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Chapter 2

Limits and Derivatives

2.1 The Tangent and Velocity Problems

Remark 1. A tangent to a curve is a line that that touches the curve. A secant
is a line that cuts a curve more than once.

Example 1. Find an equation of the tangent line to the parabola y = x2 at
the point P (1, 1).
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Calculus I - The Tangent and Velocity Problems

t (min) Heartbeats
36 2530
38 2661
40 2806
42 2948
44 3080

Example 2. A cardiac monitor is used to measure the heart rate
of a patient after surgery. It compiles the number of heartbeats
after t minutes. When the data in the table are graphed, the
slope of the tangent line represents the heart rate in beats per
minute. The monitor estimates this value by calculating the
slope of a secant line. Use the data to draw the graph of this
function and estimate the patient’s heart rate after 42 minutes.

2



Calculus I - The Tangent and Velocity Problems

Example 3. Suppose that a ball is dropped from the upper observation deck
of the CN Tower in Toronto, 450 m above the ground. Find the velocity of
the ball after 5 seconds. [If the distance fallen after t seconds is denoted by
s(t) and measured in meters, then Galileo’s law that the distance fallen by any
freely falling body is proportional to the square of the time it has been falling
is expressed by the equation s(t) = 4.9t2.]
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Calculus I - The Limit of a Function

2.2 The Limit of a Function

Definition 2.2.1. Suppose f(x) is defined when x is near the number a. Then
we write

lim
x→a

f(x) = L

if we can make the values of f(x) arbitrarily close to L by restricting x to be
sufficiently close to a but not equal to a.

Example 1. Guess the value of lim
x→3

x2 − 3x

x2 − 9
.

Example 2. Estimate the value of lim
t→4

ln t− ln 4

t− 4
.

Example 3. Guess the value of lim
x→0

sinx

x
.
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Calculus I - The Limit of a Function

Example 4. Investigate lim
x→0

sin
π

x
.

Example 5. Find lim
x→0

(
x3 +

cos 5x

10, 000

)
.

Definition 2.2.2. We write

lim
x→a−

f(x) = L

if we can make the values of f(x) arbitrarily close to L by taking x to be
sufficiently close to a with x less than a. Similarly, if we require that x be
greater than a, we write

lim
x→a+

f(x) = L.

Example 6. Investigate the limit as t approaches 0 of the Heaviside function
H, defined by

H(t) =

{
0 if t < 0,

1 if t ≥ 0.

5



Calculus I - The Limit of a Function

Remark 1. lim
x→a

f(x) = L if and only if lim
x→a−

f(x) = L and lim
x→a+

f(x) = L.

92 CHAPTER 2  Limits and Derivatives

   1. Explain in your own words what is meant by the equation

lim
x l 2

 f sxd − 5

   Is it possible for this statement to be true and yet f s2d − 3? 
Explain.

  2. Explain what it means to say that

lim
x l 12

f sxd − 3    and     lim
x l11

 f sxd − 7

   In this situation is it possible that limx l 1 f sxd exists?  
Explain.

  3.  Explain the meaning of each of the following.
 (a) lim

x l
 

23
f sxd − ` (b) lim

x l 41
f sxd − 2`

 4.  Use the given graph of f  to state the value of each quantity,  
 if it exists. If it does not exist, explain why.

 (a) lim
x l

 

22
f sxd (b) lim

x l 21
f sxd (c) lim

x l 2
 f sxd

 (d) f s2d (e) lim
x l 4

 f sxd (f ) f s4d

y

0 x2 4

4

2

 5.  For the function f  whose graph is given, state the value of 
each quantity, if it exists. If it does not exist, explain why.

 (a) lim
x l 1

 f sxd (b) lim
x l 32

f sxd (c) lim
x l 31

f sxd

 (d) lim
x l 3

 f sxd (e) f s3d

y

0 x2 4

4

2

 6.  For the function h whose graph is given, state the value of 
each quantity, if it exists. If it does not exist, explain why.

 (a) lim
x l 232

hsxd (b) lim
x l 231

hsxd (c) lim
x l 23

hsxd

 (d) hs23d (e) lim
xl

 

02 
hsxd (f ) lim

x l
 

01 
hsxd

 (g) lim
x l 0

 hsxd (h) hs0d (i) lim
x l 2

 hsxd

 ( j) hs2d (k) lim
x l

 

51
hsxd (l) lim

x l
 

52 
hsxd

y

0 x2_2_4 4 6

  7.  For the function t whose graph is given, state the value of 
each quantity, if it exists. If it does not exist, explain why.

 (a) lim
t l 02

tstd (b) lim
t l 01

tstd (c) lim
t l 0

tstd

 (d) lim
t l 22

tstd (e) lim
t l 21

tstd (f ) lim
t l 2

tstd

 (g) ts2d (h) lim
t l 4

 tstd

y

t2 4

4

2

 8.  For the function A whose graph is shown, state the following.
 (a)  lim 

x l23
 Asxd (b) lim

x l22
 Asxd 

 (c) lim
x l21

 Asxd (d)  lim 
x l21

 Asxd

 (e) The equations of the vertical asymptotes

0

y

x2_3 5

 9.  For the function f  whose graph is shown, state the following.
 (a) lim 

x l27
 f sxd (b) lim 

x l23 
 f sxd (c) lim

x l 0 
 f sxd

 (d) lim
x l 62

f sxd (e) lim
x l 61

f sxd

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Example 7. Use the graph of f to state the values (if they exist)
of the following:

(a) lim
x→2−

f(x) (b) lim
x→2+

f(x)

(c) lim
x→2

f(x) (d) f(2)

(e) lim
x→4

f(x) (f) f(4)

Definition 2.2.3. Let f be a function defined on both sides of a, except
possibly at a itself. Then

lim
x→a

f(x) = ∞

means that the values of f(x) can be made arbitrarily large by taking x suffi-
ciently close to a, but not equal to a. Similarly,

lim
x→a

f(x) = −∞

means that the values of f(x) can be made arbitrarily large negative by taking
x sufficiently close to a, but not equal to a.

Example 8. Find lim
x→1

2− x

(x− 1)2
if it exists.

6



Calculus I - The Limit of a Function

Definition 2.2.4. The vertical line x = a is called a vertical asymptote of
the curve y = f(x) if at least one of the following statements is true:

lim
x→a

f(x) = ∞ lim
x→a−

f(x) = ∞ lim
x→a+

f(x) = ∞

lim
x→a

f(x) = −∞ lim
x→a−

f(x) = −∞ lim
x→a+

f(x) = −∞

Example 9. Find lim
x→1+

1

x3 − 1
and lim

x→1−

1

x3 − 1
.

Example 10. Find the vertical asymptotes of f(x) = tan x.

7



Calculus I - Calculating Limits Using the Limit Laws

2.3 Calculating Limits Using the Limit Laws

Theorem 2.3.1 (Limit Laws). Suppose that c is a constant and the limits

lim
x→a

f(x) and lim
x→a

g(x)

exist. Then

1. lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x)

2. lim
x→a

[f(x)− g(x)] = lim
x→a

f(x)− lim
x→a

g(x)

3. lim
x→a

[cf(x)] = c lim
x→a

f(x)

4. lim
x→a

[f(x)g(x)] = lim
x→a

f(x) · lim
x→a

g(x)

5. lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)
if lim

x→a
g(x) ̸= 0

x

y

0

f

g
1

1

Example 1. Use the Limit Laws and the graphs of f and g to
evaluate the following limits, if they exist.
(a) lim

x→−2
[f(x) + 5g(x)]

(b) lim
x→1

[f(x)g(x)]

(c) lim
x→2

f(x)

g(x)

8



Calculus I - Calculating Limits Using the Limit Laws

Theorem 2.3.2 (Power and Root Laws). By repeatedly applying the Product
Law and using some basic intuition we obtain the following:

6. lim
x→a

[f(x)]n =

[
lim
x→a

f(x)

]n
where n is a positive integer

7. lim
x→a

c = c

8. lim
x→a

x = a

9. lim
x→a

xn = an where n is a positive integer

10. lim
x→a

n
√
x = n

√
a where n is a positive integer

(If n is even, we assume that a > 0.)

11. lim
x→a

n
√

f(x) = n

√
lim
x→a

f(x) where n is a positive integer[
If n is even, we assume that lim

x→a
f(x) > 0.

]
Example 2. Evaluate the following limits and justify each step.

(a) lim
x→−3

(2x3 + 6x2 − 9)

(b) lim
t→7

3t2 + 1

t2 − 5t+ 2

9



Calculus I - Calculating Limits Using the Limit Laws

Theorem 2.3.3 (Direct Substitution Property). If f is a polynomial or a
rational function and a is in the domain of f , then

lim
x→a

f(x) = f(a).

Example 3. Find lim
t→4

t2 − 2t− 8

t− 4
.

Remark 1. If f(x) = g(x) when x ̸= a, then lim
x→a

f(x) = lim
x→a

g(x), provided the

limits exist.

Example 4. Find lim
x→1

g(x) where

g(x) =

{
x+ 1 if x ̸= 1,

π if x = 1.

Example 5. Evaluate lim
h→0

(h− 3)2 − 9

h
.

10



Calculus I - Calculating Limits Using the Limit Laws

Example 6. Find lim
h→0

√
9 + h− 3

h
.

Example 7. Show that lim
x→0

|x| = 0.

Example 8. Prove that lim
x→0

|x|
x

does not exist.

Example 9. If

f(x) =

{√
x− 4 if x > 4,

8− 2x if x < 4.

determine whether lim
x→4

f(x) exists.

11



Calculus I - Calculating Limits Using the Limit Laws

Example 10. The greatest integer function is defined by JxK = the largest
integer that is less than or equal to x. (For instance, J4K = 4, J4.8K = 4,
JπK = 3, J

√
2K = 1, J−1

2
K = −1.) Show that lim

x→3
JxK does not exist.

Theorem 2.3.4. If f(x) ≤ g(x) when x is near a (except possibly at a) and
the limits of f and g both exist as x approaches a, then

lim
x→a

f(x) ≤ lim
x→a

g(x).

Theorem 2.3.5 (The Squeeze Theorem). If f(x) ≤ g(x) ≤ h(x) when x is
near a (except possibly at a) and

lim
x→a

f(x) = lim
x→a

h(x) = L

then
lim
x→a

g(x) = L.

Example 11. Show that lim
x→0

x4 cos
2

x
= 0.

12



Calculus I - The Precise Definition of a Limit

2.4 The Precise Definition of a Limit

Definition 2.4.1. Let f be a function defined on some open interval that
contains the number a, except possibly at a itself. Then we write

lim
x→a

f(x) = L

if for every number ε > 0 there is a number δ > 0 such that

if 0 < |x− a| < δ then |f(x)− L| < ε.

Example 1. Use a graph to find a number δ such that if x is within δ of 1,
then f(x) = x3 − 5x+ 6 is within 0.2 of 2.

13



Calculus I - The Precise Definition of a Limit

Example 2. Prove that lim
x→3

(4x− 5) = 7.

Definition 2.4.2.
lim
x→a−

f(x) = L

if for every number ε > 0 there is a number δ > 0 such that

if a− δ < x < a then |f(x)− L| < ε.

Similarly,
lim
x→a+

f(x) = L

if for every number ε > 0 there is a number δ > 0 such that

if a < x < a+ δ then |f(x)− L| < ε.

14



Calculus I - The Precise Definition of a Limit

Example 3. Prove that lim
x→0+

√
x = 0.

Example 4. Prove that lim
x→3

x2 = 9.

15



Calculus I - The Precise Definition of a Limit

Definition 2.4.3. Let f be a function defined on some open interval that
contains the number a, except possibly at a itself. Then

lim
x→a

f(x) = ∞

means that for every positive number M there is a positive number δ such
that

if 0 < |x− a| < δ then f(x) > M.

Similarly,
lim
x→a

f(x) = −∞

means that for every negative number N there is a positive number δ such
that

if 0 < |x− a| < δ then f(x) < N.

Example 5. Prove that lim
x→0

1

x2
= ∞.

16



Calculus I - Continuity

2.5 Continuity

Definition 2.5.1. A function f is continuous at a number a if

lim
x→a

f(x) = f(a).

We say that f is discontinuous at a (or f has a discontinuity at a) if f is not
continuous at a.

y

0 x1 2 3 4 5

Example 1. Use the graph of the function f to determine the
numbers at which f is discontinuous.

Example 2. Where are each of the following functions discontinuous?

(a) f(x) =
x2 − x− 2

x− 2

(b) f(x) =


1

x2
if x ̸= 0

1 if x = 0

17



Calculus I - Continuity

(c) f(x) =


x2 − x− 2

x− 2
if x ̸= 2

1 if x = 2

(d) f(x) = JxK

Definition 2.5.2. A function f is continuous from the right at a number a if

lim
x→a+

f(x) = f(a)

and f is continuous from the left at a if

lim
x→a−

f(x) = f(a).

Example 3. In which direction(s) is the function f(x) = JxK continuous?

Definition 2.5.3. A function f is continuous on an interval if it is continuous
at every number in the interval. (If f is defined only on one side of an endpoint
of the interval, we understand continuous at the endpoint to mean continuous
from the right or continuous from the left.)

18



Calculus I - Continuity

Example 4. Show that the function f(x) = x+
√
x− 4 is continuous on the

interval [4,∞).

Theorem 2.5.1. If f and g are continuous at a and c is a constant, then the
following functions are also continuous at a:

1. f + g 2. f − g 3. cf

4. fg 5.
f

g
if g(a) ̸= 0

Proof. All of these results follow from the Limit Laws. For example, f + g is
continuous at a because

lim
x→a

(f + g)(x) = lim
x→a

[f(x) + g(x)]

= lim
x→a

f(x) + lim
x→a

g(x)

= f(a) + g(a)

= (f + g)(a).

Theorem 2.5.2. (a) Any polynomial is continuous everywhere; that is, it is
continuous on R = (−∞,∞).

(b) Any rational function is continuous wherever it is defined; that is, it is
continuous on its domain.

Proof. (a) Let
P (x) = cnx

n + cn−1x
n−1 + · · ·+ c1x+ c0

be a polynomial where c0, c1, . . . , cn are constants. Then

lim
x→a

xm = am m = 1, 2, . . . , n

implies that the function f(x) = xm is continuous. Since

lim
x→a

c0 = c0,

19



Calculus I - Continuity

the constant function is continuous as well, and therefore the product
function g(x) = cxm is continuous. Since P is a sum of functions of this
form, it is continuous as well.

(b) Rational functions are quotients of polynomials, i.e.,

f(x) =
P (x)

Q(x)
,

where P and Q are polynomials. Thus the above result implies that they
are continuous on their domains.

Example 5. Find lim
x→−2

x3 + 2x2 − 1

5− 3x
.

Theorem 2.5.3. The following types of functions are continuous at every
number in their domains:
• polynomials • rational functions • root functions
• trigonometric functions • inverse trigonometric functions
• exponential functions • logarithmic functions

Example 6. Where is the function f(x) =
lnx+ tan−1 x

x2 − 1
continuous?

Example 7. Evaluate lim
x→π

sinx

2 + cos x
.

20



Calculus I - Continuity

Theorem 2.5.4. If f is continuous at b and lim
x→a

g(x) = b, then lim
x→a

f(g(x)) =

f(b), i.e.,

lim
x→a

f(g(x)) = f

(
lim
x→a

g(x)

)
.

Proof. Let ε > 0. Since f is continuous at b, we have limy→b f(y) = f(b) and
so there exists δ1 > 0 such that

if 0 < |y − b| < δ1 then |f(y)− f(b)| < ε.

Since limx→a g(x) = b, there exists δ > 0 such that

if 0 < |x− a| < δ then |g(x)− b| < δ1.

By letting y = g(x) in the first statement, we get that 0 < |x− a| < δ implies
that

∣∣f(g(x))− f(b)
∣∣ < ε, i.e., limx→a f(g(x)) = f(b).

Example 8. Evaluate lim
x→1

ln

(
5− x2

1 + x

)
.

Theorem 2.5.5. If g is continuous at a and f is continuous at g(a), then the
composite function f ◦ g given by (f ◦ g)(x) = f(g(x)) is continuous at a.

Proof. Since g is continuous at a, we have

lim
x→a

g(x) = g(a).

Since f is continuous at g(a), we have

lim
x→a

f(g(x)) = f

(
lim
x→a

g(x)

)
= f(g(a)),

which means f ◦ g is continuous.

21



Calculus I - Continuity

Example 9. Where are the following functions continuous?

(a) f(x) =
1√

1− sinx

(b) y = arctan
1

x

Theorem 2.5.6 (Intermediate Value Theorem). Suppose that f is continuous
on the closed interval [a, b] and let N be any number between f(a) and f(b),
where f(a) ̸= f(b). Then there exists a number c in (a, b) such that f(c) = N .

Example 10. Show that there is a root of the equation −x3 + 4x + 1 = 0
between −1 and 0.

22



Calculus I - Limits at Infinity

2.6 Limits at Infinity

Definition 2.6.1. Let f be a function defined on some interval (a,∞). Then

lim
x→∞

f(x) = L

means that the values of f(x) can be made arbitrarily close to L by requiring
x to be sufficiently large.

Definition 2.6.2. Let f be a function defined on some interval (−∞, a). Then

lim
x→−∞

f(x) = L

means that the values of f(x) can be made arbitrarily close to L by requiring
x to be sufficiently large negative.

Definition 2.6.3. The line y = L is called a horizontal asymptote of the
curve y = f(x) if either

lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L.

0 x

y

2

2

Example 1. Find the infinite limits, limits at infinity, and
asymptotes for the function f whose graph is shown.

Example 2. Find lim
x→∞

1

x
and lim

x→−∞

1

x
.

23



Calculus I - Limits at Infinity

Theorem 2.6.1. If r > 0 is a rational number, then

lim
x→∞

1

xr
= 0.

If r > 0 is a rational number such that xr is defined for all x, then

lim
x→−∞

1

xr
= 0.

Proof. By extending the limit laws to limits at infinity we get

lim
x→∞

1

xr
= lim

x→∞

[
1

x

]r
=

[
lim
x→∞

1

x

]r
= 0r = 0

lim
x→−∞

1

xr
= lim

x→−∞

[
1

x

]r
=

[
lim

x→−∞

1

x

]r
= 0r = 0.

Example 3. Evaluate

lim
x→∞

3x3 − 8x+ 2

4x3 − 5x2 − 2
.

24



Calculus I - Limits at Infinity

Example 4. Find the horizontal and vertical asymptotes of the graph of the
function

f(x) =

√
2x2 + 1

3x− 5
.

25



Calculus I - Limits at Infinity

Example 5. Compute lim
t→∞

(
√
25t2 + 2− 5t).

Example 6. Evaluate lim
x→0+

tan−1(lnx).

Example 7. Evaluate lim
x→(π/2)+

esecx.

Example 8. Evaluate lim
x→∞

cosx.

26



Calculus I - Limits at Infinity

Example 9. Find lim
x→∞

x5 and lim
x→−∞

x5.

Example 10. Find lim
x→∞

(x−
√
x).

Example 11. Find lim
x→∞

x2 + x

3− x
.

Example 12. Sketch the graph of y = (3− x)(1 + x)2(1− x)4 by finding its
intercepts and its limits as x → ∞ and as x → −∞.

27



Calculus I - Limits at Infinity

Definition 2.6.4. Let f be a function defined on some interval (a,∞). Then

lim
x→∞

f(x) = L

means that for every ε > 0 there is a corresponding number N such that

if x > N then |f(x)− L| < ε.

Definition 2.6.5. Let f be a function defined on some interval (−∞, a). Then

lim
x→−∞

f(x) = L

means that for every ε > 0 there is a corresponding number N such that

if x < N then |f(x)− L| < ε.

Example 13. Use a graph to find a number N such that

if x > N then

∣∣∣∣∣ 3x2 − x− 2

5x2 + 4x+ 1
− 0.6

∣∣∣∣∣ < 0.1.

Example 14. Prove that lim
x→∞

1

x
= 0.
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Definition 2.6.6. Let f be a function defined on some interval (a,∞). Then

lim
x→∞

f(x) = ∞

means that for every positive number M there is a corresponding positive
number N such that

if x > N then f(x) > M.

Definition 2.6.7. Let f be a function defined on some interval (a,∞). Then

lim
x→∞

f(x) = −∞

means that for every negative number M there is a corresponding positive
number N such that

if x > N then f(x) < M.

Definition 2.6.8. Let f be a function defined on some interval (−∞, a). Then

lim
x→−∞

f(x) = ∞

means that for every positive number M there is a corresponding negative
number N such that

if x < N then f(x) > M.

Definition 2.6.9. Let f be a function defined on some interval (−∞, a). Then

lim
x→−∞

f(x) = −∞

means that for every negative number M there is a corresponding negative
number N such that

if x < N then f(x) < M.
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2.7 Derivatives and Rates of Change

Definition 2.7.1. The tangent line to the curve y = f(x) at the point
P (a, f(a)) is the line through P with slope

m = lim
x→a

f(x)− f(a)

x− a

provided that this limit exists.

Example 1. Find an equation of the tangent line to the parabola y = x2 at
the point P (1, 1).

Example 2. Use the alternative expression for the slope of a tangent line

m = lim
h→0

f(a+ h)− f(a)

h

to find an equation of the tangent line to the hyperbola y = 3/x at the point
(3, 1).
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Calculus I - Derivatives and Rates of Change

Definition 2.7.2. A function f describing the motion of an object along a
straight line is called a position function and has velocity

v(a) = lim
h→0

f(a+ h)− f(a)

h

at time t = a.

Example 3. Suppose that a ball is dropped from the upper observation deck
of the CN Tower, 450 m above the ground. Recall that the distance (in meters)
fallen after t seconds is 4.9t2.
(a) What is the velocity of the ball after 5 seconds?

(b) How fast is the ball traveling when it hits the ground?
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Definition 2.7.3. The derivative of a function f at a number a, denoted by
f ′(a) is

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
,

or equivalently

f ′(a) = lim
x→a

f(x)− f(a)

x− a

if this limit exists.

Example 4. Find the derivative of the function f(x) = 2x2 − 5x + 3 at the
numbers (a) 2 and (b) a.
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Example 5. Find the derivative of the function f(x) = 1/
√
x at the number

a (a > 0).

Example 6. Find an equation of the tangent line to the parabola y = 2x2 −
5x+ 3 at the point (3, 6).

Definition 2.7.4. Suppose y is a quantity that depends on another quantity
x. Then y is a function of x and we write y = f(x). If x changes from x1 to
x2, then the change in x (also called the increment of x) is

∆x = x2 − x1

and the corresponding change in y is

∆y = f(x2)− f(x1).

The average rate of change of y with respect x over the interval [x1, x2] is

∆y

∆x
=

f(x2)− f(x1)

x2 − x1

and the instantaneous rate of change of y with respect to x is

lim
∆x→0

∆y

∆x
= lim

x2→x1

f(x2)− f(x1)

x2 − x1

= f ′(x).
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Example 7. The cost of producing x ounces of gold from a new gold mine is
C = f(x) dollars.
(a) What is the meaning of the derivative f ′(x)? What are its units?

(b) What does the statement f ′(800) = 17 mean?

(c) Do you think the values of f ′(x) will increase or decrease in the short term?
What about the long term? Explain.

t D(t)
1985 1945.9
1990 3364.8
1995 4988.7
2000 5662.2
2005 8170.4
2010 14,025.2

Source: US Dept. of the Treasury

Example 8. Let D(t) be the US national debt at time t. The
table gives approximate values of this function by providing end
of year estimates, in billions of dollars, from 1985 to 2010. In-
terpret and estimate the value of D′(2000).
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2.8 The Derivative as a Function

Definition 2.8.1. The derivative of a function f is the function

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

if this limit exists.

x

y

10

1

y=ƒ

FIGURE 1 

Example 1. The graph of a function f is given. Use it to sketch
the graph of the derivative f ′.

Example 2. (a) If A(p) = 4p3 + 3p, find a formula for A′(p).

(b) Illustrate this formula by comparing the graphs of A and A′.
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Calculus I - The Derivative as a Function

Example 3. If f(x) =
√
x, find the derivative of f . State the domain of f ′.

Example 4. Find g′ if g(u) =
u+ 1

4u− 1
.

Definition 2.8.2. The symbols D and d/dx are called differentiation opera-
tors and are used as follows:

f ′(x) = y′ = lim
∆x→0

∆y

∆x
=

dy

dx
=

df

dx
=

d

dx
f(x) = Df(x) = Dxf(x).

For fixed a, we use the notation

dy

dx

∣∣∣∣
x=a

or
dy

dx

]
x=a

Definition 2.8.3. A function f is differentiable at a if f ′(a) exists. It is dif-
ferentiable on an open interval (a, b) [or (a,∞) or (−∞, a) or (−∞,∞)] if it
is differentiable at every number in the interval.
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Example 5. Where is the function f(x) = |x| differentiable?
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Calculus I - The Derivative as a Function

Theorem 2.8.1. If f is differentiable at a, then f is continuous at a.

Proof. If f is differentiable at a, we have

lim
x→a

[f(x)− f(a)] = lim
x→a

f(x)− f(a)

x− a
(x− a)

= lim
x→a

f(x)− f(a)

x− a
· lim
x→a

(x− a)

= f ′(a) · 0 = 0.

Therefore,

lim
x→a

f(x) = lim
x→a

[f(a) + (f(x)− f(a))]

= lim
x→a

f(a) + lim
x→a

[f(x)− f(a)]

= f(a) + 0 = f(a).

Definition 2.8.4. If the derivative f ′ of a function f has a derivative of its
own we call it the second derivative of f and denote it by

(f ′)′ = f ′′ =
d

dx

(
dy

dx

)
=

d2y

dx2

Example 6. If A(p) = 4p3 + 3p, find and interpret A′′(p).

Definition 2.8.5. The instantaneous rate of change of velocity with respect
to time is called the acceleration a(t) of an object. It is the derivative of the
velocity function, and therefore the second derivative of the position function:

a(t) = v′(t) = s′′(t).
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Definition 2.8.6. The third derivative f ′′′ is the derivative of the second
derivative, denoted by

(f ′′)′ = f ′′′.

Definition 2.8.7. The instantaneous rate of change of acceleration with re-
spect to time is called the jerk j(t) of an object. It is the derivative of the
acceleration function, and therefore the third derivative of the position func-
tion:

j(t) = a′(t) = v′′(t) = s′′′(t).

Definition 2.8.8. The fourth derivative f ′′′′ is usually denoted by f (4). In
general, the nth derivative of f is denoted by f (n) and is obtained from f by
differentiating n times. If y = f(x), we write

y(n) = f (n)(x) =
dny

dxn

Example 7. If A(p) = 4p3 + 3p, find A′′′(p) and A(4)(p).
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Chapter 3

Differentiation Rules

3.1 Derivatives of Polynomials and Exponen-

tials

Theorem 3.1.1. The derivative of a constant function f(x) = c is 0, i.e.,

d

dx
(c) = 0.

Proof.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

c− c

h
= lim

h→0
0 = 0.

Theorem 3.1.2.

d

dx
(x) = 1

d

dx
(x2) = 2x

d

dx
(x3) = 3x2 d

dx
(x4) = 4x3

Proof. All of these follow directly from the definition of the derivative, as
above.

Theorem 3.1.3 (The Power Rule). If n is a positive integer, then

d

dx
(xn) = nxn−1.

Proof. Since

xn − an = (x− a)(xn−1 + xn−2a+ · · ·+ xan−2 + an−1),
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we have

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

x→a

xn − an

x− a

= lim
x→a

(xn−1 + xn−2a+ · · ·+ xan−2 + an−1)

= an−1 + an−2a+ · · ·+ aan−2 + an−1

= an−1 + an−1 + · · ·+ an−1 + an−1︸ ︷︷ ︸
n

= nan−1.

Example 1. Find the derivative of each of the following:

(a) f(x) = x5

(b) y = x555

(c) y = t7

(d) f(r) = r2

Theorem 3.1.4 (The Power Rule (General Version)). If n is any real number,
then

d

dx
(xn) = nxn−1.

Example 2. Differentiate:

(a) f(x) =
1

x3

(b) y =
3
√
x4

Definition 3.1.1. The normal line to a curve C at a point P is the line
through P that is perpendicular to the tangent line at P .
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Calculus I - Derivatives of Polynomials and Exponentials

Example 3. Find equations of the tangent line and normal line to the curve
y = x

√
x at the point (1, 1).

Theorem 3.1.5 (The Constant Multiple Rule). If c is a constant and f is a
differentiable function, then

d

dx
[cf(x)] = c

d

dx
f(x).

Proof. Let g(x) = cf(x). Then

g′(x) = lim
h→0

g(x+ h)− g(x)

h
= lim

h→0

cf(x+ h)− cf(x)

h

= lim
h→0

c

[
f(x+ h)− f(x)

h

]
= c lim

h→0

f(x+ h)− f(x)

h
= cf ′(x).

Example 4. Find:

(a)
d

dx
(10x3)

(b)
d

dx
(−x)

Theorem 3.1.6 (The Sum Rule). If f and g are both differentiable, then

d

dx
[f(x) + g(x)] =

d

dx
f(x) +

d

dx
g(x).
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Proof. Let F (x) = f(x) + g(x). Then

F ′(x) = lim
h→0

F (x+ h)− F (x)

h

= lim
h→0

[f(x+ h) + g(x+ h)]− [f(x) + g(x)]

h

= lim
h→0

[
f(x+ h)− f(x)

h
+

g(x+ h)− g(x)

h

]
= lim

h→0

f(x+ h)− f(x)

h
+ lim

h→0

g(x+ h)− g(x)

h
= f ′(x) + g′(x).

Theorem 3.1.7 (The Difference Rule). If f and g are both differentiable, then

d

dx
[f(x)− g(x)] =

d

dx
f(x)− d

dx
g(x).

Example 5. Find
d

dx
(x9 − 8x7 − 2x4 + 7x3 + 2x+ 6).

Example 6. Find the points on the curve y = x4− 6x2+4 where the tangent
line is horizontal.
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Example 7. The equation of motion of a particle is s = t4−2t3+t2−t, where
s is measured in meters and t in seconds. Find the acceleration as a function
of time. What is the acceleration after 2 seconds?

Definition 3.1.2. e is the number such that lim
h→0

eh − 1

h
= 1.

Theorem 3.1.8.
d

dx
(ex) = ex.

Example 8. If f(r) = er + re, find f ′ and f ′′.

Example 9. At what point on the curve y = 1+ 2ex − 3x is the tangent line
parallel to the line 3x− y = 5?
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3.2 The Product and Quotient Rules

Theorem 3.2.1 (The Product Rule). If f and g are both differentiable, then

d

dx
[f(x)g(x)] = f(x)

d

dx
[g(x)] + g(x)

d

dx
[f(x)].

Proof. By the definition of the derivative on the product,

d

dx
[f(x)g(x)] = lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)

h

= lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x) + f(x+ h)g(x)− f(x)g(x)

h

= lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x)

h
+ lim

h→0

f(x+ h)g(x)− f(x)g(x)

h

= lim
h→0

f(x+ h)[g(x+ h)− g(x)]

h
+ lim

h→0

g(x)[f(x+ h)− f(x)]

h

= lim
h→0

f(x+ h) lim
h→0

g(x+ h)− g(x)

h
+ lim

h→0
g(x) lim

h→0

f(x+ h)− f(x)

h

= f(x)
d

dx
[g(x)] + g(x)

d

dx
[f(x)].

Example 1. (a) If f(x) = xex, find f ′(x).

(b) Find the nth derivative, f (n)(x).
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Example 2. Differentiate the function J(u) =

(
1

u
+

1

u2

)(
u+

1

u

)
.

Example 3. If f(x) = exg(x), where g(0) = 2 and g′(0) = 5, find f ′(0).

Theorem 3.2.2 (The Quotient Rule). If f and g are differentiable, then

d

dx

[
f(x)

g(x)

]
=

g(x)
d

dx
[f(x)]− f(x)

d

dx
[g(x)]

[g(x)]2
.

Proof. Similar to the Product Rule, except we add and subtract f(x)g(x) in
the numerator when applying the definition of the derivative.
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Example 4. Let f(x) =
ax+ b

cx+ d
. Find f ′.

Example 5. Find an equation of the tangent line to the curve y = (1+x)/(1+
ex) at the point (0, 1

2
).
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3.3 Derivatives of Trigonometric Functions

Theorem 3.3.1. The derivative of the sine function is the cosine function,
i.e.,

d

dx
(sinx) = cos x.

Example 1. Differentiate y = x3 sinx.

Theorem 3.3.2. The derivative of the cosine function is the negative sine
function, i.e.,

d

dx
(cosx) = − sinx.

Theorem 3.3.3. The derivative of the tangent function is the square of the
secant function, i.e.,

d

dx
(tanx) = sec2 x.

Proof. By the Quotient Rule,

d

dx
(tanx) =

d

dx

(
sinx

cosx

)

=
cosx

d

dx
(sinx)− sinx

d

dx
(cosx)

cos2 x

=
cosx · cosx− sinx(− sinx)

cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
= sec2 x.
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Theorem 3.3.4. The derivatives of the trigonometric functions are

d

dx
(sinx) = cos x

d

dx
(cscx) = − cscx cotx

d

dx
(cosx) = − sinx

d

dx
(secx) = secx tanx

d

dx
(tanx) = sec2 x

d

dx
(cotx) = − csc2 x.

Example 2. Differentiate f(x) =
secx

1 + tan x
. For what values of x does the

graph of f have a horizontal tangent?

194 CHAPTER 3  Differentiation Rules

EXAMPLE 2 Differentiate f sxd −
sec x

1 1 tan x
. For what values of x does the graph  

of f  have a horizontal tangent?

SOLUTION The Quotient Rule gives 

  f 9sxd −
s1 1 tan xd 

d
dx

 ssec xd 2 sec x 
d
dx

 s1 1 tan xd

s1 1 tan xd2

 −
s1 1 tan xd sec x tan x 2 sec x ? sec2x

s1 1 tan xd2

 −
sec x stan x 1 tan2x 2 sec2xd

s1 1 tan xd2

 −
sec x stan x 2 1d

s1 1 tan xd2

In simplifying the answer we have used the identity tan2x 1 1 − sec2x.
Since sec x is never 0, we see that f 9sxd − 0 when tan x − 1, and this occurs when 

x − n ! 1 !y4, where n  is an integer (see Figure 4). ■

Trigonometric functions are often used in modeling real-world phenomena. In par-
ticular, vibrations, waves, elastic motions, and other quantities that vary in a periodic 
manner can be described using trigonometric functions. In the following example we 
discuss an instance of simple harmonic motion.

EXAMPLE 3 An object at the end of a vertical spring is stretched 4 cm beyond its rest 
position and released at time t − 0. (See Figure 5 and note that the downward direction 
is positive.) Its position at time t is

s − f std − 4 cos t

Find the velocity and acceleration at time t and use them to analyze the motion of the 
object.

SOLUTION The velocity and acceleration are

v −
ds
dt

−
d
dt

 s4 cos td − 4 
d
dt

 scos td − 24 sin t

a −
dv
dt

−
d
dt

 s24 sin td − 24 
d
dt

 ssin td − 24 cos t

The object oscillates from the lowest point ss − 4 cmd to the highest point 
ss − 24 cmd. The period of the oscillation is 2!, the period of cos t.

The speed is | v | − 4| sin t |, which is greatest when | sin t | − 1, that is, when 
cos t − 0. So the object moves fastest as it passes through its equilibrium position 
ss − 0d. Its speed is 0 when sin t − 0, that is, at the high and low points.

The acceleration a − 24 cos t − 0 when s − 0. It has greatest magnitude at the 
high and low points. See the graphs in Figure 6. ■
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Example 3. An object at the end of a vertical spring is stretched to
4 cm beyond its reset position and released at time t = 0. (See the
figure and note that the downward direction is positive.) Its position
at time t is

s = f(t) = 4 cos t.

Find the velocity and acceleration at time t and use them to analyze the motion
of the object.
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Example 4. Find the 99th derivative of sinx.

Example 5. Find lim
x→0

sin 5x

3x
.

Example 6. Find lim
x→0

sinx

sin πx
.

Example 7. Find lim
θ→0

sin θ

θ + tan θ
.
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3.4 The Chain Rule

Theorem 3.4.1 (The Chain Rule). If g is differentiable at x and f is differen-
tiable at g(x), then the composite function F = f ◦g defined by F (x) = f(g(x))
is differentiable at x and F ′ is given by the product

F ′(x) = f ′(g(x)) · g′(x).

Example 1. Find F ′(x) if F (x) =
√
x3 + 2.

Example 2. Differentiate (a) y = cos(x2) and (b) y = cos2 x.

51



Calculus I - The Chain Rule

Theorem 3.4.2 (The Power Rule Combined with the Chain Rule). If n is
any real number and u = g(x) is differentiable, then

d

dx
(un) = nun−1du

dx
.

Example 3. Differentiate y = (x5 + 3x2 − x)50.

Example 4. Find f ′(x) if f(x) =
1

3
√
ex + 1

.

Example 5. Find the derivative of the function

g(u) =

(
u3 − 1

u3 + 1

)8

.
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Example 6. Differentiate F (x) = (4x+ 5)3(x2 − 2x+ 5)4.

Example 7. Differentiate y = etan θ.

Theorem 3.4.3. The derivative of the exponential function is

d

dx
(bx) = bx ln b.

Proof. Since
bx = (eln b)x = e(ln b)x,

the Chain Rule gives

d

dx
(bx) =

d

dx
(e(ln b)x)

= e(ln b)x d

dx
(ln b)x

= e(ln b)x · ln b
= bx ln b.
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Example 8. Find the derivative of (a) g(x) = 3x and (b) h(x) = 5
√
x.

Example 9. Find f ′(t) if f(t) = tan(sec(cos t)).

Example 10. Differentiate y = esin
2(x2).
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3.5 Implicit Differentiation

Definition 3.5.1. Implicit differentiation is the method of differentiation both
sides of an equation with respect to x, and then solving the equation for y′

when y = f(x).

Example 1. (a) If x2 + y2 = 169, find
dy

dx
.

(b) Find an equation of the tangent to the circle x2 + y2 = 169 at the point
(5, 12).
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Example 2. (a) Find y′ if x3 + y3 = 6xy.

(b) Find the tangent to the folium of Descartes x3 + y3 = 6xy at the point
(3, 3).

(c) At what point in the first quadrant is the tangent line horizontal?
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Example 3. Find y′ if tan(x− y) = 2xy3 + 1.

Example 4. Find y′′ if x3 − y3 = 7.
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3.6 Derivatives of Logarithmic and Inverse Trigono-

metric Functions

Theorem 3.6.1. The derivative of the logarithm function is

d

dx
(logb x) =

1

x ln b
.

Proof. Let y = logb x. Then by = x, so by differentiating we get

by = x

by(ln b)
dy

dx
= 1

dy

dx
=

1

by ln b

=
1

x ln b
.

Theorem 3.6.2. The derivative of the natural logarithm is

d

dx
(lnx) =

1

x
.

Example 1. Differentiate y = log8(x
2 + 3x).

Example 2. Find
d

dx
ln(cosx).
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Example 3. Differentiate g(t) =
√
1 + ln t.

Example 4. Differentiate y = log10 secx.

Example 5. Find
d

dx
ln

xa

bx
.

Example 6. Find f ′(x) if f(x) = ln |x|.
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Definition 3.6.1. Logarithmic differentiation is the method of calculating
derivatives of functions by taking logarithms, differentiating implicitly, and
then solving the resulting equation for the derivative.

Example 7. Differentiate y =
e−x cos2 x

x2 + x+ 1
.

Theorem 3.6.3 (The Power Rule). If n is any real number and f(x) = xn,
then

f ′(x) = nxn−1.

Proof. Let y = xn. By logarithmic differentiation we get

y = xn

ln |y| = ln |x|n

= n ln |x| x ̸= 0

y′

y
=

n

x

y′ = n
y

x

= n
xn

x
= nxn−1.
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Example 8. Differentiate y = (
√
x)x.

Theorem 3.6.4. The number e can be defined as the limit

e = lim
n→∞

(
1 +

1

n

)n

.

Proof. If f(x) = ln x, then f ′(1) = 1, so

f ′(1) = lim
h→0

f(1 + h)− f(1)

h
= lim

x→0

f(1 + x)− f(1)

x

= lim
x→0

ln(1 + x)− ln 1

x
= lim

x→0

1

x
ln(1 + x)

= lim
x→0

ln(1 + x)1/x = 1.

Thus

e = e1 = e

(
lim
x→0

ln(1+x)1/x
)
= lim

x→0
eln(1+x)1/x = lim

x→0
(1 + x)1/x.

Then if we let n = 1/x, n → ∞ as x → 0+, so we are done.
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Theorem 3.6.5. The derivative of the arcsine function is

d

dx
(sin−1 x) =

1√
1− x2

.

Proof. Since y = sin−1 x means sin y = x and −π/2 ≤ y ≤ π/2, we have
cos y ≥ 0. Thus we can differentiate to obtain

sin y = x

cos y
dy

dx
= 1

dy

dx
=

1

cos y

=
1√

1− sin2 y

=
1√

1− x2
.

Theorem 3.6.6. The derivative of the arctangent function is

d

dx
(tan−1 x) =

1

1 + x2
.

Proof. If y = tan−1 x, then tan y = x. Differentiating then gives us

tan y = x

sec2 y
dy

dx
= 1

dy

dx
=

1

sec2 y

=
1

1 + tan2 y

=
1

1 + x2
.
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Example 9. Differentiate

(a) y =
1

tan−1 x

(b) h(x) = (arcsin x) lnx.

Theorem 3.6.7. The derivatives of the Inverse Trigonometric Functions are

d

dx
(sin−1 x) =

1√
1− x2

d

dx
(csc−1 x) = − 1

x
√
x2 − 1

d

dx
(cos−1 x) = − 1√

1− x2

d

dx
(sec−1 x) =

1

x
√
x2 − 1

d

dx
(tan−1 x) =

1

1 + x2

d

dx
(cot−1 x) = − 1

1 + x2
.
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Theorem 3.6.8. Suppose f is a one-to-one differentiable function and its
inverse function f−1 is also differentiable. Then f−1 has derivative

(f−1)′(x) =
1

f ′(f−1(x))

provided that the denominator is not 0.

Proof. Since (f ◦ f−1)(x) = x, we have, by the chain rule,

(f ◦ f−1)(x) = x

(f ◦ f−1)′(x) = 1

f ′(f−1(x))(f−1)′(x) = 1

(f−1)′(x) =
1

f ′(f−1(x))
.

Example 10. If f(4) = 5 and f ′(4) = 2
3
, find (f−1)′(5).
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3.7 Rates of Change in the Sciences

Example 1. The position of a particle is given by the equation

s = f(t) = t3 − 6t2 + 9t

where t is measured in seconds and s in meters.

(a) Find the velocity at time t.

(b) What is the velocity after 2 s? After 4 s?

(c) When is the particle at rest?

(d) When is the particle moving forward (that is, in the positive direction)?
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(e) Draw a diagram to represent the motion of the particle.

(f) Find the total distance traveled by the particle during the first five seconds.

(g) Find the acceleration at time t and after 4 s.

(h) Graph the position, velocity, and acceleration functions for 0 ≤ t ≤ 5.
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(i) When is the particle speeding up? When is it slowing down?

Example 2. If a rod or piece of wire is homogeneous, then its linear density is
uniform and is defined as the mass per unit length (ρ = m/l) and measured in
kilograms per meter. Suppose, however, that the rod is not homogeneous but
that its mass measured from its left end to a point x is m = f(x), as shown
in the figure.

226 CHAPTER 3  Differentiation Rules

( i) The particle speeds up when the velocity is positive and increasing (v and a are  
both positive) and also when the velocity is negative and decreasing (v and a are both 
negative). In other words, the particle speeds up when the velocity and acceleration  
have the same sign. (The particle is pushed in the same direction it is moving.) From 
Figure 3 we see that this happens when 1 , t , 2 and when t . 3. The particle slows 
down when v and a have opposite signs, that is, when 0 < t , 1 and when 2 , t , 3. 
Figure 4 summarizes the motion of the particle.

1

5

_5

√
s

a

forward

slows
down

slows
down

backward

speeds
up

speeds
up

forward

t0

■

EXAMPLE 2 If a rod or piece of wire is homogeneous, then its linear density is uniform 
and is defined as the mass per unit length s! − myld and measured in kilograms per 
meter. Suppose, however, that the rod is not homogeneous but that its mass measured 
from its left end to a point x is m − f sxd, as shown in Figure 5.

x¡ x™
This part of the rod has mass ƒ. 

x

The mass of the part of the rod that lies between x − x1 and x − x2 is given by 
Dm − f sx2 d 2 f sx1d, so the average density of that part of the rod is

average density −
Dm
Dx

−
 f sx2 d 2 f sx1d

x2 2 x1

If we now let Dx l 0 (that is, x2 l x1), we are computing the average density over 
smaller and smaller intervals. The linear density ! at x1 is the limit of these average 
densities as Dx l 0; that is, the linear density is the rate of change of mass with 
respect to length. Symbolically, 

! − lim
Dx l 0

 
Dm
Dx

−
dm
dx

Thus the linear density of the rod is the derivative of mass with respect to length.
For instance, if m − f sxd − sx , where x is measured in meters and m in kilograms, 

then the average density of the part of the rod given by 1 < x < 1.2 is

Dm
Dx

−
 f s1.2d 2 f s1d

1.2 2 1
−

s1.2 2 1
0.2

< 0.48 kgym

TEC In Module 3.7 you can see 
an animation of Figure 4 with an 
expression for s that you can choose 
yourself.

FIGURE 4

FIGURE 5
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In this case the average density is the average rate of change over a given
interval, and the linear density is the limit of these average densities.
If m = f(x) =

√
x, where x is measured in meters and m in kilograms, find

the average density of the part of the rod given by 1 ≤ x ≤ 1.2 and the density
at x = 1.
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Example 3. The average current during a time interval is the average rate
of change of the net charge over that interval, and the current at a given time
is the limit of the average current (the rate at which charge flows through a
surface, measured in units of charge per unit time). The quantity of charge
Q in coulombs (C) that has passed through a point in a wire up to time t
(measured in seconds) is given by Q(t) = t3−2t2+6t+2. [The unit of current
is an ampere (1 A = 1 C/s).] Find the current when
(a) t = 0.5 s

(b) t = 1 s.

At what time is the current lowest?
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Example 4. The concentration of a reactant A is the number of moles (1
mole = 6.022× 1023 molecules) per liter and is denoted by [A] for a chemical
reaction

A + B → C.

The average rate of reaction during a time interval is the average rate of
change of the concentration of the product [C] over that interval, and the rate
of reaction at a given time is the limit of the average rate of reaction.
If one molecule of a product C is formed from one molecule of a reactant A
and one molecule of a reactant B, and the initial concentrations of A and B
have a common value [A] = [B] = a moles/L, then

[C] =
a2kt

akt+ 1

where k is a constant.

(a) Find the rate of reaction at time t.

(b) Show that if x = [C], then

dx

dt
= k(a− x)2.
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(c) What happens to the concentration as t → ∞?

(d) What happens to the rate of reaction as t → ∞?

(e) What do the results of parts (c) and (d) mean in practical terms?
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Example 5. If a given substance is kept a constant temperature, then the
rate of change of its volume V with respect to its pressure P is the derivative
dV/dP . The compressibility is defined by

isothermal compressibility = β = − 1

V

dV

dP
.

The volume V (in cubic meters) of a sample of air at 25◦C was found to be
related to the pressure P (in kilopascals) by the equation

V =
5.3

P
.

Determine the compressibility when P = 50 kPa.

Example 6. Let n = f(t) be the number of individuals in an animal or plant
population at time t. The average rate of growth during a time period is the
average rate of change of the growth of the population over that time period,
and the rate of growth at a given time is the limit of the average rate of
growth.
Suppose that a population of bacteria doubles every hour. The population
function representing the bacteria’s growth can be found to be

n = n02
t

where n0 is the initial population and the time t is measured in hours.
Find the rate of growth for a colony of bacteria with an initial population
n0 = 100 after 4 hours.
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Example 7. The shape of a blood vessel can be modeled by a cylindrical tube
with radius R and length l as illustrated in the figure.

230 CHAPTER 3  Differentiation Rules

In Section 3.4 we showed that

d
dx

 sbx d − bx ln b

So the rate of growth of the bacteria population at time t is

dn
dt

−
d
dt

 sn02td − n02t ln 2

For example, suppose that we start with an initial population of n0 − 100 bacteria. 
Then the rate of growth after 4 hours is

dn
dt

 Z
t−4

− 100 ? 24 ln 2 − 1600 ln 2 < 1109

This means that, after 4 hours, the bacteria population is growing at a rate of about 
1109 bacteria per hour. ■

EXAMPLE 7 When we consider the flow of blood through a blood vessel, such as a 
vein or artery, we can model the shape of the blood vessel by a cylindrical tube with 
radius R and length l as illustrated in Figure 8.

R r

l

Because of friction at the walls of the tube, the velocity v of the blood is greatest along 
the central axis of the tube and decreases as the distance r from the axis increases until 
v becomes 0 at the wall. The relationship between v and r is given by the law of lami-
nar flow discovered by the French physician Jean-Louis-Marie Poiseuille in 1840. This 
law states that

1   v −
P

4!l
 sR2 2 r 2 d

where ! is the viscosity of the blood and P is the pressure difference between the ends 
of the tube. If P and l are constant, then v is a function of r with domain f0, Rg.

The average rate of change of the velocity as we move from r − r1 outward to 
r − r2 is given by

Dv
Dr

−
vsr2 d 2 vsr1d

r2 2 r1

and if we let Dr l 0, we obtain the velocity gradient, that is, the instantaneous rate of 
change of velocity with respect to r:

velocity gradient − lim
Dr l 0

 
Dv
Dr

−
dv
dr

Using Equation 1, we obtain

dv
dr

−
P

4!l
 s0 2 2rd − 2

Pr
2!l

FIGURE 8  
Blood flow in an artery

For more detailed information, see  
W. Nichols and M. O’Rourke (eds.), 
McDonald’s Blood Flow in Arteries: 
Theoretical, Experimental, and Clinical 
Principles, 5th ed. (New York, 2005).
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The relationship between the velocity v of the blood and the distance r from
the axis is given by the law of laminar flow

v =
P

4ηl
(R2 − r2)

where η is the viscosity of the blood and P is the pressure difference between
the ends of the tube. If P and l are constant, then v is a function of r with
domain [0, R]. The velocity gradient at a given time is the limit of the average
rate of change of the velocity.
For one of the smaller human arteries we can take η = 0.027, R = 0.008 cm,
l = 2 cm, and P = 4000 dynes/cm2. Find the speed at which blood is flowing
at r = 0.002 and find the velocity gradient at that point.
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Example 8. Suppose C(x) is the total cost that a company incurs in produc-
ing x units of a certain commodity. The function C is called a cost function.
The instantaneous rate of change of cost with respect to the number of items
produced, called the marginal cost, is the limit of the average rate of change
of the cost.
Suppose a company has estimated that the cost (in dollars) of producing x
items is

C(x) = 10, 000 + 5x+ 0.01x2.

Find the marginal cost at the production level of 500 items and compare it to
the actual cost of producing the 501st item.
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3.8 Exponential Growth and Decay

Definition 3.8.1. The equation

dy

dt
= ky

is called the law of natural growth (if k > 0) or the law of natural decay (if
k < 0). It is called a differential equation because it involves an unknown
function y and its derivative dy/dt.

Theorem 3.8.1. The only solutions of the differential equation dy/dt = ky
are the exponential functions

y(t) = y(0)ekt.

Definition 3.8.2. If P (t) is the size of a population at time t, then

k =
1

P

dP

dt

is the growth rate divided by population, called the relative growth rate.

Example 1. Use the fact that the world population was 2560 million in 1950
and 3040 million in 1960 to model the population of the world in the second
half of the 20th century. (Assume that the growth rate is proportional to the
population size.) What is the relative growth rate? Use the model to estimate
the world population in 1993 and to predict the population in the year 2020.
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Definition 3.8.3. If m(t) is the mass remaining from an initial mass m0 of a
substance after time t, then the relative decay rate is

− 1

m

dm

dt
.

It follows that the mass decays exponentially according to the equation

m(t) = m0e
kt,

where the rate of decay is expressed in terms of half-life, the time required for
half of any given quantity to decay.

Example 2. The half-life of radium-226 is 1590 years.

(a) A sample of radium-226 has a mass of 100 mg. Find a formula for the
mass of the sample that remains after t years.

(b) Find the mass after 1000 years correct to the nearest milligram.

(c) When will the mass be reduced to 30 mg?
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Example 3. Newton’s Law of Cooling can be represented as a differential
equation

dT

dt
= k(T − Ts),

where T is the temperature of the object at time t and Ts is the temperature
of the surroundings. The exponential function y(t) = y(0)ekt is a solution to
this differential equation when y(t) = T (t)− Ts.
A bottle of soda pop at room temperature (72◦F) is placed in a refrigerator
where the temperature is 44◦F. After half an hour the soda pop has cooled to
61◦F.

(a) What is the temperature of the soda pop after another half hour?

(b) How long does it take for the soda pop to cool to 50◦F?
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Example 4. In general, if an amount A0 is invested at an interest rate r, then
after t years it is worth A0(1 + r)t. Usually, however, interest is compounded
more frequently, say, n times a year. Then in each compounding period the
interest rate is r/n and there are nt compounding periods in t years, so the
value of the investment is

A0

(
1 +

r

n

)nt

.

Therefore, taking limits gives us the amount after t years as

A(t) = A0e
rt

when interest is continuously compounded. Determine the value of an invest-
ment of $1000 after 3 years of continuously compounding 6% interest. Com-
pare this to the value of the same investment compounded annually instead.
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3.9 Related Rates

Example 1. The radius of a sphere is increasing at a rate of 4 mm/s. How
fast is the volume increasing when the diameter is 80 mm?
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Example 2. A ladder 10 ft long rests against a vertical wall. If the bottom
of the ladder slides away from the wall at a rate of 1 ft/s, how fast is the top
of the ladder sliding down the wall when the bottom of the ladder is 6 ft from
the wall?
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Example 3. Water is leaking out of an inverted conical tank at a rate of
10,000 cm3/min at the same time that water is being pumped into the tank
at a constant rate. The tank has height 6 m and the diameter at the top is 4
m. If the water level is rising at a rate of 20 cm/min when the height of the
water is 2 m, find the rate at which water is being pumped into the tank.
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Example 4. Two cars start moving from the same point. One travels south
at 60 mi/h and the other travels west at 25 mi/h. At what rate is the distance
between the cars increasing two hours later?
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Example 5. A plane flies horizontally at an altitude of 5 km and passes
directly over a tracking telescope on the ground. When the angle of elevation
is π/3, this angle is decreasing at a rate of π/6 rad/min. How fast is the plane
traveling at that time?
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3.10 Linear Approximations and Differentials

Definition 3.10.1. The approximation

f(x) ≈ f(a) + f ′(a)(x− a)

is called the linear approximation or tangent line approximation of f at a. The
linear function whose graph is this tangent line, that is,

L(x) = f(a) + f ′(a)(x− a)

is called the linearization of f at a.

Example 1. Find the linearization of the function f(x) =
√
x+ 3 at a = 1 and

use it to approximate the numbers
√
3.98 and

√
4.05. Are these approximations

overestimates or underestimates?
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Example 2. For what values of x is the linear approximation

√
x+ 3 ≈ 7

4
+

x

4

accurate to within 0.5? What about accuracy to within 0.1?
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ics textbooks obtain the expression aT − 2t sin !  for tangential acceleration and then 
replace sin !  by !  with the remark that sin !  is very close to !  if !  is not too large. [See, 
for exam ple, Physics: Calculus, 2d ed., by Eugene Hecht (Paci!c Grove, CA: Brooks/
Cole, 2000), p. 431.] You can verify that the linearization of the function f sxd − sin x at 
a − 0 is Lsxd − x and so the lin ear approximation at 0 is

sin x < x

(see Exercise 42). So, in effect, the derivation of the formula for the period of a pendulum 
uses the tangent line approximation for the sine function.

Another example occurs in the theory of optics, where light rays that arrive at shallow 
angles relative to the optical axis are called paraxial rays. In paraxial (or Gaussian) optics,  
both sin ! and cos ! are replaced by their linearizations. In other words, the linear  
approximations

sin ! < !    and    cos ! < 1

are used because ! is close to 0. The results of calculations made with these approxima-
tions became the basic theoretical tool used to design lenses. [See Optics, 4th ed., by 
Eugene Hecht (San Francisco, 2002), p. 154.]

In Section 11.11 we will present several other applications of the idea of linear approxi-
mations to physics and engineering.

Di!erentials
The ideas behind linear approximations are sometimes formulated in the terminology and 
notation of differentials. If y − f sxd, where f  is a differentiable function, then the differ-
ential dx is an independent variable; that is, dx can be given the value of any real number. 
The differential dy is then de!ned in terms of dx by the equation

3   dy − f 9sxd dx

So dy is a dependent variable; it depends on the values of x and dx. If dx is given a spe-
ci!c value and x is taken to be some speci!c number in the domain of f , then the numer-
ical value of dy is determined.

The geometric meaning of differentials is shown in Figure 5. Let Psx, f sxdd and 
Qsx 1 Dx, f sx 1 Dxdd be points on the graph of f  and let dx − Dx. The corresponding 
change in y is

Dy − f sx 1 Dxd 2 f sxd

The slope of the tangent line PR is the derivative f 9sxd. Thus the directed distance from 
S to R is f 9sxd dx − dy. Therefore dy represents the amount that the tangent line rises or 
falls (the change in the linearization), whereas Dy represents the amount that the curve 
y − f sxd rises or falls when x changes by an amount dx.

EXAMPLE 3 Compare the values of Dy and dy if y − f sxd − x 3 1 x 2 2 2x 1 1 and  
x changes (a) from 2 to 2.05 and (b) from 2 to 2.01.

SOLUTION 
(a) We have

 f s2d − 23 1 22 2 2s2d 1 1 − 9

  f s2.05d − s2.05d3 1 s2.05d2 2 2s2.05d 1 1 − 9.717625

 Dy − f s2.05d 2 f s2d − 0.717625

If dx ± 0, we can divide both sides of  
Equation 3 by dx to obtain

dy
dx

− f 9sxd

We have seen similar equations before, 
but now the left side can genuinely be 
interpreted as a ratio of differentials.

R

0 x

y

Îy

x

P

Q

dx=Îx

x+Îx

y=ƒ

S

dy

FIGURE 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Definition 3.10.2. If y = f(x), where f is a differentiable func-
tion, then the differential dx is an independent variable; that is,
dx can be given the value of any real number. The differential
dy is then defined in terms of dx by the equation

dy = f ′(x)dx.
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Example 3. Compare the values ∆y and dy if y = f(x) = x3 + x2 − 2x + 1
and x changes

(a) from 2 to 2.05

(b) from 2 to 2.01.

Example 4. The radius of a sphere was measured and found to be 21 cm with
a possible error in measurement of at most 0.05 cm. What is the maximum
error in using this value of the radius to compute the volume of the sphere?
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3.11 Hyperbolic Functions

Definition 3.11.1. Functions that have the same relationship to the hyper-
bola that trigonometric functions have to the circle are called hyperbolic func-
tions and are defined as follows

sinhx =
ex − e−x

2
cschx =

1

sinhx

coshx =
ex + e−x

2
sechx =

1

coshx

tanhx =
sinhx

coshx
cothx =

coshx

sinhx
.

Theorem 3.11.1 (Hyperbolic Identities).

sinh(−x) = − sinhx cosh(−x) = cosh x

cosh2 x− sinh2 x = 1 1− tanh2 x = sech2 x

sinh(x+ y) = sinhx cosh y + coshx sinh y

cosh(x+ y) = cosh x cosh y + sinhx sinh y.

Example 1. Prove

(a) cosh2 x− sinh2 x = 1

(b) 1− tanh2 x = sech2 x.
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Theorem 3.11.2 (Derivatives of Hyperbolic Functions).

d

dx
(sinhx) = cosh x

d

dx
(cschx) = − cschx cothx

d

dx
(coshx) = sinhx

d

dx
(sechx) = − sechx tanhx

d

dx
(tanhx) = sech2 x

d

dx
(cothx) = − csch2 x.

Example 2. Find
d

dx
(cosh

√
x).

Theorem 3.11.3 (Inverse Hyperbolic Functions).

sinh−1 x = ln(x+
√
x2 + 1) x ∈ R

cosh−1 x = ln(x+
√
x2 − 1) x ≥ 1

tanh−1 x =
1

2
ln

(
1 + x

1− x

)
− 1 < x < 1.

Example 3. Show that sinh−1 x = ln(x+
√
x2 + 1).
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Theorem 3.11.4 (Derivatives of Inverse Hyperbolic Functions).

d

dx
(sinh−1 x) =

1√
1 + x2

d

dx
(csch−1 x) = − 1

|x|
√
x2 + 1

d

dx
(cosh−1 x) =

1√
x2 − 1

d

dx
(sech−1 x) = − 1

x
√
1− x2

d

dx
(tanh−1 x) =

1

1− x2

d

dx
(coth−1 x) =

1

1− x2
.

Example 4. Prove that
d

dx
(sinh−1 x) =

1√
1 + x2

.

Example 5. Find
d

dx
[tanh−1(sinx)].
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Applications of Differentiation

4.1 Maximum and Minimum Values

Definition 4.1.1. Let c be a number in the domain D of a function f . Then
f(c) is the absolute maximum value (or global maximum value) of f on D if
f(c) ≥ f(x) for all x in D and f(c) is the absolute minimum value (or global
minimum value) of f on D if f(c) ≤ f(x) for all x in D. These values are
called extreme values of f .

Definition 4.1.2. The number f(c) is a local maximum value of f if f(c) ≥
f(x) when x is near c and a local minimum value of f if f(c) ≤ f(x) when x is
near c. When we say near, we mean on an open interval containing c. These
values are called local extreme values of f .

Example 1. For what values of x does f(x) = sin x take on its maximum and
minimum values?

Example 2. Find all of the extreme values of f(x) = x2.
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Example 3. Find all of the extreme values of f(x) = x3.

Example 4. Find all of the extreme values of f(x) = 3x4 − 4x3 − 12x2 + 1
within the domain −2 ≤ x ≤ 3.

Theorem 4.1.1 (Extreme Value Theorem). If f is continuous on a closed
interval [a, b] then f attains an absolute maximum value f(c) and an absolute
minimum value f(d) at some numbers c and d in [a, b].

Theorem 4.1.2 (Fermat’s Theorem). If f has a local maximum or minimum
at c, and if f ′(c) exists, then f ′(c) = 0.

Proof. Suppose f has a local maximum at c. Then, by definition, f(c) ≥ f(x)
if x is near c, so if we let h > 0 be close to 0 we have

f(c) ≥ f(c+ h)

f(c+ h)− f(c) ≤ 0

f(c+ h)− f(c)

h
≤ 0

h

lim
h→0+

f(c+ h)− f(c)

h
≤ lim

h→0+
0

f ′(c) ≤ 0.

If h < 0, the direction of the inequality is reversed and we get f ′(c) ≥ 0. Thus
combining these inequalities gives us f ′(c) = 0. A similar argument can be
used to achieve the same result if f has a local minimum at c.
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Example 5. Use the function f(x) = x3 to determine whether the converse
of Fermat’s theorem is true.

Example 6. Does Fermat’s theorem apply to the function f(x) = |x|?

Definition 4.1.3. A critical number of a function f is a number c in the
domain of f such that either f ′(c) = 0 or f ′(c) does not exist.

Example 7. Find the critical numbers of x1/3(4− x)2/3.
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Example 8. Find the absolute maximum and minimum values of the function

f(x) = x3 − 6x2 + 5 − 3 ≤ x ≤ 5.

Example 9. (a) Use a graphing device to estimate the absolute minimum
and maximum values of the function f(x) = x− 2 cosx, −2 ≤ x ≤ 0.
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(b) Use calculus to find the exact minimum and maximum values.

Example 10. The Hubble Space Telescope was deployed on April 24, 1990,
by the space shuttle Discovery. A model for the velocity of the shuttle during
this mission, from liftoff at t = 0 until the solid rocket boosters were jettisoned
at t = 126 seconds, is given by

v(t) = 0.001302t3 − 0.09029t2 + 23.61t− 3.083

(in feet per second). Using this model, estimate the absolute maximum and
minimum values of the acceleration of the shuttle between liftoff and the jet-
tisoning of the boosters.
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4.2 The Mean Value Theorem

Theorem 4.2.1 (Rolle’s Theorem). Let f be a function that satisfies the fol-
lowing three hypotheses:

1. f is continuous on the closed interval [a, b].

2. f is differentiable on the open interval (a, b).

3. f(a) = f(b).

Then there is a number c in (a, b) such that f ′(c) = 0.

Proof. If f(x) = k, a constant, then f ′(x) = 0 for all x ∈ (a, b). If f(x) > f(a)
for some x ∈ (a, b) then f has a local maximum for a number c ∈ (a, b) by
the extreme value theorem. Since f is differentiable on (a, b), f ′(c) = 0 by
Fermat’s theorem. By the same reasoning, f ′(c) = 0 if f(x) < f(a).

Example 1. How could Rolle’s theorem be applied to a position function that
models a ball thrown upward?

Example 2. Prove that the equation x3+x−1 = 0 has exactly one real root.
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Theorem 4.2.2 (The Mean Value Theorem). Let f be a function that satisfies
the following hypotheses:

1. f is continuous on the closed interval [a, b].

2. f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that

f ′(c) =
f(b)− f(a)

b− a

or, equivalently,
f(b)− f(a) = f ′(c)(b− a).

Proof. Let h be the difference between f and the secant line to f on [a, b], i.e.,

h(x) = f(x)−
[
f(a) +

f(b)− f(a)

b− a
(x− a)

]
.

Then h is continuous on [a, b] and differentiable on (a, b) because it is the sum
of f and a first-degree polynomial, which are both continuous on [a, b] and
differentiable on (a, b). Also,

h(a) = f(a)− f(a)− f(b)− f(a)

b− a
(a− a) = 0

h(b) = f(b)− f(a)− f(b)− f(a)

b− a
(b− a) = 0,

so h(a) = h(b). Therefore, by Rolle’s thereom, there is a number c in (a, b)
such that h′(c) = 0, i.e.,

0 = h′(c) = f ′(c)− f(b)− f(a)

b− a
,

which is equivalent to

f ′(c) =
f(b)− f(a)

b− a

as desired.
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Example 3. Find a number c in (0, 2) such that the slope of the secant line
is equal to the slope of the tangent line for the function f(x) = x3 − x.

Example 4. What does the mean value theorem say about the velocity of an
object moving in a straight line?

Example 5. Suppose that f(0) = −3 and f ′(x) ≤ 5 for all values of x. How
large can f(2) possibly be?

Theorem 4.2.3. If f ′(x) = 0 for all x in an interval (a, b), then f is constant
on (a, b).

Proof. Let x1, x2 ∈ (a, b) be such that x1 < x2. By the mean value theorem
for f on [x1, x2], we get

f(x2)− f(x1) = f ′(c)(x2 − x1),

for some c ∈ (x1, x2). But f
′(x) = 0 for all x in this interval, so f(x2) = f(x1).

Since x1 and x2 were chosen arbitrarily, f is constant on (a, b).
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Corollary 4.2.1. If f ′(x) = g′(x) for all x in an interval (a, b), then f − g is
constant on (a, b); that is f(x) = g(x) + c where c is a constant.

Proof. Let
F (x) = f(x)− g(x).

Then
F ′(x) = f ′(x)− g′(x) = 0,

so F is constant by the previous theorem, and thus f − g is constant.

Example 6. Prove the identity tan−1 x+ cot−1 x = π/2.
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4.3 Derivatives and the Shape of a Graph

Theorem 4.3.1 (Increasing/Decreasing Test).

(a) If f ′(x) > 0 on an interval, then f is increasing on that interval.

(b) If f ′(x) < 0 on an interval, then f is decreasing on that interval.

Proof. Let x1, x2 be two numbers on an interval where f ′(x) > 0 such that
x1 < x2. Then by the mean value theorem,

f(x2)− f(x1) = f ′(c)(x2 − x1)

for some c in the interval. But f ′(c) > 0 and x2−x1 > 0, so f(x2)−f(x1) > 0,
i.e.,

f(x2) > f(x1)

in the interval. Since x1 and x2 were chosen arbitrarily, we are done, and the
second half of the theorem is proved similarly.

Example 1. Find where the function f(x) = 2x3−15x2+24x−5 is increasing
and where it is decreasing.
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Theorem 4.3.2 (The First Derivative Test). Suppose that c is a critical num-
ber of a continuous function f .

(a) If f ′ changes from positive to negative at c, then f has a local maximum
at c.

(b) If f ′ changes from negative to positive at c, then f has a local minimum
at c.

(c) If f ′ is positive to the left and to the right of c, or negative to the left and
to the right of c, then f has no local minimum or maximum at c.

Example 2. Find the local minimum and maximum values of the function f
in Example 1.

Example 3. Find the local maximum and minimum values of the function

g(x) = sinx+ cosx 0 ≤ x ≤ 2π.
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Definition 4.3.1. If the graph of f lies above all of its tangents on an interval
I, then it is called concave upward on I. If the graph of f lies below all of its
tangents on I, it is called concave downward on I.

Theorem 4.3.3 (Concavity Test).

(a) If f ′′(x) > 0 for all x in I, then the graph of f is concave upward on I.

(b) If f ′′(x) < 0 for all x in I, then the graph of f is concave downward on I.

Example 4. The figure shows a population graph for Cyprian honeybees
raised in an apiary. How does the rate of population increase change over
time? When is this rate highest? Over what intervals is P concave upward or
concave downward?

296 CHAPTER 4  Applications of Differentiation

In Figure 6 tangents to these curves have been drawn at several points. In (a) the curve 
lies above the tangents and f  is called concave upward on sa, bd. In (b) the curve lies 
below the tangents and t is called concave downward on sa, bd.

 Definition If the graph of f  lies above all of its tangents on an interval I, then it is 
called concave upward on I. If the graph of f  lies below all of its tangents on I, it 
is called concave downward on I.

Figure 7 shows the graph of a function that is concave upward (abbreviated CU) on 
the intervals sb, cd, sd, ed, and se, pd and concave downward (CD) on the intervals sa, bd, 
sc, dd, and sp, q d.

a b c d e p q

B C

D
P

x

y

0

CD CU CD CU CDCU

FIGURE 7 

Let’s see how the second derivative helps determine the intervals of concavity. Look-
ing at Figure 6(a), you can see that, going from left to right, the slope of the tangent 
increas es. This means that the derivative f 9 is an increasing function and therefore its 
derivative f 0 is positive. Likewise, in Figure 6(b) the slope of the tangent decreases from 
left to right, so f 9 decreases and therefore f 0 is negative. This reasoning can be reversed 
and suggests that the following theorem is true. A proof is given in Appendix F with the 
help of the Mean Value Theorem.

Concavity Test
(a) If f 0sxd . 0 for all x in I, then the graph of f  is concave upward on I.

(b) If f 0sxd , 0 for all x in I, then the graph of f  is concave downward on I.

EXAMPLE 4 Figure 8 shows a population graph for Cyprian honeybees raised in an  
apiary. How does the rate of population increase change over time? When is this rate 
highest? Over what intervals is P concave upward or concave downward?
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(a) Concave upward

(b) Concave downward

FIGURE 6  

FIGURE 8  
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Definition 4.3.2. A point P on a curve y = f(x) is called an inflection point
if f is continuous there and the curve changes from concave upward to concave
downward or from concave downward to concave upward at P .

Example 5. Sketch a possible graph of a function f that satisfies the following
conditions:

(i) f ′(x) > 0 if x ̸= 2, f ′′(x) > 0 if x < 2.

(ii) f ′′(x) < 0 if x > 2, f has an inflection point at (2, 5).

(iii) lim
x→∞

f(x) = 8, lim
x→−∞

f(x) = 0.

Theorem 4.3.4 (The Second Derivative Test). Suppose f ′ is continuous near
c.

(a) If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c.

(b) If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c.
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Example 6. Discuss the curve y = 3x4 − 8x3 + 12 with respect to concavity,
points of inflection, and local maxima and minima. Use this information to
sketch the curve.
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Example 7. Sketch the graph of the function f(x) = x1/3(x+ 4).
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Example 8. Use the first and second derivatives of f(x) = e−2/x, together
with asymptotes, to sketch its graph.
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4.4 Indeterminate Forms and l’Hospital’s Rule

Theorem 4.4.1 (L’Hospital’s Rule). Suppose f and g are differentiable and
g′(x) ̸= 0 on an open interval I that contains a (except possibly at a). Suppose
that

lim
x→a

f(x) = 0 and lim
x→a

g(x) = 0

or that
lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞

(In other words, we have an indeterminate form of type 0
0
or ∞/∞.) Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

if the limit on the right side exists (or is ∞ or −∞).

Example 1. Find lim
x→1

lnx

x− 1
.

Example 2. Calculate lim
x→∞

1 + ex√
x

.
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Example 3. Calculate lim
x→∞

lnx

x2/3
.

Example 4. Find lim
x→0

tanx− x

x3
.
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Example 5. Find lim
x→π−

sinx

1− cosx
.

Example 6. Evaluate lim
x→0

sin 5x csc 3x.
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Example 7. Compute lim
x→1

(
x

x− 1
− 1

lnx

)
.

Example 8. Calculate lim
x→∞

(ex − x).
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Example 9. Calculate lim
x→0+

(4x+ 1)cotx.

Example 10. Find lim
x→0+

x
√
x.
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4.5 Summary of Curve Sketching

Use the following guidelines when sketching curves by hand:

A. Domain

B. Intercepts

C. Symmetry

D. Asymptotes

E. Intervals of Increase or Decrease

F. Local Maximum and Minimum Values

G. Concavity and Points of Inflection

Example 1. Use the guidelines to sketch the curve y =
2x2

x2 − 1
.
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Example 2. Sketch the graph of f(x) =
x2

√
x+ 1

.
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Example 3. Sketch the graph of f(x) = xex.
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Example 4. Sketch the graph of f(x) =
cosx

2 + sin x
.
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Example 5. Sketch the graph of y = ln(4− x2).
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Definition 4.5.1. If
lim
x→∞

[f(x)− (mx+ b)] = 0

where m ̸= 0, then the line y = mx + b is called a slant asymptote because
the vertical distance between the curve y = f(x) and the line y = mx + b
approaches 0.

Example 6. Sketch the graph of f(x) =
x3

x2 + 1
.
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4.6 Graphing with Calculus and Calculators

Example 1. Graph the polynomial f(x) = 2x6 + 3x5 + 3x3 − 2x2. Use the
graphs of f ′ and f ′′ to estimate all maximum and minimum points and intervals
of concavity.
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Example 2. Draw the graph of the function

f(x) =
x2 + 7x+ 3

x2

in a viewing rectangle that contains all the important features of the function.
Estimate the maximum and minimum values and the intervals of concavity.
Then use calculus to find these quantities exactly.
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Example 3. Graph the function f(x) =
x2(x+ 1)3

(x− 2)2(x− 4)4
.
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Example 4. Graph the function f(x) = sin(x + sin 2x). For 0 ≤ x ≤ π,
estimate all maximum and minimum values, intervals of increase and decrease,
and inflection points.
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Example 5. How does the graph of f(x) = 1/(x2 + 2x+ c) vary as c varies?
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4.7 Optimization Problems

Example 1. A farmer has 2400 ft of fencing and wants to fence off a rect-
angular field that borders a straight river. He needs no fence along the river.
What are the dimensions of the field that has the largest area?
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Example 2. A cylindrical can is to be made to hold 1 L of oil. Find the
dimensions that will minimize the cost of the metal to manufacture the can.
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Theorem 4.7.1 (First Derivative Test for Absolute Extreme Values). Suppose
that c is a critical number of a continuous function f defined on an interval.

(a) If f ′(x) > 0 for all x < c and f ′(x) < 0 for all x > c, then f(c) is the
absolute maximum value of f .

(b) If f ′(x) < 0 for all x < c and f ′(x) > 0 for all x > c, then f(c) is the
absolute minimum value of f .

Example 3. Find the point on the curve y =
√
x that is closest to the point

(3, 0).
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Example 4. An oil refinery is located on the north bank of a straight river
that is 2 km wide. A pipeline is to be constructed from the refinery to storage
tanks located on the south bank of the river 6 km east of the refinery. The
cost of laying pipe is $400,000/km over land to a point P on the north bank
and $800,000/km under the river to the tanks. To minimize the cost of the
pipeline, where should P be located?
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Example 5. Find the area of the largest rectangle that can be inscribed in
the ellipse x2/a2 + y2/b2 = 1.
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Definition 4.7.1. If p(x) is the price per unit that a company can charge if
it sells x units, then p is called the demand function (or price function).
If x units are sold, then the total revenue

R(x) = quantity× price = xp(x)

and R is called the revenue function. The derivative R′ of the revenue function
is called the marginal revenue function and is the rate of change of revenue
with respect to the number of units sold.
If x units are sold, then the total profit is

P (x) = R(x)− C(x)

where C is the cost function and P is called the profit function. The marginal
profit function is P ′, the derivative of the profit function.

Example 6. A baseball team plays in a stadium that seats 55,000 spectators.
With ticket prices at $10, the average attendance had been 27,000. When
ticket prices were lowered to $8, the average attendance rose to 33,000. Find
the demand function, assuming that it is linear, and the revenue function.
How should ticket prices be set to maximize revenue?
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4.8 Newton’s Method

Theorem 4.8.1 (Newton’s Method). If xn is the nth approximation of a root
r for a function f then

xn+1 = xn −
f(xn)

f ′(xn)
.

Example 1. Starting with x1 = 2, find the third approximation x3 to the
root of the equation x3 − 2x− 5 = 0.
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Example 2. Use Newton’s method to find 6
√
2 to eight decimal places.
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Example 3. Find, correct to six decimal places, the root of the equation
cosx = x.
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4.9 Antiderivatives

Definition 4.9.1. A function F is called an antiderivative of f on an interval
I if F ′(x) = f(x) for all x in I.

Theorem 4.9.1. If F is an antiderivative of f on an interval I, then the most
general antiderivative of f on I is

F (x) + C

where C is an arbitrary constant.

Proof. Follows by Corollary 4.2.1 to the mean value theorem.

Example 1. Find the most general antiderivative of each of the following
functions.

(a) f(x) = sinx

(b) f(x) = 1/x

(c) f(x) = xn, n ̸= −1
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Example 2. Find all functions g such that

g′(x) = 2 cosx+
2x− 4 + 3

√
x√

x
.

Example 3. Find f if f ′(x) = ex + 20(1 + x2)−1 and f(0) = −2.
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Example 4. Find f if f ′′(x) = 4 + 6x+ 24x2, f(0) = 3, and f(1) = 10.

354 CHAPTER 4  Applications of Differentiation

EXAMPLE 5  The graph of a function f  is given in Figure 3. Make a rough sketch of 
an antiderivative F, given that Fs0d − 2.

SOLUTION We are guided by the fact that the slope of y − Fsxd is f sxd. We start at the 
point s0, 2d and draw F as an initially decreasing function since f sxd is negative when 
0 , x , 1. Notice that f s1d − f s3d − 0, so F has horizontal tangents when x − 1 and 
x − 3. For 1 , x , 3, f sxd is positive and so F is increasing. We see that F has a local 
minimum when x − 1 and a local maximum when x − 3. For x . 3, f sxd is negative 
and so F is decreasing on s3, `d. Since f sxd l 0 as x l `, the graph of F becomes 
flatter as x l `. Also notice that F0sxd − f 9sxd changes from positive to negative at 
x − 2 and from negative to positive at x − 4, so F has inflection points when x − 2 and 
x − 4. We use this information to sketch the graph of the antiderivative in Figure 4. Q

Rectilinear Motion
Antidifferentiation is particularly useful in analyzing the motion of an object moving in 
a straight line. Recall that if the object has position function s − f std, then the velocity 
function is vstd − s9std. This means that the position function is an antiderivative of the 
velocity function. Likewise, the acceleration function is astd − v9std, so the velocity 
function is an antiderivative of the acceleration. If the acceleration and the initial values ss0d 
and vs0d are known, then the position function can be found by antidifferentiating twice.

EXAMPLE 6 A particle moves in a straight line and has acceleration given by 
astd − 6t 1 4. Its initial velocity is vs0d − 2 6 cmys and its initial displacement is 
ss0d − 9 cm. Find its position function sstd.

SOLUTION Since v9std − astd − 6t 1 4, antidifferentiation gives

vstd − 6 
t 2

2
1 4t 1 C − 3t 2 1 4t 1 C

Note that vs0d − C. But we are given that vs0d − 2 6, so C − 2 6 and

vstd − 3t 2 1 4t 2 6

Since vstd − s9std, s is the antiderivative of v:

sstd − 3 
t 3

3
1 4 

t 2

2
2 6t 1 D − t 3 1 2t 2 2 6t 1 D

This gives ss0d − D. We are given that ss0d − 9, so D − 9 and the required position 
function is

 sstd − t 3 1 2t 2 2 6t 1 9 Q

An object near the surface of the earth is subject to a gravitational force that produces 
a downward acceleration denoted by t. For motion close to the ground we may assume 
that t is constant, its value being about 9.8 mys2 (or 32 ftys2).

EXAMPLE 7 A ball is thrown upward with a speed of 48 ftys from the edge of a cliff 
432 ft above the ground. Find its height above the ground t seconds later. When does it 
reach its maximum height? When does it hit the ground?
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y
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FIGURE 3 
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Example 5. The graph of a function f is given in the figure.
Make a rough sketch of an antiderivative F , given that F (0) = 2.
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Example 6. A particle moves in a straight line and has acceleration given by
a(t) = 2t+1. Its initial velocity is v(0) = −2 cm/s and its initial displacement
is s(0) = 3 cm. Find its position function s(t).
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Example 7. A ball is thrown upward with a speed of 24 ft/s from the edge of a
cliff 432 ft above the ground. Find its height above the ground t seconds later.
When does it reach its maximum height? When does it hit the ground? [For
motion close to the ground we may assume that the downward acceleration g
is constant, its value being about 9.8 m/s2 (or 32 ft/s2).]
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Chapter 10

Parametric Equations and Polar
Coordinates

10.1 Curves Defined by Parametric Equations

Definition 10.1.1. Suppose that x and y are both given as functions of a
third variable t (called a parameter) by the equations

x = f(t) y = g(t)

(called parametric equations). Each value of t determines a point (x, y), which
we can plot in a coordinate plane. As t varies, the point (x, y) = (f(t), g(t))
varies and traces out a curve C, which we call a parametric curve.

Example 1. Sketch and identify the curve defined by the parametric equations

x = t2 − 2t y = t+ 1.
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Definition 10.1.2. In general, the curve with parametric equations

x = f(t) y = g(t) a ≤ t ≤ b

has initial point (f(a), g(a)) and terminal point (f(b), g(b)).

Example 2. What curve is represented by the following parametric equations?

x = cos t y = sin t 0 ≤ t ≤ 2π.

Example 3. What curve is represented by the given parametric equations?

x = sin 2t y = cos 2t 0 ≤ t ≤ 2π.
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Example 4. Find parametric equations for the circle with center (h, k) and
radius r.

Example 5. Sketch the curve with parametric equations x = sin t, y = sin2 t.
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Example 6. Use a graphing device to graph the curve x = y4 − 3y2.

Example 7. The curve traced out by a point P on the circumference of a
circle as the circle rolls along a straight line is called a cycloid (see the figure).
If the circle has radius r and rolls along the x-axis and if one position of P is
the origin, find parametric equations for the cycloid.

 SECTION 10.1  Curves Defined by Parametric Equations 643

EXAMPLE 6  Use a graphing device to graph the curve x − y 4 2 3y 2.

SOLUTION If we let the parameter be t − y, then we have the equations

x − t 4 2 3t 2    y − t

Using these parametric equations to graph the curve, we obtain Figure 9. It would be 
possible to solve the given equation sx − y 4 2 3y 2 d for y as four functions of x and 
graph them individually, but the parametric equations provide a much easier method. n

In general, if we need to graph an equation of the form x − tsyd, we can use the 
parametric equations

x − tstd    y − t

Notice also that curves with equations y − f sxd (the ones we are most familiar with—
graphs of functions) can also be regarded as curves with parametric equations

x − t    y − f std

Graphing devices are particularly useful for sketching complicated parametric curves. 
For instance, the curves shown in Figures 10, 11, and 12 would be virtually impossible to  
produce by hand.
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FIGURE 10  
x − t 1 sin 5t 
y − t 1 sin 6t 

  FIGURE 11  
  x − sin 9t 
  y − sin 10 t 

FIGURE 12  
x − 2.3 cos  10t 1 cos 23t 
y − 2.3 sin 10t 2 sin 23t 

One of the most important uses of parametric curves is in computer-aided design 
(CAD). In the Laboratory Project after Section 10.2 we will investigate special paramet-
ric curves, called Bézier curves, that are used extensively in manufacturing, especially 
in the auto motive industry. These curves are also employed in specifying the shapes of 
letters and other symbols in laser printers and in documents viewed electronically.

The Cycloid

EXAMPLE 7  The curve traced out by a point P on the circumference of a circle as 
the circle rolls along a straight line is called a cycloid (see Figure 13). If the circle has 
radius r and rolls along the x-axis and if one position of P is the origin, find parametric 
equations for the cycloid.

P

P
P

TEC An animation in Module 10.1B 
shows how the cycloid is formed as 
the circle moves.

FIGURE 13 

FIGURE 9 

3

_3

_3 3
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Example 8. Investigate the family of curves with parametric equations

x = a+ cos t y = a tan t+ sin t.

What do these curves have in common? How does the shape change as a
increases?
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10.2 Calculus with Parametric Curves

Theorem 10.2.1. Suppose f and g are differentiable functions. Then for a
point on the parametric curve x = f(t), y = g(t), where y is also a differen-
tiable function of x, we have

dy

dx
=

dy

dt
dx

dt

if
dx

dt
̸= 0.

Proof. Since y is a differentiable function of x, we have, by the Chain Rule,

dy

dt
=

dy

dx
· dx
dt

.

Then if dx
dt

̸= 0 we can divide by it, so

dy

dx
=

dy

dt
dx

dt

.

Theorem 10.2.2. Suppose f and g are differentiable functions. Then for a
point on the parametric curve x = f(t), y = g(t), where y is also a differen-
tiable function of x, we have

d2y

dx2
=

d

dt

(
dy

dx

)
dx

dt

if
dx

dt
̸= 0.

Proof. By the previous theorem,

d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dt

(
dy

dx

)
dx

dt

if
dx

dt
̸= 0.
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Example 1. A curve C is defined by the parametric equations x = t2, y =
t3 − 3t.

(a) Show that C has two tangents at the point (3, 0) and find their equations

(b) Find the points on C where the tangent is horizontal or vertical.

(c) Determine where the curve is concave upward or downward.

(d) Sketch the curve.

141



Calculus I - Calculus with Parametric Curves

Example 2.

(a) Find the tangent to the cycloid x = r(θ − sin θ), y = r(1 − cos θ) at the
point where θ = π/3.

(b) At what points is the tangent horizontal? When is it vertical?
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Theorem 10.2.3. If a curve is traced out once by the parametric equations
x = f(t) and y = g(t), α ≤ t ≤ β, then the area under the curve is given by

A =

ˆ β

α

g(t)f ′(t) dt

[
or

ˆ α

β

g(t)f ′(t) dt

]
.

Proof. Since the area under the curve y = F (x) from a to b is A =
´ b
a
F (x) dx,

we can use the Substitution Rule for Definite Integrals with y = g(t) and
dx = f ′(t) dt to get

A =

ˆ b

a

y dx =

ˆ β

α

g(t)f ′(t) dt.

 SECTION 10.2  Calculus with Parametric Curves 651

Therefore the slope of the tangent is s3  and its equation is

y 2
r
2

− s3  Sx 2
r!

3
1

rs3 

2 D    or    s3  x 2 y − rS !

s3 2 2D
The tangent is sketched in Figure 2.

0

y

x2πr 4πr

(πr, 2r)(_πr, 2r) (3πr, 2r) (5πr, 2r)

π
3¨=

(b) The tangent is horizontal when dyydx − 0, which occurs when sin " − 0 and 
1 2 cos " ± 0, that is, " − s2n 2 1d!, n  an integer. The corresponding point on the 
cycloid is ss2n 2 1d!r, 2rd.

When " − 2n !, both dxyd" and dyyd" are 0. It appears from the graph that there  
are vertical tangents at those points. We can verify this by using l’Hospital’s Rule as 
follows:

lim
" l

 

2n !1
 
dy
dx

− lim
" l

 

2n !1
 

sin "
1 2 cos " −  lim

" l
 

2n !1
 
cos "
sin " − `

A similar computation shows that dyydx l 2` as " l 2n !2, so indeed there are 
vertical tangents when " − 2n !, that is, when x − 2n !r. n

Areas
We know that the area under a curve y − Fsxd from a to b is A − yb

a Fsxd dx, where 
Fsxd > 0. If the curve is traced out once by the parametric equations x − f std and 
y − tstd, # < t < $, then we can calculate an area formula by using the Sub stitution 
Rule for Definite Integrals as follows:

 A − yb

a
 y dx − y$

#
 tstd f 9std dt    For y#

$
 tstd f 9std dtG

EXAMPLE 3  Find the area under one arch of the cycloid

x − rs" 2 sin "d    y − rs1 2 cos "d

(See Figure 3.)

SOLUTION One arch of the cycloid is given by 0 < " < 2!. Using the Substitution 
Rule with y − rs1 2 cos "d and dx − rs1 2 cos "d d", we have

 A − y2!r

0
 y dx − y2!

0
 rs1 2 cos "d rs1 2 cos "d d"

 − r 2 y2!

0
 s1 2 cos "d2 d" − r 2 y2!

0
 s1 2 2 cos " 1 cos2"d d"

 − r 2 y2!

0
 f1 2 2 cos " 1 1

2 s1 1 cos 2"dg d"

 − r 2 f 3
2 " 2 2 sin " 1 1

4 sin 2"g0

2!

  − r 2 (3
2 ? 2!) − 3!r 2 n

FIGURE 2

The limits of integration for t are found  
as usual with the Substitution Rule. 
When x − a, t is either # or $. When 
x − b, t is the remaining value.

0

y

x2πr

FIGURE 3 

The result of Example 3 says that the 
area under one arch of the cycloid 
is three times the area of the rolling 
circle that generates the cycloid (see 
Example 10.1.7). Galileo guessed this 
result but it was first proved by the 
French mathematician Roberval and 
the Italian mathematician Torricelli.
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Example 3. Find the area under one arch of the cycloid

x = r(θ − sin θ) y = r(1− cos θ).

(See the figure.)
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Theorem 10.2.4. If a curve C is described by the parametric equations x =
f(t), y = g(t), α ≤ t ≤ β, where f ′ and g′ are continuous on [α, β] and C is
traversed exactly once as t increases from α to β, then the length of C is

L =

ˆ β

α

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Example 4. (a) Use the representation of the unit circle given by

x = cos t y = sin t 0 ≤ t ≤ 2π

to find its arc length.

(b) Use the representation of the unit circle given by

x = sin 2t y = cos 2t 0 ≤ t ≤ 2π

to find its arc length.
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Example 5. Find the length of one arch of the cycloid x = r(θ − sin θ),
y = r(1− cos θ).
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Theorem 10.2.5. Suppose a curve C is given by the parametric equations
x = f(t), y = g(t), α ≤ t ≤ β, where f ′, g′ are continuous, g′(t) ≥ 0, is
rotated about the x-axis. If C is traversed exactly once as t increases from α
to β, then the area of the resulting surface is given by

S =

ˆ β

α

2πy

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Example 6. Show that the surface area of a sphere of radius r is 4πr2.
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10.3 Polar Coordinates

658 CHAPTER 10  Parametric Equations and Polar Coordinates

A coordinate system represents a point in the plane by an ordered pair of numbers called 
coordinates. Usually we use Cartesian coordinates, which are directed distances from 
two perpendicular axes. Here we describe a coordinate system introduced by Newton, 
called the polar coordinate system, which is more convenient for many purposes.

We choose a point in the plane that is called the pole (or origin) and is labeled O. Then 
we draw a ray (half-line) starting at O called the polar axis. This axis is usually drawn 
hor izontally to the right and corresponds to the positive x-axis in Cartesian coordinates.

If P is any other point in the plane, let r be the distance from O to P and let ! be the 
angle (usually measured in radians) between the polar axis and the line OP as in Fig- 
 ure 1. Then the point P is represented by the ordered pair sr, !d and r, ! are called polar 
coordinates of P. We use the convention that an angle is positive if measured in the 
counterclockwise direction from the polar axis and negative in the clockwise direction. 
If P − O, then r − 0 and we agree that s0, !d represents the pole for any value of !.

We extend the meaning of polar coordinates sr, !d to the case in which r is negative by 
agreeing that, as in Figure 2, the points s2r, !d and sr, !d lie on the same line through O 
and at the same distance | r | from O, but on opposite sides of O. If r . 0, the point sr, !d 
lies in the same quadrant as !; if r , 0, it lies in the quadrant on the opposite side of the 
pole. Notice that s2r, !d represents the same point as sr, ! 1 "d.

EXAMPLE 1  Plot the points whose polar coordinates are given. 
(a) s1, 5"y4d      (b) s2, 3"d      (c) s2, 22"y3d      (d) s23, 3"y4d

FIGURE 1 

xO ¨

r

polar axis

P(r, ̈ )

FIGURE 2 

(_r, ̈ )

O
¨

(r, ̈ )

¨+π

where 0 < t < 1. Notice that when t − 0 we have sx, yd − sx0, y0 d and when t − 1 we have 
sx, yd − sx3, y3d, so the curve starts at P0 and ends at P3.

1.  Graph the Bézier curve with control points P0s4, 1d, P1s28, 48d, P2s50, 42d, and P3s40, 5d. 
Then, on the same screen, graph the line segments P0P1, P1P2, and P2P3. (Exercise 10.1.31 
shows how to do this.) Notice that the middle control points P1 and P2 don’t lie on the  
curve; the curve starts at P0, heads toward P1 and P2 without reaching them, and ends at P3.

2.  From the graph in Problem 1, it appears that the tangent at P0 passes through P1 and the  
tangent at P3 passes through P2. Prove it.

3.  Try to produce a Bézier curve with a loop by changing the second control point in  
Problem 1.

4.  Some laser printers use Bézier curves to represent letters and other symbols. Experiment with 
control points until you find a Bézier curve that gives a reasonable representation of the  
letter C.

5.  More complicated shapes can be represented by piecing together two or more Bézier  
curves. Suppose the first Bézier curve has control points P0, P1, P2, P3 and the second one  
has control points P3, P4, P5, P6. If we want these two pieces to join together smoothly, then 
the tangents at P3 should match and so the points P2, P3, and P4 all have to lie on this com- 
mon tangent line. Using this principle, find control points for a pair of Bézier curves that 
represent the letter S.
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Definition 10.3.1. The polar coordinate system consists of a
point called the pole (or origin) O, a ray starting at the pole
called the polar axis, and other points P represented by (r, θ)
where r is the distance from O to P and θ is the angle (usually
measured in radians) between the polar axis and the line OP as
in the figure. r, θ are called polar coordinates of P .

Example 1. Plot the points whose polar coordinates are given.

(a) (1, 5π/4)

(b) (2, 3π)

(c) (2,−2π/3)

(d) (−3, 3π/4)
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Theorem 10.3.1. If the point P has Cartesian coordinates (x, y) and polar
coordinates (r, θ), then

x = r cos θ y = r sin θ

and
r2 = x2 + y2 tan θ =

y

x
.

Example 2. Convert the point (2, π/3) from polar to Cartesian coordinates.

Example 3. Represent the point with Cartesian coordinates (1,−1) in terms
of polar coordinates.

Example 4. What curve is represented by the polar equation r = 2?
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Example 5. Sketch the polar curve θ = 1.

Example 6. (a) Sketch the curve with polar equation r = 2 cos θ.

(b) Find a Cartesian equation for this curve.
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Example 7. Sketch the curve r = 1 + sin θ.

Example 8. Sketch the curve r = cos 2θ.
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Theorem 10.3.2. The slope of the tangent line to a polar curve r = f(θ) is

dy

dx
=

dr

dθ
sin θ + r cos θ

dr

dθ
cos θ − r sin θ

Proof. Regard θ as a parameter and write

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ.

Then by Theorem 10.2.1 and the product rule, we have

dy

dx
=

dy

dθ
dx

dθ

=

dr

dθ
sin θ + r cos θ

dr

dθ
cos θ − r sin θ

.

Example 9.

(a) For the cardioid r = 1 + sin θ of Example 7, find the slope of the tangent
line when θ = π/3.
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(b) Find the points on the cardioid where the tangent line is horizontal or
vertical.

Example 10. Graph the curve r = sin(8θ/5).
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Example 11. Investigate the family of polar curves given by r = 1 + c sin θ.
How does the shape change as c changes? (These curves are called limaçons,
after a French word for snail, because of the shape of the curves for certain
values of c.)
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10.4 Areas and Lengths in Polar Coordinates

 SECTION 10.4  Areas and Lengths in Polar Coordinates 669

In this section we develop the formula for the area of a region whose boundary is given 
by a polar equation. We need to use the formula for the area of a sector of a circle:

A − 1
2 r 2!

where, as in Figure 1, r is the radius and ! is the radian measure of the central angle. 
Formula 1 follows from the fact that the area of a sector is proportional to its central 
angle: A − s!y2"d"r 2 − 1

2 r 2! . (See also Exercise 7.3.35.)
Let 5 be the region, illustrated in Figure 2, bounded by the polar curve r − f s!d 

and by the rays ! − a and ! − b, where f  is a positive continuous function and where 
0 , b 2 a < 2". We divide the interval fa, bg into subintervals with endpoints !0, !1, 
!2, . . . , !n  and equal width D!. The rays ! − !i then divide 5 into n  smaller regions 
with central angle D! − !i 2 !i21. If we choose !i* in the i th subinterval f!i21, !ig, 
then the area DAi of the ith region is approximated by the area of the sector of a circle 
with central angle D! and radius f s!i*d. (See Figure 3.)

Thus from Formula 1 we have

DAi < 1
2 f f s!i*dg2 D!

and so an approximation to the total area A of 5 is

A < o
n

i−1
 12 f f s!i*dg2 D!

It appears from Figure 3 that the approximation in (2) improves as n l `. But the sums 
in (2) are Riemann sums for the function ts!d − 1

2 f f s!dg2, so

lim
n l `

o
n

i−1
 12 f f s!i*dg2 D! − yb

a
 12 f f s!dg2 d!

1
¨

r

FIGURE 1 

2

O

¨=b

¨=a

¨=¨i-1

¨=¨i

Î¨

f(̈ i*)

FIGURE 3 

O

¨=b
b ¨=a

r=f(¨)

a

!

FIGURE 2 

  Investigate how the graph changes as the number a changes. In particular, you should  
identify the transitional values of a for which the basic shape of the curve changes.

4.  The astronomer Giovanni Cassini (1625–1712) studied the family of curves with polar  
equations

r 4 2 2c2r 2 cos 2! 1 c 4 2 a4 − 0 

  where a and c are positive real numbers. These curves are called the ovals of Cassini  
even though they are oval shaped only for certain values of a and c. (Cassini thought that 
these curves might represent planetary orbits better than Kepler’s ellipses.) Investigate the 
variety of shapes that these curves may have. In particular, how are a and c related to each 
other when the curve splits into two parts?
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Theorem 10.4.1. Let R be the region, illustrated in the figure,
bounded by the polar curve r = f(θ) and by the rays θ = a
and θ = b, where f is a positive continuous function and where
0 < b− a ≤ 2π. The area A of the polar region R is

A =

ˆ b

a

1

2
r2 dθ.

Example 1. Find the area enclosed by one loop of the four-leaved rose r =
cos 2θ.
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Example 2. Find the area of the region that lies inside the circle r = 3 sin θ
and outside the cardioid r = 1 + sin θ.

Example 3. Find all points of intersection of the curves r = cos 2θ and r = 1
2
.
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Theorem 10.4.2. The length of a curve with polar equation r = f(θ), a ≤
θ ≤ b, is

L =

ˆ b

a

√
r2 +

(
dr

dθ

)2

dθ.

Proof. Regard θ as a parameter and write

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ.

Then by the product rule, we have

dy

dθ
=

dr

dθ
sin θ + r cos θ

dx

dθ
=

dr

dθ
cos θ − r sin θ.

Since cos2 θ + sin2 θ = 1,(
dx

dθ

)2

+

(
dy

dθ

)2

=

(
dr

dθ

)2

cos2 θ − 2r
dr

dθ
cos θ sin θ + r2 sin2 θ

+

(
dr

dθ

)2

sin2 θ + 2r
dr

dθ
sin θ cos θ + r2 cos2 θ

=

(
dr

dθ

)2

+ r2,

so

L =

ˆ b

a

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ =

ˆ b

a

√
r2 +

(
dr

dθ

)2

dθ.
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Example 4. Find the length of the cardioid r = 1 + sin θ.
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10.5 Conic Sections

Definition 10.5.1. Parabolas, ellipses, and hyperbolas are called conic sec-
tions, or conics, because they result from intersecting a cone with a plane as
shown in the figure.

674 Chapter 10  Parametric Equations and Polar Coordinates

In this section we give geometric definitions of parabolas, ellipses, and hyperbolas and 
derive their standard equations. They are called conic sections, or conics, because they 
result from intersecting a cone with a plane as shown in Figure 1.

ellipse hyperbolaparabola

parabolas
A parabola is the set of points in a plane that are equidistant from a fixed point F (called 
the focus) and a fixed line (called the directrix). This definition is illustrated by Figure 2. 
Notice that the point halfway between the focus and the directrix lies on the parabola; 
it is called the vertex. The line through the focus perpendicular to the directrix is called 
the axis of the parabola.

In the 16th century Galileo showed that the path of a projectile that is shot into the 
air at an angle to the ground is a parabola. Since then, parabolic shapes have been used 
in designing automobile headlights, reflecting telescopes, and suspension bridges. (See 
Problem 22 on page 273 for the reflection property of parabolas that makes them so 
useful.)

We obtain a particularly simple equation for a parabola if we place its vertex at the 
origin O and its directrix parallel to the x-axis as in Figure 3. If the focus is the point 
s0, pd, then the directrix has the equation y − 2p. If Psx, yd is any point on the parabola, 

axis

F
focus

parabola

vertex directrix

FIGURE 2� 

51–54� Use a calculator to find the length of the curve correct to 
four decimal places. If necessary, graph the curve to determine the 
parameter interval.

51.  One loop of the curve r − cos 2�

52.  r − tan �,  �y6 < � < �y3

53.  r − sins6 sin �d

54�.  r − sins�y4d

55.  (a)  Use Formula 10.2.6 to show that the area of the surface
generated by rotating the polar curve

r − f s�d    a < � < b

 (where f 9 is continuous and 0 < a , b < �) about the 
polar axis is

S − yb

a
 2�r sin � Îr 2 1 S dr

d�
D2

 d�

(b)  Use the formula in part (a) to find the surface area gener-
ated by rotating the lemniscate r 2 − cos 2� about the
polar axis.

56.  (a)  Find a formula for the area of the surface generated by
rotating the polar curve r − f s�d, a < � < b (where f 9 is 
continuous and 0 < a , b < �), about the line � − �y2.

(b)  Find the surface area generated by rotating the lemniscate
r 2 − cos 2� about the line � − �y2.

FIGURE 1�  
Conics
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In this section we give geometric definitions of parabolas, ellipses, and hyperbolas and 
derive their standard equations. They are called conic sections, or conics, because they 
result from intersecting a cone with a plane as shown in Figure 1.

ellipse hyperbolaparabola

Parabolas
A parabola is the set of points in a plane that are equidistant from a fixed point F (called 
the focus) and a fixed line (called the directrix). This definition is illustrated by Figure 2. 
Notice that the point halfway between the focus and the directrix lies on the parabola; 
it is called the vertex. The line through the focus perpendicular to the directrix is called 
the axis of the parabola.

In the 16th century Galileo showed that the path of a projectile that is shot into the 
air at an angle to the ground is a parabola. Since then, parabolic shapes have been used 
in designing automobile headlights, reflecting telescopes, and suspension bridges. (See 
Problem 22 on page 273 for the reflection property of parabolas that makes them so 
useful.)

We obtain a particularly simple equation for a parabola if we place its vertex at the 
origin O and its directrix parallel to the x-axis as in Figure 3. If the focus is the point 
s0, p d, then the directrix has the equation y − 2p . If Psx, yd is any point on the parabola, 

axis

F
focus

parabola

vertex directrix

FIGURE 2 

51–54 Use a calculator to find the length of the curve correct to 
four decimal places. If necessary, graph the curve to determine the 
parameter interval.

 51.  One loop of the curve r − cos 2!

 52.  r − tan !,  "y6 < ! < "y3

 53.  r − sins6 sin !d

 54.  r − sins!y4d

 55.  (a)  Use Formula 10.2.6 to show that the area of the surface 
generated by rotating the polar curve

r − f s!d    a < ! < b

   (where f 9 is continuous and 0 < a , b < ") about the 
polar axis is

S − yb

a
 2"r sin ! Îr 2 1 S dr

d!D2

 d!

 (b)  Use the formula in part (a) to find the surface area gener-
ated by rotating the lemniscate r 2 − cos 2! about the  
polar axis.

 56.  (a)  Find a formula for the area of the surface generated by 
rotating the polar curve r − f s!d, a < ! < b (where f 9 is 
continuous and 0 < a , b < "), about the line ! − "y2.

 (b)  Find the surface area generated by rotating the lemniscate 
r 2 − cos 2! about the line ! − "y2.

FIGURE 1  
Conics
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Definition 10.5.2. A parabola is the set of points in a plane
that are equidistant from a fixed point F (called the focus) and
a fixed line (called the directrix). This definition is illustrated
by the figure. Notice that the point halfway between the focus
and the directrix lies on the parabola; it is called the vertex. The
line through the focus perpendicular to the directrix is called the
axis of the parabola.

Theorem 10.5.1. An equation of the parabola with focus (0, p) and directrix
y = −p is

x2 = 4py.

Theorem 10.5.2. An equation of the parabola with focus (p, 0) and directrix
x = −p is

y2 = 4px.
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Calculus I - Conic Sections

Example 1. Find the focus and directrix of the parabola y2 + 10x = 0 and
sketch the graph.

676 CHAPTER 10  Parametric Equations and Polar Coordinates

Ellipses
An ellipse is the set of points in a plane the sum of whose distances from two fixed points 
F1 and F2 is a constant (see Figure 6). These two fixed points are called the foci (plural 
of focus). One of Kepler’s laws is that the orbits of the planets in the solar system are 
ellipses with the sun at one focus.

F¡ F™

P

      

F¡(_c, 0) F™(c, 0)0 x

y
P(x, y)

FIGURE 6 FIGURE 7

In order to obtain the simplest equation for an ellipse, we place the foci on the x-axis 
at the points s2c, 0d and sc, 0d as in Figure 7 so that the origin is halfway between the 
foci. Let the sum of the distances from a point on the ellipse to the foci be 2a . 0. Then 
Psx, yd is a point on the ellipse when

| PF1 | 1 | PF2 | − 2a

that is, ssx 1 cd2 1 y 2 1 ssx 2 cd2 1 y 2 − 2a

or ssx 2 cd2 1 y 2 − 2a 2 ssx 1 cd2 1 y 2 

Squaring both sides, we have

x 2 2 2cx 1 c 2 1 y 2 − 4a2 2 4assx 1 cd2 1 y 2 1 x 2 1 2cx 1 c 2 1 y 2

which simplifies to assx 1 cd2 1 y 2 − a2 1 cx

We square again:

 a2sx 2 1 2cx 1 c 2 1 y 2 d − a4 1 2a2cx 1 c 2x 2

which becomes  sa2 2 c 2 dx 2 1 a2 y 2 − a2sa2 2 c 2 d

From triangle F1F2P in Figure 7 we can see that 2c , 2a, so c , a and therefore 
a2 2 c 2 . 0. For convenience, let b 2 − a2 2 c 2. Then the equation of the ellipse 
becomes b 2x 2 1 a2 y 2 − a2b 2 or, if both sides are divided by a2b 2, 

x 2

a2 1
 y 2

b 2 − 1

Since b 2 − a2 2 c 2 , a2, it follows that b , a. The x-intercepts are found by setting 
y − 0. Then x 2ya2 − 1, or x 2 − a2, so x − 6a. The corresponding points sa, 0d and 
s2a, 0d are called the vertices of the ellipse and the line segment joining the vertices is 
called the major axis. To find the y-intercepts we set x − 0 and obtain y 2 − b 2, so 
y − 6b. The line segment joining s0, bd and s0, 2bd is the minor axis. Equation 3 is 
unchanged if x is replaced by 2x or y is replaced by 2y, so the ellipse is symmetric  
about both axes. Notice that if the foci coincide, then c − 0, so a − b and the ellipse 
becomes a circle with radius r − a − b.

We summarize this discussion as follows (see also Figure 8).

3

FIGURE 8 
x 2

a2 1
 y 2

b 2 − 1, a > b

(c, 0)0 x

y

ab
c

(0, b)

(_c, 0)

(0, _b)

(a, 0)
(_a, 0)
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Definition 10.5.3. An ellipse is the set of points in a plane the
sum of whose distances from two fixed points F1 and F2 is a
constant (see the figure). These two fixed points are called the
foci (plural of focus).

Definition 10.5.4. If (−c, 0) and (c, 0) are the foci of an ellipse, the sum of
the distances from a point on the ellipse to the foci are 2a > 0, and b2 = a2−c2,
then the points (a, 0) and (−a, 0) are called the vertices of ellipse and the line
segment joining the vertices is called the major axis. The line segment joining
(0, b) and (0,−b) is the minor axis.

Theorem 10.5.3. The ellipse

x2

a2
+

y2

b2
= 1 a ≥ b > 0

has foci (±c, 0), where c2 = a2 − b2, and vertices (±a, 0).

Theorem 10.5.4. The ellipse

x2

b2
+

y2

a2
= 1 a ≥ b > 0

has foci (0,±c), where c2 = a2 − b2, and vertices (0,±a).
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Calculus I - Conic Sections

Example 2. Sketch the graph of 9x2 + 16y2 = 144 and locate the foci.

Example 3. Find an equation of the ellipse with foci (0,±2) and vertices
(0,±3).
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 SECTION 10.5  Conic Sections  677

4   The ellipse
x 2

a2 1
 y 2

b2 − 1    a > b . 0

has foci s6c, 0d, where c 2 − a2 2 b2, and vertices s6a, 0d.

If the foci of an ellipse are located on the y-axis at s0, 6cd, then we can find its equa-
tion by interchanging x and y in (4). (See Figure 9.)

5   The ellipse
x 2

b2 1
 y 2

a2 − 1    a > b . 0

has foci s0, 6cd, where c 2 − a2 2 b2, and vertices s0, 6ad.

EXAMPLE 2  Sketch the graph of 9x 2 1 16y 2 − 144 and locate the foci.

SOLUTION Divide both sides of the equation by 144:

x 2

16
1

 y 2

9
− 1

The equation is now in the standard form for an ellipse, so we have a2 − 16, b2 − 9,  
a − 4, and b − 3. The x-intercepts are 64 and the y-intercepts are 63. Also, 
c 2 − a2 2 b2 − 7, so c − s7  and the foci are s6s7 , 0d. The graph is sketched in 
Figure 10. n

EXAMPLE 3  Find an equation of the ellipse with foci s0, 62d and vertices s0, 63d.

SOLUTION Using the notation of (5), we have c − 2 and a − 3. Then we obtain 
b2 − a2 2 c 2 − 9 2 4 − 5, so an equation of the ellipse is

x 2

5
1

 y 2

9
− 1

Another way of writing the equation is 9x 2 1 5y 2 − 45. n

Like parabolas, ellipses have an interesting reflection property that has practical con-
se quences. If a source of light or sound is placed at one focus of a surface with elliptical 
cross-sections, then all the light or sound is reflected off the surface to the other focus 
(see Exercise 65). This principle is used in lithotripsy, a treatment for kidney stones. 
A reflector with elliptical cross-section is placed in such a way that the kidney stone is 
at one focus. High-intensity sound waves generated at the other focus are reflected to 
the stone and destroy it without damaging surrounding tissue. The patient is spared the 
trauma of surgery and recovers within a few days.

Hyperbolas
A hyperbola is the set of all points in a plane the difference of whose distances from two 
fixed points F1 and F2 (the foci) is a constant. This definition is illustrated in Figure 11.

Hyperbolas occur frequently as graphs of equations in chemistry, physics, biology, 
and economics (Boyle’s Law, Ohm’s Law, supply and demand curves). A particularly 

FIGURE 9 
x 2
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 y 2

a2 − 1, a > b
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y
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FIGURE 10 
9x 2 1 16y 2 − 144
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FIGURE 11  
P is on the hyperbola when
| PF1 | 2 | PF2 | − 62a.
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Definition 10.5.5. A hyperbola is the set of all points in a plane
the difference of whose distances from two fixed points F1 and
F2 (the foci) is a constant. This definition is illustrated in the
figure.

Theorem 10.5.5. The hyperbola

x2

a2
− y2

b2
= 1

has foci (±c, 0), where c2 = a2 + b2, vertices (±a, 0), and asymptotes y =
±(b/a)x.

Theorem 10.5.6. The hyperbola

y2

a2
− x2

b2
= 1

has foci (0,±c), where c2 = a2 + b2, vertices (0,±a), and asymptotes y =
±(a/b)x.

Example 4. Find the foci and asymptotes of the hyperbola 9x2− 16y2 = 144
and sketch its graph.
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Calculus I - Conic Sections

Example 5. Find the foci and equation of the hyperbola with vertices (0,±1)
and asymptote y = 2x.

Example 6. Find an equation of the ellipse with foci (2,−2), (4,−2), and
vertices (1,−2), (5,−2).

Example 7. Sketch the conic 9x2−4y2−72x+8y+176 = 0 and find its foci.
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10.6 Conic Sections in Polar Coordinates
 SECTION 10.6  Conic Sections in Polar Coordinates 683

polar axis. If the point P has polar coordinates sr, !d, we see from Figure 1 that

| PF | − r      | Pl | − d 2 r cos !

Thus the condition | PF |y| Pl | − e, or | PF | − e | Pl |, becomes

r − esd 2 r cos !d

If we square both sides of this polar equation and convert to rectangular coordinates,  
we get

x 2 1 y 2 − e 2sd 2 xd2 − e 2sd 2 2 2dx 1 x 2 d

or s1 2 e 2 dx 2 1 2de 2x 1 y 2 − e 2d 2

After completing the square, we have

Sx 1
e 2d

1 2 e 2D2

1
 y 2

1 2 e 2 −
e 2d 2

s1 2 e 2 d2

If e , 1, we recognize Equation 3 as the equation of an ellipse. In fact, it is of the form

sx 2 hd2

a 2 1
 y 2

b 2 − 1

where

h − 2
e 2d

1 2 e 2       a 2 −
e 2d 2

s1 2 e 2 d2       b 2 −
e 2d 2

1 2 e 2

In Section 10.5 we found that the foci of an ellipse are at a distance c from the center, 
where

c 2 − a 2 2 b 2 −
e 4d 2

s1 2 e 2 d2

This shows that c −
e 2d

1 2 e 2 − 2h

and con!rms that the focus as de!ned in Theorem 1 means the same as the focus de!ned 
in Section 10.5. It also follows from Equations 4 and 5 that the eccentricity is given by

e −
c
a

If e . 1, then 1 2 e 2 , 0 and we see that Equation 3 represents a hyperbola. Just as we 
did before, we could rewrite Equation 3 in the form

sx 2 hd2

a 2 2
 y 2

b 2 − 1

and see that

 e −
c
a

    where c 2 − a 2 1 b 2 Q

y

xF

l (directrix)

x=d

r cos ¨

P

¨
r

d

C

FIGURE 1 
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Theorem 10.6.1. Let F be a fixed point (called the focus) and
l be a fixed line (called the directrix) in a plane. Let e be a fixed
positive number (called the eccentricity). The set of all points P
in the plane such that

|PF |
|Pl|

= e

(that is, the ratio of the distance from F to the distance from l
is the constant e) is a conic section. The conic is

(a) an ellipse if e < 1

(b) a parabola if e = 1

(c) a hyperbola if e > 1

Theorem 10.6.2. A polar equation of the form

r =
ed

1± e cos θ
or r =

ed

1± e sin θ

represents a conic section with eccentricity e. The conic is an ellipse if e < 1,
a parabola if e = 1, or a hyperbola if e > 1.

684 CHAPTER 10  Parametric Equations and Polar Coordinates

By solving Equation 2 for r, we see that the polar equation of the conic shown in Fig-
ure 1 can be written as

r −
ed

1 1 e cos !

If the directrix is chosen to be to the left of the focus as x − 2d, or if the directrix is 
cho sen to be parallel to the polar axis as y − 6d, then the polar equation of the conic is 
given by the following theorem, which is illustrated by Figure 2. (See Exercises 21–23.)

(a) r= ed
1+e cos ¨

y

xF

x=d
directrix

(b) r= ed
1-e cos ¨

xF

y

x=_d
directrix

(c) r= ed
1+e sin ¨

y

F x

y=d         directrix

(d) r= ed
1-e sin ¨

x

y

y=_d         directrix

F

6   Theorem A polar equation of the form

r −
ed

1 6 e cos !
    or    r −

ed
1 6 e sin !

represents a conic section with eccentricity e. The conic is an ellipse if e , 1,  
a parabola if e − 1, or a hyperbola if e . 1.

EXAMPLE 1  Find a polar equation for a parabola that has its focus at the origin and 
whose directrix is the line y − 26.

SOLUTION Using Theorem 6 with e − 1 and d − 6, and using part (d) of Figure 2, we 
see that the equation of the parabola is

 r −
6

1 2 sin !
 Q

EXAMPLE 2  A conic is given by the polar equation

r −
10

3 2 2 cos !

Find the eccentricity, identify the conic, locate the directrix, and sketch the conic.

SOLUTION Dividing numerator and denominator by 3, we write the equation as

r −
10
3

1 2 2
3 cos !

FIGURE 2  
Polar equations of conics

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Example 1. Find a polar equation for a parabola that has its focus at the
origin and whose directrix is the line y = −6.
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Example 2. A conic is given by the polar equation

r =
10

3− 2 cos θ
.

Find the eccentricity, identify the conic, locate the directrix, and sketch the
conic.

Example 3. Sketch the conic r =
12

2 + 4 sin θ
.
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Example 4. If the ellipse of Example 2 is rotated through an angle π/4 about
the origin, find a polar equation and graph the resulting ellipse.

Theorem 10.6.3. The polar equation of an ellipse with focus at the origin,
semimajor axis a, eccentricity e, and directrix x = d can be written in the form

r =
a(1− e2)

1 + e cos θ
.

 SECTION 10.6  Conic Sections in Polar Coordinates 687

7   The polar equation of an ellipse with focus at the origin, semimajor axis a, 
eccentricity e, and directrix x − d can be written in the form

r −
as1 2 e2d

1 1 e cos !

The positions of a planet that are closest to and farthest from the sun are called its 
peri helion and aphelion, respectively, and correspond to the vertices of the ellipse 
(see Figure 7). The distances from the sun to the perihelion and aphelion are called the  
perihelion distance and aphelion distance, respectively. In Figure 1 on page 683 the 
sun is at the focus F, so at perihelion we have ! − 0 and, from Equation 7,

r −
as1 2 e2d

1 1 e cos 0
−

as1 2 eds1 1 ed
1 1 e

− as1 2 ed

Similarly, at aphelion ! − " and r − as1 1 ed.

8   The perihelion distance from a planet to the sun is as1 2 ed and the aphelion 
distance is as1 1 ed.

EXAMPLE 5  
(a) Find an approximate polar equation for the elliptical orbit of the earth around the 
sun (at one focus) given that the eccentricity is about 0.017 and the length of the major 
axis is about 2.99 3 108 km.
(b) Find the distance from the earth to the sun at perihelion and at aphelion.

SOLUTION
(a) The length of the major axis is 2a − 2.99 3 108, so a − 1.495 3 108. We are 
given that e − 0.017 and so, from Equation 7, an equation of the earth’s orbit around 
the sun is

r −
as1 2 e2d

1 1 e cos !
−

s1.495 3 108d f1 2 s0.017d2g
1 1 0.017 cos !

or, approximately,

r −
1.49 3 108

1 1 0.017 cos !

(b) From (8), the perihelion distance from the earth to the sun is

as1 2 ed < s1.495 3 108ds1 2 0.017d < 1.47 3 108 km

and the aphelion distance is

 as1 1 ed < s1.495 3 108ds1 1 0.017d < 1.52 3 108 km n

FIGURE 7 

perihelionaphelion
sun

planet

¨
r
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Definition 10.6.1. The positions of a planet that are closest
to and farthest from the sun are called its perihelion and aphe-
lion, respectively, and correspond to the vertices of the ellipse
(see the figure). The distances from the sun to the perihelion
and aphelion are called the perihelion distance and aphelion dis-
tance, respectively.

Theorem 10.6.4. The perihelion distance from a planet to the
sun is a(1− e) and the aphelion distance is a(1 + e).

Proof. If the sun is at the focus F , at perihelion we have θ = 0, so

r =
a(1− e2)

1 + e cos 0
=

a(1− e)(1 + e)

1 + e
= a(1− e).

Similarly, at aphelion θ = π and r = a(1 + e).
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Example 5. (a) Find an approximate polar equation for the elliptical orbit
of the earth around the sun (at one focus) given that the eccentricity is
about 0.017 and the length of the major axis is about 2.99× 108 km.

(b) Find the distance from the earth to the sun at perihelion and at aphelion.
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Index

absolute maximum, 89
absolute minimum, 89
acceleration, 38
antiderivative, 130
aphelion, 165
asymptote

horizontal, 23
slant, 115
vertical, 7

average rate of change, 33

chain rule, 51
concave downward, 100
concave upward, 100
conic sections, 158
conics, 158
continuous

at a point, 17
from the left, 18
from the right, 18
on an interval, 18

critical number, 91
cycloid, 138

demand function, 126
derivative

at a point, 32
as a function, 35
of a parametric curve, 140
of an inverse function, 64
second, 38
third, 39

differentiable, 36
differential, 84
differential equation, 74

differentiation operators, 36
discontinuity, 17

eccentricity, 163
ellipse, 159

foci, 159
major axis, 159
minor axis, 159
vertices, 159

extreme value theorem, 90
extreme values, 89

Fermat’s theorem, 90
first derivative test, 99
function

hyperbolic, 86

greatest integer function, 12

half-life, 75
horizontal asymptote, 23
hyperbolic functions, 86

implicit differentiation, 55
increment, 33
initial point, 136
instantaneous rate of change, 33
intermediate value theorem, 22

jerk, 39

L’Hospital’s rule, 105
law of natural decay, 74
law of natural growth, 74
limaçon, 153
limit, 4

at infinity, 23
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infinite, 6
laws, 8
precise definition, 13

linear approximation, 83
linearization, 83
local extreme, 89
local maximum, 89
local minimum, 89
logarithmic differentiation, 60

marginal profit function, 126
marginal revenue function, 126
maximum, 89
mean value theorem, 95
minimum, 89

Newton’s method, 127
normal line, 41

parabola, 158
axis, 158
directrix, 158
focus, 158
vertex, 158

parameter, 135
parametric equations, 135
perihelion, 165
polar axis, 147
polar coordinates, 147

directrix, 163
focus, 163

position function, 31
power rule, 40, 60
price function, 126
product rule, 45
profit function, 126

quotient rule, 46

relative growth rate, 74
revenue function, 126
Rolle’s theorem, 94

second derivative, 38

second derivative test, 101
slant asymptote, 115
squeeze theorem, 12

tangent line, 30
tangent line approximation, 83
terminal point, 136
third derivative, 39

velocity, 31
vertical asymptote, 7
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