for the con cepts of area and volume.

If the curve is a polygon, we can easily !nd its length; we just add the lengths of the line 
segments that form the polygon. (We can use the distance formula to !nd the distance  
between the endpoints of each segment.) We are going to de!ne the length of a general 
curve by !rst approximating it by a polygon and then taking a limit as the number of seg-
ments of the polygon is increased. This process is familiar for the case of a circle, where 
the cir cumference is the limit of lengths of inscribed polygons (see Figure 2).

Now suppose that a curve C is de!ned by the equation y − f sxd, where f  is continuous 
and a < x < b. We obtain a polygonal approximation to C by dividing the interval fa, bg 
into n subintervals with endpoints x0, x1, . . . , xn and equal width Dx. If yi − f sxid, then  
the point Pisxi, yid lies on C and the polygon with vertices P0, P1, . . . , Pn, illustrated 
in Fig ure 3, is an approximation to C.

y

P¸

P¡
P™

Pi-1 Pi Pn

y=ƒ

0 xi¤ i-1 bx¡a x x

The length L of C is approximately the length of this polygon and the approximation 
gets better as we let n increase. (See Figure 4, where the arc of the curve between Pi21 and 
Pi has been magni!ed and approximations with successively smaller values of Dx are  
shown.) Therefore we de!ne the length L of the curve C with equation y − f sxd, 
a < x < b, as the limit of the lengths of these inscribed polygons (if the limit exists):

L − lim
n l `

 o
n

i−1
| Pi21 Pi |

Notice that the procedure for de!ning arc length is very similar to the procedure we 
used for de!ning area and volume: We divided the curve into a large number of small 
parts. We then found the approximate lengths of the small parts and added them. Finally, 
we took the limit as n l `.

The de!nition of arc length given by Equation 1 is not very convenient for compu-
tational purposes, but we can derive an integral formula for L in the case where f  has a 
continuous derivative. [Such a function f  is called smooth because a small change in x 
produces a small change in f 9sxd.]

If we let Dyi − yi 2 yi21, then

| Pi21 Pi | − ssxi 2 xi21 d2 1 syi 2 yi21 d2 − ssDxd2 1 sDyid2 

FIGURE 1 

FIGURE 2 

FIGURE 3 

Pi-1

Pi

Pi-1

Pi

Pi-1

Pi

Pi-1

Pi

FIGURE 4 

1

TEC Visual 8.1 shows an animation 
of Figure 2.
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Calculus - 8.1 Arc Length

Theorem 8.1.1 (The Arc Length Formula). If f ′ is continuous on [a, b], then
the length of the curve y = f(x), a ≤ x ≤ b, is

L =

ˆ b

a

√
1 + [f ′(x)]2 dx =

ˆ b

a

√
1 +

(
dy

dx

)2

dx.

Proof. Let ∆yi = yi − yi−1. By the Mean Value Theorem, there is a number
x∗i between xi−1 and xi such that

f(xi)− f(xi−1) = f ′(x∗i )(xi − xi−1)

∆yi = f ′(x∗i )∆x.

Therefore,

|Pi−1Pi| =
√

(∆x)2 + (∆yi)2 =
√

(∆x)2 + [f ′(x∗i )∆x]2

=
√

1 + [f ′(x∗i )]
2
√

(∆x)2 =
√

1 + [f ′(x∗i )]
2∆x.

Hence

lim
n→∞

n∑
i=1

|Pi−1Pi| = lim
n→∞

n∑
i=1

√
1 + [f ′(x∗i )]

2∆x =

ˆ b

a

√
1 + [f ′(x)]2 dx.

 SECTION 8.1  Arc Length  545

By applying the Mean Value Theorem to f  on the interval fxi21, xig, we find that there is 
a number xi* between xi21 and xi such that

  f sxid 2 f sxi21 d − f 9sxi*dsxi 2 xi21 d

that is,  Dyi − f 9sxi*d Dx

Thus we have

  | Pi21 Pi | − ssDxd2 1 sDyid2 − ssDxd2 1 f f 9sxi*d Dxg2 

 − s1 1 [ f 9sxi*dg2  ssDxd2 − s1 1 f f 9sxi*dg2  Dx    (since Dx . 0)

Therefore, by Definition 1,

L − lim
n l `

o
n

i−1
| Pi21 Pi | − lim

n l `
 o

n

i−1
 s1 1 f f 9sxi*dg 2  Dx

We recognize this expression as being equal to

yb

a
 s1 1 f f 9sxdg2  dx

by the definition of a definite integral. We know that this integral exists because the func-
tion tsxd − s1 1 f f 9sxdg2  is continuous. Thus we have proved the following theorem:

2   The Arc Length Formula If f 9 is continuous on fa, bg, then the length of 
the curve y − f sxd, a < x < b, is

L − yb

a
 s1 1 f f 9sxdg2  dx

If we use Leibniz notation for derivatives, we can write the arc length formula as 
follows:

L − yb

a
 Î1 1 S dy

dxD2 

 dx

EXAMPLE 1  Find the length of the arc of the semicubical parabola y 2 − x 3 between the 
points s1, 1d and s4, 8d. (See Figure 5.)

SOLUTION For the top half of the curve we have

y − x 3y2      
dy
dx

− 3
2 x 1y2

and so the arc length formula gives

L − y4

1
 Î1 1 S dy

dxD2

 dx − y4

1
 s1 1 9

4 x 
 dx

If we substitute u − 1 1 9
4 x, then du − 9

4 dx. When x − 1, u − 13
4 ; when x − 4, u − 10. 

3

(4, 8)

0 x

y

(1, 1)

¥=˛

FIGURE 5 
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Example 1. Find the length of the arc of the semicubical
parabola y2 = x3 between the points (1, 1) and (4, 8). (See the
figure.)

259



Calculus - 8.1 Arc Length

Remark 1. If a curve has the equation x = g(y), c ≤ y ≤ d, and g′(y) is
continuous, then by interchanging the roles of x and y in the Arc Length
Formula, we obtain the following formula for its length:

L =

ˆ d

c

√
1 + [g′(y)]2 dy =

ˆ d

c

√
1 +

(
dx

dy

)2

dy.

Example 2. Find the length of the arc of the parabola y2 = x from (0, 0) to
(1, 1).
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Calculus - 8.1 Arc Length

Example 3. (a) Set up an integral for the length of the arc of the hyperbola
xy = 1 from the point (1, 1) to the point (2, 1

2
).

(b) Use Simpson’s Rule with n = 10 to estimate the arc length.

Theorem 8.1.2. If a smooth curve C (a curve that has a continuous deriva-
tive) has the equation y = f(x), a ≤ x ≤ b, then s(x), the distance along C
from the initial point (a, f(a)) to the point (x, f(x)), is called the arc length
function and is given by

s(x) =

ˆ x

a

√
1 + [f ′(t)]2 dt.
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Calculus - 8.1 Arc Length

Example 4. Find the arc length function for the curve y = x2− 1
8

lnx taking
(1, 1) as the starting point.
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Calculus - 8.2 Area of a Surface of Revolution

8.2 Area of a Surface of Revolution

552 Chapter 8  Further Applications of Integration

Putting this in Equation 1, we get

A − �sr1l 1 r2ld

or

A − 2�rl

where r − 1
2 sr1 1 r2 d is the average radius of the band.

Now we apply this formula to our strategy. Consider the surface shown in Figure 4, 
which is obtained by rotating the curve y − f sxd, a < x < b, about the x-axis, where f  
is positive and has a continuous derivative. In order to define its surface area, we divide 
the interval fa, bg into n subintervals with endpoints x0, x1, . . . , xn and equal width Dx,  
as we did in determining arc length. If yi − f sxid, then the point Pisxi, yid lies on the 
curve. The part of the surface between xi21 and xi is approximated by taking the line 
segment Pi21 Pi and rotating it about the x-axis. The result is a band with slant height 
l − | Pi21 Pi | and average radius r − 1

2 syi21 1 yid so, by Formula 2, its surface area is

2� 
yi21 1 yi

2 | Pi21 Pi |

As in the proof of Theorem 8.1.2, we have

| Pi21 Pi | − s1 1 f f 9sxi*dg2
 

 Dx

where xi* is some number in fxi21, xig. When Dx is small, we have yi − f sxid < f sxi*d and 
also yi21 − f sxi21d < f sxi*d, since f  is continuous. Therefore

2� 
yi21 1 yi

2 | Pi21 Pi | < 2� f sxi*d s1 1 f f 9sxi*dg2  Dx

and so an approximation to what we think of as the area of the complete surface of revo-
lution is

o
n

i−1
2� f sxi*d s1 1 f f 9sxi*dg2  Dx

This approximation appears to become better as n l ` and, recognizing (3) as a Rie-
mann sum for the function tsxd − 2� f sxd s1 1 f f 9sxdg2 , we have

lim
n l `

 o
n

i−1
2� f sxi*d s1 1 f f 9sxi*dg2  Dx − yb

a
2� f sxd s1 1 f f 9sxdg2  dx

Therefore, in the case where f  is positive and has a continuous derivative, we define the  
surface area of the surface obtained by rotating the curve y − f sxd, a < x < b, about  
the x-axis as

S − yb

a
2� f sxd s1 1 f f 9sxdg2  dx

2

x

y y=ƒ

P¸
Pi-1

Pi

Pn

yi

0 x

y

a b

0 a b

FIGURE 4� 

3

4�
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Definition 8.2.1. In the case where f is positive and has
a continuous derivative, we define the surface area of the
surface obtained by rotating the curve y = f(x), a ≤ x ≤ b,
about the x-axis as

S = lim
n→∞

n∑
i=1

2πf(x∗i )
√

1 + [f ′(x∗i )]
2∆x

=

ˆ b

a

2πf(x)
√

1 + [f ′(x)]2 dx.

554 CHAPTER 8  Further Applications of Integration

EXAMPLE 1  The curve y − s4 2 x 2 , 21 < x < 1, is an arc of the circle 
x 2 1 y 2 − 4. Find the area of the surface obtained by rotating this arc about the  
x-axis. (The surface is a portion of a sphere of radius 2. See Figure 6.)

SOLUTION  We have

dy
dx

− 1
2 s4 2 x 2 d21y2s22xd −

2x

s4 2 x 2 

and so, by Formula 5, the surface area is

  S − y1

21
 2!y Î1 1 S dy

dxD2 

 dx

  − 2! y1

21
 s4 2 x 2  Î1 1

x 2

4 2 x 2
  dx

 − 2! y1

21
 s4 2 x 2  Î4 2 x 2 1 x 2

4 2 x 2
  dx

  − 2! y1

21
 s4 2 x 2  

2

s4 2 x 2 
 dx − 4! y1

21
 1 dx − 4!s2d − 8! n

EXAMPLE 2  The arc of the parabola y − x 2 from s1, 1d to s2, 4d is rotated about the  
y-axis. Find the area of the resulting surface.

SOLUTION 1  Using

y − x 2    and    
dy
dx

− 2x

we have, from Formula 8,

 S − y 2!x ds

 − y2

1
 2!x Î1 1 S dy

dxD2 

 dx

 − 2! y2

1
 x s1 1 4x 2  dx

Substituting u − 1 1 4x 2, we have du − 8x dx. Remembering to change the limits of 
integration, we have

S − 2! y17

5
 su  ? 1

8 du

−
!

4
 y17

5
 u 1y2 du −

!

4
 f 2

3 u 3y2g 5

17

−
!

6
 (17s17 2 5s5 )

SOLUTION 2 Using

x − sy      and    
dx
dy

−
1

2sy  

x

y

1  

FIGURE 6 

Figure 6 shows the portion of the 
sphere whose surface area is computed 
in Example 1.

Figure 7 shows the surface of revolution 
whose area is computed in Example 2.

(2, 4)

(1, 1)

y=≈

x0

y

1 2

FIGURE 7 
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Example 1. The curve y =
√

4− x2, −1 ≤ x ≤ 1, is an arc of
the circle x2 + y2 = 4. Find the area of the surface obtained by
rotating this arc about the x-axis. (The surface is a portion of a
sphere of radius 2. See the bottom figure.)
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Calculus - 8.2 Area of a Surface of Revolution

Example 2. The arc of the parabola y = x2 from (1, 1) to (2, 4) is rotated
about the y-axis. Find the area of the resulting surface.
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Calculus - 8.2 Area of a Surface of Revolution

Example 3. Find the area of the surface generated by rotating the curve
y = ex, 0 ≤ x ≤ 1, about the x-axis.
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8.3 Applications to Physics and Engineering

Definition 8.3.1. In general, the hydrostatic force exerted on a thin plate
with area A square meters submerged in a fluid with density ρ kilograms per
cubic meter at a depth d meters below the surface of the fluid is

F = mg = ρgAd

where m is the mass and g is the acceleration due to gravity. The pressure P
(in pascals) on the plate is defined to be the force per unit area:

P =
F

A
= ρgd.

558 CHAPTER 8  Further Applications of Integration

Among the many applications of integral calculus to physics and engineering, we con-
sider two here: force due to water pressure and centers of mass. As with our previous 
applications to geometry (areas, volumes, and lengths) and to work, our strategy is to 
break up the phys ical quantity into a large number of small parts, approximate each 
small part, add the results (giving a Riemann sum), take the limit, and then evaluate the 
resulting integral.

Hydrostatic Pressure and Force
Deep-sea divers realize that water pressure increases as they dive deeper. This is because 
the weight of the water above them increases.

In general, suppose that a thin horizontal plate with area A square meters is sub-
merged in a fluid of density ! kilograms per cubic meter at a depth d meters below the 
surface of the fluid as in Figure 1. The fluid directly above the plate (think of a column 
of liquid) has volume V − Ad, so its mass is m − !V − !Ad. The force exerted by the 
fluid on the plate is therefore

F − mt − !tAd

where t is the acceleration due to gravity. The pressure P on the plate is defined to be 
the force per unit area:

P −
F
A

− !td

The SI unit for measuring pressure is a newton per square meter, which is called a pascal 
(abbreviation: 1 Nym2 − 1 Pa). Since this is a small unit, the kilopascal (kPa) is often 
used. For instance, because the density of water is ! − 1000 kgym3, the pressure at the 
bottom of a swimming pool 2 m deep is

 P − !td − 1000 kgym3 3 9.8 mys2 3 2 m

 − 19,600 Pa − 19.6 kPa

An important principle of fluid pressure is the experimentally verified fact that at any 
point in a liquid the pressure is the same in all directions. (A diver feels the same pres-
sure on nose and both ears.) Thus the pressure in any direction at a depth d in a fluid with 
mass density ! is given by

P − !td − "d

This helps us determine the hydrostatic force (the force exerted by a fluid at rest) against 
a vertical plate or wall or dam. This is not a straightforward problem because the pres-
sure is not constant but increases as the depth increases.

EXAMPLE 1  A dam has the shape of the trapezoid shown in Figure 2. The height is 
20 m and the width is 50 m at the top and 30 m at the bottom. Find the force on the 
dam due to hydrostatic pressure if the water level is 4 m from the top of the dam.

SOLUTION We choose a vertical x-axis with origin at the surface of the water and 
directed downward as in Figure 3(a). The depth of the water is 16 m, so we divide the 

surface of fluid

d
A

FIGURE 1 

1

50 m

20 m

30 m

FIGURE 2 

When using US Customary units, we 
write P − !td − "d, where " − !t 
is the weight density (as opposed to 
!, which is the mass density). For 
in stance, the weight density of water 
is " − 62.5 lbyft3.
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Example 1. A dam has the shape of the trapezoid shown in
the figure. The height is 20 m and the width is 50 m at the
top and 30 m at the bottom. Find the force on the dam due to
hydrostatic pressure if the water level is 4 m from the top of the
dam.
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Example 2. Find the hydrostatic force on one end of a cylindrical drum with
radius 3 ft if the drum is submerged in water 10 ft deep.
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Definition 8.3.2. In general, for a system of n particles with masses
m1,m2, . . . ,mn located at the points x1, x2, . . . , xn on the x-axis,

560 CHAPTER 8  Further Applications of Integration

The total force is obtained by adding the forces on all the strips and taking the limit:

 F − lim
n  l`

 o
n

i−1
 62.5s7 2 yi*d 2s9 2 syi*d2  Dy

 − 125 y3

23
 s7 2 yd s9 2 y 2  dy

 − 125 ? 7 y3

23
 s9 2 y 2  dy 2 125 y3

23
 ys9 2 y 2  dy

The second integral is 0 because the integrand is an odd function (see Theorem 5.5.7). 
The first integral can be evaluated using the trigonometric substitution y − 3 sin !, but 
it’s simpler to observe that it is the area of a semicircular disk with radius 3. Thus

 F − 875 y3

23
 s9 2 y 2  dy − 875 ? 1

2 "s3d2

  −
7875"

2
< 12,370 lb  n

Moments and Centers of Mass
Our main objective here is to find the point P on which a thin plate of any given shape 
bal ances horizontally as in Figure 5. This point is called the center of mass (or center of 
grav ity) of the plate.

We first consider the simpler situation illustrated in Figure 6, where two masses m1 
and m2 are attached to a rod of negligible mass on opposite sides of a fulcrum and at 
distances d1 and d2 from the fulcrum. The rod will balance if

m1 d1 − m2 d2

This is an experimental fact discovered by Archimedes and called the Law of the Lever. 
(Think of a lighter person balancing a heavier one on a seesaw by sitting farther away 
from the center.)

Now suppose that the rod lies along the x-axis with m1 at x1 and m2 at x2 and the center 
of mass at x. If we compare Figures 6 and 7, we see that d1 − x 2 x1 and d2 − x2 2 x 
and so Equation 2 gives

 m1sx 2 x1d − m2sx2 2 xd

 m1 x 1 m2 x − m1 x1 1 m2 x2

 x −
m1 x1 1 m2 x2

m1 1 m2

The numbers m1 x1 and m2 x2 are called the moments of the masses m1 and m2 (with 
respect to the origin), and Equation 3 says that the center of mass x is obtained by adding 
the moments of the masses and dividing by the total mass m − m1 1 m2.

0
⁄ –x ¤

¤-x–m¡ m™ x
–x-⁄

In general, if we have a system of n  particles with masses m1, m2, . . . , mn  located at 
the points x1, x2, . . . , xn  on the x-axis, it can be shown similarly that the center of mass 

P

FIGURE 5 2

m¡ m™

d¡

fulcrum

d™

FIGURE 6 

3

FIGURE 7 
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the center of mass x̄ is the point on which a thin plate of any given shape
balances horizontally, and can be shown to be

x̄ =

∑n
i=1mixi
m

,

where mixi are called the moments of the masses mi and m =
∑
mi is the

total mass of the system.
The sum of the individual moments

M =
n∑
i=1

mixi

is called the moment of the system about the origin.

Definition 8.3.3. In general, for a system of n particles with masses
m1,m2, . . . ,mn located at the points (x1, y1), (x2, y2), . . . , (xn, yn) in the xy-
plane

 SECTION 8.3  Applications to Physics and Engineering 561

of the system is located at

x −
o

n

i−1
 mixi

o
n

i−1
 mi

−
o

n

i−1
 mixi

m

where m − omi is the total mass of the system, and the sum of the individual moments

M − o
n

i−1
 mixi

is called the moment of the system about the origin. Then Equation 4 could be rewrit-
ten as mx − M, which says that if the total mass were considered as being concen- 
trated at the center of mass x, then its moment would be the same as the moment of the 
system.

Now we consider a system of n  particles with masses m1, m2, . . . , mn  located at the 
points sx1, y1d, sx2, y2 d, . . . , sxn , yn d in the xy-plane as shown in Figure 8. By analogy 
with the one-dimensional case, we define the moment of the system about the y-axis 
to be

My − o
n

i−1
 mixi

and the moment of the system about the x-axis as

Mx − o
n

i−1
 miyi

Then My measures the tendency of the system to rotate about the y-axis and Mx measures 
the tendency to rotate about the x-axis.

As in the one-dimensional case, the coordinates sx, yd of the center of mass are given 
in terms of the moments by the formulas

x −
My

m       y −
Mx

m

where m − omi is the total mass. Since mx − My and my − Mx, the center of mass 
sx, yd is the point where a single particle of mass m would have the same moments as 
the system.

EXAMPLE 3  Find the moments and center of mass of the system of objects that have 
masses 3, 4, and 8 at the points s21, 1d, s2, 21d, and s3, 2d, respectively.

SOLUTION We use Equations 5 and 6 to compute the moments:

 My − 3s21d 1 4s2d 1 8s3d − 29

 Mx − 3s1d 1 4s21d 1 8s2d − 15

Since m − 3 1 4 1 8 − 15, we use Equations 7 to obtain

x −
My

m
−

29
15

      y −
Mx

m
−

15
15

− 1

Thus the center of mass is s114
15 , 1d. (See Figure 9.) n
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we define the moment of the system about the y-axis to be

My =
n∑
i=1

mixi

and the moment of the system about the x-axis to be

Mx =
n∑
i=1

miyi.

The coordinates (x̄, ȳ) of the center of mass are given by

x̄ =
My

m
ȳ =

Mx

m
.
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Example 3. Find the moments and center of mass of the system of objects
that have masses 3, 4, and 8 at the points (−1, 1), (2,−1), and (3, 2), respec-
tively.

562 CHAPTER 8  Further Applications of Integration

Next we consider a !at plate (called a lamina) with uniform density ! that occupies a 
region 5 of the plane. We wish to locate the center of mass of the plate, which is called 
the centroid of 5. In doing so we use the following physical principles: The symmetry 
principle says that if 5 is symmetric about a line l, then the centroid of 5 lies on l. (If 5 
is re!ected about l, then 5 remains the same so its centroid remains "xed. But the only 
"xed points lie on l.) Thus the centroid of a rectangle is its center. Moments should be 
de"ned so that if the entire mass of a region is concentrated at the center of mass, then 
its moments remain unchanged. Also, the moment of the union of two nonoverlapping 
regions should be the sum of the moments of the individual regions.

Suppose that the region 5 is of the type shown in Figure 10(a); that is, 5 lies between 
the lines x − a and x − b, above the x-axis, and beneath the graph of f, where f  is a 
continuous function. We divide the interval fa, bg into n subintervals with endpoints x0, 
x1, . . . , xn and equal width Dx. We choose the sample point xi* to be the midpoint xi of 
the ith subinterval, that is, xi − sxi21 1 xidy2. This determines the polygonal approxima-
tion to 5 shown in Figure 10(b). The centroid of the ith approximating rectangle Ri is its 
center Ci(xi, 12 f sxid). Its area is f sxid Dx, so its mass is

! f sxid Dx

The moment of Ri about the y-axis is the product of its mass and the distance from Ci to 
the y-axis, which is xi. Thus

MysRid − f! f sxid Dxg xi − ! xi f sxid Dx

Adding these moments, we obtain the moment of the polygonal approximation to 5, and 
then by taking the limit as n l ` we obtain the moment of 5 itself about the y-axis:

My − lim
nl `

o
n

i−1
 !xi f sxid Dx − ! yb

a
 x f sxd dx

In a similar fashion we compute the moment of Ri about the x-axis as the product of 
its mass and the distance from Ci to the x-axis (which is half the height of Ri):

MxsRid − f! f sxid Dxg 12 f sxid − ! ? 1
2 f f sxidg2 Dx

Again we add these moments and take the limit to obtain the moment of 5 about the  
x-axis:

Mx − lim
nl `

 o
n

i−1
 ! ? 1

2 f f sxidg2 Dx − ! yb

a

1
2 f f sxdg2 dx

Just as for systems of particles, the center of mass of the plate is de"ned so that 
mx − My and my − Mx. But the mass of the plate is the product of its density and its 
area:

m − !A − ! yb

a
 f sxd dx

FIGURE 10 
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Definition 8.3.4. The center of mass of a lamina (a flat
plate) with uniform density ρ and area A that occupies a
region R of the plane is called the centroid of R and is
located at the point (x̄, ȳ), where

x̄ =
1

A

ˆ b

a

xf(x) dx ȳ =
1

A

ˆ b

a

1

2
[f(x)]2 dx.

Remark 1. The symmetry principle says that if R is sym-
metric about a line l, then the centroid of R lies on l.
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Example 4. Find the center of mass of a semicircular plate of radius r.

Example 5. Find the centroid of the region bounded by the curves y = cosx,
y = 0, x = 0, and x = π/2.

270



Calculus - 8.3 Applications to Physics and Engineering
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so Formulas 8 give

 x −
1
A

 y!y2

0
 x f sxd dx − y!y2

0
 x cos x dx

 − x sin xg0

!y2
2 y!y2

0
 sin x dx    (by integration by parts)

 −
!

2
2 1

 y −
1
A

 y!y2

0
 12 f f sxdg2 dx − 1

2 y!y2

0
 cos2x dx

 − 1
4 y!y2

0
 s1 1 cos 2xd dx − 1

4 fx 1 1
2 sin 2xg 0

!y2
 −

!

8

The centroid is (1
2 ! 2 1, 18 !) and is shown in Figure 12. n

If the region 5 lies between two curves y − f sxd and y − tsxd, where f sxd > tsxd, 
as illustrated in Figure 13, then the same sort of argument that led to Formulas 8 can be 
used to show that the centroid of 5 is sx, yd, where

 x −
1
A

 yb

a
 xf f sxd 2 tsxdg dx

 y −
1
A

 yb

a
 12 hf f sxdg2 2 ftsxdg2 j dx

9

(See Exercise 51.)

EXAMPLE 6  Find the centroid of the region bounded by the line y − x and the 
parabola y − x 2.

SOLUTION The region is sketched in Figure 14. We take f sxd − x, tsxd − x 2, a − 0, 
and b − 1 in Formulas 9. First we note that the area of the region is

A − y1

0
 sx 2 x 2 d dx −

x 2

2
2

x 3

3 G0

1

−
1
6

Therefore

 x −
1
A

 y1

0
 xf f sxd 2 tsxdg dx −

1
1
6

 y1

0
 xsx 2 x 2 d dx

 − 6 y1

0
 sx 2 2 x 3 d dx − 6F x 3

3
2

x 4

4 G0

1

−
1
2

 y −
1
A

 y1

0
 12 hf f sxdg2 2 ftsxdg2 j dx −

1
1
6

 y1

0
 12 sx 2 2 x 4 d dx

 − 3F x 3

3
2

x 5

5 G0

1

−
2
5

The centroid is s1
2 , 25 d. n

FIGURE 12 
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Theorem 8.3.1. If the region R lies between two curves
y = f(x) and y = g(x), where f(x) ≥ g(x), then the cen-
troid of R is (x̄, ȳ) where

x̄ =
1

A

ˆ b

a

x[f(x)− g(x)] dx

ȳ =
1

A

ˆ b

a

1

2
{[f(x)]2 − [g(x)]2} dx.

Example 6. Find the centroid of the region bounded by the line y = x and
the parabola y = x2.
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Theorem 8.3.2 (Theorem of Pappus). Let R be a plane region that lies en-
tirely on one side of a line l in the plane. If R is rotated about l, then the
volume of the resulting solid is the product of the area A of R and the distance
d traveled by the centroid of R.

Example 7. A torus is formed by rotating a circle of radius r about a line in
the plane of the circle that is a distance R (> r) from the center of the circle.
Find the volume of the torus.
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8.4 Applications to Economics and Biology

SECTION 8.4  Applications to Economics and Biology 569

In this section we consider some applications of integration to economics (consumer 
surplus) and biology (blood !ow, cardiac output). Others are described in the exercises.

Consumer Surplus
Recall from Section 4.7 that the demand function psxd is the price that a company has to 
charge in order to sell x units of a commodity. Usually, selling larger quantities requires 
lowering prices, so the demand function is a decreasing function. The graph of a typical 
demand function, called a demand curve, is shown in Figure 1. If X is the amount of the 
commodity that can currently be sold, then P − psXd is the current selling price.

At a given price, some consumers who buy a good would be willing to pay more; they 
bene"t by not having to. The difference between what a consumer is willing to pay and 
what the consumer actually pays for a good is called the consumer surplus. By "nding 
the total consumer surplus among all purchasers of a good, economists can assess the 
overall bene"t of a market to society. 

To determine the total consumer surplus, we look at the demand curve and divide the 
interval f0, Xg into n subintervals, each of length Dx − Xyn, and let xi* − xi be the right 
endpoint of the ith subinterval, as in Figure 2. According to the demand curve, xi21 units 
would be purchased at a price of psxi21d dollars per unit. To increase sales to xi units, 
the price would have to be lowered to psxid dollars. In this case, an additional Dx units 
would be sold (but no more). In general, the consumers who would have paid psxid dol-
lars placed a high value on the product; they would have paid what it was worth to them. 
So in paying only P dollars they have saved an amount of

ssavings per unitdsnumber of unitsd − fpsxid 2 Pg Dx

Considering similar groups of willing consumers for each of the subintervals and adding 
the savings, we get the total savings:

o
n

i−1
 fpsxid 2 Pg Dx

(This sum corresponds to the area enclosed by the rectangles in Figure 2.) If we let 
n l `, this Riemann sum approaches the integral

yX

0
 fpsxd 2 Pg dx

which economists call the consumer surplus for the commodity.
The consumer surplus represents the amount of money saved by consumers in pur-

chasing the commodity at price P, corresponding to an amount demanded of X. Figure 3 
shows the interpretation of the consumer surplus as the area under the demand curve and 
above the line p − P.

EXAMPLE 1  The demand for a product, in dollars, is

p − 1200 2 0.2x 2 0.0001x 2

Find the consumer surplus when the sales level is 500.

SOLUTION  Since the number of products sold is X − 500, the corresponding price is

P − 1200 2 s0.2ds500d 2 s0.0001ds500d2 − 1075

FIGURE 1 
A typical demand curve

0 x

p

P

X

(X, P)

p=p(x)

0 x

p

P

⁄ xi_1 xi X

(X, P)
Îx-Pp(x )i

1

0 x

p

(X, P)
P

X

p=p(x)

p=P

consumer
surplus

FIGURE 3 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Definition 8.4.1. The consumer surplus for a commodity
is defined as ˆ X

0

[p(x)− P ] dx

where p(x) is the demand function, and P is the current
selling price for the amount of the commodity X that can
currently be sold.

Example 1. The demand for a product, in dollars, is

p = 1200− 0.2x− 0.0001x2.

Find the consumer surplus when the sales level is 500.
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Definition 8.4.2. The cardiac output of the heart is the volume of blood
pumped by the heart per unit time, that is, the rate of flow into the aorta. It
is given by

F =
A´ T

0
c(t) dt

where A is the amount of dye injected into the right atrium, [0, T ] is the time
interval until the dye has cleared, and c(t) is the concentration of the dye at
time t.

t c(t)
0 0
1 0.4
2 2.8
3 6.5
4 9.8
5 8.9
6 6.1
7 4.0
8 2.3
9 1.1
10 0

Example 2. A 5-mg bolus of dye is injected into a right atrium.
The concentration of the dye (in milligrams per liter) is mea-
sured in the aorta at one-second intervals as shown in the table.
Estimate the cardiac output.
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8.5 Probability

Definition 8.5.1. The probability density function f of a continuous random
variable X (a quantity whose values range over an interval of real numbers) is
given by:

P (a ≤ X ≤ b) =

ˆ b

a

f(x) dx

where f(x) ≥ 0 for all x and

ˆ ∞
−∞

f(x) dx = 1.

Example 1. Let f(x) = 0.006x(10 − x) for 0 ≤ x ≤ 10 and f(x) = 0 for all
other values of x.

(a) Verify that f is a probability density function.

(b) Find P (4 ≤ X ≤ 8)
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Example 2. Phenomena such as waiting times and equipment failure times
are commonly modeled by exponentially decreasing probability density func-
tions. Find the exact form of such a function.
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Definition 8.5.2. In general, the mean of any probability density function f
is defined to be

µ =

ˆ ∞
−∞

xf(x) dx.

Example 3. Find the mean of the exponential distribution of Example 2:

f(t) =

{
0 if t < 0,

ce−ct if t ≥ 0.

277



Calculus - 8.5 Probability

Example 4. Suppose the average waiting time for a customer’s call to be
answered by a company representative is five minutes.

(a) Find the probability that a call is answered during the first minute, as-
suming that an exponential distribution is appropriate.

(b) Find the probability that a customer waits more than five minutes to be
answered.

278



Calculus - 8.5 Probability

Definition 8.5.3. When random phenomena are modeled by a normal distri-
bution this means that the probability density function of the random variable
X is a member of the family of functions

f(x) =
1

σ
√

2π
e−(x−µ)2/(2σ2)

where the positive constant σ is called the standard deviation (a measure of
how spread out the values of X are).

578 CHAPTER 8  Further Applications of Integration

Notice the result of Example 4(b): Even though the mean waiting time is 5 minutes, 
only 37% of callers wait more than 5 minutes. The reason is that some callers have to 
wait much longer (maybe 10 or 15 minutes), and this brings up the average.

Another measure of centrality of a probability density function is the median . That is 
a number m such that half the callers have a waiting time less than m and the other call-
ers have a waiting time longer than m. In general, the median of a probability density 
function is the number m such that

y`

m
 f sxd dx − 1

2

This means that half the area under the graph of f  lies to the right of m. In Exercise 9 you 
are asked to show that the median waiting time for the company described in Example 4 
is approximately 3.5 minutes.

Normal Distributions
Many important random phenomena—such as test scores on aptitude tests, heights and 
weights of individuals from a homogeneous population, annual rainfall in a given loca-
tion—are modeled by a normal distribution. This means that the probability density 
function of the random variable X is a member of the family of functions

f sxd −
1

!s2"   e
2sx2#d2ys2! 2d

You can verify that the mean for this function is #. The positive constant ! is called 
the stan dard deviation; it measures how spread out the values of X are. From the bell-
shaped graphs of members of the family in Figure 5, we see that for small values of ! 
the values of X are clustered about the mean, whereas for larger values of ! the values 
of X are more spread out. Statisticians have methods for using sets of data to estimate 
# and !.

x

y

0 m

1
2

s=2
s=1

s=

The factor 1ys!s2"  d is needed to make f  a probability density function. In fact, it 
can be verified using the methods of multivariable calculus that

y`

2`
 

1
!s2"   e

2sx2#d2ys2! 2d 

dx − 1

EXAMPLE 5  Intelligence Quotient (IQ) scores are distributed normally with mean  
100 and standard deviation 15. (Figure 6 shows the corresponding probability density 
function.)
(a) What percentage of the population has an IQ score between 85 and 115?
(b) What percentage of the population has an IQ above 140?

3

The standard deviation is denoted by 
the lowercase Greek letter ! (sigma).

FIGURE 5  
Normal distributions
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Example 5. Intelligence Quotient (IQ) scores are distributed
normally with mean 100 and standard deviation 15. (The figure
shows the corresponding probability density function.)

(a) What percentage of the population has an IQ score between
85 and 115?

(b) What percentage of the population has an IQ above 140?
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Chapter 9

Differential Equations

9.1 Modeling with Differential Equations

Definition 9.1.1. In general, a differential equation is an equation that con-
tains an unknown function and one or more of its derivatives. The order of a
differential equation is the order of the highest derivative that occurs in the
equation. A function f is called a solution of a differential equation if the
equation is satisfied when y = f(x) and its derivatives are substituted into the
equation.

Example 1. Show that every member of the family of functions

y =
1 + cet

1− cet

is a solution of the differential equation y′ = 1
2
(y2 − 1).
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Example 2. Find a solution of the differential equation y′ = 1
2
(y2 − 1) that

satisfies the initial condition y(0) = 2.
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9.2 Direction Fields and Euler’s Method

Definition 9.2.1. In general, suppose we have a first-order differential equa-
tion of the form

y′ = F (x, y)

where F (x, y) is some expression in x and y. If we draw short line segments
with slope F (x, y) at several points (x, y), the result is called a direction field
(or slope field).

Example 1.

(a) Sketch the direction field for the differential equation y′ = x2 + y2 − 1.

(b) Use part (a) to sketch the solution curve that passes through the origin.
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 SECTION 9.2  Direction Fields and Euler’s Method 593

SOLUTION
(a) We start by computing the slope at several points in the following chart:

x 22 21 0 1 2 22 21 0 1 2 . . .

y 0 0 0 0 0 1 1 1 1 1 . . .

y9 − x 2 1 y 2 2 1 3 0 21 0 3 4 1 0 1 4 . . .

Now we draw short line segments with these slopes at these points. The result is the 
direction field shown in Figure 5.

(b) We start at the origin and move to the right in the direction of the line segment 
(which has slope 21). We continue to draw the solution curve so that it moves parallel 
to the nearby line segments. The resulting solution curve is shown in Figure 6. Return-
ing to the origin, we draw the solution curve to the left as well. n

The more line segments we draw in a direction field, the clearer the picture becomes. 
Of course, it’s tedious to compute slopes and draw line segments for a huge number 
of points by hand, but computers are well suited for this task. Figure 7 shows a more 
detailed, computer-drawn direction field for the differential equation in Example 1. It 
enables us to draw, with reasonable accuracy, the solution curves with y-intercepts 22,  
21, 0, 1, and 2.

Now let’s see how direction fields give insight into physical situations. The simple 
electric circuit shown in Figure 8 contains an electromotive force (usually a battery or 
generator) that produces a voltage of Estd volts (V) and a current of Istd amperes (A) at 
time t. The circuit also contains a resistor with a resistance of R ohms (V) and an induc-
tor with an inductance of L henries (H).

Ohm’s Law gives the drop in voltage due to the resistor as RI. The voltage drop due to 
the inductor is LsdIydtd. One of Kirchhoff’s laws says that the sum of the voltage drops 
is equal to the supplied voltage Estd. Thus we have

L 
dI
dt

1 RI − Estd

which is a first-order differential equation that models the current I at time t.

EXAMPLE 2  Suppose that in the simple circuit of Figure 8 the resistance is 12 V, the 
inductance is 4 H, and a battery gives a constant voltage of 60 V.
(a) Draw a direction field for Equation 1 with these values.
(b) What can you say about the limiting value of the current?
(c) Identify any equilibrium solutions.
(d) If the switch is closed when t − 0 so the current starts with Is0d − 0, use the direc-
tion field to sketch the solution curve.

SOLUTION
(a) If we put L − 4, R − 12, and Estd − 60 in Equation 1, we get

4 
dI
dt

1 12I − 60    or    
dI
dt

− 15 2 3I

0 x

y

1_1_2

1

2

-1

_2

2

FIGURE 5 

1

3

_3

_3 3

FIGURE 7   

0 x

y

1 2_1_2

1

2

-1

_2

FIGURE 6 

R

E

switch

L

FIGURE 8 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Example 2. Suppose that in the simple circuit of the figure the
resistance is 12 Ω, the inductance is 4 H, and a battery gives a
constant voltage of 60 V.
(a) Draw a direction field for

L
dI

dt
+RI = E(t)

with these values.

(b) What can you say about the limiting value of the current?

(c) Identify any equilibrium solutions.

(d) If the switch is closed when t = 0 so the current starts with
I(0) = 0, use the direction field to sketch the solution curve.
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Theorem 9.2.1 (Euler’s Method). Approximate values for the solution of the
initial-value problem y′ = F (x, y), y(x0) = y0 with step size h, at xn = xn−1+h,
are

yn = yn−1 + hF (xn−1, yn−1) n = 1, 2, 3, . . . .

Example 3. Use Euler’s method with step size 0.1 to construct a table of
approximate values for the solution of the initial-value problem

y′ = x+ y y(0) = 1.
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Example 4. In Example 2 we discussed a simple electric circuit with resistance
12 Ω, inductance 4 H, and a battery with voltage 60 V. If the switch is closed
when t = 0, we modeled the current I at time t by the initial-value problem

dI

dt
= 15− 3I I(0) = 0.

Estimate the current in the circuit half a second after the switch is closed.
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9.3 Separable Equations

Definition 9.3.1. A separable equation is a first-order differential equation
in which the expression for dy/dx can be factored as a function of x times a
function of y. In other words, it can be written in the form

dy

dx
= g(x)g(y).

Example 1. (a) Solve the differential equation
dy

dx
=
x2

y2
.

(b) Find the solution of this equation that satisfies the initial condition y(0) =
2.
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Example 2. Solve the differential equation
dy

dx
=

6x2

2y + cos y
.

Example 3. Solve the equation y′ = x2y.
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 SECTION 9.2  Direction Fields and Euler’s Method 593

SOLUTION
(a) We start by computing the slope at several points in the following chart:

x 22 21 0 1 2 22 21 0 1 2 . . .

y 0 0 0 0 0 1 1 1 1 1 . . .

y9 − x 2 1 y 2 2 1 3 0 21 0 3 4 1 0 1 4 . . .

Now we draw short line segments with these slopes at these points. The result is the 
direction field shown in Figure 5.

(b) We start at the origin and move to the right in the direction of the line segment 
(which has slope 21). We continue to draw the solution curve so that it moves parallel 
to the nearby line segments. The resulting solution curve is shown in Figure 6. Return-
ing to the origin, we draw the solution curve to the left as well. n

The more line segments we draw in a direction field, the clearer the picture becomes. 
Of course, it’s tedious to compute slopes and draw line segments for a huge number 
of points by hand, but computers are well suited for this task. Figure 7 shows a more 
detailed, computer-drawn direction field for the differential equation in Example 1. It 
enables us to draw, with reasonable accuracy, the solution curves with y-intercepts 22,  
21, 0, 1, and 2.

Now let’s see how direction fields give insight into physical situations. The simple 
electric circuit shown in Figure 8 contains an electromotive force (usually a battery or 
generator) that produces a voltage of Estd volts (V) and a current of Istd amperes (A) at 
time t. The circuit also contains a resistor with a resistance of R ohms (V) and an induc-
tor with an inductance of L henries (H).

Ohm’s Law gives the drop in voltage due to the resistor as RI. The voltage drop due to 
the inductor is LsdIydtd. One of Kirchhoff’s laws says that the sum of the voltage drops 
is equal to the supplied voltage Estd. Thus we have

L 
dI
dt

1 RI − Estd

which is a first-order differential equation that models the current I at time t.

EXAMPLE 2  Suppose that in the simple circuit of Figure 8 the resistance is 12 V, the 
inductance is 4 H, and a battery gives a constant voltage of 60 V.
(a) Draw a direction field for Equation 1 with these values.
(b) What can you say about the limiting value of the current?
(c) Identify any equilibrium solutions.
(d) If the switch is closed when t − 0 so the current starts with Is0d − 0, use the direc-
tion field to sketch the solution curve.

SOLUTION
(a) If we put L − 4, R − 12, and Estd − 60 in Equation 1, we get

4 
dI
dt

1 12I − 60    or    
dI
dt

− 15 2 3I
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Example 4. In Section 9.2 we modeled the current I(t) in the
electric circuit shown in the figure by the differential equation

L
dI

dt
+RI = E(t).

Find an expression for the current in a circuit where the resis-
tance is 12 V, the inductance is 4 H, a battery gives a constant
voltage of 60 V, and the switch is turned on when t = 0. What
is the limiting value of the current?
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 SECTION 9.3  Separable Equations 603

Orthogonal Trajectories
An orthogonal trajectory of a family of curves is a curve that intersects each curve of 
the family orthogonally, that is, at right angles (see Figure 7). For instance, each mem-
ber of the family y − mx of straight lines through the origin is an orthogonal trajectory 
of the family x 2 1 y 2 − r 2 of concentric circles with center the origin (see Figure 8). We 
say that the two families are orthogonal trajectories of each other.

EXAMPLE 5  Find the orthogonal trajectories of the family of curves x − ky 2, where k 
is an arbitrary constant.

SOLUTION The curves x − ky 2 form a family of parabolas whose axis of symmetry is  
the x-axis. The first step is to find a single differential equation that is satisfied by all 
members of the family. If we differentiate x − ky 2, we get

1 − 2ky 
dy
dx

    or    
dy
dx

−
1

2ky

This differential equation depends on k, but we need an equation that is valid for all 
values of k simultaneously. To eliminate k we note that, from the equation of the given 
general parabola x − ky 2, we have k − xyy 2 and so the differential equation can be  
written as

dy
dx

−
1

2ky
−

1

2 
x
y 2  y

  or  
dy
dx

−
 y
2x

This means that the slope of the tangent line at any point sx, yd on one of the parabolas 
is y9 − yys2xd. On an orthogonal trajectory the slope of the tangent line must be the 
negative reciprocal of this slope. Therefore the orthogonal trajectories must satisfy the 
differ ential equation

dy
dx

− 2
2x
 y

This differential equation is separable, and we solve it as follows:

 y y dy − 2y 2x dx

 
 y 2

2
− 2x 2 1 C

 x 2 1
y 2

2
− C

where C is an arbitrary positive constant. Thus the orthogonal trajectories are the  
family of ellipses given by Equation 4 and sketched in Figure 9. n

Orthogonal trajectories occur in various branches of physics. For example, in an elec-
trostatic field the lines of force are orthogonal to the lines of constant potential. Also, 
the streamlines in aerodynamics are orthogonal trajectories of the velocity-equipotential 
curves.
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Definition 9.3.2. An orthogonal trajectory of a family of curves
is a curve that intersects each curve of the family orthogonally,
that is, at right angles (see the figure).

Example 5. Find the orthogonal trajectories of the family of
curves x = ky2, where k is an arbitrary constant.
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Example 6. A tank contains 20 kg of salt dissolved in 5000 L of water. Brine
that contains 0.03 kg of salt per liter of water enters the tank at a rate of 25
L/min. The solution is kept thoroughly mixed and drains from the tank at
the same rate. How much salt remains in the tank after half an hour?
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9.4 Models for Population Growth

Definition 9.4.1. In general, if P (t) is the value of a quantity y at time t and
if the rate of change of P with respect to t is proportional to its size P (t) at
any time, then

dP

dt
= kP

where k is a constant. This equation is sometimes called the law of natural
growth.

Theorem 9.4.1. The solution of the initial-value problem

dP

dt
= kP P (0) = P0

is
P (t) = P0e

kt.

Proof. The law of natural growth is a separable differential equation, so

dP

dt
= kPˆ

dP

P
=

ˆ
k dt

ln |P | = kt+ C

|P | = ekt+C = eCekt

P = Aekt,

where A (= ±eC or 0) is an arbitrary constant. Since P (0) = A, P (t) =
P0e

kt.

Definition 9.4.2. The model for population growth known as the logistic
differential equation is

dP

dt
= kP

(
1− P

M

)
,

where M is the carrying capacity, the maximum population that the environ-
ment is capable of sustaining in the long run.
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Example 1. Draw a direction field for the logistic equation with k = 0.08
and carrying capacity M = 1000. What can you deduce about the solutions?
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Theorem 9.4.2. The solution to the logistic equation is

P (t) =
M

1 + Ae−kt
where A =

M − P0

P0

.

Proof. The logistic equation is separable, so using partial fractions, we get

dP

dt
= kP

(
1− P

M

)
ˆ

dP

P (1− P/M)
=

ˆ
k dt

ˆ
M

P (M − P )
dP =

ˆ
k dt

ˆ (
1

P
+

1

M − P

)
dP =

ˆ
k dt

ln |P | − ln |M − P | = kt+ C

ln

∣∣∣∣M − PP

∣∣∣∣ = −kt− C∣∣∣∣M − PP

∣∣∣∣ = e−kt−C = e−Ce−kt

M − P
P

= Ae−kt

M

P
− 1 = Ae−kt

M

P
= 1 + Ae−kt

P =
M

1 + Ae−kt
,

where A = ±e−C . If t = 0, we have

M − P0

P0

= Ae0 = A.
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Example 2. Write the solution of the initial-value problem

dP

dt
= 0.08P

(
1− P

1000

)
P (0) = 100

and use it to find the population sizes P (40) and P (80). At what time does
the population reach 900?
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Example 3. In the 1930s the biologist G. F. Gause conducted an experiment
with the protozoan Paramecium and used a logistic equation to model his
data. The table gives his daily count of the population of protozoa. He esti-
mated the initial relative growth rate to be 0.7944 and the carrying capacity
to be 64.

t (days) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
P (observed) 2 3 22 16 39 52 54 47 50 76 69 51 57 70 53 59 57

Find the exponential and logistic models for Gause’s data. Compare the pre-
dicted values with the observed values and comment on the fit.
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9.5 Linear Equations

Definition 9.5.1. A first-order linear differential equation is one that can be
put into the form

dy

dx
+ P (x)y = Q(x)

where P and Q are continuous functions on a given interval.

Theorem 9.5.1. To solve the linear differential equation y′ + P (x)y = Q(x),
multiply both sides by the integrating factor I(x) = e

´
P (x)dx and integrate both

sides.

Example 1. Solve the differential equation
dy

dx
+ 3x2y = 6x2.
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Example 2. Find the solution of the initial-value problem

x2y′ + xy = 1 x > 0 y(1) = 2.

297



Calculus - 9.5 Linear Equations

Example 3. Solve y′ + 2xy = 1.
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 SECTION 9.2  Direction Fields and Euler’s Method 593

SOLUTION
(a) We start by computing the slope at several points in the following chart:

x 22 21 0 1 2 22 21 0 1 2 . . .

y 0 0 0 0 0 1 1 1 1 1 . . .

y9 − x 2 1 y 2 2 1 3 0 21 0 3 4 1 0 1 4 . . .

Now we draw short line segments with these slopes at these points. The result is the 
direction field shown in Figure 5.

(b) We start at the origin and move to the right in the direction of the line segment 
(which has slope 21). We continue to draw the solution curve so that it moves parallel 
to the nearby line segments. The resulting solution curve is shown in Figure 6. Return-
ing to the origin, we draw the solution curve to the left as well. n

The more line segments we draw in a direction field, the clearer the picture becomes. 
Of course, it’s tedious to compute slopes and draw line segments for a huge number 
of points by hand, but computers are well suited for this task. Figure 7 shows a more 
detailed, computer-drawn direction field for the differential equation in Example 1. It 
enables us to draw, with reasonable accuracy, the solution curves with y-intercepts 22,  
21, 0, 1, and 2.

Now let’s see how direction fields give insight into physical situations. The simple 
electric circuit shown in Figure 8 contains an electromotive force (usually a battery or 
generator) that produces a voltage of Estd volts (V) and a current of Istd amperes (A) at 
time t. The circuit also contains a resistor with a resistance of R ohms (V) and an induc-
tor with an inductance of L henries (H).

Ohm’s Law gives the drop in voltage due to the resistor as RI. The voltage drop due to 
the inductor is LsdIydtd. One of Kirchhoff’s laws says that the sum of the voltage drops 
is equal to the supplied voltage Estd. Thus we have

L 
dI
dt

1 RI − Estd

which is a first-order differential equation that models the current I at time t.

EXAMPLE 2  Suppose that in the simple circuit of Figure 8 the resistance is 12 V, the 
inductance is 4 H, and a battery gives a constant voltage of 60 V.
(a) Draw a direction field for Equation 1 with these values.
(b) What can you say about the limiting value of the current?
(c) Identify any equilibrium solutions.
(d) If the switch is closed when t − 0 so the current starts with Is0d − 0, use the direc-
tion field to sketch the solution curve.

SOLUTION
(a) If we put L − 4, R − 12, and Estd − 60 in Equation 1, we get

4 
dI
dt

1 12I − 60    or    
dI
dt

− 15 2 3I
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Example 4. Suppose that in the simple circuit of the figure the
resistance is 12 V and the inductance is 4 H. If a battery gives a
constant voltage of 60 V and the switch is closed when t = 0 so
the current starts with I(0) = 0, find

(a) I(t),

(b) the current after 1 second, and

(c) the limiting value of the current.
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Example 5. Suppose that the resistance and inductance remain as in Example
4 but, instead of the battery, we use a generator that produces a variable
voltage of E(t) = 60 sin 30t volts. Find I(t).
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9.6 Predator-Prey Systems

Definition 9.6.1. The equations

dR

dt
= kR− aRW dW

dt
= −rW + bRW

are known as the predator-prey equations, or the Lotka-Volterra equations. A
solution of this system of equations is a pair of functions R(t) and W (t) that
describe the populations of prey and predators as functions of time.

Example 1. Suppose that populations of rabbits and wolves are described
by the Lotka-Volterra equations with k = 0.08, a = 0.001, r = 0.02, and
b = 0.00002. The time t is measured in months.

(a) Find the constant solutions (called the equilibrium solutions) and interpret
the answer.
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(b) Use the system of differential equations to find an expression for dW/dR.

(c) Draw a direction field for the resulting differential equation in the RW -
plane. Then use that direction field to sketch some solution curves.
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(d) Suppose that, at some point in time, there are 1000 rabbits and 40 wolves.
Draw the corresponding solution curve and use it to describe the changes
in both population levels.

(e) Use part (d) to make sketches of R and W as functions of t.
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Chapter 10

Parametric Equations and Polar
Coordinates

10.1 Curves Defined by Parametric Equations

Definition 10.1.1. Suppose that x and y are both given as functions of a
third variable t (called a parameter) by the equations

x = f(t) y = g(t)

(called parametric equations). Each value of t determines a point (x, y), which
we can plot in a coordinate plane. As t varies, the point (x, y) = (f(t), g(t))
varies and traces out a curve C, which we call a parametric curve.

Example 1. Sketch and identify the curve defined by the parametric equations

x = t2 − 2t y = t+ 1.
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Definition 10.1.2. In general, the curve with parametric equations

x = f(t) y = g(t) a ≤ t ≤ b

has initial point (f(a), g(a)) and terminal point (f(b), g(b)).

Example 2. What curve is represented by the following parametric equations?

x = cos t y = sin t 0 ≤ t ≤ 2π.

Example 3. What curve is represented by the given parametric equations?

x = sin 2t y = cos 2t 0 ≤ t ≤ 2π.
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Example 4. Find parametric equations for the circle with center (h, k) and
radius r.

Example 5. Sketch the curve with parametric equations x = sin t, y = sin2 t.
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Example 6. Use a graphing device to graph the curve x = y4 − 3y2.

Example 7. The curve traced out by a point P on the circumference of a
circle as the circle rolls along a straight line is called a cycloid (see the figure).
If the circle has radius r and rolls along the x-axis and if one position of P is
the origin, find parametric equations for the cycloid.

 SECTION 10.1  Curves Defined by Parametric Equations 643

EXAMPLE 6  Use a graphing device to graph the curve x − y 4 2 3y 2.

SOLUTION If we let the parameter be t − y, then we have the equations

x − t 4 2 3t 2    y − t

Using these parametric equations to graph the curve, we obtain Figure 9. It would be 
possible to solve the given equation sx − y 4 2 3y 2 d for y as four functions of x and 
graph them individually, but the parametric equations provide a much easier method. n

In general, if we need to graph an equation of the form x − tsyd, we can use the 
parametric equations

x − tstd    y − t

Notice also that curves with equations y − f sxd (the ones we are most familiar with—
graphs of functions) can also be regarded as curves with parametric equations

x − t    y − f std

Graphing devices are particularly useful for sketching complicated parametric curves. 
For instance, the curves shown in Figures 10, 11, and 12 would be virtually impossible to  
produce by hand.
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FIGURE 10  
x − t 1 sin 5t 
y − t 1 sin 6t 

  FIGURE 11  
  x − sin 9t 
  y − sin 10 t 

FIGURE 12  
x − 2.3 cos  10t 1 cos 23t 
y − 2.3 sin 10t 2 sin 23t 

One of the most important uses of parametric curves is in computer-aided design 
(CAD). In the Laboratory Project after Section 10.2 we will investigate special paramet-
ric curves, called Bézier curves, that are used extensively in manufacturing, especially 
in the auto motive industry. These curves are also employed in specifying the shapes of 
letters and other symbols in laser printers and in documents viewed electronically.

The Cycloid

EXAMPLE 7  The curve traced out by a point P on the circumference of a circle as 
the circle rolls along a straight line is called a cycloid (see Figure 13). If the circle has 
radius r and rolls along the x-axis and if one position of P is the origin, find parametric 
equations for the cycloid.

P

P
P

TEC An animation in Module 10.1B 
shows how the cycloid is formed as 
the circle moves.
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Example 8. Investigate the family of curves with parametric equations

x = a+ cos t y = a tan t+ sin t.

What do these curves have in common? How does the shape change as a
increases?
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10.2 Calculus with Parametric Curves

Theorem 10.2.1. Suppose f and g are differentiable functions. Then for a
point on the parametric curve x = f(t), y = g(t), where y is also a differen-
tiable function of x, we have

dy

dx
=

dy

dt
dx

dt

if
dx

dt
6= 0.

Proof. Since y is a differentiable function of x, we have, by the Chain Rule,

dy

dt
=
dy

dx
· dx
dt
.

Then if dx
dt
6= 0 we can divide by it, so

dy

dx
=

dy

dt
dx

dt

.

Theorem 10.2.2. Suppose f and g are differentiable functions. Then for a
point on the parametric curve x = f(t), y = g(t), where y is also a differen-
tiable function of x, we have

d2y

dx2
=

d

dt

(
dy

dx

)
dx

dt

if
dx

dt
6= 0.

Proof. By the previous theorem,

d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dt

(
dy

dx

)
dx

dt

if
dx

dt
6= 0.
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Example 1. A curve C is defined by the parametric equations x = t2, y =
t3 − 3t.

(a) Show that C has two tangents at the point (3, 0) and find their equations

(b) Find the points on C where the tangent is horizontal or vertical.

(c) Determine where the curve is concave upward or downward.

(d) Sketch the curve.
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Example 2.

(a) Find the tangent to the cycloid x = r(θ − sin θ), y = r(1 − cos θ) at the
point where θ = π/3.

(b) At what points is the tangent horizontal? When is it vertical?
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Theorem 10.2.3. If a curve is traced out once by the parametric equations
x = f(t) and y = g(t), α ≤ t ≤ β, then the area under the curve is given by

A =

ˆ β

α

g(t)f ′(t) dt

[
or

ˆ α

β

g(t)f ′(t) dt

]
.

Proof. Since the area under the curve y = F (x) from a to b is A =
´ b
a
F (x) dx,

we can use the Substitution Rule for Definite Integrals with y = g(t) and
dx = f ′(t) dt to get

A =

ˆ b

a

y dx =

ˆ β

α

g(t)f ′(t) dt.

 SECTION 10.2  Calculus with Parametric Curves 651

Therefore the slope of the tangent is s3  and its equation is

y 2
r
2

− s3  Sx 2
r!

3
1

rs3 

2 D    or    s3  x 2 y − rS !

s3 2 2D
The tangent is sketched in Figure 2.

0

y

x2πr 4πr

(πr, 2r)(_πr, 2r) (3πr, 2r) (5πr, 2r)

π
3¨=

(b) The tangent is horizontal when dyydx − 0, which occurs when sin " − 0 and 
1 2 cos " ± 0, that is, " − s2n 2 1d!, n  an integer. The corresponding point on the 
cycloid is ss2n 2 1d!r, 2rd.

When " − 2n !, both dxyd" and dyyd" are 0. It appears from the graph that there  
are vertical tangents at those points. We can verify this by using l’Hospital’s Rule as 
follows:

lim
" l

 

2n !1
 
dy
dx

− lim
" l

 

2n !1
 

sin "
1 2 cos " −  lim

" l
 

2n !1
 
cos "
sin " − `

A similar computation shows that dyydx l 2` as " l 2n !2, so indeed there are 
vertical tangents when " − 2n !, that is, when x − 2n !r. n

Areas
We know that the area under a curve y − Fsxd from a to b is A − yb

a Fsxd dx, where 
Fsxd > 0. If the curve is traced out once by the parametric equations x − f std and 
y − tstd, # < t < $, then we can calculate an area formula by using the Sub stitution 
Rule for Definite Integrals as follows:

 A − yb

a
 y dx − y$

#
 tstd f 9std dt    For y#

$
 tstd f 9std dtG

EXAMPLE 3  Find the area under one arch of the cycloid

x − rs" 2 sin "d    y − rs1 2 cos "d

(See Figure 3.)

SOLUTION One arch of the cycloid is given by 0 < " < 2!. Using the Substitution 
Rule with y − rs1 2 cos "d and dx − rs1 2 cos "d d", we have

 A − y2!r

0
 y dx − y2!

0
 rs1 2 cos "d rs1 2 cos "d d"

 − r 2 y2!

0
 s1 2 cos "d2 d" − r 2 y2!

0
 s1 2 2 cos " 1 cos2"d d"

 − r 2 y2!

0
 f1 2 2 cos " 1 1

2 s1 1 cos 2"dg d"

 − r 2 f 3
2 " 2 2 sin " 1 1

4 sin 2"g0

2!

  − r 2 (3
2 ? 2!) − 3!r 2 n

FIGURE 2

The limits of integration for t are found  
as usual with the Substitution Rule. 
When x − a, t is either # or $. When 
x − b, t is the remaining value.

0

y

x2πr

FIGURE 3 

The result of Example 3 says that the 
area under one arch of the cycloid 
is three times the area of the rolling 
circle that generates the cycloid (see 
Example 10.1.7). Galileo guessed this 
result but it was first proved by the 
French mathematician Roberval and 
the Italian mathematician Torricelli.
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Example 3. Find the area under one arch of the cycloid

x = r(θ − sin θ) y = r(1− cos θ).

(See the figure.)
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Theorem 10.2.4. If a curve C is described by the parametric equations x =
f(t), y = g(t), α ≤ t ≤ β, where f ′ and g′ are continuous on [α, β] and C is
traversed exactly once as t increases from α to β, then the length of C is

L =

ˆ β

α

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Example 4. (a) Use the representation of the unit circle given by

x = cos t y = sin t 0 ≤ t ≤ 2π

to find its arc length.

(b) Use the representation of the unit circle given by

x = sin 2t y = cos 2t 0 ≤ t ≤ 2π

to find its arc length.

313



Calculus - 10.2 Calculus with Parametric Curves

Example 5. Find the length of one arch of the cycloid x = r(θ − sin θ),
y = r(1− cos θ).
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Theorem 10.2.5. Suppose a curve C is given by the parametric equations
x = f(t), y = g(t), α ≤ t ≤ β, where f ′, g′ are continuous, g′(t) ≥ 0, is
rotated about the x-axis. If C is traversed exactly once as t increases from α
to β, then the area of the resulting surface is given by

S =

ˆ β

α

2πy

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Example 6. Show that the surface area of a sphere of radius r is 4πr2.
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10.3 Polar Coordinates

658 CHAPTER 10  Parametric Equations and Polar Coordinates

A coordinate system represents a point in the plane by an ordered pair of numbers called 
coordinates. Usually we use Cartesian coordinates, which are directed distances from 
two perpendicular axes. Here we describe a coordinate system introduced by Newton, 
called the polar coordinate system, which is more convenient for many purposes.

We choose a point in the plane that is called the pole (or origin) and is labeled O. Then 
we draw a ray (half-line) starting at O called the polar axis. This axis is usually drawn 
hor izontally to the right and corresponds to the positive x-axis in Cartesian coordinates.

If P is any other point in the plane, let r be the distance from O to P and let ! be the 
angle (usually measured in radians) between the polar axis and the line OP as in Fig- 
 ure 1. Then the point P is represented by the ordered pair sr, !d and r, ! are called polar 
coordinates of P. We use the convention that an angle is positive if measured in the 
counterclockwise direction from the polar axis and negative in the clockwise direction. 
If P − O, then r − 0 and we agree that s0, !d represents the pole for any value of !.

We extend the meaning of polar coordinates sr, !d to the case in which r is negative by 
agreeing that, as in Figure 2, the points s2r, !d and sr, !d lie on the same line through O 
and at the same distance | r | from O, but on opposite sides of O. If r . 0, the point sr, !d 
lies in the same quadrant as !; if r , 0, it lies in the quadrant on the opposite side of the 
pole. Notice that s2r, !d represents the same point as sr, ! 1 "d.

EXAMPLE 1  Plot the points whose polar coordinates are given. 
(a) s1, 5"y4d      (b) s2, 3"d      (c) s2, 22"y3d      (d) s23, 3"y4d

FIGURE 1 

xO ¨

r

polar axis

P(r, ̈ )

FIGURE 2 

(_r, ̈ )

O
¨

(r, ̈ )

¨+π

where 0 < t < 1. Notice that when t − 0 we have sx, yd − sx0, y0 d and when t − 1 we have 
sx, yd − sx3, y3d, so the curve starts at P0 and ends at P3.

1.  Graph the Bézier curve with control points P0s4, 1d, P1s28, 48d, P2s50, 42d, and P3s40, 5d. 
Then, on the same screen, graph the line segments P0P1, P1P2, and P2P3. (Exercise 10.1.31 
shows how to do this.) Notice that the middle control points P1 and P2 don’t lie on the  
curve; the curve starts at P0, heads toward P1 and P2 without reaching them, and ends at P3.

2.  From the graph in Problem 1, it appears that the tangent at P0 passes through P1 and the  
tangent at P3 passes through P2. Prove it.

3.  Try to produce a Bézier curve with a loop by changing the second control point in  
Problem 1.

4.  Some laser printers use Bézier curves to represent letters and other symbols. Experiment with 
control points until you find a Bézier curve that gives a reasonable representation of the  
letter C.

5.  More complicated shapes can be represented by piecing together two or more Bézier  
curves. Suppose the first Bézier curve has control points P0, P1, P2, P3 and the second one  
has control points P3, P4, P5, P6. If we want these two pieces to join together smoothly, then 
the tangents at P3 should match and so the points P2, P3, and P4 all have to lie on this com- 
mon tangent line. Using this principle, find control points for a pair of Bézier curves that 
represent the letter S.
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Definition 10.3.1. The polar coordinate system consists of a
point called the pole (or origin) O, a ray starting at the pole
called the polar axis, and other points P represented by (r, θ)
where r is the distance from O to P and θ is the angle (usually
measured in radians) between the polar axis and the line OP as
in the figure. r, θ are called polar coordinates of P .

Example 1. Plot the points whose polar coordinates are given.

(a) (1, 5π/4)

(b) (2, 3π)

(c) (2,−2π/3)

(d) (−3, 3π/4)
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Theorem 10.3.1. If the point P has Cartesian coordinates (x, y) and polar
coordinates (r, θ), then

x = r cos θ y = r sin θ

and
r2 = x2 + y2 tan θ =

y

x
.

Example 2. Convert the point (2, π/3) from polar to Cartesian coordinates.

Example 3. Represent the point with Cartesian coordinates (1,−1) in terms
of polar coordinates.

Example 4. What curve is represented by the polar equation r = 2?
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Example 5. Sketch the polar curve θ = 1.

Example 6. (a) Sketch the curve with polar equation r = 2 cos θ.

(b) Find a Cartesian equation for this curve.
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Example 7. Sketch the curve r = 1 + sin θ.

Example 8. Sketch the curve r = cos 2θ.
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Theorem 10.3.2. The slope of the tangent line to a polar curve r = f(θ) is

dy

dx
=

dr

dθ
sin θ + r cos θ

dr

dθ
cos θ − r sin θ

Proof. Regard θ as a parameter and write

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ.

Then by Theorem 10.2.1 and the product rule, we have

dy

dx
=

dy

dθ
dx

dθ

=

dr

dθ
sin θ + r cos θ

dr

dθ
cos θ − r sin θ

.

Example 9.

(a) For the cardioid r = 1 + sin θ of Example 7, find the slope of the tangent
line when θ = π/3.
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(b) Find the points on the cardioid where the tangent line is horizontal or
vertical.

Example 10. Graph the curve r = sin(8θ/5).
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Example 11. Investigate the family of polar curves given by r = 1 + c sin θ.
How does the shape change as c changes? (These curves are called limaçons,
after a French word for snail, because of the shape of the curves for certain
values of c.)
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10.4 Areas and Lengths in Polar Coordinates

 SECTION 10.4  Areas and Lengths in Polar Coordinates 669

In this section we develop the formula for the area of a region whose boundary is given 
by a polar equation. We need to use the formula for the area of a sector of a circle:

A − 1
2 r 2!

where, as in Figure 1, r is the radius and ! is the radian measure of the central angle. 
Formula 1 follows from the fact that the area of a sector is proportional to its central 
angle: A − s!y2"d"r 2 − 1

2 r 2! . (See also Exercise 7.3.35.)
Let 5 be the region, illustrated in Figure 2, bounded by the polar curve r − f s!d 

and by the rays ! − a and ! − b, where f  is a positive continuous function and where 
0 , b 2 a < 2". We divide the interval fa, bg into subintervals with endpoints !0, !1, 
!2, . . . , !n  and equal width D!. The rays ! − !i then divide 5 into n  smaller regions 
with central angle D! − !i 2 !i21. If we choose !i* in the i th subinterval f!i21, !ig, 
then the area DAi of the ith region is approximated by the area of the sector of a circle 
with central angle D! and radius f s!i*d. (See Figure 3.)

Thus from Formula 1 we have

DAi < 1
2 f f s!i*dg2 D!

and so an approximation to the total area A of 5 is

A < o
n

i−1
 12 f f s!i*dg2 D!

It appears from Figure 3 that the approximation in (2) improves as n l `. But the sums 
in (2) are Riemann sums for the function ts!d − 1

2 f f s!dg2, so

lim
n l `

o
n

i−1
 12 f f s!i*dg2 D! − yb

a
 12 f f s!dg2 d!

1
¨

r

FIGURE 1 

2

O

¨=b

¨=a

¨=¨i-1

¨=¨i

Î¨

f(̈ i*)

FIGURE 3 

O

¨=b
b ¨=a

r=f(¨)

a

!

FIGURE 2 

  Investigate how the graph changes as the number a changes. In particular, you should  
identify the transitional values of a for which the basic shape of the curve changes.

4.  The astronomer Giovanni Cassini (1625–1712) studied the family of curves with polar  
equations

r 4 2 2c2r 2 cos 2! 1 c 4 2 a4 − 0 

  where a and c are positive real numbers. These curves are called the ovals of Cassini  
even though they are oval shaped only for certain values of a and c. (Cassini thought that 
these curves might represent planetary orbits better than Kepler’s ellipses.) Investigate the 
variety of shapes that these curves may have. In particular, how are a and c related to each 
other when the curve splits into two parts?
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Theorem 10.4.1. Let R be the region, illustrated in the figure,
bounded by the polar curve r = f(θ) and by the rays θ = a
and θ = b, where f is a positive continuous function and where
0 < b− a ≤ 2π. The area A of the polar region R is

A =

ˆ b

a

1

2
r2 dθ.

Example 1. Find the area enclosed by one loop of the four-leaved rose r =
cos 2θ.
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Example 2. Find the area of the region that lies inside the circle r = 3 sin θ
and outside the cardioid r = 1 + sin θ.

Example 3. Find all points of intersection of the curves r = cos 2θ and r = 1
2
.
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Theorem 10.4.2. The length of a curve with polar equation r = f(θ), a ≤
θ ≤ b, is

L =

ˆ b

a

√
r2 +

(
dr

dθ

)2

dθ.

Proof. Regard θ as a parameter and write

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ.

Then by the product rule, we have

dy

dθ
=
dr

dθ
sin θ + r cos θ

dx

dθ
=
dr

dθ
cos θ − r sin θ.

Since cos2 θ + sin2 θ = 1,(
dx

dθ

)2

+

(
dy

dθ

)2

=

(
dr

dθ

)2

cos2 θ − 2r
dr

dθ
cos θ sin θ + r2 sin2 θ

+

(
dr

dθ

)2

sin2 θ + 2r
dr

dθ
sin θ cos θ + r2 cos2 θ

=

(
dr

dθ

)2

+ r2,

so

L =

ˆ b

a

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ =

ˆ b

a

√
r2 +

(
dr

dθ

)2

dθ.
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Example 4. Find the length of the cardioid r = 1 + sin θ.
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10.5 Conic Sections

Definition 10.5.1. Parabolas, ellipses, and hyperbolas are called conic sec-
tions, or conics, because they result from intersecting a cone with a plane as
shown in the figure.

674 Chapter 10  Parametric Equations and Polar Coordinates

In this section we give geometric definitions of parabolas, ellipses, and hyperbolas and 
derive their standard equations. They are called conic sections, or conics, because they 
result from intersecting a cone with a plane as shown in Figure 1.

ellipse hyperbolaparabola

parabolas
A parabola is the set of points in a plane that are equidistant from a fixed point F (called 
the focus) and a fixed line (called the directrix). This definition is illustrated by Figure 2. 
Notice that the point halfway between the focus and the directrix lies on the parabola; 
it is called the vertex. The line through the focus perpendicular to the directrix is called 
the axis of the parabola.

In the 16th century Galileo showed that the path of a projectile that is shot into the 
air at an angle to the ground is a parabola. Since then, parabolic shapes have been used 
in designing automobile headlights, reflecting telescopes, and suspension bridges. (See 
Problem 22 on page 273 for the reflection property of parabolas that makes them so 
useful.)

We obtain a particularly simple equation for a parabola if we place its vertex at the 
origin O and its directrix parallel to the x-axis as in Figure 3. If the focus is the point 
s0, pd, then the directrix has the equation y − 2p. If Psx, yd is any point on the parabola, 

axis

F
focus

parabola

vertex directrix

FIGURE 2� 

51–54� Use a calculator to find the length of the curve correct to 
four decimal places. If necessary, graph the curve to determine the 
parameter interval.

51.  One loop of the curve r − cos 2�

52.  r − tan �,  �y6 < � < �y3

53.  r − sins6 sin �d

54�.  r − sins�y4d

55.  (a)  Use Formula 10.2.6 to show that the area of the surface
generated by rotating the polar curve

r − f s�d    a < � < b

 (where f 9 is continuous and 0 < a , b < �) about the 
polar axis is

S − yb

a
 2�r sin � Îr 2 1 S dr

d�
D2

 d�

(b)  Use the formula in part (a) to find the surface area gener-
ated by rotating the lemniscate r 2 − cos 2� about the
polar axis.

56.  (a)  Find a formula for the area of the surface generated by
rotating the polar curve r − f s�d, a < � < b (where f 9 is 
continuous and 0 < a , b < �), about the line � − �y2.

(b)  Find the surface area generated by rotating the lemniscate
r 2 − cos 2� about the line � − �y2.

FIGURE 1�  
Conics
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674 CHAPTER 10  Parametric Equations and Polar Coordinates

In this section we give geometric definitions of parabolas, ellipses, and hyperbolas and 
derive their standard equations. They are called conic sections, or conics, because they 
result from intersecting a cone with a plane as shown in Figure 1.

ellipse hyperbolaparabola

Parabolas
A parabola is the set of points in a plane that are equidistant from a fixed point F (called 
the focus) and a fixed line (called the directrix). This definition is illustrated by Figure 2. 
Notice that the point halfway between the focus and the directrix lies on the parabola; 
it is called the vertex. The line through the focus perpendicular to the directrix is called 
the axis of the parabola.

In the 16th century Galileo showed that the path of a projectile that is shot into the 
air at an angle to the ground is a parabola. Since then, parabolic shapes have been used 
in designing automobile headlights, reflecting telescopes, and suspension bridges. (See 
Problem 22 on page 273 for the reflection property of parabolas that makes them so 
useful.)

We obtain a particularly simple equation for a parabola if we place its vertex at the 
origin O and its directrix parallel to the x-axis as in Figure 3. If the focus is the point 
s0, p d, then the directrix has the equation y − 2p . If Psx, yd is any point on the parabola, 

axis

F
focus

parabola

vertex directrix

FIGURE 2 

51–54 Use a calculator to find the length of the curve correct to 
four decimal places. If necessary, graph the curve to determine the 
parameter interval.

 51.  One loop of the curve r − cos 2!

 52.  r − tan !,  "y6 < ! < "y3

 53.  r − sins6 sin !d

 54.  r − sins!y4d

 55.  (a)  Use Formula 10.2.6 to show that the area of the surface 
generated by rotating the polar curve

r − f s!d    a < ! < b

   (where f 9 is continuous and 0 < a , b < ") about the 
polar axis is

S − yb

a
 2"r sin ! Îr 2 1 S dr

d!D2

 d!

 (b)  Use the formula in part (a) to find the surface area gener-
ated by rotating the lemniscate r 2 − cos 2! about the  
polar axis.

 56.  (a)  Find a formula for the area of the surface generated by 
rotating the polar curve r − f s!d, a < ! < b (where f 9 is 
continuous and 0 < a , b < "), about the line ! − "y2.

 (b)  Find the surface area generated by rotating the lemniscate 
r 2 − cos 2! about the line ! − "y2.

FIGURE 1  
Conics
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Definition 10.5.2. A parabola is the set of points in a plane
that are equidistant from a fixed point F (called the focus) and
a fixed line (called the directrix). This definition is illustrated
by the figure. Notice that the point halfway between the focus
and the directrix lies on the parabola; it is called the vertex. The
line through the focus perpendicular to the directrix is called the
axis of the parabola.

Theorem 10.5.1. An equation of the parabola with focus (0, p) and directrix
y = −p is

x2 = 4py.

Theorem 10.5.2. An equation of the parabola with focus (p, 0) and directrix
x = −p is

y2 = 4px.
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Example 1. Find the focus and directrix of the parabola y2 + 10x = 0 and
sketch the graph.

676 CHAPTER 10  Parametric Equations and Polar Coordinates

Ellipses
An ellipse is the set of points in a plane the sum of whose distances from two fixed points 
F1 and F2 is a constant (see Figure 6). These two fixed points are called the foci (plural 
of focus). One of Kepler’s laws is that the orbits of the planets in the solar system are 
ellipses with the sun at one focus.

F¡ F™

P

      

F¡(_c, 0) F™(c, 0)0 x

y
P(x, y)

FIGURE 6 FIGURE 7

In order to obtain the simplest equation for an ellipse, we place the foci on the x-axis 
at the points s2c, 0d and sc, 0d as in Figure 7 so that the origin is halfway between the 
foci. Let the sum of the distances from a point on the ellipse to the foci be 2a . 0. Then 
Psx, yd is a point on the ellipse when

| PF1 | 1 | PF2 | − 2a

that is, ssx 1 cd2 1 y 2 1 ssx 2 cd2 1 y 2 − 2a

or ssx 2 cd2 1 y 2 − 2a 2 ssx 1 cd2 1 y 2 

Squaring both sides, we have

x 2 2 2cx 1 c 2 1 y 2 − 4a2 2 4assx 1 cd2 1 y 2 1 x 2 1 2cx 1 c 2 1 y 2

which simplifies to assx 1 cd2 1 y 2 − a2 1 cx

We square again:

 a2sx 2 1 2cx 1 c 2 1 y 2 d − a4 1 2a2cx 1 c 2x 2

which becomes  sa2 2 c 2 dx 2 1 a2 y 2 − a2sa2 2 c 2 d

From triangle F1F2P in Figure 7 we can see that 2c , 2a, so c , a and therefore 
a2 2 c 2 . 0. For convenience, let b 2 − a2 2 c 2. Then the equation of the ellipse 
becomes b 2x 2 1 a2 y 2 − a2b 2 or, if both sides are divided by a2b 2, 

x 2

a2 1
 y 2

b 2 − 1

Since b 2 − a2 2 c 2 , a2, it follows that b , a. The x-intercepts are found by setting 
y − 0. Then x 2ya2 − 1, or x 2 − a2, so x − 6a. The corresponding points sa, 0d and 
s2a, 0d are called the vertices of the ellipse and the line segment joining the vertices is 
called the major axis. To find the y-intercepts we set x − 0 and obtain y 2 − b 2, so 
y − 6b. The line segment joining s0, bd and s0, 2bd is the minor axis. Equation 3 is 
unchanged if x is replaced by 2x or y is replaced by 2y, so the ellipse is symmetric  
about both axes. Notice that if the foci coincide, then c − 0, so a − b and the ellipse 
becomes a circle with radius r − a − b.

We summarize this discussion as follows (see also Figure 8).

3

FIGURE 8 
x 2

a2 1
 y 2

b 2 − 1, a > b

(c, 0)0 x

y

ab
c

(0, b)

(_c, 0)

(0, _b)

(a, 0)
(_a, 0)
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Definition 10.5.3. An ellipse is the set of points in a plane the
sum of whose distances from two fixed points F1 and F2 is a
constant (see the figure). These two fixed points are called the
foci (plural of focus).

Definition 10.5.4. If (−c, 0) and (c, 0) are the foci of an ellipse, the sum of
the distances from a point on the ellipse to the foci are 2a > 0, and b2 = a2−c2,
then the points (a, 0) and (−a, 0) are called the vertices of ellipse and the line
segment joining the vertices is called the major axis. The line segment joining
(0, b) and (0,−b) is the minor axis.

Theorem 10.5.3. The ellipse

x2

a2
+
y2

b2
= 1 a ≥ b > 0

has foci (±c, 0), where c2 = a2 − b2, and vertices (±a, 0).

Theorem 10.5.4. The ellipse

x2

b2
+
y2

a2
= 1 a ≥ b > 0

has foci (0,±c), where c2 = a2 − b2, and vertices (0,±a).
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Example 2. Sketch the graph of 9x2 + 16y2 = 144 and locate the foci.

Example 3. Find an equation of the ellipse with foci (0,±2) and vertices
(0,±3).
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4   The ellipse
x 2

a2 1
 y 2

b2 − 1    a > b . 0

has foci s6c, 0d, where c 2 − a2 2 b2, and vertices s6a, 0d.

If the foci of an ellipse are located on the y-axis at s0, 6cd, then we can find its equa-
tion by interchanging x and y in (4). (See Figure 9.)

5   The ellipse
x 2

b2 1
 y 2

a2 − 1    a > b . 0

has foci s0, 6cd, where c 2 − a2 2 b2, and vertices s0, 6ad.

EXAMPLE 2  Sketch the graph of 9x 2 1 16y 2 − 144 and locate the foci.

SOLUTION Divide both sides of the equation by 144:

x 2

16
1

 y 2

9
− 1

The equation is now in the standard form for an ellipse, so we have a2 − 16, b2 − 9,  
a − 4, and b − 3. The x-intercepts are 64 and the y-intercepts are 63. Also, 
c 2 − a2 2 b2 − 7, so c − s7  and the foci are s6s7 , 0d. The graph is sketched in 
Figure 10. n

EXAMPLE 3  Find an equation of the ellipse with foci s0, 62d and vertices s0, 63d.

SOLUTION Using the notation of (5), we have c − 2 and a − 3. Then we obtain 
b2 − a2 2 c 2 − 9 2 4 − 5, so an equation of the ellipse is

x 2

5
1

 y 2

9
− 1

Another way of writing the equation is 9x 2 1 5y 2 − 45. n

Like parabolas, ellipses have an interesting reflection property that has practical con-
se quences. If a source of light or sound is placed at one focus of a surface with elliptical 
cross-sections, then all the light or sound is reflected off the surface to the other focus 
(see Exercise 65). This principle is used in lithotripsy, a treatment for kidney stones. 
A reflector with elliptical cross-section is placed in such a way that the kidney stone is 
at one focus. High-intensity sound waves generated at the other focus are reflected to 
the stone and destroy it without damaging surrounding tissue. The patient is spared the 
trauma of surgery and recovers within a few days.

Hyperbolas
A hyperbola is the set of all points in a plane the difference of whose distances from two 
fixed points F1 and F2 (the foci) is a constant. This definition is illustrated in Figure 11.

Hyperbolas occur frequently as graphs of equations in chemistry, physics, biology, 
and economics (Boyle’s Law, Ohm’s Law, supply and demand curves). A particularly 

FIGURE 9 
x 2

b2 1
 y 2

a2 − 1, a > b

0 x

y
(0, a)

(0, c)

(b, 0)

(0, _c)

(_b, 0)

(0, _a)

FIGURE 10 
9x 2 1 16y 2 − 144

0 x

y

(0, 3)

{œ„7, 0}

(4, 0)(_4, 0)

(0, _3)

{_œ„7, 0}

F™(c, 0)F¡(_c, 0) 0 x

y

P(x, y)

FIGURE 11  
P is on the hyperbola when
| PF1 | 2 | PF2 | − 62a.
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Definition 10.5.5. A hyperbola is the set of all points in a plane
the difference of whose distances from two fixed points F1 and
F2 (the foci) is a constant. This definition is illustrated in the
figure.

Theorem 10.5.5. The hyperbola

x2

a2
− y2

b2
= 1

has foci (±c, 0), where c2 = a2 + b2, vertices (±a, 0), and asymptotes y =
±(b/a)x.

Theorem 10.5.6. The hyperbola

y2

a2
− x2

b2
= 1

has foci (0,±c), where c2 = a2 + b2, vertices (0,±a), and asymptotes y =
±(a/b)x.

Example 4. Find the foci and asymptotes of the hyperbola 9x2− 16y2 = 144
and sketch its graph.
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Example 5. Find the foci and equation of the hyperbola with vertices (0,±1)
and asymptote y = 2x.

Example 6. Find an equation of the ellipse with foci (2,−2), (4,−2), and
vertices (1,−2), (5,−2).

Example 7. Sketch the conic 9x2−4y2−72x+ 8y+ 176 = 0 and find its foci.
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10.6 Conic Sections in Polar Coordinates
 SECTION 10.6  Conic Sections in Polar Coordinates 683

polar axis. If the point P has polar coordinates sr, !d, we see from Figure 1 that

| PF | − r      | Pl | − d 2 r cos !

Thus the condition | PF |y| Pl | − e, or | PF | − e | Pl |, becomes

r − esd 2 r cos !d

If we square both sides of this polar equation and convert to rectangular coordinates,  
we get

x 2 1 y 2 − e 2sd 2 xd2 − e 2sd 2 2 2dx 1 x 2 d

or s1 2 e 2 dx 2 1 2de 2x 1 y 2 − e 2d 2

After completing the square, we have

Sx 1
e 2d

1 2 e 2D2

1
 y 2

1 2 e 2 −
e 2d 2

s1 2 e 2 d2

If e , 1, we recognize Equation 3 as the equation of an ellipse. In fact, it is of the form

sx 2 hd2

a 2 1
 y 2

b 2 − 1

where

h − 2
e 2d

1 2 e 2       a 2 −
e 2d 2

s1 2 e 2 d2       b 2 −
e 2d 2

1 2 e 2

In Section 10.5 we found that the foci of an ellipse are at a distance c from the center, 
where

c 2 − a 2 2 b 2 −
e 4d 2

s1 2 e 2 d2

This shows that c −
e 2d

1 2 e 2 − 2h

and con!rms that the focus as de!ned in Theorem 1 means the same as the focus de!ned 
in Section 10.5. It also follows from Equations 4 and 5 that the eccentricity is given by

e −
c
a

If e . 1, then 1 2 e 2 , 0 and we see that Equation 3 represents a hyperbola. Just as we 
did before, we could rewrite Equation 3 in the form

sx 2 hd2

a 2 2
 y 2

b 2 − 1

and see that

 e −
c
a

    where c 2 − a 2 1 b 2 Q

y

xF

l (directrix)

x=d

r cos ¨

P

¨
r

d

C

FIGURE 1 

2

3

4

5
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Theorem 10.6.1. Let F be a fixed point (called the focus) and
l be a fixed line (called the directrix) in a plane. Let e be a fixed
positive number (called the eccentricity). The set of all points P
in the plane such that

|PF |
|Pl|

= e

(that is, the ratio of the distance from F to the distance from l
is the constant e) is a conic section. The conic is

(a) an ellipse if e < 1

(b) a parabola if e = 1

(c) a hyperbola if e > 1

Theorem 10.6.2. A polar equation of the form

r =
ed

1± e cos θ
or r =

ed

1± e sin θ

represents a conic section with eccentricity e. The conic is an ellipse if e < 1,
a parabola if e = 1, or a hyperbola if e > 1.

684 CHAPTER 10  Parametric Equations and Polar Coordinates

By solving Equation 2 for r, we see that the polar equation of the conic shown in Fig-
ure 1 can be written as

r −
ed

1 1 e cos !

If the directrix is chosen to be to the left of the focus as x − 2d, or if the directrix is 
cho sen to be parallel to the polar axis as y − 6d, then the polar equation of the conic is 
given by the following theorem, which is illustrated by Figure 2. (See Exercises 21–23.)

(a) r= ed
1+e cos ¨

y

xF

x=d
directrix

(b) r= ed
1-e cos ¨

xF

y

x=_d
directrix

(c) r= ed
1+e sin ¨

y

F x

y=d         directrix

(d) r= ed
1-e sin ¨

x

y

y=_d         directrix

F

6   Theorem A polar equation of the form

r −
ed

1 6 e cos !
    or    r −

ed
1 6 e sin !

represents a conic section with eccentricity e. The conic is an ellipse if e , 1,  
a parabola if e − 1, or a hyperbola if e . 1.

EXAMPLE 1  Find a polar equation for a parabola that has its focus at the origin and 
whose directrix is the line y − 26.

SOLUTION Using Theorem 6 with e − 1 and d − 6, and using part (d) of Figure 2, we 
see that the equation of the parabola is

 r −
6

1 2 sin !
 Q

EXAMPLE 2  A conic is given by the polar equation

r −
10

3 2 2 cos !

Find the eccentricity, identify the conic, locate the directrix, and sketch the conic.

SOLUTION Dividing numerator and denominator by 3, we write the equation as

r −
10
3

1 2 2
3 cos !

FIGURE 2  
Polar equations of conics
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Example 1. Find a polar equation for a parabola that has its focus at the
origin and whose directrix is the line y = −6.
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Example 2. A conic is given by the polar equation

r =
10

3− 2 cos θ
.

Find the eccentricity, identify the conic, locate the directrix, and sketch the
conic.

Example 3. Sketch the conic r =
12

2 + 4 sin θ
.
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Example 4. If the ellipse of Example 2 is rotated through an angle π/4 about
the origin, find a polar equation and graph the resulting ellipse.

Theorem 10.6.3. The polar equation of an ellipse with focus at the origin,
semimajor axis a, eccentricity e, and directrix x = d can be written in the form

r =
a(1− e2)

1 + e cos θ
.

 SECTION 10.6  Conic Sections in Polar Coordinates 687

7   The polar equation of an ellipse with focus at the origin, semimajor axis a, 
eccentricity e, and directrix x − d can be written in the form

r −
as1 2 e2d

1 1 e cos !

The positions of a planet that are closest to and farthest from the sun are called its 
peri helion and aphelion, respectively, and correspond to the vertices of the ellipse 
(see Figure 7). The distances from the sun to the perihelion and aphelion are called the  
perihelion distance and aphelion distance, respectively. In Figure 1 on page 683 the 
sun is at the focus F, so at perihelion we have ! − 0 and, from Equation 7,

r −
as1 2 e2d

1 1 e cos 0
−

as1 2 eds1 1 ed
1 1 e

− as1 2 ed

Similarly, at aphelion ! − " and r − as1 1 ed.

8   The perihelion distance from a planet to the sun is as1 2 ed and the aphelion 
distance is as1 1 ed.

EXAMPLE 5  
(a) Find an approximate polar equation for the elliptical orbit of the earth around the 
sun (at one focus) given that the eccentricity is about 0.017 and the length of the major 
axis is about 2.99 3 108 km.
(b) Find the distance from the earth to the sun at perihelion and at aphelion.

SOLUTION
(a) The length of the major axis is 2a − 2.99 3 108, so a − 1.495 3 108. We are 
given that e − 0.017 and so, from Equation 7, an equation of the earth’s orbit around 
the sun is

r −
as1 2 e2d

1 1 e cos !
−

s1.495 3 108d f1 2 s0.017d2g
1 1 0.017 cos !

or, approximately,

r −
1.49 3 108

1 1 0.017 cos !

(b) From (8), the perihelion distance from the earth to the sun is

as1 2 ed < s1.495 3 108ds1 2 0.017d < 1.47 3 108 km

and the aphelion distance is

 as1 1 ed < s1.495 3 108ds1 1 0.017d < 1.52 3 108 km n

FIGURE 7 

perihelionaphelion
sun

planet

¨
r
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Definition 10.6.1. The positions of a planet that are closest
to and farthest from the sun are called its perihelion and aphe-
lion, respectively, and correspond to the vertices of the ellipse
(see the figure). The distances from the sun to the perihelion
and aphelion are called the perihelion distance and aphelion dis-
tance, respectively.

Theorem 10.6.4. The perihelion distance from a planet to the
sun is a(1− e) and the aphelion distance is a(1 + e).

Proof. If the sun is at the focus F , at perihelion we have θ = 0, so

r =
a(1− e2)

1 + e cos 0
=
a(1− e)(1 + e)

1 + e
= a(1− e).

Similarly, at aphelion θ = π and r = a(1 + e).
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Example 5. (a) Find an approximate polar equation for the elliptical orbit
of the earth around the sun (at one focus) given that the eccentricity is
about 0.017 and the length of the major axis is about 2.99× 108 km.

(b) Find the distance from the earth to the sun at perihelion and at aphelion.
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Chapter 11

Infinite Sequences and Series

11.1 Sequences

Definition 11.1.1. A sequence can be thought of as a list of numbers written
in a definite order:

a1, a2, a3, a4, . . . , an, . . . .

The number a1 is called the first term, a2 is the second term, and in general
an is the nth term.
A sequence can also be defined as a function whose domain is the set of positive
integers. However, we usually write an instead of the function notation f(n)
for the value of the function at the number n.
The sequence {a1, a2, a3, . . .} is also denoted by

{an} or {an}∞n=1.

Example 1. Some sequences can be defined by giving a formula for the nth
term. In the following examples we give three descriptions of the sequence:
one by using the preceding notation, another by using the defining formula,
and a third by writing out the terms of the sequence. Notice that n doesn’t
have to start at 1.
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(a)

{
n

n+ 1

}∞
n=1

an =
n

n+ 1

{
1

2
,
2

3
,
3

4
,
4

5
, . . . ,

n

n+ 1
, . . .

}
(b)

{
(−1)n(n+ 1)

3n

}
an =

(−1)n(n+ 1)

3n

{
−2

3
,
3

9
,− 4

27
,

5

81
, . . . ,

(−1)n(n+ 1)

3n
, . . .

}
(c)

{√
n− 3

}∞
n=3

an =
√
n− 3, n ≥ 3

{
0, 1,
√

2,
√

3, . . . ,
√
n− 3, . . .

}
(d)

{
cos

nπ

6

}∞
n=0

an = cos
nπ

6
, n ≥ 0

{
1,

√
3

2
,
1

2
, 0, . . . , cos

nπ

6
, . . .

}

Example 2. Find a formula for the general term an of the sequence{
3

5
,− 4

25
,

5

125
,− 6

625
,

7

3125
, . . .

}
assuming that the pattern of the first few terms continues.
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Example 3. Here are some sequences that don’t have a simple defining equa-
tion.

(a) The sequence {pn}, where pn is the population of the world as of January
1 in the year n.

(b) If we let an be the digit in the nth decimal place of the number e, then
{an} is a well-defined sequence whose first few terms are

{7, 1, 8, 2, 8, 1, 8, 2, 4, 5, . . .}.

(c) The Fibonacci sequence {fn} is defined recursively by the conditions

f1 = 1 f2 = 1 fn = fn−1 + fn−2 n ≥ 3.

Each term is the sum of the two preceding terms. The first few terms are

{1, 1, 2, 3, 5, 8, 13, 21, . . .}

This sequence arose when the 13th-century Italian mathematician known
as Fibonacci solved a problem concerning the breeding of rabbits.

Definition 11.1.2. A sequence {an} has the limit L and we write

lim
n→∞

an = L or an → L as n→∞

if we can make the terms an as close to L as we like by taking n sufficiently
large. If limn→∞ exists, we say the sequence converges (or is convergent).
Otherwise, we say the sequence diverges (or is divergent).

Definition 11.1.3 (Precise Definition of the Limit of a Sequence). A sequence
{an} has the limit L and we write

lim
n→∞

an = L or an → L as n→∞

if for every ε > 0 there is a corresponding integer N such that

if n > N then |an − L| < ε.

Theorem 11.1.1. If limx→∞ f(x) = L and f(n) = an when n is an integer,
then limn→∞ an = L.

Definition 11.1.4. limn→∞ an =∞ means that for every positive number M
there is an integer N such that

if n > N then an > M.
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Theorem 11.1.2 (Limit Laws for Sequences). If {an} and {bn} are convergent
sequences and c is a constant, then

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn

lim
n→∞

(an − bn) = lim
n→∞

an − lim
n→∞

bn

lim
n→∞

can = c lim
n→∞

an lim
n→∞

c = c

lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn

lim
n→∞

an
bn

=
lim
n→∞

an

lim
n→∞

bn
if lim

n→∞
bn 6= 0

lim
n→∞

apn =

[
lim
n→∞

an

]p
if p > 0 and an > 0.

Theorem 11.1.3 (Squeeze Theorem for Sequences). If an ≤ bn ≤ cn for
n ≥ n0 and lim

n→∞
an = lim

n→∞
cn = L, then lim

n→∞
bn = L.

Theorem 11.1.4. If lim
n→∞

|an| = 0, then lim
n→∞

an = 0.

Proof. Since limn→∞ |an| = 0,

lim
n→∞

−|an| = 0 = − lim
n→∞

|an| = 0.

But −|an| ≤ an ≤ |an| for all n, so by the squeeze theorem for sequences,
limn→∞ an = 0.

Example 4. Find lim
n→∞

n

n+ 1
.
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Example 5. Is the sequence an =
n√

10 + n
convergent or divergent?

Example 6. Calculate lim
n→∞

lnn

n
.

Example 7. Determine whether the sequence an = (−1)n is convergent or
divergent.
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Example 8. Evaluate lim
n→∞

(−1)n

n
if it exists.

Theorem 11.1.5. If lim
n→∞

an = L and the function f is continuous at L, then

lim
n→∞

f(an) = f(L).

Proof. Choose a particular n, say n0. By the definition of a limit of a sequence,
given ε1 > 0 there exists an integer N , such that |an0 − L| < ε1 for n0 > N .
Similarly, by the definition of continuity, the limit of f exists at L, so for ε2 > 0
there exists ε1 > 0 such that if |an0 − L| < ε1 then |f(an0)− f(L)| < ε2. This
is true for arbitrary ε2 > 0, so limn→∞ f(an) = f(L).

Example 9. Find lim
n→∞

sin(π/n).
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Example 10. Discuss the convergence of the sequence an = n!/nn, where
n! = 1 · 2 · 3 · · · · · n.

Example 11. For what values of r is the sequence {rn} convergent?
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Definition 11.1.5. A sequence {an} is called increasing if an < an+1 for all
n ≥ 1, that is, a1 < a2 < a3 < · · · . It is called decreasing if an > an+1 for all
n ≥ 1. A sequence is monotonic if it is either increasing or decreasing.

Example 12. Is the sequence

{
3

n+ 5

}
increasing or decreasing?

Example 13. Show that the sequence an =
n

n2 + 1
is decreasing.
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Definition 11.1.6. A sequence {an} is bounded above if there is a number
M such that

an ≤M for all n ≥ 1.

It is bounded below if there is a number m such that

m ≤ an for all n ≥ 1.

If it is bounded above and below, then {an} is a bounded sequence.

Theorem 11.1.6 (Monotonic Sequence theorem). Every bounded, monotonic
sequence is convergent.

Example 14. Investigate the sequence {an} defined by the recurrence relation

a1 = 2 an+1 =
1

2
(an + 6) for n = 1, 2, 3, . . . .
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11.2 Series

Definition 11.2.1. In general, if we try to add the terms of an infinite se-
quence {an}∞n=1 we get an expression of the form

a1 + a2 + a3 + · · ·+ an + · · ·

which is called an infnite series (or just a series) and is denoted, for short, by
the symbol

∞∑
n=1

an or
∑

an.

Definition 11.2.2. Given a series
∑∞

n=1 an = a1 +a2 +a3 + · · · , let sn denote
its nth partial sum:

sn =
n∑
i=1

ai = a1 + a2 + · · ·+ an.

If the sequence {sn} is convergent and limn→∞ sn = s exists as a real number,
then the series

∑
an is called convergent and we write

a1 + a2 + · · ·+ an + · · · = s or
∞∑
n=1

= s.

The number s is called the sum of the series. If the sequence {sn} is divergent,
then the series is called divergent.

Example 1. Find the sum of the series
∑∞

n=1 an if the sum of the first n terms
of the series is

sn = a1 + a2 + · · ·+ an =
2n

3n+ 5
.
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Example 2. Find the sum of the geometric series

a+ ar + ar2 + ar3 + · · ·+ arn−1 + · · · =
∞∑
n=1

arn−1 a 6= 0

where each term is obtained from the preceding one by multiplying it by the
common ratio r.
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Example 3. Find the sum of the geometric series

5− 10

3
+

20

9
− 40

27
+ · · · .

Example 4. Is the series
∞∑
n=1

22n31−n convergent or divergent?
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Example 5. A drug is administered to a patient at the same time every day.
Suppose the concentration of the drug is Cn (measured in mg/mL) after the
injection on the nth day. Before the injection the next day, only 30% of the
drug remains in the bloodstream and the daily dose raises the concentration
by 0.2 mg/mL.

(a) Find the concentration after three days.

(b) What is the concentration after the nth dose?

(c) What is the limiting concentration?
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Example 6. Write the number 2.317 = 2.3171717 . . . as a ratio of integers.

Example 7. Find the sum of the series
∞∑
n=0

xn, where |x| < 1.
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Example 8. Show that the series
∞∑
n=1

1

n(n+ 1)
is convergent, and find its

sum.
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Example 9. Show that the harmonic series

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ · · ·

is divergent.
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Theorem 11.2.1. If the series
∞∑
n=1

an is convergent, then lim
n→∞

an = 0.

Proof. Let sn = a1 + a2 + · · · + an. Then an = sn − sn−1. Since
∑
an

is convergent, the sequence {sn} is convergent. Let limn→∞ sn = s. Since
n− 1→∞ as n→∞, we also have limn→∞ sn−1 = s. Therefore

lim
n→∞

an = lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = s− s = 0.

Corollary 11.2.1 (Test for Divergence). If lim
n→∞

an does not exist or if lim
n→∞

an 6=

0, then the series
∞∑
n=1

an is divergent.

Proof. If the series is not divergent, then it is convergent, and so limn→∞ an = 0
by Theorem 11.2.1. The result follows by contrapositive.

Example 10. Show that the series
∞∑
n=1

n2

5n2 + 4
diverges.
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Theorem 11.2.2. If
∑
an and

∑
bn are convergent series, then so are the

series
∑
can (where c is a constant),

∑
(an + bn), and

∑
(an − bn), and

(i)
∞∑
n=1

can = c
∞∑
n=1

an

(ii)
∞∑
n=1

(an + bn) =
∞∑
n=1

an +
∞∑
n=1

bn

(iii)
∞∑
n=1

(an − bn) =
∞∑
n=1

an −
∞∑
n=1

bn

Example 11. Find the sum of the series
∞∑
n=1

(
3

n(n+ 1)
+

1

2n

)
.

Remark 1. A finite number of terms doesn’t affect the convergence or diver-
gence of a series. For instance, suppose that we were able to show that the
series

∞∑
n=4

n

n3 + 1

is convergent. Since

∞∑
n=1

n

n3 + 1
=

1

2
+

2

9
+

3

28
+
∞∑
n=4

n

n3 + 1

it follows that the entire series
∑∞

n=1 n/(n
3 + 1) is convergent. Similarly, if it

is known that the series
∑∞

n=N+1 an converges, then the full series

∞∑
n=1

an =
N∑
n=1

an +
∞∑

n=N+1

an

is also convergent.
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11.3 The Integral Test and Estimates of Sums

Theorem 11.3.1 (The Integral Test). Suppose f is a continuous, positive,
decreasing function on [1,∞) and an = f(n). The the series

∑∞
n=1 an is con-

vergent if and only if the improper integral
´∞

1
f(x) dx is convergent. In other

words:

(i) If

ˆ ∞
1

f(x) dx is convergent, then
∞∑
n=1

an is convergent.

(ii) If

ˆ ∞
1

f(x) dx is divergent, then
∞∑
n=1

an is divergent.

Proof. SECTION 11.3  The Integral Test and Estimates of Sums 725

Proof of the Integral Test
We have already seen the basic idea behind the proof of the Integral Test in Figures 1 and 
2 for the series o  1yn2 and o  1ysn . For the general series o  an, look at Figures 5 and 6.
The area of the "rst shaded rectangle in Figure 5 is the value of f  at the right endpoint of 
f1, 2g, that is, f s2d − a2. So, comparing the areas of the shaded rectangles with the area 
under y − f sxd from 1 to n, we see that

a2 1 a3 1 ∙ ∙ ∙ 1 an < yn

1
 f sxd dx

(Notice that this inequality depends on the fact that f  is decreasing.) Likewise, Figure 6 
shows that

yn

1
 f sxd dx < a1 1 a2 1 ∙ ∙ ∙ 1 an21

(i) If y`

1
 f sxd dx is convergent, then (4) gives

o
n

i−2
 ai < yn

1
f sxd dx < y`

1
 f sxd dx

since f sxd > 0. Therefore

sn − a1 1 o
n

i−2
 ai < a1 1 y`

1
 f sxd dx − M, say

Since sn < M for all n, the sequence hsn j is bounded above. Also

sn11 − sn 1 an11 > sn

since an11 − f sn 1 1d > 0. Thus hsn j is an increasing bounded sequence and so it is 
con vergent by the Monotonic Sequence Theorem (11.1.12). This means that o  an is  
convergent.

(ii) If y`
1 f sxd dx is divergent, then yn

1  f sxd dx l ` as n l ` because f sxd > 0. But  
(5) gives

yn

1
f sxd dx < o

n21

i−1
 ai − sn21

and so sn21 l `. This implies that sn l ` and so o  an diverges. Q

0 x

y

1 2 3 4 5 . . . n

y=ƒ

ana™ a£ a¢ a∞

4

0 x

y

1 2 3 4 5 . . . n

y=ƒ

a™ a£ a¢a¡

an-1

FIGURE 6 

5

1. Draw a picture to show that

o
`

n−2

1
n 1.3 , y`

1

1
x 1.3  dx

 What can you conclude about the series?

2.   Suppose f  is a continuous positive decreasing function for
x > 1 and an − f snd. By drawing a picture, rank the following
three quantities in increasing order:

y6

1
 f sxd dx   o

5

i−1
 ai   o

6

i−2
 ai

3–8 Use the Integral Test to determine whether the series is  
convergent or divergent.

 3. o
`

n−1
 n23 4. o

`

n−1
 n20.3

 5. o
`

n−1

2
5n 2 1

6. o
`

n−1

1
s3n 2 1d4

 7. o
`

n−1

n
n2 1 1

8. o
`

n−1
 n2e2n3
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(i) If
´∞

1
f(x) dx is convergent, then comparing the areas of the

rectangles with the area under y = f(x) from 1 to n in the
top figure, we see that

n∑
i=2

ai = a2 + a3 + · · ·+ an ≤
ˆ n

1

f(x) dx ≤
ˆ ∞

1

f(x) dx

since f(x) ≥ 0. Therefore

sn = a1 +
n∑
i=2

ai ≤ a1 +

ˆ ∞
1

f(x) dx = M, say.

Since sn ≤M for all n, the sequence {sn} is bounded above. Also

sn+1 = sn + an+1 ≥ sn

since an+1 = f(n+ 1) ≥ 0. Thus {sn} is an increasing bounded sequence
and so it is convergent by the Monotonic Sequence Theorem.

SECTION 11.3  The Integral Test and Estimates of Sums 725

Proof of the Integral Test
We have already seen the basic idea behind the proof of the Integral Test in Figures 1 and 
2 for the series o  1yn2 and o  1ysn . For the general series o  an, look at Figures 5 and 6.
The area of the "rst shaded rectangle in Figure 5 is the value of f  at the right endpoint of 
f1, 2g, that is, f s2d − a2. So, comparing the areas of the shaded rectangles with the area 
under y − f sxd from 1 to n, we see that

a2 1 a3 1 ∙ ∙ ∙ 1 an < yn
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 f sxd dx

(Notice that this inequality depends on the fact that f  is decreasing.) Likewise, Figure 6 
shows that

yn
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 f sxd dx < a1 1 a2 1 ∙ ∙ ∙ 1 an21

(i) If y`

1
 f sxd dx is convergent, then (4) gives

o
n

i−2
 ai < yn

1
f sxd dx < y`

1
 f sxd dx

since f sxd > 0. Therefore

sn − a1 1 o
n

i−2
 ai < a1 1 y`

1
 f sxd dx − M, say

Since sn < M for all n, the sequence hsn j is bounded above. Also

sn11 − sn 1 an11 > sn

since an11 − f sn 1 1d > 0. Thus hsn j is an increasing bounded sequence and so it is 
con vergent by the Monotonic Sequence Theorem (11.1.12). This means that o  an is  
convergent.

(ii) If y`
1 f sxd dx is divergent, then yn

1  f sxd dx l ` as n l ` because f sxd > 0. But  
(5) gives

yn

1
f sxd dx < o

n21

i−1
 ai − sn21

and so sn21 l `. This implies that sn l ` and so o  an diverges. Q
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2.   Suppose f  is a continuous positive decreasing function for
x > 1 and an − f snd. By drawing a picture, rank the following
three quantities in increasing order:
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 ai
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(ii) If
´∞

1
f(x) dx is divergent, then

´ n
1
f(x) dx→∞ as n→∞

because f(x) ≥ 0. But the bottom figure shows that

ˆ n

1

f(x) dx ≤ a1 + a2 + · · ·+ an−1 =
n−1∑
i=1

ai = sn−1

and so sn−1 →∞, implying that sn →∞.

354



Calculus - 11.3 The Integral Test and Estimates of Sums

Example 1. Test the series
∞∑
n=1

1

n2 + 1
for convergence or divergence.

Example 2. For what values of p is the series
∞∑
n=1

1

np
convergent? (This series

is called the p-series.)
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Example 3. Determine whether each series converges or diverges.

(a)
∞∑
n=1

1

n3
=

1

13
+

1

23
+

1

33
+

1

43
+ · · ·

(b)
∞∑
n=1

1
3
√
n

= 1 +
1
3
√

2
+

1
3
√

3
+

1
3
√

4
+ · · ·

Example 4. Determine whether the series
∞∑
n=1

lnn

n
converges or diverges.
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Definition 11.3.1. The remainder

Rn = s− sn = an+1 + an+2 + an+3 + · · ·

is the error made when sn, the sum of the first n terms, is used as an approx-
imation to the total sum.

SECTION 11.3  The Integral Test and Estimates of Sums 723

Estimating the Sum of a Series
Suppose we have been able to use the Integral Test to show that a series o  an is conver-
gent and we now want to !nd an approximation to the sum s of the series. Of course, any 
partial sum sn is an approximation to s because limn l ` sn − s. But how good is such an 
approximation? To !nd out, we need to estimate the size of the remainder

Rn − s 2 sn − an11 1 an12 1 an13 1 ∙ ∙ ∙

The remainder Rn is the error made when sn, the sum of the !rst n terms, is used as an 
approximation to the total sum.

We use the same notation and ideas as in the Integral Test, assuming that f  is decreas-
ing on fn, ̀ d . Comparing the areas of the rectangles with the area under y − f sxd for 
x . n in Figure 3, we see that

Rn − a n11 1 a n12 1 ∙ ∙ ∙ < y`

n
 f sxd dx

Similarly, we see from Figure 4 that

Rn − an11 1 an12 1 ∙  ∙ ∙ > y`

n11
 f sxd d x

So we have proved the following error estimate.

2   Remainder Estimate for the Integral Test Suppose f skd − ak, where f  is 
a continuous, positive, decreasing function for x > n and o an is convergent. If 
Rn − s 2 sn, then

y`

n11
f sxd dx < Rn < y`

n
 f sxd dx

EXAMPLE 5
(a) Approximate the sum of the series o1yn3 by using the sum of the !rst 10 terms.
Estimate the error involved in this approximation.
(b) How many terms are required to ensure that the sum is accurate to within 0.0005?

SOLUTION In both parts (a) and (b) we need to know y`
n  f sxd dx. With f sxd − 1yx 3, 

which satis!es the conditions of the Integral Test, we have

y`

n

1
x 3  dx − lim

t l `
 F2

1
2x 2G

n

t

− lim
t l `

S2
1

2t 2 1
1

2n2D −
1

2n2

(a) Approximating the sum of the series by the 10th partial sum, we have

o
`

n−1

1
n3 < s10 −

1
13 1

1
23 1

1
33 1 ∙ ∙ ∙ 1

1
103 < 1.1975

According to the remainder estimate in (2), we have

R10 < y`

10

1
x 3  dx −

1
2s10d2 −

1
200

So the size of the error is at most 0.005.

0 x

y

n

. . .

y=ƒ

an+1 an+2

FIGURE 4 

0 x

y

an+1 an+2

n+1

. . .

y=ƒ
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Theorem 11.3.2 (Remainder Estimate for the Integral Test).
Suppose f(k) = ak, where f is a continuous, positive, decreasing
function for x ≥ n and

∑
an is convergent. If Rn = s− sn, then

ˆ ∞
n+1

f(x) dx ≤ Rn ≤
ˆ ∞
n

f(x) dx.

Proof. Comparing the rectangles with the area under y = f(x)
for x > n in the top figure, we see that

Rn = an+1 + an+2 + · · · ≤
ˆ ∞
n

f(x) dx.

Similarly, we see from the bottom figure that

Rn = an+1 + an+2 + · · · ≥
ˆ ∞
n+1

f(x) dx.

Example 5. (a) Approximate the sum of the series
∑

1/n3 by using the sum
of the first 10 terms. Estimate the error involved in this approximation.
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(b) How many terms are required to ensure that the sum is accurate to within
0.0005?

Corollary 11.3.1. Suppose f(k) = ak, where f is a continuous, positive,
decreasing function for x ≥ n and

∑
an is convergent. Then

sn +

ˆ ∞
n+1

f(x) dx ≤ s ≤ sn +

ˆ ∞
n

f(x) dx.

Example 6. Use Corollary 11.3.1 with n = 10 to estimate the sum of the

series
∞∑
n=1

1

n3
.
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11.4 The Comparison Tests

Theorem 11.4.1 (The Comparison Test). Suppose that
∑
an and

∑
bn are

series with positive terms.

(i) If
∑
bn is convergent and an ≤ bn for all n, then

∑
an is also convergent.

(ii) If
∑
bn is divergent and an ≥ bn for all n, then

∑
an is also divergent.

Proof. (i) Let

sn =
n∑
i=1

ai tn =
n∑
i=1

bi t =
∞∑
n=1

bn

Since both series have positive terms, the sequences {sn} and {tn} are
increasing (sn+1 = sn+an+1 ≥ sn). Also tn → t, so tn ≤ t for all n. Since
ai ≤ bi, we have sn ≤ tn. Thus sn ≤ t for all n. This means that {sn} is
increasing and bounded above and therefore converges by the Monotonic
Sequence Theorem. Thus

∑
an converges.

(ii) If
∑
bn is divergent, then tn →∞ (since {tn} is increasing). But ai ≥ bi

so sn ≥ tn. Thus sn →∞. Therefore
∑
an diverges.

Example 1. Determine whether the series
∞∑
n=1

5

2n2 + 4n+ 3
converges or di-

verges.
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Example 2. Test the series
∞∑
k=1

ln k

k
for convergence or divergence.

Theorem 11.4.2 (The Limit Comparison Test). Suppose that
∑
an and

∑
bn

are series with positive terms. If

lim
n→∞

an
bn

= c

where c is a finite number and c > 0, then either both series converge or both
diverge.

Proof. Let m and M be positive numbers such that m < c < M . Because
an/bn is close to c for large n, there is an integer N such that

m <
an
bn

< M when n > N,

and so
mbn < an < Mbn when n > N.

If
∑
bn converges, so does

∑
Mbn. Thus

∑
an converges by part (i) of the

Comparison Test. If
∑
bn diverges, so does

∑
mbn and part (ii) of the Com-

parison Test shows that
∑
an diverges.
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Example 3. Test the series
∞∑
n=1

1

2n − 1
for convergence or divergence.

Example 4. Determine whether the series
∞∑
n=1

2n2 + 3n√
5 + n5

converges or diverges.
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Example 5. Use the sum of the first 100 terms to approximate the sum of
the series

∑
1/(n3 + 1). Estimate the error involved in this approximation.
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11.5 Alternating Series

Definition 11.5.1. An alternating series is a series whose terms are alter-
nately positive and negative.

Theorem 11.5.1 (Alternating Series Test). If the alternating series

∞∑
n=1

(−1)n−1bn = b1 − b2 + b3 − b4 + b5 − b6 + · · · bn > 0

satisfies

(i) bn+1 ≤ bn for all n

(ii) lim
n→∞

bn = 0

then the series is convergent.

Proof.

 SECTION 11.5  Alternating Series 733

Before giving the proof let’s look at Figure 1, which gives a picture of the idea behind 
the proof. We !rst plot s1 − b1 on a number line. To !nd s2 we subtract b2, so s2 is to 
the left of s1. Then to !nd s3 we add b3, so s3 is to the right of s2. But, since b3 , b2, s3 
is to the left of s1. Continuing in this manner, we see that the partial sums oscillate back 
and forth. Since bn l 0, the successive steps are becoming smaller and smaller. The 
even partial sums s2, s4, s6, . . . are increasing and the odd partial sums s1, s3, s5, . . . are 
decreasing. Thus it seems plausible that both are converging to some number s, which is 
the sum of the series. Therefore we consider the even and odd partial sums separately in 
the following proof.

0 s¡s™ s£s¢ s∞sß s

b¡
-b™

+b£
-b¢

+b∞
-bß

PROOF OF THE ALTERNATING SERIES TEST We !rst consider the even partial sums:

 s2 − b1 2 b2 > 0 since b2 < b1

 s4 − s2 1 sb3 2 b4 d > s2 since b4 < b3

In general s2n − s2n22 1 sb2n21 2 b2n d > s2n22    since b2n < b2n21

Thus 0 < s2 < s4 < s6 < ∙ ∙ ∙ < s2n < ∙ ∙ ∙

But we can also write

s2n − b1 2 sb2 2 b3 d 2 sb4 2 b5 d 2 ∙ ∙ ∙ 2 sb2n22 2 b2n21d 2 b2n

Every term in parentheses is positive, so s2n < b1 for all n. Therefore the sequence hs2n j  
of even partial sums is increasing and bounded above. It is therefore convergent by the 
Monotonic Sequence Theorem. Let’s call its limit s, that is,

lim 
n l `

 s2n − s

Now we compute the limit of the odd partial sums:

 lim
nl`

 s2n11 − lim
nl`

 ss2n 1 b2n11d

 − lim
nl`

 s2n 1 lim
nl`

 b2n11

 − s 1 0

 − s

Since both the even and odd partial sums converge to s, we have lim n l ` sn − s  
[see Exercise 11.1.92(a)] and so the series is convergent. Q

FIGURE 1

[by condition (ii)]
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We first consider the even partial sums:

s2 = b1 − b2 ≥ 0 since b2 ≤ b1

s4 = s2 + (b3 − b4) ≥ s2 since b4 ≤ b3.

In general

s2n = s2n−2 + (b2n−1 − b2n) ≥ s2n−2 since b2n ≤ b2n−1.

Thus
0 ≤ s2 ≤ s4 ≤ s6 ≤ · · · ≤ s2n ≤ · · · .

But we can also write

s2n = b1 − (b2 − b3)− (b4 − b5)− · · · − (b2n−2 − b2n−1)− b2n.
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Every term in parenthesis is positive, so s2n ≤ b1 for all n. Therefore, the
sequence {s2n} of even partial sums is increasing and bounded above. It is
therefore convergent by the Monotonic Sequence Theorem. Let’s call its limit
s, that is,

lim
n→∞

s2n = s.

Now we compute the limit of the odd partial sums:

lim
n→∞

s2n+1 = lim
n→∞

(s2n + b2n+1)

= lim
n→∞

s2n + lim
n→∞

b2n+1

= s+ 0

= s.

Since both the even and odd partial sums converge to s, we have limn→∞ sn = s
and so the series is convergent.

Example 1. Determine whether the alternating harmonic series

1− 1

2
+

1

3
− 1

4
+ · · · =

∞∑
n=1

(−1)n−1

n

converges or diverges.
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Example 2. Determine whether the series
∞∑
n=1

(−1)n3n

4n− 1
converges or diverges.

Example 3. Test the series
∞∑
n=1

(−1)n+1 n2

n3 + 1
for convergence or divergence.
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Theorem 11.5.2 (Alternating Series Estimation Theorem). If s =
∑

(−1)n−1bn,
where bn > 0, is the sum of an alternating series that satisfies

(i) bn+1 ≤ bn and (ii) lim
n→∞

bn = 0

then
|Rn| = |s− sn| ≤ bn+1.

Proof. We know from the proof of the Alternating Series Test that s lies be-
tween any two consecutive partial sums sn and sn+1. (There we showed that
s is larger than all the even partial sums. A similar argument shows that s is
smaller than all the odd sums.) It follows that

|s− sn| ≤ |sn+1 − sn| = bn+1.

Example 4. Find the sum of the series
∞∑
n=0

(−1)n

n!
correct to three decimal

places.
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11.6 Absolute Convergence, Ratio and Root

Tests

Definition 11.6.1. A series
∑
an is called absolutely convergent if the series

of absolute values
∑
|an| is convergent.

Example 1. Is the series

∞∑
n=1

(−1)n−1

n2
= 1− 1

22
+

1

32
− 1

42
+ · · ·

absolutely convergent?

Example 2. Is the series

∞∑
n=1

(−1)n−1

n
= 1− 1

2
+

1

3
− 1

4
+ · · ·

absolutely convergent?
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Definition 11.6.2. A series
∑
an is called conditionally convergent if it is

convergent but not absolutely convergent.

Theorem 11.6.1. If a series
∑
an is absolutely convergent, then it is conver-

gent.

Proof. Observe that the inequality

0 ≤ an + |an| ≤ 2|an|

is true because |an| is either an or −an. If
∑
an is absolutely convergent, then∑

|an| is convergent, so
∑

2|an| is convergent. Therefore, by the Comparison
Test,

∑
(an + |an|) is convergent. Then∑

an =
∑

(an + |an|)−
∑
|an|

is the difference of two convergent series and is therefore convergent.

Example 3. Determine whether the series

∞∑
n=1

cosn

n2
=

cos 1

12
+

cos 2

22
+

cos 3

32
+ · · ·

is convergent or divergent.
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Theorem 11.6.2 (The Ratio Test).

(i) If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L < 1, then the series
∞∑
n=1

an is absolutely convergent

(and therefore convergent).

(ii) If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L > 1 or lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ∞, then the series
∞∑
n=1

an is

divergent.

(iii) If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1, the Ratio Test is inconclusive; that is, no conclusion

can be drawn about the convergence or divergence of
∑
an.

Example 4. Test the series
∞∑
n=1

(−1)n
n3

3n
for absolute convergence.

Example 5. Test the convergence of the series
∞∑
n=1

nn

n!
.
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Theorem 11.6.3 (The Root Test).

(i) If lim
n→∞

n
√
|an| = L < 1, then the series

∞∑
n=1

an is absolutely convergent

(and therefore convergent).

(ii) If lim
n→∞

n
√
|an| = L > 1 or lim

n→∞
n
√
|an| = ∞, then the series

∞∑
n=1

an is

divergent.

(iii) If lim
n→∞

n
√
|an| = 1, the Root Test is inconclusive.

Example 6. Test the convergence of the series
∞∑
n=1

(
2n+ 3

3n+ 2

)n
.
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Definition 11.6.3. By a rearrangement of an infinite series
∑
an we mean a

series obtained by simply changing the order of the terms.

Remark 1. If
∑
an is an absolutely convergent series with sum s, then any

rearrangement of
∑
an has the same sum s.

Remark 2. If
∑
an is a conditionally convergent series and r is any real number

whatsoever, then there is a rearrangement of
∑
an that has a sum equal to r.

For example, if we multiply the alternating harmonic series

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+ · · · = ln 2

by 1
2
, we get

1

2
− 1

4
+

1

6
− 1

8
+ · · · = 1

2
ln 2.

Then inserting zeros between the terms of this series gives

0 +
1

2
+ 0− 1

4
+ 0 +

1

6
+ 0− 1

8
+ · · · = 1

2
ln 2,

and we can add this to the alternating harmonic series to get

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+ · · · = 3

2
ln 2,

which is a rearrangement of the alternating harmonic series with a different
sum.
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11.7 Strategy for Testing Series

Example 1.
∞∑
n=1

n− 1

2n+ 1
.

Example 2.
∞∑
n=1

√
n3 + 1

3n3 + 4n2 + 2
.

Example 3.
∞∑
n=1

ne−n
2

.

372



Calculus - 11.7 Strategy for Testing Series

Example 4.
∞∑
n=1

(−1)n
n3

n4 + 1
.

Example 5.
∞∑
n=1

2k

k!
.

Example 6.
∞∑
n=1

1

2 + 3n
.
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11.8 Power Series

Definition 11.8.1. A power series is a series of the form

∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + c3x
3 + · · ·

where x is a variable and the cn’s are constants called the coefficients of the
series.
More generally, a series of the form

∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + · · ·

is called a power series in (x− a) or a power series centered at a or a power
series about a.

Example 1. For what values of x is the series
∞∑
n=0

n!xn convergent?
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Example 2. For what values of x does the series
∞∑
n=1

(x− 3)n

n
converge?

Example 3. Find the domain of the Bessel function of order 0 defined by

J0(x) =
∞∑
n=0

(−1)nx2n

22n(n!)2
.
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Theorem 11.8.1. For a given power series
∞∑
n=0

cn(x−a)n, there are only three

possibilities:

(i) The series converges only when x = a.

(ii) The series converges for all x.

(iii) There is a positive number R such that the series converges if |x−a| < R
and diverges if |x− a| > R.

Definition 11.8.2. The number R in case (iii) is called the radius of conver-
gence of the power series. By convention, the radius of convergence is R = 0 in
case (i) and R =∞ in case (ii). The interval of convergence of a power series
is the interval that consists of all values of x for which the series converges.

Example 4. Find the radius of convergence and interval of convergence of
the series

∞∑
n=0

(−3)nxn√
n+ 1

.
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Example 5. Find the radius of convergence and interval of convergence of
the series

∞∑
n=0

n(x+ 2)n

3n+1
.
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11.9 Representations of Functions as Power

Series

Example 1. Express 1/(1 + x2) as the sum of a power series and find the
interval of convergence.

Example 2. Find a power series representation for 1/(x+ 2).
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Example 3. Find a power series representation of x3/(x+ 2).

Theorem 11.9.1. If the power series
∑
cn(x− a)n has radius of convergence

R > 0, then the function f defined by

f(x) = c0 + c1(x− a) + c2(x− a)2 + · · · =
∞∑
n=0

cn(x− a)n

is differentiable (and therefore continuous) on the interval (a−R, a+R) and

(i) f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + · · · =
∞∑
n=1

ncn(x− a)n−1

(ii)

ˆ
f(x) dx = C + c0(x− a) + c1

(x− a)2

2
+ c2

(x− a)3

3
+ · · ·

= C +
∞∑
n=0

cn
(x− a)n+1

n+ 1
.

The radii of convergence of the power series in Equations (i) and (ii) are both
R.

379



Calculus - 11.9 Representations of Functions as Power Series

Example 4. Find the derivative of the Bessel function

J0(x) =
∞∑
n=0

(−1)nx2n

22n(n!)2
.

Example 5. Express 1/(1− x)2 as a power series using differentiation. What
is the radius of convergence?
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Example 6. Find a power series representation for ln(1 +x) and its radius of
convergence.

Example 7. Find a power series representation for f(x) = tan−1 x.
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Example 8. (a) Evaluate
´

[1/(1 + x7)]dx as a power series.

(b) Use part (a) to approximate
´ 0.5

0
[1/(1 + x7)]dx correct to within 10−7.
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11.10 Taylor and Maclaurin Series

Theorem 11.10.1. If f has a power series representation (expansion) at a,
that is, if

f(x) =
∞∑
n=0

cn(x− a)n |x− a| < R

then its coefficients are given by the formula

cn =
f (n)(a)

n!
.

Definition 11.10.1. The Taylor series of the function f at a (or about a or
centered at a) is

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n

= f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · · .

For the special case a = 0 the Taylor series becomes

f(x) =
∞∑
n=0

f (n)(0)

n!
xn = f(0) +

f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · · ,

which we call the Maclaurin Series.

Example 1. Find the Maclaurin series of the function f(x) = ex and its radius
of convergence.
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Theorem 11.10.2. If f(x) = Tn(x)+Rn(x), where Tn is the nth-degree Taylor
polynomial of f at a, Rn is the remainder of the Taylor series, and

lim
n→∞

Rn(x) = 0

for |x− a| < R, then f is equal to the sum of its Taylor series on the interval
|x− a| < R.

Theorem 11.10.3 (Taylor’s Inequality). If |f (n+1)(x)| ≤ M for |x − a| ≤ d,
then the remainder Rn(x) of the Taylor series satisfies the inequality

|Rn(x)| ≤ M

(n+ 1)!
|x− a|n+1 for |x− a| ≤ d.

Example 2. Prove that ex is equal to the sum of its Maclaurin series.

384



Calculus - 11.10 Taylor and Maclaurin Series

Example 3. Find the Taylor series f(x) = ex at a = 2.

Example 4. Find the Maclaurin series for sinx and prove that it represents
sinx for all x.
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Example 5. Find the Maclaurin series for cosx.

Example 6. Find the Maclaurin series for the function f(x) = x cosx.
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Example 7. Represent f(x) = sinx as the sum of its Taylor series centered
at π/3.
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Example 8. Find the Maclaurin series for f(x) = (1 + x)k, where k is any
real number.
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Theorem 11.10.4 (The Binomial Series). If k is any real number and |x| < 1,
then

(1 + x)k =
∞∑
n=0

(
k

n

)
xn = 1 + kx+

k(k − 1)

2!
x2 +

k(k − 1)(k − 2)

3!
x3 + · · ·

where the coefficients(
k

n

)
=
k(k − 1)(k − 2) · · · (k − n+ 1)

n!

are called the binomial coefficients.

Example 9. Find the Maclaurin series for the function f(x) =
1√

4− x
and

its radius of convergence.

389



Calculus - 11.10 Taylor and Maclaurin Series

Example 10. Find the sum of the series
1

1 · 2
− 1

2 · 22
+

1

3 · 23
− 1

4 · 24
+ · · · .

Example 11. (a) Evaluate
´
e−x

2
dx as an infinite series.

(b) Evaluate
´ 1

0
e−x

2
dx correct to within an error of 0.001.
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Example 12. Evaluate lim
x→0

ex − 1− x
x2

.
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Example 13. Find the first three nonzero terms in the Maclaurin series for

(a) ex sinx

(b) tan x
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11.11 Applications of Taylor Polynomials

Example 1. (a) Approximate the function f(x) = 3
√
x by a Taylor polyno-

mial of degree 2 at a = 8.

(b) How accurate is this approximation when 7 ≤ x ≤ 9?
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Example 2. (a) What is the maximum error possible in using the approxi-
mation

sinx ≈ x− x3

3!
+
x5

5!

when −0.3 ≤ x ≤ 0.3? Use this approximation to find sin 12° correct to
six decimal places.

(b) For what values of x is this approximation accurate to within 0.00005?
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Example 3. In Einstein’s theory of special relativity the mass of an object
moving with velocity v is

m =
m0√

1− v2/c2

where m0 is the mass of an object when at rest and c is the speed of light.
The kinetic energy of the object is the difference between its total energy and
its energy at rest:

K = mc2 −m0c
2.

(a) Show that when v is very small compared with c, this expression for K
agrees with classical Newtonian physics: K = 1

2
m0v

2.
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(b) Use Taylor’s Inequality to estimate the difference in these expressions for
K when |v| ≤ 100 m/s.
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absolute maximum, 114
absolute minimum, 114
absolute value, 5
absolutely convergent, 367
acceleration, 63
algebraic function, 12
alternating series, 363
alternating series test, 363
antiderivative, 155
aphelion, 334
arc length, 258
arccosine function, 24
arcsine function, 24
arctangent function, 24
area, 162
asymptote

horizontal, 48
slant, 140
vertical, 32

average rate of change, 58
average value of a function, 210

binomial coefficients, 389
bounded above, 344
bounded below, 344
bounded sequence, 344

cancellation equations, 21
cardiac output, 274
carrying capacity, 291
center of mass, 268
centroid, 269
chain rule, 76
common ratio, 346
comparison test, 359

composite function, 17
composition, 17
concave downward, 125
concave upward, 125
conditionally convergent, 368
conic sections, 327
conics, 327
consumer surplus, 273
continuous

at a point, 42
from the left, 43
from the right, 43
on an interval, 43

continuous random variable, 275
convergent, 250

absolutely, 367
conditionally, 368
integral, 254
sequence, 338
series, 345

critical number, 116
cubic function, 10
cycloid, 307

decreasing sequence, 343
definite integral, 165
demand function, 151
dependent variable, 1
derivative

at a point, 57
as a function, 60
of a parametric curve, 309
of an inverse function, 85
second, 63
third, 64
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differentiable, 61
differential, 109
differential equation, 99, 280

equilibrium solutions, 301
linear, 296
logistic, 291
order, 280
separable, 286
solution, 280

differentiation operators, 61
direction field, 282
discontinuity, 42
disk method for volume, 198
divergent, 250

integral, 254
sequence, 338
series, 345

domain, 1

eccentricity, 332
ellipse, 328

foci, 328
major axis, 328
minor axis, 328
vertices, 328

empirical model, 9
Euler’s method, 284
even function, 6
exponential function, 13
extreme value theorem, 115
extreme values, 114

Fermat’s theorem, 115
Fibonacci sequence, 338
first derivative test, 124
force, 206
Fresnel function, 176
function, 1

algebraic, 12
arccosine, 24
arcsine, 24
arctangent, 24
composition, 17

cubic, 10
even, 6
exponential, 13
hyperbolic, 111
inverse, 21
inverse cosine, 24
inverse sine, 24
inverse tangent, 24
linear, 8
logarithmic, 13, 22
natural exponential, 20
odd, 6
one-to-one, 21
piecewise, 4
power, 11
quadratic, 10
rational, 11
reciprocal, 11
root, 11
step, 6
trigonometric, 12

fundamental theorem of calculus, 174

geometric series, 346
greatest integer function, 37

half-life, 100
harmonic series, 351
horizontal asymptote, 48
horizontal line test, 21
hyperbolic functions, 111

implicit differentiation, 80
increasing sequence, 343
increment, 58
indefinite integral, 180
independent variable, 1
infinite series, 345
initial point, 305
instantaneous rate of change, 58
integrable, 165
integral

definite, 165

398



Calculus - 11.11 Index

improper, 250
indefinite, 180
symmetric function, 188

integral sign, 165
integral test, 354
integrand, 165
integrating factor, 296
integration, 165

error bounds, 244
integration by parts, 212
intermediate value theorem, 47
interval of convergence, 376
inverse cosine function, 24
inverse function, 21
inverse sine function, 24
inverse tangent function, 24

jerk, 64

L’Hospital’s rule, 130
law of natural decay, 99
law of natural growth, 99, 291
length, 258
limaçon, 322
limit, 29

at infinity, 48
infinite, 31
laws, 33
of a sequence, 338
precise definition, 38

limit comparison test, 360
limits of integration, 165
linear approximation, 108
linear differential equation, 296
linear function, 8
linearization, 108
local extreme, 114
local maximum, 114
local minimum, 114
logarithmic differentiation, 88
logarithmic function, 13, 22
logistic differential equation, 291
Lotka-Volterra equations, 301

lower limit, 165
lower sum, 162

Maclaurin series, 383
marginal profit function, 151
marginal revenue function, 151
maximum, 114
mean, 277
mean value theorem, 120

for integrals, 210
midpoint rule, 171, 243
minimum, 114
moment, 268
monotonic, 343

natural exponential function, 20
natural logarithm, 23
net area, 166
Newton’s method, 152
normal line, 66

odd function, 6
one-to-one function, 21
orthogonal trajectory, 289

p-series, 355
parabola, 327

axis, 327
directrix, 327
focus, 327
vertex, 327

parameter, 304
parametric equations, 304
partial sum, 345
perihelion, 334
piecewise function, 4
polar axis, 316
polar coordinates, 316

directrix, 332
focus, 332

polynomial, 10
position function, 56
power function, 11
power rule, 65, 88
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power series, 374
preator-prey equations, 301
pressure, 266
price function, 151
probability density function, 275
product rule, 70
profit function, 151

quadratic function, 10
quotient rule, 71

radius of convergence, 376
range, 1
ratio test, 369
rational function, 11
rearrangement, 371
reciprocal function, 11
relative growth rate, 99
remainder, 357

Taylor series, 384
revenue function, 151
Riemann sum, 165
Rolle’s theorem, 119
root function, 11
root test, 370

sample points, 162
second derivative, 63
second derivative test, 126
sequence, 336
series, 345

alternating, 363
coefficients, 374
geometric, 346
harmonic, 351
Maclaurin, 383
p-series, 355
power, 374
sum, 345
Taylor, 383

shell method for volume, 203
sigma notation, 162
Simpson’s rule, 246

slant asymptote, 140
slope field, 282
spring constant, 207
squeeze theorem, 37

for sequences, 339
step function, 6
substitution rule, 184
surface area, 263
symmetry principle, 269

tangent line, 55
tangent line approximation, 108
Taylor polynomial, 384
Taylor series, 383
terminal point, 305
test for divergence, 352
third derivative, 64
trapezoidal rule, 243
trigonometric function, 12

upper limit, 165
upper sum, 162

value of a function, 1
velocity, 56
vertical asymptote, 32
vertical line test, 4
volume, 198

washer method for volume, 200
work, 206
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