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Chapter 2

Limits and Derivatives

2.1 The Tangent and Velocity Problems

Remark 1. A tangent to a curve is a line that that touches the curve. A secant
is a line that cuts a curve more than once.

Example 1. Find an equation of the tangent line to the parabola y = 2?2 at
the point P(1,1).



Calculus I - The Tangent and Velocity Problems

Example 2. A cardiac monitor is used to measure the heart rate
of a patient after surgery. It compiles the number of heartbeats
after ¢ minutes. When the data in the table are graphed, the
slope of the tangent line represents the heart rate in beats per
minute. The monitor estimates this value by calculating the
slope of a secant line. Use the data to draw the graph of this
function and estimate the patient’s heart rate after 42 minutes.

t (min) | Heartbeats
36 2530
38 2661
40 2806
42 2948
44 3080




Calculus I - The Tangent and Velocity Problems

Example 3. Suppose that a ball is dropped from the upper observation deck
of the CN Tower in Toronto, 450 m above the ground. Find the velocity of
the ball after 5 seconds. [If the distance fallen after ¢ seconds is denoted by
s(t) and measured in meters, then Galileo’s law that the distance fallen by any
freely falling body is proportional to the square of the time it has been falling
is expressed by the equation s(t) = 4.9t ]



Calculus I - The Limit of a Function

2.2 The Limit of a Function

Definition 2.2.1. Suppose f(z) is defined when x is near the number a. Then
we write

lim f(z) =L

r—ra

if we can make the values of f(x) arbitrarily close to L by restricting x to be
sufficiently close to a but not equal to a.

x? — 3x

Example 1. Guess the value of lim — .
r—3 X —9

Int —In4
Example 2. Estimate the value of lim nr- e
t—4  t—4
Example 3. Guess the value of lim il
z—=0 T



Calculus I - The Limit of a Function

Example 4. Investigate lim sin T
z—0 xX

COoS DT
E le 5. Find li 3 .
xample ind m (:v + 10,000)

Definition 2.2.2. We write

lim f(z)=1L

Tr—a—

if we can make the values of f(x) arbitrarily close to L by taking z to be
sufficiently close to a with x less than a. Similarly, if we require that = be
greater than a, we write

lim f(z) = L.

z—at

Example 6. Investigate the limit as ¢ approaches 0 of the Heaviside function

H, defined by
if ¢
Hp={" T
1 ift>0.



Calculus I - The Limit of a Function

Remark 1. lim f(z) = L if and only if lim f(z) =L and lim f(x)= L.

r—a T—a~ T—a™T

Example 7. Use the graph of f to state the values (if they exist)
of the following:

(a) lim f(x) (b) lim f(x) 4

T2~ r—2+ | —

(c) lim f(x) (d) f(2) 0
(e) lim f(x) () f(4)

Definition 2.2.3. Let f be a function defined on both sides of a, except
possibly at a itself. Then
lim f(z) = o0

T—a

means that the values of f(x) can be made arbitrarily large by taking = suffi-
ciently close to a, but not equal to a. Similarly,

lim f(z) = —o0

r—a

means that the values of f(z) can be made arbitrarily large negative by taking
x sufficiently close to a, but not equal to a.

Example 8. Find lim L7 T if it exists.
x—1 ((1} — 1)2



Calculus I - The Limit of a Function

Definition 2.2.4. The vertical line x = a is called a vertical asymptote of
the curve y = f(z) if at least one of the following statements is true:

ilir(lz f(z) =00 lim f(x) = oo lim+ f(z) =00
lil)n f(z) =—o0 lim f(r) = —o0 lim f(z) = —o0

Example 9. Find lim and lim :
=1+ 13 —1 e—1- 23 — 1

Example 10. Find the vertical asymptotes of f(z) = tanz.



Calculus I - Calculating Limits Using the Limit Laws

2.3 Calculating Limits Using the Limit Laws

Theorem 2.3.1 (Limit Laws). Suppose that c is a constant and the limits

lim f(x) and lim g(z)

T—ra T—ra

exist. Then

1. lim[f(z) 4+ g(x)] = 1irri f(z) + lim g(x)

r—ra r—r T—a

2. lim[f(z) — g(z)] = lim f(x) — lim g(z)

Tr—ra r—a r—a

3. lim[cf(x)] = C}}l_r)rcll f(z)

r—a

4. lim[f(z)g(x)] = lim f(z) - lim g(z)

r—a Tr—a T—ra

lim f(z)
I~ g lma) £

Example 1. Use the Limit Laws and the graphs of f and g to
evaluate the following limits, if they exist.

() lim [f(x) + 59(x)

(b) im[f(z)g(x)]

z—1

()

72 g(x

—
o
N~—
—
=
=
~
N—



Calculus I - Calculating Limits Using the Limit Laws

Theorem 2.3.2 (Power and Root Laws). By repeatedly applying the Product
Law and using some basic intuition we obtain the following:

6. im|[f(x)]" = {lim f(m)} where n is a positive integer
Tr—a r—a

7. limec=c
r—a

8 limz=a
r—a

n

9. limz" =a where n 1s a positive integer

r—ra

10. lim /z = {/a where n is a positive integer

Tr—a
(If n is even, we assume that a > 0.)

11. lim {/f(z) = »/lim f(z where n is a positive integer
Tr—a

r—ra

[]fn is even, we assume that lim f(z) > 0.

T—ra

Example 2. Evaluate the following limits and justify each step.

(a) lim (22% + 622 — 9)

z——3

32+ 1
m-—-————--
t—712 — 5t + 2



Calculus I - Calculating Limits Using the Limit Laws

Theorem 2.3.3 (Direct Substitution Property). If f is a polynomial or a
rational function and a is in the domain of f, then

lim f(z) = f(a).

r—a

2 —2t—8
Example 3. Find lim ———.
t—4 t—4

Remark 1. If f(z) = g(x) when x # a, then lim f(x) = lim g(z), provided the
Tr—a

r—a
limits exist.

Example 4. Find hIT% g(x) where
T—

g@):{x+1 if o £ 1,

T if x =1.

h—3)? —
Example 5. Evaluate lim w
h—0 h

10



Calculus I - Calculating Limits Using the Limit Laws

Example 6. Find lim 9—h_3
h—0 h

Example 7. Show that lir% |z| = 0.
T—

2]

Example 8. Prove that lir% — does not exist.
T— T
Example 9. If
vr—4 ifx >4,
flz) = .
8§ —2x ifxr<4.

determine whether liH}l f(z) exists.
T—

11



Calculus I - Calculating Limits Using the Limit Laws

Example 10. The greatest integer function is defined by [x] = the largest
integer that is less than or equal to z. (For instance, [4] = 4, [4.8] = 4,
[7] =3, [V2] =1, [-3] = —1.) Show that 1irgﬂa:]] does not exist.

z—

Theorem 2.3.4. If f(z) < g(x) when x is near a (except possibly at a) and
the limits of f and g both exist as x approaches a, then

lim f(x) < lim g(z).

r—a T—ra

Theorem 2.3.5 (The Squeeze Theorem). If f(z) < g(z) < h(x) when z is
near a (except possibly at a) and

lim f(z) = limh(z) = L

r—a r—a

then
lim g(z) = L.

Tr—a

2
Example 11. Show that lim 2% cos = = 0.

x—0 x

12



Calculus I - The Precise Definition of a Limit

2.4 The Precise Definition of a Limit

Definition 2.4.1. Let f be a function defined on some open interval that
contains the number a, except possibly at a itself. Then we write

lim f(x) =L

r—a
if for every number € > 0 there is a number § > 0 such that
if 0<|z—a|l<d  then |f(z) — L] <e.

Example 1. Use a graph to find a number  such that if x is within ¢ of 1,
then f(z) = 2® — 5x + 6 is within 0.2 of 2.

13



Calculus I - The Precise Definition of a Limit

Example 2. Prove that lir%(4x —-5)="T.
T—

Definition 2.4.2.
lim f(x)=1L

Tr—a~
if for every number € > 0 there is a number § > 0 such that
if a—d<xr<a  then |f(z) — L| <e.
Similarly,
lim f(z) =1L
z—at

if for every number € > 0 there is a number § > 0 such that

if a<z<a+d  then |f(z) — L| <e.

14



Calculus I - The Precise Definition of a Limit

Example 3. Prove that lim /x = 0.

z—0t

Example 4. Prove that lirré 22 =09.
T

15



Calculus I - The Precise Definition of a Limit

Definition 2.4.3. Let f be a function defined on some open interval that
contains the number a, except possibly at a itself. Then

lim f(z) = o0

T—a
means that for every positive number M there is a positive number § such

that
if 0<|r—al<é then f(z) > M.

Similarly,
lim f(z) = —o0

r—a

means that for every negative number N there is a positive number § such
that
if 0<|z—a|<d  then f(z) < N.

1
Example 5. Prove that lim — = oco.
z—0

16



Calculus I - Continuity

2.5 Continuity

Definition 2.5.1. A function f is continuous at a number a if

lim f(x) = f(a).

We say that f is discontinuous at a (or f has a discontinuity at a) if f is not

continuous at a.

Example 1. Use the graph of the function f to determine the
numbers at which f is discontinuous.

Example 2. Where are each of the following functions discontinuous?

(@) fla) = S22
1 . 0
b) flo) =42 "°7
1 ifxz=0

17



Calculus I - Continuity

2 —x—2

© fo)={ z-z 1r7?2
1 ifx=2

Definition 2.5.2. A function f is continuous from the right at a number a if
lim_f(z) = f(a)
T—a
and f is continuous from the left at a if
lim f(z) = f(a).
r—a

Example 3. In which direction(s) is the function f(z) = [z] continuous?

Definition 2.5.3. A function f is continuous on an interval if it is continuous
at every number in the interval. (If f is defined only on one side of an endpoint
of the interval, we understand continuous at the endpoint to mean continuous
from the right or continuous from the left.)

18



Calculus I - Continuity

Example 4. Show that the function f(x) =z 4+ v/ — 4 is continuous on the
interval [4, 00).

Theorem 2.5.1. If f and g are continuous at a and c is a constant, then the
following functions are also continuous at a:

1. f+g 2. f—g 3. cf
4 fg 5.§'fg<a>7éo

Proof. All of these results follow from the Limit Laws. For example, f + g is
continuous at a because

lim (f + g)(z) = lim[f(z) + g(z)]
= lim f(z) + lim g(z)

= f(a) + g(a)
= (f+9)(a). O

Theorem 2.5.2. (a) Any polynomial is continuous everywhere; that is, it is
continuous on R = (—o0, 00).

(b) Any rational function is continuous wherever it is defined; that is, it is
continuous on its domain.

Proof. (a) Let
P(z) = cpx™ + cp1z™ - 41z + co

be a polynomial where cg, ¢y, ..., ¢, are constants. Then
0> ) )
lim 2™ = a™ m=1,2,....n
r—a

implies that the function f(x) = 2™ is continuous. Since

lim Co = Cp,
T—a

19



Calculus I - Continuity

the constant function is continuous as well, and therefore the product
function g(x) = ca™ is continuous. Since P is a sum of functions of this
form, it is continuous as well.

(b) Rational functions are quotients of polynomials, i.e.,

P(z)

f(@) = ;

“) =%
where P and () are polynomials. Thus the above result implies that they
are continuous on their domains. O

3 2 2 1
Example 5. Find lim R
z——2 5 —3x

Theorem 2.5.3. The following types of functions are continuous at every
number in their domains:

e polynomials e rational functions e 7100t functions

e trigonometric functions e inverse trigonometric functions

e cxponential functions e logarithmic functions

_ Inz+ tan~lz

Example 6. Where is the function f(z) = — continuous?
x —

Example 7. Evaluate lim ﬂ.
z—m 2 + Ccosx

20



Calculus I - Continuity

Theorem 2.5.4. If f is continuous at b and lim g(x) = b, then lim f(g(z)) =

r—a r—ra
f(b), i.e.,

i £(9()) = £ (1 g(0)).

r—a r—a

Proof. Let € > 0. Since f is continuous at b, we have lim,_;, f(y) = f(b) and
so there exists d; > 0 such that

it 0<|y—10] <o then |f(y) — f(b)] <e.
Since lim,_,, g(z) = b, there exists § > 0 such that
if 0<|z—a|l<o then lg(z) — b] < 4.

By letting y = g(z) in the first statement, we get that 0 < |z — a| < ¢ implies
that | F(g(2) — F(B)] < &, ie., Tanaa flg(2)) = F(B). 0

5 — 2
Example 8. Evaluate lim In ( * )
rz—1 1 +x

Theorem 2.5.5. If g is continuous at a and f is continuous at g(a), then the
composite function f o g given by (f o g)(xz) = f(g(x)) is continuous at a.

Proof. Since g is continuous at a, we have
lim g(z) = g(a).

Since f is continuous at g(a), we have

lim f(g(x)) = f (lim 9(@) = f(g(a)),

T—a T—a

which means f o ¢ is continuous. O

21



Calculus I - Continuity

Example 9. Where are the following functions continuous?

1
(b) y = arctan —
x

Theorem 2.5.6 (Intermediate Value Theorem). Suppose that f is continuous
on the closed interval |a,b] and let N be any number between f(a) and f(b),
where f(a) # f(b). Then there exists a number c in (a,b) such that f(c) = N.

Example 10. Show that there is a root of the equation —2 + 42 +1 =0
between —1 and 0.

22



Calculus I - Limits at Infinity

2.6 Limits at Infinity

Definition 2.6.1. Let f be a function defined on some interval (a, o). Then

lim f(x) =L

T—00

means that the values of f(x) can be made arbitrarily close to L by requiring
x to be sufficiently large.

Definition 2.6.2. Let f be a function defined on some interval (—o00, a). Then

lim f(z)=1L

T—r—00

means that the values of f(x) can be made arbitrarily close to L by requiring
x to be sufficiently large negative.

Definition 2.6.3. The line y = L is called a horizontal asymptote of the
curve y = f(z) if either

lim f(z) =L or lim f(x)=L.

T—00 T—r—00
Example 1. Find the infinite limits, limits at infinity, and &
asymptotes for the function f whose graph is shown. |
) \\
I 2
\

1
Example 2. Find lim — and lim -.
Tx—00 I r—>—00 I

23



Calculus I - Limits at Infinity

Theorem 2.6.1. Ifr > 0 is a rational number, then

) 1 ) 11" 17"
lim — = lim {—} :{hm —} =0"=0
rz—oo T r—o00 | T

r—00 I
1 11" 11"
lim — = lim {—} = [ lim —] =0"=0.
rz——oo T r——00 | I T——00 I
Example 3. Evaluate
323 — 8z + 2

lim —m8M—.
o 43 — Hx?2 — 2

24



Calculus I - Limits at Infinity

Example 4. Find the horizontal and vertical asymptotes of the graph of the
function
202 4+ 1

fla) =5 —F

25



Calculus I - Limits at Infinity

Example 5. Compute tlim (V2582 + 2 — 5t).
—00

Example 6. Evaluate lim tan='(Inz).
z—0t

Example 7. Evaluate lim e%°".

z—(n/2)t

Example 8. Evaluate lim cosx.
Tr—r00

26



Calculus I - Limits at Infinity

Example 9. Find lim 2° and lim 2°.

T—r00 T—r—00

Example 10. Find lim (z — /z).

T—r00

2
Example 11. Find lim v

T—00 — X

Example 12. Sketch the graph of y = (3 — z)(1 + z)?(1 — x)* by finding its
intercepts and its limits as * — oo and as * — —o0.

27



Calculus I - Limits at Infinity

Definition 2.6.4. Let f be a function defined on some interval (a,c0). Then

lim f(z) =L

T—r00

means that for every € > 0 there is a corresponding number N such that
if >N  then |f(z) —L| <e.
Definition 2.6.5. Let f be a function defined on some interval (—o0, a). Then

lim f(x)=1L

T—r—00

means that for every € > 0 there is a corresponding number N such that
if <N then |f(z) —L| <e.
Example 13. Use a graph to find a number N such that

32 —x—2

—— — 0.6
52 +4x +1

if >N then < 0.1.

1
Example 14. Prove that lim — = 0.

T—0o0 U

28



Calculus I - Limits at Infinity

Definition 2.6.6. Let f be a function defined on some interval (a,c0). Then

ILm f(z) =00

means that for every positive number M there is a corresponding positive
number N such that

if >N  then  f(z)> M.
Definition 2.6.7. Let f be a function defined on some interval (a,o0). Then

ILm f(z) = -0

means that for every negative number M there is a corresponding positive
number N such that

if >N  then f(z) < M.
Definition 2.6.8. Let f be a function defined on some interval (—oo, a). Then

lim f(z)= o0

T——00

means that for every positive number M there is a corresponding negative
number N such that

if <N  then  f(z)> M.
Definition 2.6.9. Let f be a function defined on some interval (—o00, a). Then

lim f(x)=—oc0

T—r—00

means that for every negative number M there is a corresponding negative
number N such that

if <N  then  f(z) <M.

29



Calculus I - Derivatives and Rates of Change

2.7 Derivatives and Rates of Change

Definition 2.7.1. The tangent line to the curve y = f(z) at the point
P(a, f(a)) is the line through P with slope

@)= f@

r—ra Tr—a
provided that this limit exists.

Example 1. Find an equation of the tangent line to the parabola y = 22 at
the point P(1,1).

Example 2. Use the alternative expression for the slope of a tangent line

e fat k) f(a)
h—0 h

to find an equation of the tangent line to the hyperbola y = 3/z at the point
(3,1).

30



Calculus I - Derivatives and Rates of Change

Definition 2.7.2. A function f describing the motion of an object along a
straight line is called a position function and has velocity

fla+h) = f(a)
h

o) = iy

at time ¢ = a.

Example 3. Suppose that a ball is dropped from the upper observation deck
of the CN Tower, 450 m above the ground. Recall that the distance (in meters)
fallen after ¢ seconds is 4.9¢%.

(a) What is the velocity of the ball after 5 seconds?

(b) How fast is the ball traveling when it hits the ground?

31



Calculus I - Derivatives and Rates of Change

Definition 2.7.3. The derivative of a function f at a number a, denoted by

f'(a) is
ey = i [N =@
or equivalently @ @
/ _ f r)— f a
f(a) = lim ——"—

if this limit exists.

Example 4. Find the derivative of the function f(z) = 22% — 5z + 3 at the
numbers (a) 2 and (b) a.

32



Calculus I - Derivatives and Rates of Change

Example 5. Find the derivative of the function f(z) = 1/4/z at the number
a (a > 0).

Example 6. Find an equation of the tangent line to the parabola y = 222 —
5z + 3 at the point (3,6).

Definition 2.7.4. Suppose y is a quantity that depends on another quantity
x. Then y is a function of x and we write y = f(z). If  changes from z; to
x9, then the change in z (also called the increment of x) is

Ar =29 — 13
and the corresponding change in vy is
Ay = f(x2) — f(x1).

The average rate of change of y with respect x over the interval [z, 25| is

% _ flx2) = f(z1)

Ax To — T

and the instantaneous rate of change of y with respect to x is
Ay

TR Ce) Rl AC))

Az—0 Ax To—T1 To — X1

= f'(z).

33



Calculus I - Derivatives and Rates of Change

Example 7. The cost of producing x ounces of gold from a new gold mine is
C = f(x) dollars.
(a) What is the meaning of the derivative f'(z)? What are its units?

(b) What does the statement f’(800) = 17 mean?

(¢) Do you think the values of f'(x) will increase or decrease in the short term?
What about the long term? Explain.

Example 8. Let D(t) be the US national debt at time ¢. The

table gives approximate values of this function by providing end t D)
: s 1985 | 1945.9
of year estimates, in billions of dollars, from 1985 to 2010. In-
terpret and estimate the value of D’(2000). 1990 | 3364.8
1995 | 4988.7
2000 | 5662.2
2005 | 8170.4
2010 | 14,025.2

Source: US Dept. of the Treasury

34



Calculus I - The Derivative as a Function

2.8 The Derivative as a Function

Definition 2.8.1. The derivative of a function f is the function

fla) — i LE D) =)

h—0 h

if this limit exists.

Example 1. The graph of a function f is given. Use it to sketch
the graph of the derivative f’.

Example 2. (a) If A(p) = 4p® + 3p, find a formula for A'(p).

(b) Illustrate this formula by comparing the graphs of A and A’.

35




Calculus I - The Derivative as a Function

Example 3. If f(z) = \/x, find the derivative of f. State the domain of f’.

1
Example 4. Find ¢ if g(u) = 4u i T
u j—

Definition 2.8.2. The symbols D and d/dx are called differentiation opera-
tors and are used as follows:

fay =y = tim 2=V V) - Dfa) = D pla)

A0 Az dr dx

For fixed a, we use the notation

dy
dr|,_

dy

dr],_

a a

Definition 2.8.3. A function f is differentiable at a if f'(a) exists. It is dif-
ferentiable on an open interval (a,b) [or (a,00) or (—o0,a) or (—oo,00)] if it
is differentiable at every number in the interval.

36



Calculus I - The Derivative as a Function

Example 5. Where is the function f(x) = |z| differentiable?

37



Calculus I - The Derivative as a Function

Theorem 2.8.1. If f is differentiable at a, then f is continuous at a.

Proof. 1f f is differentiable at a, we have

Bl ) — o)) = 1 L= g
-1 BT e
= f'(a)-0=0

Therefore,

lim f(z) = lim[f(a) + (f(2) — f(a))]
= lim f(a) + lim[f(2) — f(a)]
= f(a) + 0= f(a). -

Definition 2.8.4. If the derivative f’ of a function f has a derivative of its
own we call it the second derivative of f and denote it by

(f/)/ _ f// d (d_y) d Y

~de \dz ) da?

Example 6. If A(p) = 4p® + 3p, find and interpret A”(p).

Definition 2.8.5. The instantaneous rate of change of velocity with respect
to time is called the acceleration a(t) of an object. It is the derivative of the
velocity function, and therefore the second derivative of the position function:

a(t) ='(t) = s"(t).
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Definition 2.8.6. The third derivative " is the derivative of the second
derivative, denoted by

(f//)/ — fl//.

Definition 2.8.7. The instantaneous rate of change of acceleration with re-
spect to time is called the jerk j(t) of an object. It is the derivative of the
acceleration function, and therefore the third derivative of the position func-
tion:

Jt) = d'(t) = v"(t) = "(t).

Definition 2.8.8. The fourth derivative f”” is usually denoted by f®). In
general, the nth derivative of f is denoted by f™ and is obtained from f by
differentiating n times. If y = f(x), we write

d™y
(n) — fn) - J
y fz) = -3

Example 7. If A(p) = 4p* + 3p, find A”(p) and AW (p).
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Chapter 3

Differentiation Rules

3.1 Derivatives of Polynomials and Exponen-

tials

Theorem 3.1.1. The derivative of a constant function f(z) = c is 0, i.e.,

%(C) = 0.
Proof.
o) = i JEED =) ey
Theorem 3.1.2.
%(:ﬁ) =1 %(:{:2) = 2r %(:c?’) = 322 dilx(:z:‘l) = 42°

Proof. All of these follow directly from the definition of the derivative, as

above.

Theorem 3.1.3 (The Power Rule). If n is a positive integer, then

a
dz

(") = na™ 1.

Proof. Since

xn _ an _ (:v—a)(x"_l _{_In—Qa_{_ +$an—2 _{_an—l)’
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Calculus I - Derivatives of Polynomials and Exponentials

we have
fla) = i 1@y 27—
r—a r—a T—=a T — @
= lim(x”_l + " 2q S 2 + an—l)
r—a

:anfl+an72a+..'+aanf2+anfl

— gn—l + an—l + L +&n—1 + an—i

ER

= na" L. O]

Example 1. Find the derivative of each of the following:

(a) f(z) =2
(b) y = 2
(c)y=1tT

Theorem 3.1.4 (The Power Rule (General Version)). If n is any real number,

then
d

%(x”) =nz" L.

Example 2. Differentiate:

Definition 3.1.1. The normal line to a curve C' at a point P is the line
through P that is perpendicular to the tangent line at P.
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Calculus I - Derivatives of Polynomials and Exponentials

Example 3. Find equations of the tangent line and normal line to the curve
= z+/z at the point (1,1).

Theorem 3.1.5 (The Constant Multiple Rule). If ¢ is a constant and f is a
differentiable function, then

d d
T fef(@)] = e (@)

Proof. Let g(z) = c¢f(z). Then

oy o glet+h)—gl@) o cf(x+h)—cf(x)
A A
L flx+h)— f(z)
_}L%C[ h }
iy @) — f(2)
h—0 h
= cf'(x). O

Example 4. Find:
d
— (1023

(a) £-(1027)

Theorem 3.1.6 (The Sum Rule). If f and g are both differentiable, then

L 17@) + 9(0)] = (@) + (e,
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Proof. Let F(x) = f(x) 4+ g(x). Then
F(x+h) — F(z)

P = iy
_ iy L@+ R) + gz + h)] = [f(2) + g(2)]
h—0 h
[ fle+h)—f(x)  glxz+h)—g(z)
= Jim I + h
o fle+h) = flx) . glz+h)—g(v)
= Jimy h +m b
= f'(x) + (). O

Theorem 3.1.7 (The Difference Rule). If f and g are both differentiable, then

1)~ gla)] = - f@) — ~gla).

d
Example 5. Find d—(xg — 82" — 22" + 7% + 22 + 6).
T

Example 6. Find the points on the curve y = 2* — 622 + 4 where the tangent
line is horizontal.
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Example 7. The equation of motion of a particle is s = t* —2¢3+t2 — ¢, where
s 1s measured in meters and ¢ in seconds. Find the acceleration as a function
of time. What is the acceleration after 2 seconds?

el —1

Definition 3.1.2. ¢ is the number such that }llim = 1.

—0

Theorem 3.1.8. — (&%) = e”.

@
dx
Example 8. If f(r) =¢" + ¢, find f’ and f”.

Example 9. At what point on the curve y = 1 + 2¢* — 3z is the tangent line
parallel to the line 3z — y = 57
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3.2 The Product and Quotient Rules

Theorem 3.2.1 (The Product Rule). If f and g are both differentiable, then

d

L gt = S0 fg(@)] + gla)

- /@)

Proof. By the definition of the derivative on the product,

L b o)g(e)] — tim LM+ P) = F(@)g(a)

% h—0 h
fx+h)glx+h) = fle+h)g(x) + flz+h)g(r) — f(x)g(z)

= lim
h—0

_ iy J@ g+ h) — fx + h)g(2) lim flx+h)g(z) — f(x)g(z)

h—0 h h—0 h
o JE gt k) —g@)] g+ h) — ()]

h—0 h h—0 h
=i o+ ) i D+ ) S5 =
= fa) - lgfa)] + o(x) ()] =

Example 1. (a) If f(z) = ze”, find f'(x).

(b) Find the nth derivative, f™(z).
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1 1 1
Example 2. Differentiate the function J(u) = <E + $> (u + 5)

Example 3. If f(z) = e"g(z), where g(0) = 2 and ¢'(0) = 5, find f/(0).

Theorem 3.2.2 (The Quotient Rule). If f and g are differentiable, then

ane o)1 (a)] - f(fv)d%[g(x)]‘

dr | g(x) l9()]?

Proof. Similar to the Product Rule, except we add and subtract f(x)g(z) in
the numerator when applying the definition of the derivative. m
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b
Example 4. Let f(x) = aI—i—i—_d' Find f’.
cx

Example 5. Find an equation of the tangent line to the curve y = (1+x)/(1+
e”) at the point (0, 3).
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3.3 Derivatives of Trigonometric Functions

Theorem 3.3.1. The derivative of the sine function is the cosine function,
1.€.,

i(sim x) = CoS .

dx

3

Example 1. Differentiate y = z°sin x.

Theorem 3.3.2. The derivative of the cosine function is the negative sine
function, i.e.,

i(cos xr) = —sinz.

dz

Theorem 3.3.3. The derivative of the tangent function is the square of the
secant function, i.e.,

— (tan ) = sec’ z.

dx

Proof. By the Quotient Rule,

i(tanyc) = i sinz
dz ~ dx \cosx

cos T (sinz) — sin T (cosx)

cos? x
cosx - cos T — sinz(—sin x)

cos? x
2 )
COS“ T + sin“x
cos? x
1 2
= 5— = sec” x. L]
cos?x
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Theorem 3.3.4. The derivatives of the trigonometric functions are

L (sin) = cos ! (esca) t

—(sinx) = cosx —(escx) = —cscx cot x

dz dz

! (cosa) = —s ! (sec) = secrt

—(cosx) = —sinx —(secx) = secx tan x

dz dx

%(tan r) =sec’x %<C0t r) = —csc’x.

Example 2. Differentiate f(z) = 1_?_%. For what values of x does the

an x

graph of f have a horizontal tangent?

Example 3. An object at the end of a vertical spring is stretched to
4 cm beyond its reset position and released at time ¢t = 0. (See the
figure and note that the downward direction is positive.) Its position

at time ¢ is
s = f(t) =4cost.

Find the velocity and acceleration at time ¢ and use them to analyze the motion
of the object.

49



Calculus I - Derivatives of Trigonometric Functions

Example 4. Find the 99th derivative of sin x.

inb
Example 5. Find lim o x.

z—0 31

sin x
Example 6. Find lim — .
z—0 sin T

. . sin 6
Example 7. Find éli}l’(l] m
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3.4 The Chain Rule

Theorem 3.4.1 (The Chain Rule). If g is differentiable at x and f is differen-
tiable at g(x), then the composite function F' = fog defined by F(z) = f(g(x))
is differentiable at x and F' is given by the product

F'(z) = f'(g(x)) - ¢'(x).
Example 1. Find F'(z) if F(z) = Va3 + 2.

Example 2. Differentiate (a) y = cos(z?) and (b) y = cos®z.
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Calculus I - The Chain Rule

Theorem 3.4.2 (The Power Rule Combined with the Chain Rule). If n is
any real number and uw = g(x) is differentiable, then

d oy du

Example 3. Differentiate y = (2° + 32% — x).

Example 4. Find f'(x) if f(z) =

Example 5. Find the derivative of the function

uwd—1 i
glu) = <u3+1> '
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Example 6. Differentiate F'(z) = (4 + 5)%(2* — 22 + 5)%.

tan 6

Example 7. Differentiate y = e

Theorem 3.4.3. The derivative of the exponential function is

d
—(b") = b"Inb.
d:c( ) "

Proof. Since
- (elnb>r _ e(lnb)z

)

the Chain Rule gives

d d
L (prY — (Inb)z
5o (b)) = (™)
d
= e(lnb)x%(ln b)x
=™ Inp
=0b"Inb.
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Example 8. Find the derivative of (a) g(z) = 3% and (b) h(x) = 5V

Example 9. Find f'(¢) if f(t) = tan(sec(cost)).

sin?(z2)

Example 10. Differentiate y = e .
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3.5 Implicit Differentiation

Definition 3.5.1. Implicit differentiation is the method of differentiation both
sides of an equation with respect to x, and then solving the equation for ¢/
when y = f(x).

d
Example 1. (a) If 22 + y* = 169, find d_y
x

(b) Find an equation of the tangent to the circle % + y*> = 169 at the point
(5,12).
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Calculus I - Implicit Differentiation

Example 2. (a) Find 3/ if 2* + 3* = 6ay.

(b) Find the tangent to the folium of Descartes x® + y> = 6xy at the point
(3,3).

(c) At what point in the first quadrant is the tangent line horizontal?
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Example 3. Find ¢/ if tan(z — y) = 2zy® + 1.

Example 4. Find " if 23 — 3 = 7.
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Calculus I - Derivatives of Logarithmic and Inverse Trigonometric Functions

3.6 Derivatives of Logarithmic and Inverse Trigono-
metric Functions

Theorem 3.6.1. The derivative of the logarithm function is

d
—(1 = )
d:v(Ogbw) zlnbd

Proof. Let y = log, x. Then b¥ = x, so by differentiating we get

b=z
by(lnb);l—i =1
dy 1
der  blnb
1
zlnb

Theorem 3.6.2. The derwative of the natural logarithm is
d 1
—(1 =—.
dx( n) x

Example 1. Differentiate y = logg(2? + 3x).

d
Example 2. Find d—ln(cos x).
T
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Example 3. Differentiate g(t) = v/1+ Int.

Example 4. Differentiate y = log;, sec x.

a

Example 5. Find i In a:_
de b*

Example 6. Find f'(z) if f(z) = In|z|.
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Definition 3.6.1. Logarithmic differentiation is the method of calculating
derivatives of functions by taking logarithms, differentiating implicitly, and
then solving the resulting equation for the derivative.

e % cos?

E le 7. Differentiate y = ——.
xample ifferentiate y O

Theorem 3.6.3 (The Power Rule). If n is any real number and f(x) = 2",
then
f'(z) = na™ 1.

Proof. Let y = 2™. By logarithmic differentiation we get
y ="
In fy| = In 2"
=nln|z| x#0
n

y/
y
y/
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Example 8. Differentiate y = (1/1)".

Theorem 3.6.4. The number e can be defined as the limit
1 n
e = lim (1 + —) )
n—o0 n

Proof. If f(x) =Inz, then f'(1) =1, so

S +h) - f(1) S +x) - f(1)

! =i =1
In(1 —Inl 1
TN LC ) hal UL VNS S OIS
z—0 T z—=0 T
= limIn(1 + 2)"/% = 1.
z—0
Thus
lim In(14x)/= z
e=¢el = e(zﬁﬂ (1+e) ) — lim e+ = lim (1 + :U)l/z.
z—0 z—0
Then if we let n = 1/z, n — oo as © — 0T, so we are done. ]
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Theorem 3.6.5. The derivative of the arcsine function is

i(sin_1 x) = !

dx V1—22

Proof. Since y = sin™'z means siny =  and —7/2 < y < 7/2, we have
cosy > 0. Thus we can differentiate to obtain

siny =x
dy 1
cosy—— =
yd:c
dy
dr — cosy
B 1
1 —sin?y
1
= —. O
V1—2a?
Theorem 3.6.6. The derivative of the arctangent function is
1
—(tan"t2) = .
dx( an_ 1) e
Proof. If y = tan~! z, then tany = z. Differentiating then gives us
tany = x
dy
2
-7 9
sec”y
dy 1
de  secty
B 1
~ 1+tan’y
1
= . O
1+ 22
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Example 9. Differentiate

(b) h(z) = (arcsinz) Inz.

Theorem 3.6.7. The derivatives of the Inverse Trigonometric Functions are

dx V1 —a2 dx a1
1 d 1
1N 1. _
%(COS x) = Vi T (sec™  x) = T
1 d 1
T (tan™" ) T2 . (cot™" ) 22
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Theorem 3.6.8. Suppose f is a one-to-one differentiable function and its
inverse function f~! is also differentiable. Then f~' has derivative

provided that the denominator is not 0.

Proof. Since (f o f~')(x) = x, we have, by the chain rule,

(fof ()

(fo )’(1')
i ))(f (@)
(f (@) =

Il
— =8

X

)
Example 10. If f(4) =5 and f'(4) = 2, find (f7')'(5).
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Calculus I - Rates of Change in the Sciences

3.7 Rates of Change in the Sciences

Example 1. The position of a particle is given by the equation
s=f(t) =t —6t> + 9t

where ¢ is measured in seconds and s in meters.

(a) Find the velocity at time ¢.

(b) What is the velocity after 2 s? After 4 s?

(c) When is the particle at rest?

(d) When is the particle moving forward (that is, in the positive direction)?
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Calculus I - Rates of Change in the Sciences

(e) Draw a diagram to represent the motion of the particle.

(f) Find the total distance traveled by the particle during the first five seconds.

(g) Find the acceleration at time ¢ and after 4 s.

(h) Graph the position, velocity, and acceleration functions for 0 < ¢ < 5.
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Calculus I - Rates of Change in the Sciences

(i) When is the particle speeding up? When is it slowing down?

Example 2. If a rod or piece of wire is homogeneous, then its linear density is
uniform and is defined as the mass per unit length (p = m/l) and measured in
kilograms per meter. Suppose, however, that the rod is not homogeneous but
that its mass measured from its left end to a point z is m = f(x), as shown

in the figure.

| x |

I I I
N J Xl _X2
This part of the rod has mass f(x).

In this case the average density is the average rate of change over a given
interval, and the linear density is the limit of these average densities.

If m = f(z) = /x, where z is measured in meters and m in kilograms, find
the average density of the part of the rod given by 1 < x < 1.2 and the density
at z = 1.
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Example 3. The average current during a time interval is the average rate
of change of the net charge over that interval, and the current at a given time
is the limit of the average current (the rate at which charge flows through a
surface, measured in units of charge per unit time). The quantity of charge
@ in coulombs (C) that has passed through a point in a wire up to time ¢
(measured in seconds) is given by Q(t) = > — 2t>+ 6t +2. [The unit of current
is an ampere (1 A =1 C/s).] Find the current when

(a) t=0.5s

(b)t=1s.

At what time is the current lowest?
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Example 4. The concentration of a reactant A is the number of moles (1
mole = 6.022 x 10?* molecules) per liter and is denoted by [A] for a chemical
reaction

A+B—C.

The average rate of reaction during a time interval is the average rate of
change of the concentration of the product [C] over that interval, and the rate
of reaction at a given time is the limit of the average rate of reaction.

If one molecule of a product C is formed from one molecule of a reactant A
and one molecule of a reactant B, and the initial concentrations of A and B
have a common value [A] = [B] = a moles/L, then

a’kt
akt +1

[C] =

where k is a constant.

(a) Find the rate of reaction at time t.

(b) Show that if x = [C], then
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(c) What happens to the concentration as t — 0o?

(d) What happens to the rate of reaction as t — co?

(e) What do the results of parts (c¢) and (d) mean in practical terms?
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Example 5. If a given substance is kept a constant temperature, then the
rate of change of its volume V' with respect to its pressure P is the derivative
dV/dP. The compressibility is defined by

1dV
isoth 1 ibility = f = —=——.
isothermal compressibility = v dp
The volume V' (in cubic meters) of a sample of air at 25°C was found to be

related to the pressure P (in kilopascals) by the equation

5.3
V=—.
P

Determine the compressibility when P = 50 kPa.

Example 6. Let n = f(¢) be the number of individuals in an animal or plant
population at time ¢t. The average rate of growth during a time period is the
average rate of change of the growth of the population over that time period,
and the rate of growth at a given time is the limit of the average rate of
growth.

Suppose that a population of bacteria doubles every hour. The population
function representing the bacteria’s growth can be found to be

n = ny2

where ng is the initial population and the time ¢ is measured in hours.
Find the rate of growth for a colony of bacteria with an initial population
ng = 100 after 4 hours.
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Example 7. The shape of a blood vessel can be modeled by a cylindrical tube
with radius R and length [ as illustrated in the figure.

_l__jf_l;__ =
=
/ 4

—

| ! |

The relationship between the velocity v of the blood and the distance r from
the axis is given by the law of laminar flow

P

T
U_4nl(R %)

where 7 is the viscosity of the blood and P is the pressure difference between
the ends of the tube. If P and [ are constant, then v is a function of r with
domain [0, R]. The velocity gradient at a given time is the limit of the average
rate of change of the velocity.

For one of the smaller human arteries we can take n = 0.027, R = 0.008 cm,
[ =2 cm, and P = 4000 dynes/cm?. Find the speed at which blood is flowing
at r = 0.002 and find the velocity gradient at that point.
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Example 8. Suppose C(x) is the total cost that a company incurs in produc-
ing x units of a certain commodity. The function C' is called a cost function.
The instantaneous rate of change of cost with respect to the number of items
produced, called the marginal cost, is the limit of the average rate of change
of the cost.

Suppose a company has estimated that the cost (in dollars) of producing x
items is

C(x) = 10,000 + 5z + 0.01z>.

Find the marginal cost at the production level of 500 items and compare it to
the actual cost of producing the 501st item.

73



Calculus I - Exponential Growth and Decay

3.8 Exponential Growth and Decay

Definition 3.8.1. The equation
dy
A
at Y

is called the law of natural growth (if £ > 0) or the law of natural decay (if
k < 0). It is called a differential equation because it involves an unknown
function y and its derivative dy/dt.

Theorem 3.8.1. The only solutions of the differential equation dy/dt = ky
are the exponential functions

y(t) = y(0)e™.
Definition 3.8.2. If P(t) is the size of a population at time ¢, then
_1ap
P dt
is the growth rate divided by population, called the relative growth rate.

Example 1. Use the fact that the world population was 2560 million in 1950
and 3040 million in 1960 to model the population of the world in the second
half of the 20th century. (Assume that the growth rate is proportional to the
population size.) What is the relative growth rate? Use the model to estimate
the world population in 1993 and to predict the population in the year 2020.
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Calculus I - Exponential Growth and Decay

Definition 3.8.3. If m(t) is the mass remaining from an initial mass mq of a
substance after time ¢, then the relative decay rate is

1 dm

m dt
It follows that the mass decays exponentially according to the equation
kt

m(t) = mee

where the rate of decay is expressed in terms of half-life, the time required for
half of any given quantity to decay.

Example 2. The half-life of radium-226 is 1590 years.

(a) A sample of radium-226 has a mass of 100 mg. Find a formula for the
mass of the sample that remains after ¢ years.

(b) Find the mass after 1000 years correct to the nearest milligram.

(¢c) When will the mass be reduced to 30 mg?
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Calculus I - Exponential Growth and Decay

Example 3. Newton’s Law of Cooling can be represented as a differential

equation

dT
= —KT-T),
o = K )

where T is the temperature of the object at time ¢ and T, is the temperature
of the surroundings. The exponential function y(t) = y(0)e*" is a solution to
this differential equation when y(t) = T'(t) — Ts.

A bottle of soda pop at room temperature (72°F) is placed in a refrigerator
where the temperature is 44°F. After half an hour the soda pop has cooled to
61°F.

(a) What is the temperature of the soda pop after another half hour?

(b) How long does it take for the soda pop to cool to 50°F?
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Example 4. In general, if an amount Ag is invested at an interest rate r, then
after t years it is worth Ag(1 + r)’. Usually, however, interest is compounded
more frequently, say, n times a year. Then in each compounding period the
interest rate is r/n and there are nt compounding periods in ¢ years, so the

value of the investment is o
,
A, (1 i _) |
n

Therefore, taking limits gives us the amount after ¢ years as
A(t) = Aoe”

when interest is continuously compounded. Determine the value of an invest-
ment of $1000 after 3 years of continuously compounding 6% interest. Com-
pare this to the value of the same investment compounded annually instead.
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3.9 Related Rates

Example 1. The radius of a sphere is increasing at a rate of 4 mm/s. How
fast is the volume increasing when the diameter is 80 mm?
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Example 2. A ladder 10 ft long rests against a vertical wall. If the bottom
of the ladder slides away from the wall at a rate of 1 ft/s, how fast is the top
of the ladder sliding down the wall when the bottom of the ladder is 6 ft from
the wall?
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Example 3. Water is leaking out of an inverted conical tank at a rate of
10,000 cm?®/min at the same time that water is being pumped into the tank
at a constant rate. The tank has height 6 m and the diameter at the top is 4
m. If the water level is rising at a rate of 20 cm/min when the height of the
water is 2 m, find the rate at which water is being pumped into the tank.
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Example 4. Two cars start moving from the same point. One travels south
at 60 mi/h and the other travels west at 25 mi/h. At what rate is the distance
between the cars increasing two hours later?
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Example 5. A plane flies horizontally at an altitude of 5 km and passes
directly over a tracking telescope on the ground. When the angle of elevation
is 7/3, this angle is decreasing at a rate of 7/6 rad/min. How fast is the plane
traveling at that time?
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3.10 Linear Approximations and Differentials

Definition 3.10.1. The approximation

f@) = f(a) + f(a)(z — a)

is called the linear approximation or tangent line approximation of f at a. The
linear function whose graph is this tangent line, that is,

L(z) = f(a) + f'(a)(z — a)

is called the linearization of f at a.

Example 1. Find the linearization of the function f(x) = +/z +3ata =1 and
use it to approximate the numbers v/3.98 and v/4.05. Are these approximations
overestimates or underestimates?
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Example 2. For what values of x is the linear approximation

7T x

\/x+3%1+1

accurate to within 0.57 What about accuracy to within 0.17

Definition 3.10.2. If y = f(x), where f is a differentiable func-
tion, then the differential dx is an independent variable; that is,

dx can be given the value of any real number. The differential

dy is then defined in terms of dz by the equation
dy = f'(z)dz.
84
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Example 3. Compare the values Ay and dy if y = f(x) = 2° + 2 — 2z + 1
and z changes

(a) from 2 to 2.05

(b) from 2 to 2.01.

Example 4. The radius of a sphere was measured and found to be 21 cm with
a possible error in measurement of at most 0.05 cm. What is the maximum
error in using this value of the radius to compute the volume of the sphere?
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Calculus I - Hyperbolic Functions

3.11 Hyperbolic Functions

Definition 3.11.1. Functions that have the same relationship to the hyper-
bola that trigonometric functions have to the circle are called hyperbolic func-
tions and are defined as follows

T __ ,—T 1
sinhxz = ce-° cschx = —
2 sinh x
et 4+ e " 1
hy = — = ho =
cosh x 5 sech x p——
inh h
tanh x = S cothz = C9S x_
cosh z sinh x
Theorem 3.11.1 (Hyperbolic Identities).
sinh(—z) = —sinhz cosh(—z) = coshz
cosh?z —sinh?z =1 1 — tanh® z = sech? x

sinh(x + y) = sinh x cosh y + cosh x sinh y
cosh(x + y) = cosh z cosh y + sinh z sinh .

Example 1. Prove

(a) cosh?z —sinh?z = 1

(b) 1 — tanh®2 = sech® z.
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Calculus I - Hyperbolic Functions

Theorem 3.11.2 (Derivatives of Hyperbolic Functions).

. (sinhz) = coshx . (cschx) = — eschx coth
. (coshx) = sinhx . (sech x) = — sech x tanh z
d _ 2 d _ 2

. (tanh x) = sech” . (cothx) = — csch” .

Example 2. Find di(cosh V).
T

Theorem 3.11.3 (Inverse Hyperbolic Functions).

sinh ™'z = In(x + Va2 + 1) reR
cosh™ = In(z + Va2 — 1) r>1
1 1
tanh ™'z = ~In rr —-1l<z<1
2 l—x

Example 3. Show that sinh™' z = In(x + /22 + 1).
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Calculus I - Hyperbolic Functions

Theorem 3.11.4 (Derivatives of Inverse Hyperbolic Functions).

d (sinh ™' 2) ! d (csch™ z) !
—(sinh™ ) = — =
dx V1+a? dx lz|vVa? 41
d 1 d 1

2 (cosh™L o) = & (sech™ ') = ———
o (cosh™ x) —— dx(sec x) =
d o1 d a1
%(tanh x) = T3 %(coth x) = -t

d
Example 4. Prove that — (sinh™' z) =

dz V1+a?

Example 5. Find di[tanhl(sin x)].
T
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Chapter 4

Applications of Differentiation

4.1 Maximum and Minimum Values

Definition 4.1.1. Let ¢ be a number in the domain D of a function f. Then
f(c) is the absolute maximum value (or global maximum value) of f on D if
f(c) > f(z) for all z in D and f(c) is the absolute minimum value (or global
minimum value) of f on D if f(c) < f(x) for all x in D. These values are
called extreme values of f.

Definition 4.1.2. The number f(c) is a local maximum value of f if f(c) >
f(z) when x is near ¢ and a local minimum value of f if f(c) < f(x) when z is
near ¢. When we say near, we mean on an open interval containing c. These
values are called local extreme values of f.

Example 1. For what values of z does f(x) = sin x take on its maximum and
minimum values?

Example 2. Find all of the extreme values of f(x) = x°.
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Calculus I - Maximum and Minimum Values

Example 3. Find all of the extreme values of f(z) = 2.

Example 4. Find all of the extreme values of f(x) = 3z* — 42% — 1222 + 1
within the domain —2 < x < 3.

Theorem 4.1.1 (Extreme Value Theorem). If f is continuous on a closed
interval [a,b] then f attains an absolute mazximum value f(c) and an absolute
minimum value f(d) at some numbers ¢ and d in |a, b].

Theorem 4.1.2 (Fermat’s Theorem). If f has a local mazimum or minimum
at ¢, and if f'(c) exists, then f'(c) = 0.

Proof. Suppose f has a local maximum at ¢. Then, by definition, f(c) > f(x)
if x is near ¢, so if we let h > 0 be close to 0 we have

f(e) = fle+h)

fle+h) = () _ 0
h =
i LCHP =IO g
h—0+ h h—0+
f(e) <0

If h < 0, the direction of the inequality is reversed and we get f’(¢) > 0. Thus
combining these inequalities gives us f’(¢) = 0. A similar argument can be
used to achieve the same result if f has a local minimum at c. O
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Calculus I - Maximum and Minimum Values

Example 5. Use the function f(z) = x® to determine whether the converse
of Fermat’s theorem is true.

Example 6. Does Fermat’s theorem apply to the function f(x) = |z|?

Definition 4.1.3. A critical number of a function f is a number ¢ in the
domain of f such that either f'(c) =0 or f'(c) does not exist.

Example 7. Find the critical numbers of 2'/3(4 — z)?/3.
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Calculus I - Maximum and Minimum Values

Example 8. Find the absolute maximum and minimum values of the function

f(z) =2* —62°+5 -3 <z <5

Example 9. (a) Use a graphing device to estimate the absolute minimum
and maximum values of the function f(x) =z — 2cosz, —2 < x < 0.
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Calculus I - Maximum and Minimum Values

(b) Use calculus to find the exact minimum and maximum values.

Example 10. The Hubble Space Telescope was deployed on April 24, 1990,
by the space shuttle Discovery. A model for the velocity of the shuttle during
this mission, from liftoff at ¢ = 0 until the solid rocket boosters were jettisoned
at t = 126 seconds, is given by

v(t) = 0.001302t* — 0.09029¢* + 23.61t — 3.083

(in feet per second). Using this model, estimate the absolute maximum and
minimum values of the acceleration of the shuttle between liftoff and the jet-
tisoning of the boosters.
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Calculus I - The Mean Value Theorem

4.2 The Mean Value Theorem

Theorem 4.2.1 (Rolle’s Theorem). Let f be a function that satisfies the fol-
lowing three hypotheses:

1. f is continuous on the closed interval [a,b].

2. f is differentiable on the open interval (a,b).
3. f(a) = f(b).

Then there is a number ¢ in (a,b) such that f'(c) = 0.

Proof. 1f f(x) = k, a constant, then f'(z) = 0 for all x € (a,b). If f(z) > f(a)
for some x € (a,b) then f has a local maximum for a number ¢ € (a,b)

the extreme value theorem. Since f is differentiable on (a,b), f'(¢) = 0 by
Fermat’s theorem. By the same reasoning, f'(c) =0 if f(z) < f(a). ]

Example 1. How could Rolle’s theorem be applied to a position function that
models a ball thrown upward?

Example 2. Prove that the equation 23+ —1 = 0 has exactly one real root.
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Calculus I - The Mean Value Theorem

Theorem 4.2.2 (The Mean Value Theorem). Let f be a function that satisfies
the following hypotheses:

1. f is continuous on the closed interval [a,b).

2. f is differentiable on the open interval (a,b).

Then there is a number ¢ in (a,b) such that

f(b) — f(a)

R

or, equivalently,

f(b) = fa) = f'(e)(b - a).

Proof. Let h be the difference between f and the secant line to f on [a, b], i.e.,

Then h is continuous on [a, b] and differentiable on (a,b) because it is the sum
of f and a first-degree polynomial, which are both continuous on [a,b] and
differentiable on (a,b). Also,

(a) = fla) ~ fa) - PO IO 4y~
) = 10) — f() ~ OOy =g,

so h(a) = h(b). Therefore, by Rolle’s thereom, there is a number ¢ in (a,b)
such that A/(c) =0, i.e.,

0=1(e) = (o - LU=
which is equivalent to
b) —
o = =10
as desired. n
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Calculus I - The Mean Value Theorem

Example 3. Find a number ¢ in (0,2) such that the slope of the secant line

is equal to the slope of the tangent line for the function f(x) = 23 — z.

Example 4. What does the mean value theorem say about the velocity of an
object moving in a straight line?

Example 5. Suppose that f(0) = —3 and f’(x) < 5 for all values of z. How
large can f(2) possibly be?

Theorem 4.2.3. If f'(x) =0 for all x in an interval (a,b), then f is constant
on (a,b).

Proof. Let x1,x9 € (a,b) be such that z; < z5. By the mean value theorem
for f on [z, xs], we get

f@2) = f@1) = [(e) (22 — m1),
for some ¢ € (21, x2). But f’(x) = 0 for all z in this interval, so f(z2) = f(z1).
Since 1 and x5 were chosen arbitrarily, f is constant on (a, b). O
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Calculus I - The Mean Value Theorem

Corollary 4.2.1. If f'(x) = ¢'(z) for all x in an interval (a,b), then f — g is
constant on (a,b); that is f(x) = g(x) + ¢ where ¢ is a constant.

Proof. Let
F(z) = f(z) — g(x)
Then
F'(z) = f'(x) — ¢'(x) =0,
so F'is constant by the previous theorem, and thus f — ¢ is constant. O]

Example 6. Prove the identity tan~!z + cot ™' x = /2.
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Calculus I - Derivatives and the Shape of a Graph

4.3 Derivatives and the Shape of a Graph

Theorem 4.3.1 (Increasing/Decreasing Test).

(a) If f'(x) > 0 on an interval, then f is increasing on that interval.

(b) If f'(x) <0 on an interval, then f is decreasing on that interval.

Proof. Let x1, x5 be two numbers on an interval where f'(x) > 0 such that
r1 < x9. Then by the mean value theorem,

fx2) = f(21) = f(c) (w2 — 1)

for some c in the interval. But f’(¢) > 0 and zo— 21 > 0, so f(z2) — f(x1) > 0,
ie.,

f(z2) > f(x1)

in the interval. Since z; and x5 were chosen arbitrarily, we are done, and the
second half of the theorem is proved similarly. O

Example 1. Find where the function f(z) = 22® — 1522+ 242 — 5 is increasing
and where it is decreasing.

98



Calculus I - Derivatives and the Shape of a Graph

Theorem 4.3.2 (The First Derivative Test). Suppose that c is a critical num-
ber of a continuous function f.

(a) If f' changes from positive to negative at c, then f has a local mazimum
at c.

(b) If ' changes from negative to positive at c, then f has a local minimum
at c.

c) If ' is positive to the left and to the right of ¢, or negative to the left and
g g
to the right of ¢, then f has no local minimum or maximum at c.

Example 2. Find the local minimum and maximum values of the function f
in Example 1.

Example 3. Find the local maximum and minimum values of the function

g(x) =sinz + cosx 0<zx<2nm.
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Calculus I - Derivatives and the Shape of a Graph

Definition 4.3.1. If the graph of f lies above all of its tangents on an interval
I, then it is called concave upward on I. If the graph of f lies below all of its
tangents on [, it is called concave downward on I.

Theorem 4.3.3 (Concavity Test).

(a) If f"(x) >0 for all x in I, then the graph of f is concave upward on I.
(b) If f"(x) <O for all x in I, then the graph of f is concave downward on I.

Example 4. The figure shows a population graph for Cyprian honeybees
raised in an apiary. How does the rate of population increase change over
time? When is this rate highest? Over what intervals is P concave upward or
concave downward?

P
80 +
60 +
Number of bees
(in thousands)
40 +
20 +

0 3 6 9 12 15 18 ¢

Time (in weeks)
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Calculus I - Derivatives and the Shape of a Graph

Definition 4.3.2. A point P on a curve y = f(z) is called an inflection point
if f is continuous there and the curve changes from concave upward to concave
downward or from concave downward to concave upward at P.

Example 5. Sketch a possible graph of a function f that satisfies the following
conditions:

(i) fl(x) >0ifx#2, f'(x) >0if x < 2.
(ii) f"(x) <0if x > 2, f has an inflection point at (2,5).
(iii) lim f(x) =38, lim f(z) =0.

T—00 T—r—00

Theorem 4.3.4 (The Second Derivative Test). Suppose f’ is continuous near
c.

(a) If f'(c) =0 and f"(c) > 0, then f has a local minimum at c.
(b) If f'(c) =0 and f"(c) <0, then f has a local mazimum at c.
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Calculus I - Derivatives and the Shape of a Graph

Example 6. Discuss the curve y = 3z* — 823 + 12 with respect to concavity,
points of inflection, and local maxima and minima. Use this information to

sketch the curve.
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Calculus I - Derivatives and the Shape of a Graph

Example 7. Sketch the graph of the function f(x) = 2'/3(x + 4).
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Calculus I - Derivatives and the Shape of a Graph

Example 8. Use the first and second derivatives of f(z) = e, together
with asymptotes, to sketch its graph.
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Calculus I - Indeterminate Forms and 1'Hospital’s Rule

4.4 Indeterminate Forms and I’Hospital’s Rule

Theorem 4.4.1 (L’Hospital’s Rule). Suppose f and g are differentiable and
g'(z) # 0 on an open interval I that contains a (except possibly at a). Suppose
that

lim f(z) =0 and lim g(z) =0

r—a r—a

or that
lim f(z) = o0 and lim g(z) = o0

r—ra Tr—ra

(In other words, we have an indeterminate form of type % or o0/00.) Then

flx) o f(2)

lim —% = lim .
z—a g(m) z—a g’(x)

if the limit on the right side exists (or is o0 or —o0).

1
Example 1. Find lim nxli

=1 —

1 X
Example 2. Calculate lim te
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Calculus I - Indeterminate Forms and 1'Hospital’s Rule

1
Example 3. Calculate lim nz—/i
Tr—00 U

t —
Example 4. Find lim M.
z—0 T3
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Calculus I - Indeterminate Forms and 1'Hospital’s Rule

Example 5. Find lim ﬂ.
z—r— 1 — cosx

Example 6. Evaluate hH(l) sin Hx csc 3.
—
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Calculus I - Indeterminate Forms and 1'Hospital’s Rule

1
Example 7. Compute lim T )
a1 \xr—1 Inzx

Example 8. Calculate lim (e” — ).
Tr—>00

108



Calculus I - Indeterminate Forms and 1'Hospital’s Rule

Example 9. Calculate lim (4z + 1)°**.

z—0t

Example 10. Find lim zV*.

z—0t
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Calculus I - Summary of Curve Sketching

4.5 Summary of Curve Sketching

Use the following guidelines when sketching curves by hand:

A. Domain

B. Intercepts

C. Symmetry

D. Asymptotes

E. Intervals of Increase or Decrease

F. Local Maximum and Minimum Values

G. Concavity and Points of Inflection

Example 1. Use the guidelines to sketch the curve y = x22 I_Z T

110




Calculus I - Summary of Curve Sketching

Example 2. Sketch the graph of f(z) =

\/ZB—|—1.
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Calculus I - Summary of Curve Sketching

Example 3. Sketch the graph of f(z) = ze”.
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Calculus I - Summary of Curve Sketching

Example 4. Sketch the graph of f(z) = 23_&.
sin x

113



Calculus I - Summary of Curve Sketching

Example 5. Sketch the graph of y = In(4 — z?).
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Calculus I - Summary of Curve Sketching

Definition 4.5.1. If
lim [f(x) — (mx +b)] =0

T—00

where m # 0, then the line y = ma + b is called a slant asymptote because
the vertical distance between the curve y = f(z) and the line y = mx + b
approaches 0.

Example 6. Sketch the graph of f(z) =

241
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Calculus I - Graphing with Calculus and Calculators

4.6 Graphing with Calculus and Calculators

Example 1. Graph the polynomial f(z) = 22° + 325 + 323 — 22%. Use the
graphs of f" and f” to estimate all maximum and minimum points and intervals
of concavity.

116



Calculus I - Graphing with Calculus and Calculators

Example 2. Draw the graph of the function

22 +7r+3
f(2) = ———

T

in a viewing rectangle that contains all the important features of the function.
Estimate the maximum and minimum values and the intervals of concavity.
Then use calculus to find these quantities exactly.
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Calculus I - Graphing with Calculus and Calculators

2}z +1)3

Example 3. Graph the function f(z) = w22 = 0
r—2)%(x —
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Calculus I - Graphing with Calculus and Calculators

Example 4. Graph the function f(z) = sin(z + sin2z). For 0 < z < 7,
estimate all maximum and minimum values, intervals of increase and decrease,

and inflection points.
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Calculus I - Graphing with Calculus and Calculators

Example 5. How does the graph of f(z) = 1/(2* + 2z + ¢) vary as ¢ varies?
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Calculus I - Optimization Problems

4.7 Optimization Problems

Example 1. A farmer has 2400 ft of fencing and wants to fence off a rect-
angular field that borders a straight river. He needs no fence along the river.
What are the dimensions of the field that has the largest area?
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Calculus I - Optimization Problems

Example 2. A cylindrical can is to be made to hold 1 L of oil. Find the
dimensions that will minimize the cost of the metal to manufacture the can.
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Calculus I - Optimization Problems

Theorem 4.7.1 (First Derivative Test for Absolute Extreme Values). Suppose
that ¢ 1s a critical number of a continuous function f defined on an interval.

(a) If f'(x) > 0 for all x < ¢ and f'(x) < 0 for all x > ¢, then f(c) is the
absolute maximum value of f.

(b) If f'(x) < 0 for all x < ¢ and f'(x) > 0 for all x > ¢, then f(c) is the
absolute minimum value of f.

Example 3. Find the point on the curve y = y/z that is closest to the point
(3,0).
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Calculus I - Optimization Problems

Example 4. An oil refinery is located on the north bank of a straight river
that is 2 km wide. A pipeline is to be constructed from the refinery to storage
tanks located on the south bank of the river 6 km east of the refinery. The
cost of laying pipe is $400,000/km over land to a point P on the north bank
and $800,000/km under the river to the tanks. To minimize the cost of the
pipeline, where should P be located?
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Calculus I - Optimization Problems

Example 5. Find the area of the largest rectangle that can be inscribed in
the ellipse 2%/a® + y*/b* = 1.
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Calculus I - Optimization Problems

Definition 4.7.1. If p(x) is the price per unit that a company can charge if
it sells = units, then p is called the demand function (or price function).
If x units are sold, then the total revenue

R(z) = quantity x price = xp(z)

and R is called the revenue function. The derivative R’ of the revenue function
is called the marginal revenue function and is the rate of change of revenue
with respect to the number of units sold.
If x units are sold, then the total profit is

where C'is the cost function and P is called the profit function. The marginal
profit function is P’, the derivative of the profit function.

Example 6. A baseball team plays in a stadium that seats 55,000 spectators.
With ticket prices at $10, the average attendance had been 27,000. When
ticket prices were lowered to $8, the average attendance rose to 33,000. Find
the demand function, assuming that it is linear, and the revenue function.
How should ticket prices be set to maximize revenue?
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Calculus I - Newton’s Method

4.8 Newton’s Method

Theorem 4.8.1 (Newton’s Method). If x,, is the nth approzimation of a root
r for a function f then

Tpy1 = Tp — f’(l’ )
n

Example 1. Starting with z; = 2, find the third approximation x3 to the
root of the equation 2® — 22 — 5 = 0.
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Calculus I - Newton’s Method

Example 2. Use Newton’s method to find ¥/2 to eight decimal places.
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Calculus I - Newton’s Method

Example 3. Find, correct to six decimal places, the root of the equation
cosT = x.
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Calculus I - Antiderivatives

4.9 Antiderivatives

Definition 4.9.1. A function F' is called an antiderivative of f on an interval
I'if F'(x) = f(x) for all z in I.

Theorem 4.9.1. If F is an antiderivative of f on an interval I, then the most
general antiderivative of f on I is

F(x)+C

where C' is an arbitrary constant.

Proof. Follows by Corollary 4.2.1 to the mean value theorem. O

Example 1. Find the most general antiderivative of each of the following
functions.

(a) f(x) =sinz

(b) flz)=1/x

(C) f(.’E) :xn’ 7’L7£ -1
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Calculus I - Antiderivatives

Example 2. Find all functions g such that

20 — 44 3z
Voo

g (x) =2cosx +

Example 3. Find [ if f/(z) = * +20(1 4+ 2?)~! and f(0) = —2.
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Calculus I - Antiderivatives

Example 4. Find f if f’(x) =4 + 6z + 242?%, f(0) = 3, and f(1) = 10.

Example 5. The graph of a function f is given in the figure. y
Make a rough sketch of an antiderivative F', given that F'(0) = 2.
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Calculus I - Antiderivatives

Example 6. A particle moves in a straight line and has acceleration given by
a(t) = 2t+1. Its initial velocity is v(0) = —2 cm/s and its initial displacement
is s(0) = 3 cm. Find its position function s(t).
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Calculus I - Antiderivatives

Example 7. A ball is thrown upward with a speed of 24 ft /s from the edge of a
cliff 432 ft above the ground. Find its height above the ground ¢ seconds later.
When does it reach its maximum height? When does it hit the ground? [For
motion close to the ground we may assume that the downward acceleration ¢
is constant, its value being about 9.8 m/s? (or 32 ft/s?).]
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Chapter 10

Parametric Equations and Polar
Coordinates

10.1 Curves Defined by Parametric Equations

Definition 10.1.1. Suppose that = and y are both given as functions of a
third variable ¢ (called a parameter) by the equations

r=[ft)  y=g()

(called parametric equations). Each value of ¢ determines a point (z,y), which
we can plot in a coordinate plane. As ¢ varies, the point (z,y) = (f(¢), g(¢))
varies and traces out a curve C', which we call a parametric curve.

Example 1. Sketch and identify the curve defined by the parametric equations

r=t*—-2t y=t+1.
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Calculus I - Curves Defined by Parametric Equations

Definition 10.1.2. In general, the curve with parametric equations
v=f(t) y=g(t) a<t<b

has initial point (f(a), g(a)) and terminal point (f(b), g(b)).

Example 2. What curve is represented by the following parametric equations?

T = cost Yy =sint 0<t<2m.

Example 3. What curve is represented by the given parametric equations?

T = sin 2t Yy = cos 2t 0<t<2m.
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Calculus I - Curves Defined by Parametric Equations

Example 4. Find parametric equations for the circle with center (h, k) and
radius 7.

Example 5. Sketch the curve with parametric equations x = sint, y = sin®¢t.
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Calculus I - Curves Defined by Parametric Equations

Example 6. Use a graphing device to graph the curve z = y* — 3y%.

Example 7. The curve traced out by a point P on the circumference of a
circle as the circle rolls along a straight line is called a cycloid (see the figure).
If the circle has radius r and rolls along the z-axis and if one position of P is
the origin, find parametric equations for the cycloid.

N RO N N

P
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Calculus I - Curves Defined by Parametric Equations

Example 8. Investigate the family of curves with parametric equations
T =a+ cost y = atant 4 sint.

What do these curves have in common? How does the shape change as a
increases?
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Calculus I - Calculus with Parametric Curves

10.2 Calculus with Parametric Curves

Theorem 10.2.1. Suppose f and g are differentiable functions. Then for a
point on the parametric curve x = f(t), y = g(t), where y is also a differen-
tiable function of x, we have

dy
dy_% dx
- dv TP
dt

Proof. Since y is a differentiable function of x, we have, by the Chain Rule,

dy dy dx

dt — dr dt’

Then if fl—f # (0 we can divide by it, so

dy
dy_%
dt

Theorem 10.2.2. Suppose f and g are differentiable functions. Then for a
point on the parametric curve x = f(t), y = g(t), where y is also a differen-
tiable function of x, we have

.2
2y dt \dz o dx
dt

Proof. By the previous theorem,

i ()
2y d [dy dt \ dr dx
SV _ 2 () AN T, 0
dz? dm(das) dr it 70
dt
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Calculus I - Calculus with Parametric Curves

Example 1. A curve C is defined by the parametric equations z = 2, y =
3 — 3t.

(a) Show that C' has two tangents at the point (3,0) and find their equations

(b) Find the points on C' where the tangent is horizontal or vertical.

(c¢) Determine where the curve is concave upward or downward.

(d) Sketch the curve.
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Calculus I - Calculus with Parametric Curves

Example 2.

(a) Find the tangent to the cycloid x = (6 — sinf), y = r(1 — cosf) at the
point where 6 = 7/3.

(b) At what points is the tangent horizontal? When is it vertical?
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Calculus I - Calculus with Parametric Curves

Theorem 10.2.3. If a curve is traced out once by the parametric equations
x=f(t) and y = g(t), a« <t < 3, then the area under the curve is given by

B a
A= ! or / .
[ sy i [ [ ot (t)dt]

Proof. Since the area under the curve y = F(x) from a to bis A = ff F(z)dx,
we can use the Substitution Rule for Definite Integrals with y = ¢(¢) and
dxr = f'(t) dt to get

A:/abydm:/jg(t)f’(t)dt. O

Example 3. Find the area under one arch of the cycloid y
z=r(0 —sinf) y=r1(1—cosh). W

0‘ 2mr X
(See the figure.)
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Theorem 10.2.4. If a curve C' is described by the parametric equations x =
f(t), y=g(t), a <t <, where f' and ¢’ are continuous on |«, ] and C' is
traversed exactly once as t increases from « to 3, then the length of C' is

= [+ ()

Example 4. (a) Use the representation of the unit circle given by

T = cost Yy =sint 0<t<2m

to find its arc length.

(b) Use the representation of the unit circle given by
T = sin 2t Yy = cos 2t 0<t<2r

to find its arc length.
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Example 5. Find the length of one arch of the cycloid z = r(6 — sin#),
=r(1l — cosb).
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Theorem 10.2.5. Suppose a curve C 1is given by the parametric equations
x=f(t), y =gt), a <t < B, where f', ¢ are continuous, ¢'(t) > 0, is
rotated about the x-axis. If C is traversed exactly once as t increases from «
to B, then the area of the resulting surface is given by

h dz\? dy 2
= 2 — —= )
S /a Wy\/(dt) +<dt> dt

Example 6. Show that the surface area of a sphere of radius r is 4mwr2.
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10.3 Polar Coordinates

Definition 10.3.1. The polar coordinate system consists of a
point called the pole (or origin) O, a ray starting at the pole
called the polar axis, and other points P represented by (r,0)
where 7 is the distance from O to P and 6 is the angle (usually
measured in radians) between the polar axis and the line OP as
in the figure. r, 0 are called polar coordinates of P.

Example 1. Plot the points whose polar coordinates are given.

(a) (1,5m/4)

(b) (2,3m)

(¢) (2,—2/3)

(d) (=3,3m/4)
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Calculus I - Polar Coordinates

Theorem 10.3.1. If the point P has Cartesian coordinates (x,y) and polar
coordinates (r,0), then

x =rcosf y =rsinf
and

r? = 2% +9° tan = 2.
x

Example 2. Convert the point (2, 7/3) from polar to Cartesian coordinates.

Example 3. Represent the point with Cartesian coordinates (1, —1) in terms
of polar coordinates.

Example 4. What curve is represented by the polar equation r = 27
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Example 5. Sketch the polar curve 6 = 1.

Example 6. (a) Sketch the curve with polar equation r = 2 cos 6.

(b) Find a Cartesian equation for this curve.
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Example 7. Sketch the curve r =1+ sin 6.

Example 8. Sketch the curve r = cos 26.
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Theorem 10.3.2. The slope of the tangent line to a polar curve r = f(0) is

d
dy d—gsin9+rcosﬁ
dz %cos@—rsin@

Proof. Regard 6 as a parameter and write
x=rcos = f(f)cosd  y=rsinf = f(#)sind.
Then by Theorem 10.2.1 and the product rule, we have

d d
dy d—‘z d—gsinﬁ—l—?"cosﬁ
dr dr ~dr : =

— cosf —rsind

do  db

Example 9.

(a) For the cardioid r = 1 + sin @ of Example 7, find the slope of the tangent
line when 0 = 7/3.
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(b) Find the points on the cardioid where the tangent line is horizontal or
vertical.

Example 10. Graph the curve r = sin(80/5).
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Example 11. Investigate the family of polar curves given by r = 1 + ¢sin#6.
How does the shape change as ¢ changes? (These curves are called limagons,
after a French word for snail, because of the shape of the curves for certain
values of c.)
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10.4 Areas and Lengths in Polar Coordinates

Theorem 10.4.1. Let Z be the region, illustrated in the figure,
bounded by the polar curve r = f(6) and by the rays 0 = a
and 0 = b, where f is a positive continuous function and where
0<b—a<2n. The area A of the polar region Z is

b1
A:/a §7~2d6.

Example 1. Find the area enclosed by one loop of the four-leaved rose r =
cos 26.
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Example 2. Find the area of the region that lies inside the circle r = 3sin 6
and outside the cardioid r» = 1 + sin 6.

Example 3. Find all points of intersection of the curves r = cos 26 and r = %
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Theorem 10.4.2. The length of a curve with polar equation v = f(0), a <

0 <b, is B
b dr\?
I = 24 (20 g0
/a m (d@)

Proof. Regard 6 as a parameter and write
x=rcosf = f(0)cosd y=rsinf = f(0)sind.
Then by the product rule, we have

dy dr . dr  dr .
@_@sm@%—rcos@ @—@Cosﬁ—rsme.

Since cos? 6 +sin?0 = 1,

dz\? dy\” dr\? 9 dr
dx dy\~ _ (dr _ 9.0 : 2 ;o2
(d@) + (d@) (d@) cos” 0 "0 cos O sin ) 4 r*sin” 0

do do

_(dr 2+r2
\db ’
b dr\ 2 dy 2 b dr\ 2
_ o _J — 2 -
L_N(de)+(d9) [ (B) o

2
d
+ (_r) sin’ @ + QT—T sin 6 cos 0 + r2 cos® 0

SO
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Example 4. Find the length of the cardioid » = 1 + sin 6.
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10.5 Conic Sections

Definition 10.5.1. Parabolas, ellipses, and hyperbolas are called conic sec-
tions, or conics, because they result from intersecting a cone with a plane as
shown in the figure.

parabola hyperbola

Definition 10.5.2. A parabola is the set of points in a plane
that are equidistant from a fixed point F (called the focus) and
a fixed line (called the directrix). This definition is illustrated
by the figure. Notice that the point halfway between the focus
and the directrix lies on the parabola; it is called the vertex. The
line through the focus perpendicular to the directrix is called the
axis of the parabola. vertex

axis parabola

|
N

focus |

7

|
N
| directrix
Theorem 10.5.1. An equation of the parabola with focus (0,p) and directriz
Y= —pis

z? = 4dpy.
Theorem 10.5.2. An equation of the parabola with focus (p,0) and directriz
T = —pis

y? = dpx.

158



Calculus I - Conic Sections

Example 1. Find the focus and directrix of the parabola 3? + 10z = 0 and
sketch the graph.

Definition 10.5.3. An ellipse is the set of points in a plane the
sum of whose distances from two fixed points F} and F, is a
constant (see the figure). These two fixed points are called the
foci (plural of focus).

Definition 10.5.4. If (—¢,0) and (c,0) are the foci of an ellipse, the sum of
the distances from a point on the ellipse to the foci are 2a > 0, and b = a?—c?,
then the points (a,0) and (—a,0) are called the vertices of ellipse and the line
segment joining the vertices is called the major axis. The line segment joining

(0,b) and (0, —b) is the minor axis.

Theorem 10.5.3. The ellipse

2 2
D=1 azb>0
a

has foci (%¢,0), where ¢ = a® — b?, and vertices (+a,0).

Theorem 10.5.4. The ellipse
T + ¥y _ 1 a>b>0

has foci (0,+c), where ¢* = a® — b%, and vertices (0, +a).
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Example 2. Sketch the graph of 922 + 16y = 144 and locate the foci.

Example 3. Find an equation of the ellipse with foci (0,£2) and vertices
(0, £3).
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Definition 10.5.5. A hyperbola is the set of all points in a plane y
the difference of whose distances from two fixed points F; and
F, (the foci) is a constant. This definition is illustrated in the
figure.

Theorem 10.5.5. The hyperbola

has foci (+c,0), where ¢* = a* + b%, vertices (£a,0), and asymptotes y =
+(b/a)x.

Theorem 10.5.6. The hyperbola

has foci (0,4c), where ¢ = a* + b?, vertices (0,+a), and asymptotes y =
+(a/b)x.

Example 4. Find the foci and asymptotes of the hyperbola 92% — 16y? = 144
and sketch its graph.
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Example 5. Find the foci and equation of the hyperbola with vertices (0, +1)
and asymptote y = 2z.

Example 6. Find an equation of the ellipse with foci (2, —2), (4,—2), and
vertices (1, —2), (5, —2).

Example 7. Sketch the conic 922 — 4y? — 722 + 8y + 176 = 0 and find its foci.
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10.6 Conic Sections in Polar Coordinates

Theorem 10.6.1. Let F be a fized point (called the focus) and

[ be a fized line (called the directriz) in a plane. Let e be a fized L disectri
positive number (called the eccentricity). The set of all points P (directrix)
i the plane such that
|PF’ —e x=d
[Pl
(that is, the ratio of the distance from F' to the distance from 1 x
is the constant e) is a conic section. The conic is
(a) an ellipse if e < 1
C
(b) a parabola if e = 1
(¢) a hyperbola if e > 1
Theorem 10.6.2. A polar equation of the form
ed ed
r=— or r=-———
1+ecosh 1+esind
represents a conic section with eccentricity e. The conic is an ellipse if e < 1,
a parabola if e =1, or a hyperbola if e > 1.
¥4 y
¥y y
x=d x=—d y=d directrix
\ directrix directrix / \ /
> F X
F / x F X F >
/ \ y=—d directrix
o ed o ed o ed o ed
A O = s 0 =T esno D=0

Example 1. Find a polar equation for a parabola that has its focus at the
origin and whose directrix is the line y = —6.
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Example 2. A conic is given by the polar equation

10

"= 3 —2cosh’

Find the eccentricity, identify the conic, locate the directrix, and sketch the
conic.

12

E le 3. Sketch th icr=——m—m—.
xample etch the conic r 3T d5nd
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Example 4. If the ellipse of Example 2 is rotated through an angle 7/4 about
the origin, find a polar equation and graph the resulting ellipse.

Theorem 10.6.3. The polar equation of an ellipse with focus at the origin,
semimagor axis a, eccentricity e, and directrix x = d can be written in the form

a(l —e?)
re=—2
1+ ecosf

Definition 10.6.1. The positions of a planet that are closest
to and farthest from the sun are called its perihelion and aphe-
lion, respectively, and correspond to the vertices of the ellipse
(see the figure). The distances from the sun to the perihelion r

and aphelion are called the perihelion distance and aphelion dis- 0
tance, respectively. )

planet

aphelion perihelion

Theorem 10.6.4. The perihelion distance from a planet to the
sun is a(l — e) and the aphelion distance is a(1 + e).

Proof. If the sun is at the focus F', at perihelion we have # = 0, so

a(l—e*)  a(l—e)(l+e)

1+ ecosO 1+e

Similarly, at aphelion § = 7 and r = a(1 + €). O
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Example 5. (a) Find an approximate polar equation for the elliptical orbit
of the earth around the sun (at one focus) given that the eccentricity is
about 0.017 and the length of the major axis is about 2.99 x 10® km.

(b) Find the distance from the earth to the sun at perihelion and at aphelion.
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absolute maximum, 89
absolute minimum, 89
acceleration, 38
antiderivative, 130
aphelion, 165
asymptote

horizontal, 23

slant, 115

vertical, 7
average rate of change, 33

chain rule, 51
concave downward, 100
concave upward, 100
conic sections, 158
conics, 158
continuous
at a point, 17
from the left, 18
from the right, 18
on an interval, 18
critical number, 91
cycloid, 138

demand function, 126
derivative
at a point, 32
as a function, 35
of a parametric curve, 140
of an inverse function, 64
second, 38
third, 39
differentiable, 36
differential, 84
differential equation, 74

differentiation operators, 36
discontinuity, 17

eccentricity, 163
ellipse, 159
foci, 159
major axis, 159
minor axis, 159
vertices, 159
extreme value theorem, 90
extreme values, 89

Fermat’s theorem, 90
first derivative test, 99
function

hyperbolic, 86

greatest integer function, 12

half-life, 75
horizontal asymptote, 23
hyperbolic functions, 86

implicit differentiation, 55
increment, 33

initial point, 136

instantaneous rate of change, 33
intermediate value theorem, 22

jerk, 39

L’Hospital’s rule, 105
law of natural decay, 74
law of natural growth, 74
limacon, 153
limit, 4

at infinity, 23
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infinite, 6

laws, 8

precise definition, 13
linear approximation, 83
linearization, 83
local extreme, 89
local maximum, 89
local minimum, 89
logarithmic differentiation, 60

marginal profit function, 126
marginal revenue function, 126
maximum, 89

mean value theorem, 95
minimum, 89

Newton’s method, 127
normal line, 41

parabola, 158
axis, 158
directrix, 158
focus, 158
vertex, 158
parameter, 135
parametric equations, 135
perihelion, 165
polar axis, 147
polar coordinates, 147
directrix, 163
focus, 163
position function, 31
power rule, 40, 60
price function, 126
product rule, 45
profit function, 126

quotient rule, 46

relative growth rate, 74
revenue function, 126
Rolle’s theorem, 94

second derivative, 38

second derivative test, 101
slant asymptote, 115
squeeze theorem, 12

tangent line, 30

tangent line approximation, 83
terminal point, 136

third derivative, 39

velocity, 31
vertical asymptote, 7
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