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Chapter 12

Vectors and the Geometry of

Space

12.1 Three-Dimensional Coordinate Systems

Definition 12.1.1. The coordinate axes are three directed lines
through the origin that are perpendicular to each other and la-
beled the x-axis, y-axis, and z-axis. The direction of the z-axis
is determined by the right-hand rule as illustrated in the figure.

Definition 12.1.2. The three coordinate axes determine the
three coordinate planes illustrated in the figure. These three
coordinate planes divide space into eight parts, called octants.
The first octant, in the foreground of the figure, is determined
by the positive axes.

Definition 12.1.3. We represent a point P in space by the or-
dered triple (a, b, c) where a is the distance from the yz-plane to
P, bis the distance from the zz-plane to P, and c is the distance
from the xy-plane to P. We call a, b, and ¢ the coordinates of P.

\.
§

The points (a,b,0), (0,b,¢), and (a,0,c) are called the projections of P onto

the xy-plane, yz-plane, and xz-plane, respectively.

Definition 12.1.4. The Cartesian product RxRxR = {(z,y, 2) | z,y,z € R}
is the set of all ordered triples of real numbers and is denoted by R3. It is

called a three-dimensional rectangular coordinate system.

1



Calculus III - Three-Dimensional Coordinate Systems

Example 1. What surfaces in R? are represented by the following equations?

(a) z2=3

Example 2. (a) Which points (x,y, z) satisfy the equations

4yt =1 and z =237

(b) What does the equation x? + y* = 1 represent as a surface in R3?



Calculus III - Three-Dimensional Coordinate Systems

Example 3. Describe and sketch the surface in R? represented by the equation
Y=z

Theorem 12.1.1 (Distance Formula in Three Dimensions). The distance
| Py P2| between the points Py(xy,y1,21) and Py(xa,ys, 22) is

PPy = /(22 — 21)2 + (Y2 — y1)? + (22 — 21)?

Example 4. Find the distance from the point P(2, —1,7) to the point Q(1, —3,5).

Example 5. Find an equation of a sphere with radius r and center C'(h, k, ).



Calculus III - Three-Dimensional Coordinate Systems

Example 6. Show that 22 + y* + 2% + 42 — 6y + 22 + 6 = 0 is the equation
of a sphere, and find its center and radius.

Example 7. What region in R? is represented by the following inequalities?

1§w2+y2+22§4 z <0.



Calculus III - Vectors

12.2 Vectors

Definition 12.2.1. A vector is a quantity that has both mag-

nitude and direction, denoted v or ¢. For a particle that moves B
along a line segment from point A to point B, the correspond- v

ing displacement vector, shown in the figure, has initial point A

and terminal point B and we indicate this by writing v = AB. ¢
Because the vector u = @ has the same length and the same

direction as v, even though it is in a different position, we say that u and v
are equivalent (or equal) and we write u = v. The zero vector, denoted by 0
has length 0.

Definition 12.2.2 (Vector Addition). If u and v are vectors positioned so
the initial point of v is at the terminal point of u, then the sum u + v is the
vector from the initial point of u to the terminal point of v.

Example 1. Draw the sum of the vectors a and b shown in the
ﬁgure' \

Definition 12.2.3 (Scalar Multiplication). If ¢ is a scalar and v is a vector,
then the scalar multiple cv is the vector whose length is || times the length of
v and whose direction is the same as v if ¢ > 0 and is opposite to v if ¢ < 0.
If c=0o0rv=0,then cv =0.

Definition 12.2.4. Two nonzero vectors are parallel if they are scalar multi-
ples of one another. In particular, the vector —v = (—1)v, called the negative
of v, has the same length as v but points in the opposite direction. By the
difference u — v of two vectors we mean

u—v=u+(—v).



Calculus III - Vectors

Example 2. If a and b are the vectors shown in the figure, draw

a—2b. \ %’

Definition 12.2.5. If we place the initial point of a vector a at the origin of a
rectangular coordinate system, then the terminal point of a has coordinates of
the form (ai, az) or (aj,as,as). These coordinates are called the components
of a and we write

a= (a,as) or a = (ay, as, as).

The representation of a vector from the origin to a point is called the position
vector of the point.

Theorem 12.2.1. Given the points A(x1,y1,21) and B(xa,ys, 22), the vector
a with representation E 18

a=(To—T1,Y2 — Y1, %2 — 21).

Proof. The vector a = O? = (ay, as, az) is the position vector of the point
P(ay,ay,a3). If 1@ is another representation of a, where the initial point is
A(z1,y1, 21) and the terminal point is B(xs, ys, 22), then we must have z1+a; =
To, Y1 + as = Yo, and 27 + ag = 2z9. Therefore, a1 = x9 — 21, ao = yo — y1, and
as = 29 — 21. ]

Example 3. Find the vector represented by the directed line segment with
initial point A(2,—3,4) and terminal point B(—2,1,1).



Calculus III - Vectors

Definition 12.2.6. The magnitude or length of the vector v is the length of
any of its representations and is denoted by the symbol |v| or ||v]|.

Theorem 12.2.2. The length of the two-dimensional vector a = {(ay, as) is

la| = y/a} + a3.

The length of the three-dimensional vector a = (ay, as, as) is

la| = \/a? + a3 + a3.
Theorem 12.2.3. If a = (ay,a3) and b = (b1, by), then
a+b= (a1 +by,as+ by) a—b=(a; —bi,ay — by)

and
ca = (caq, cay)

for a scalar c. Similarly, for three-dimensional vectors,
(ay,az,az) + (b1, b, b3) = (ar + b1, az + by, as + bs)

<a1,a2,a3> - <517 bz,b3> = (Cll —b1,a9 — by, a3 — b3>

clay, ag, as) = {(cay, cas, cas).

Example 4. If a = (4,0,3) and b = (—2,1,5), find |a|] and the vectors a+ b,
a — b, 3b, and 2a + 5b.



Calculus III - Vectors

Definition 12.2.7. We denote by V5 the set of all two-dimensional vectors
and by V3 the set of all three-dimensional vectors. More generally, we denote
by V,, the set of all n-dimensional vectors. An n-dimensional vector is an
ordered n-tuple:

a={(ay,ag,...,a,)
where aq, a9, ...,a, are real numbers that are called the components of a.

Addition and scalar multiplication are defined in terms of components just as
for the cases n =2 and n = 3.

Theorem 12.2.4 (Properties of Vectors). Ifa, b, and c are vectors in V,, and
c and d are scalars, then

l.a+b=b+a 2.a+(b+c)=(a+b)+c
3.a+0=a 4.a+(—a)=0

5. c(la+b)=ca+cb 6. (c+d)a=ca+da

7. (cd)a = ¢(da) 8. la=a

Definition 12.2.8. The vectors
i=(1,0,0) j=10,1,0) k =(0,0,1)

are called the standard basis vectors. They have length 1 and point in the
directions of the positive z-, y-, and z-axes. Similarly, in two dimensions we

define i = (1,0) and j = (0, 1).

Theorem 12.2.5. Any vector in V3 can be expressed in terms of i, j, and k.
Similarly, any vector in Vo can be expressed in terms of i and j.
Proof. If a = (ay, as,as3), then we can write

a= <a17&27a3> = <a17 070> + <0,CZ2,0> + <0707a3>
= a1<1, 0, 0> + (IQ(O, 1, 0> + CL3<0, 0, 1>
= ali + CLQj =+ a,3k.

Similarly, in two dimensions, we can write

a= (a1, as) = a1+ asj. O



Calculus III - Vectors

Example 5. If a =i+ 2j — 3k and b = 4i + 7Tk, express the vector 2a + 3b
in terms of i, j, and k.

Definition 12.2.9. A unit vector is a vector whose length is 1. For instance,
i, j, and k are all unit vectors.

Theorem 12.2.6. In general, if a # 0, then the unit vector that has the same
direction as a is

Proof. Let ¢ = 1/]al. Then u = ca and c is a positive scalar, so u has the
same direction as a. Also

u| = [ca| = [c[la] = —]a] = L. O

Example 6. Find the unit vector in the direction of the vector 2i — j — 2k.



Calculus III - Vectors

Definition 12.2.10. A force is represented by a vector because it has both a
magnitude (measured in pounds or newtons) and a direction. If several forces
are acting on an object, the resultant force experienced by the object is the
vector sum of these forces.

Example 7. A 100-1Ib weight hangs from two wires as shown in the figure.
Find the tensions (forces) Ty and T, in both wires and the magnitudes of the
tensions.

10



Calculus III - The Dot Product

12.3 The Dot Product

Definition 12.3.1. If a = (ay, as, ag) and b = (by, b, b3), then the dot product
of a and b is the number a - b given by

a-b= a1b1 + Clng + CL3b3

and similarly
(ay,az) - (by,ba) = a1by + asby

for two-dimensional vectors.

Example 1. Compute the following dot products:

(a) (2,4)-(3,-1)
(b) <_17 77 4> : <67 2, _%>
(c) (+2j—3k)-(2j—k)

Theorem 12.3.1 (Properties of the Dot Product). If a, b, and ¢ are vectors
m Va3 and c is a scalar, then

1. a-a=|al? 2.
3.a-(b+c)=a-b+a-c 4. (ca)-(b) =c(a-b)=a- (cb)
5. 0-a=0

Theorem 12.3.2. If 0 is the angle between the vectors a and b, then

a-b = |a||b|cos¥.

Proof. If we apply the Law of Cosines to triangle OAB in the
figure, we get

|AB|? = |OA|* + |OB|? — 2|0A||OB| cos 6
la —b|* = |a|* + |b]* — 2|a||b| cos
(a—b)-(a—b) = |a]* + |b|* — 2|a||b| cos §
a-a—a-b—b-a+b-b=]a]®>+ |b]*—-2|al|b|cosd
la|* — 2a-b + |b]* = |a|]* + |b|* — 2|a||b| cos §
—2a-b = —2Ja||b|cosf
a-b = |a||b|cosf O

11



Calculus III - The Dot Product

Example 2. If the vectors a and b have lengths 4 and 6, and the angle
between them is 7/3, find a - b.

Corollary 12.3.1. If 0 is the angle between the nonzero vectors a and b, then

a-b

cosf) = ——.
|al[b|

Example 3. Find the angle between the vectors a = (2,2,—1) and b =
(5,—3,2).

Definition 12.3.2. Two nonzero vectors a and b are called perpendicular
or orthogonal if the angle between them is § = 7/2. The zero vector 0 is
considered to be perpendicular to all vectors.

Theorem 12.3.3. Two vectors a and b are orthogonal if and only if a-b = 0.

Proof. 1If § = /2, then
a-b = |a||b|cos(7/2) = 0.

Conversely, if a- b = 0, then cos# = 0, so § = 7/2. ]

12



Calculus III - The Dot Product

Example 4. Show that 2i 4+ 2j — k is perpendicular to 5i — 4j + 2k.

Definition 12.3.3. The direction angles of a nonzero vector a
are the angles a, 8, and v (in the interval [0,7]) that a makes
with the positive x-, y-, and z-axes, respectively. (See the figure.)
The cosines of these direction angles, cos «, cos 3, cos -y, are called
the direction cosines of the vector a.

Theorem 12.3.4. The direction cosines of a vector a = (ay, as,as3) are the
components of the unit vector in the direction of a, 1i.e.,

—a = (cos «, cos 3, cos ).

a

Proof. By Corollary 12.3.1,

Similarly,

Therefore,

a = <a17 as, CL3>
a = (|a|]cosa, |a| cos 3, |a| cos )

a = |a|(cos a, cos 3, cos )

—a = (cos a, cos 3, cos ). ]

al

Example 5. Find the direction angles of the vector a = (1,2, 3).

13



Calculus III - The Dot Product

Definition 12.3.4. If S is the foot of the perpendicular from R
to the line containing f@, then the vector with representation
ﬁ is called the vector projection of b onto a and is denoted by
proj, b. (See the figure.)

The scalar projection of b onto a (also called the component of
b along a) is defined to be the signed magnitude of the vector
projection, which is the number |b|cosf where 6 is the angle
between a and b. (See the figure.) This is denoted by comp, b.

Theorem 12.3.5. The scalar projection of b onto a is

a-b P [b| cos # = comp, b
comp, b= ——.
: El

The vector projection of b onto a is

) a-by a a-b
proj, b = <—> =T
lal /|| |a]

Proof. By Theorem 12.3.2,

a-b = |a||b|cosf
b
ao_ |b| cos 0,

al

which gives us the scalar projection of b onto a. Multiplying by the unit vector
gives us the vector projection in the direction of a. O]

Example 6. Find the scalar projection and vector projection of b = (1,1, 2)
onto a = (—2,3,1).

14



Calculus III - The Dot Product

Definition 12.3.5. Suppose that the constant force in moving

is defined to be the product of the component of the force along ,

R
an object from P to @ is F = P—}%, as in the figure. Then the . ‘
displacement vector is D = @ and the work done by this force i

WOIx - s 1
D

D and the distance moved:

W = (|F|cosf) |D].
Theorem 12.3.6. The work done by a constant force ¥ 1is the dot product

F - D, where D is the displacement vector.
Proof. By Theorem 12.3.2,
W = |F||D|cosf = F - D. O

Example 7. A wagon is pulled a distance of 100 m along a horizontal path
by a constant force of 70 N. The handle of the wagon is held at an angle of
35° above the horizontal path. Find the work done by the force.

Example 8. A force is given by a vector F = 3i+4j+ 5k and moves a particle
from the point P(2,1,0) to the point (4,6, 2). Find the work done.

15



Calculus III - The Cross Product

12.4 The Cross Product

Definition 12.4.1. If a = (aj,a,a3) and b = (b, by, b3), then the cross
product of a and b is the vector

a x b = (asbs — asbs, asby — a1bs, arby — ashy).

Definition 12.4.2. A determinant of order 2 is defined by

a b
a = ad — be.
A determinant of order 3 is defined by
ap az as
bl bg b3 = a bz b3 — a9 bl b3 +a bl b2 .
Ca C3 C1 C3 c1 Cy
C1 C2 C3

Theorem 12.4.1. The cross product of the vectors a = aqi + byj + bsk and
b = bll —|— bQJ —f- bgk iS

i j k
axb=l|a ay ag| =|"2 B[P By 2y
by bs bi b3 by bo
by by b3

Example 1. If a= (1,3,4) and b = (2,7, -5), find a x b.

16



Calculus III - The Cross Product

Example 2. Show that a x a = 0 for any vector a in V3.

Theorem 12.4.2. The vector a X b s orthogonal to both a and b.

Proof.

Gz as
by b3

ay as

by by

ay Qg

(axb)-a= b by

a; — as + as

= al(a2b3 — a3b2) — CLQ(Cleg — a3b1> —+ ag(a1b2 — CLle)
= a1a263 — a1b2a3 — a1a263 + b1a2a3 + @162&3 — b1a2a3
=0.

Similarly, (a x b) - b = 0.
Theorem 12.4.3. If 0 is the angle between a and b (so 0 < 6§ < x), then

la x b| = |a||b| sin 6.

Proof.

la X b|? = (azbs — azby)® + (azb; — aib3)* + (a1by — azby)?
= a3b3 — 2aqa3bobs + azbs + azb? — 2a,azbibs + aib;
+ a3bs — 2ayasb by + a3b?
= (ai + a5 + a3)(b] + b3 + b3) — (a1by + azby + azbs)?
— Ja]?/bf? — (a - b)?
= |a*[b|* — [a|*|b|* cos™#
= |a*|b|*(1 — cos® )

= |a|?|b|*sin? 6.

17



Calculus III - The Cross Product

Vsin? @ = sin 6 because siné > 0 when 0 < 6 < 7, so
la x b| = |a]|b| sin 6. O
Corollary 12.4.1. Two nonzero vectors a and b are parallel if and only if

axb=0.

Proof. Two nonzero vectors a and b are parallel if and only if § = 0 or 7. In
either case sinf = 0, so |a x b| = 0 and therefore a x b = 0. O

Corollary 12.4.2. The length of the cross product a X b is equal to the area
of the parallelogram determined by a and b.

Proof. The geometric interpretation of Theorem 12.4.3. can be
seen by looking at the figure. If a and b are represented by
directed line segments with the same initial point, then they
determine a parallelogram with base |al, altitude |b|sin#, and
area

A = |a|(|b|sinf) = |a x b|. O

Example 3. Find a vector perpendicular to the plane that passes through the
points P(1,4,6), Q(—2,5,—1), and R(1,—1,1).

18



Calculus III - The Cross Product

Example 4. Find the area of the triangle with vertices P(1,4,6), Q(—2,5,—1),
and R(1,—1,1).

Theorem 12.4.4. Ifa, b, and c are vectors and c is a scalar, then

~

axb=-bxa

2. (ca) x b=c(axb)=ax (cb)
3. ax(b+c)=axb+axc
4. (a+b)xc=axc+bxc
5.a-(bxc)=(axb)-c

K2

ax(bxc)=(a-c)b—(a-b)c

Theorem 12.4.5. The volume of the parallelepiped determined by the vectors
a, b, and c is the magnitude of their scalar triple product:

a; a2 das
V:|a-(b><c)|: b1 bQ b3
Ci1 Co C3

If the volume of the parallelepiped determined by a, b, and c is 0, then the
vectors must lie in the same plane; that is, they are coplanar.

Proof. The geometric interpretation of the scalar triple product

can be seen by looking at the figure. The area of the base paral- pxc| -7

lelogram is A = [bxc|. If 6 is the angle between a and b x ¢, then /
the height h of the parallelepiped is h = |a|| cos §|. Therefore the  ||g/a /
volume of the parallelepiped is C A ——————
b
V = Ah = |b x cl||a||cosf| = |a- (b X c)|. O

19



Calculus III - The Cross Product

Example 5. Use the scalar triple product to show that the vectors a =
(1,4,=7), b= (2,—1,4), and ¢ = (0, —9, 18) are coplanar.

Definition 12.4.3. If F is a force acting on a rigid body at a point given by
a position vector r then the torque 7 (relative to the origin) is defined to be
the cross product of the position and force vectors

T=rxF
and measures the tendency of the body to rotate about the origin.
Theorem 12.4.6. The magnitude of the torque vector is
|7| = |r x F| = |r||F|sin@

where 0 is the angle between the position and force vectors.

Example 6. A bolt is tightened by applying a 40-N force to a
0.25-m wrench as shown in the figure. Find the magnitude of
the torque about the center of the bolt.

0.25m

20



Calculus III - Equations of Lines and Planes

12.5 Equations of Lines and Planes

Theorem 12.5.1. The vector equation of a line through the point

(370;3/0720) is
r=rg+itv

where rq is the position vector of (o, Yo, 20), V s a vector parallel
to the line, and t is a scalar.

Parametric equations for a line through the point (xo, Yo, 20) and
parallel to the direction vector {(a,b,c) are

X

T =x9+ at Yy =1yo+ bt z = 2o+ ct.
Example 1. (a) Find a vector equation and parametric equations for the
line that passes through the point (5,1,3) and is parallel to the vector
i+4j—2k.

(b) Find two other points on the line.

Definition 12.5.1. In general, if a vector v = (a, b, ¢) is used to describe the
direction of a line L, then the numbers a, b, and ¢ are called the direction
numbers of L. The equations

T—To Y—Y 22— %20
a b c

obtained by eliminating the parameter ¢ are called symmetric equations of L.

21



Calculus III - Equations of Lines and Planes

Example 2. (a) Find parametric equations and symmetric equations of the
line that passes through the points A(2,4,—3) and B(3,—1,1).

(b) At what point does this line intersect the xy-plane?

Theorem 12.5.2. The line segment from vy to ry is given by the vector equa-
tion
r(t) = (1 —t)rg+try 0<t<1.

22



Calculus III - Equations of Lines and Planes

Example 3. Show that the lines Ly and L, with parametric equations
Li: x=1+1 y=—2+3t z=4—1
Ly: x=2s y=3+s z=—3+4s

are skew lines; that is, they do not intersect and are not parallel (and therefore
do not lie in the same plane).

Definition 12.5.2. Either
n-(r—ry) =0

or
n-r=n-ry

is called a vector equation of a plane through point (zo, yo, 20)
where 1y is the position vector of (xg, yo, 20), r is the vector equa-
tion of the line through (zg, o, 20), and n is the vector through (z,yo, 20)
orthogonal to the plane, called a normal vector.

A scalar equation of the plane through point Py(xg, yo, 20) with normal vector
n = (a,b,c) is

a(x —xo) +b(y — yo) + c(z — 29) = 0.

23



Calculus III - Equations of Lines and Planes

Example 4. Find an equation of the plane through the point (2,4, —1) with
normal vector n = (2,3,4). Find the intercepts and sketch the plane.

Theorem 12.5.3. The equation of a plane can be rewritten as the linear equa-
tion
ar+by+cz+d=0

where d = —(axg + by + czp).

Example 5. Find an equation of the plane that passes through the points
P(1,3,2), Q(3,—1,6), and R(5,2,0).

24



Calculus III - Equations of Lines and Planes

Example 6. Find the point at which the line with parametric equations x =
24 3t, y = —4t, z = 5+t intersects the plane 4x + 5y — 2z = 18.

Definition 12.5.3. Two planes are parallel if their normal vec-

tors are parallel. If two planes are not parallel, then they in- \ T

tersect in a straight line and the angle between the two planes n\| ™

is defined as the acute angle between their normal vectors (see =

angle € in the figure). Sl M

Example 7. (a) Find the angle between the planes x +y + 2z = 1 and = —
2y+32=1

25



Calculus III - Equations of Lines and Planes

(b) Find symmetric equations for the line of intersection L of these two planes.

Example 8. Find a formula for the distance D from a point P (xy, 41, 21) to
the plane ax + by 4+ cz +d = 0.

26



Calculus III - Equations of Lines and Planes

Example 9. Find the distance between the parallel planes 10x +2y — 2z =5
and bx +y —z = 1.

Example 10. In Example 3 we showed that the lines

Ly: z=1+1 y=—2+3t z=4—1
Ly: x=2s y=3+s z=—-3+44s

are skew. Find the distance between them.

27



Calculus III - Cylinders and Quadric Surfaces

12.6 Cylinders and Quadric Surfaces

Definition 12.6.1. The curves of intersection of a surface with planes parallel
to the coordinate planes are called traces (or cross-sections) of the surface.

Definition 12.6.2. A cylinder is a surface that consists of all lines (called
rulings) that are parallel to a given line and pass through a given plane curve.

Example 1. Sketch the graph of the surface z = 2.

Example 2. Identify and sketch the surfaces.

(a) 22 +y* =1

(b) y*+22=1
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Definition 12.6.3. A quadric surface is the graph of a second-degree equation
in three variables x, y, and z. The most general such equation is

Ar? + By’ + C2* + Dxy+ Eyz + Faz+ Gr + Hy+ 12+ J =0

where A, B,C, ..., J are constants, but by translation and rotation it can be
brought into one of the two standard forms

A + By +C2*+J =0 or Az*+By’+1z=0.
Example 3. Use traces to sketch the quadric surface with equation
2 2
2, Y z
=~ 4+ —=1
x” + 9 + 1

Example 4. Use traces to sketch the surface z = 422 + 3.
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Example 5. Sketch the surface z = y* — 22,

2 2

Example 6. Sketch the surface % +y? - ZZ =1
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Surface

Equation

Surface

Equation

Ellipsoid

.’172 y2 22

? + = + g =1
All traces are ellipses.

If a=0b=c, the
ellipsoid is a sphere.

Cone

22 .’172 y2

2 a2y
Horizontal traces are
ellipses.

Vertical traces in the
planes z = k and y = k
are hyperbolas if k # 0
but are pairs of lines if
k= 0.

Elliptic Paraboloid

PR T

- = + z

c a? b?
Horizontal traces are
ellipses.

Vertical traces are
parabolas.

The variable raised to
the first power indicates
the axis of the

Hyperboloid of One Sheet

X Y, A2777
NS
NSl
%7/

WX/}

PHANINAN
[/ / (X
R

0 O

JAARDRONXRES

2 2 2
x 2

@y 2
a? b2 2
Horizontal traces are
ellipses.

Vertical traces are
hyperbolas.

The axis of symmetry
corresponds to the
variable whose

paraboloid. coefficient is negative.
Hyperbolic Paraboloid z 2 P Hyperboloid of Two Sheets 2 P N 2 _,
¢ a? b2 a2 b2 2

Horizontal traces are
hyperbolas.

Vertical traces are
parabolas.

The case where ¢ < 0 is
illustrated.

Horizontal traces in
2z = k are ellipses if
kE>cor k< —c.

Vertical traces are
hyperbolas.

The two minus signs
indicate two sheets.
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Example 7. Identify and sketch the surface 422 — y* + 222 +4 = 0.

Example 8. Classify the quadric surface 2% + 22% — 62 — y + 10 = 0.
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Chapter 13

Vector Functions

13.1 Vector Functions and Space Curves

Definition 13.1.1. A vector-valued function, or vector function is a function
whose domain is a set of real numbers and whose range is a set of vectors.
If f(t), g(t), and h(t) are the components of a vector function r(t) whose
values are three-dimensional vectors, then we call f, g, and h the component
functions of r and we can write

r(t) = (f(t), g(t), h(t)) = f(£)i+ g(t)j + h(t)k.

Example 1. What are the component functions and domain of

r(t) = <t3,ln(3 — 1), \/%>?

Definition 13.1.2. The limit of a vector function r is defined by taking the
limits of its component functions, i.e., if r(t) = (f(¢), g(t), h(t)), then

lim x(1) = <gm (2) lim g(t). im h<t>>

t—a

provided the limits of the component functions exist.
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Calculus III - Vector Functions and Space Curves

int
Example 2. Find lir% r(t), where r(t) = (1 +t3)i +te 'j + sutq I
— —_

Definition 13.1.3. A vector function r is continuous at a if

limr(t) = r(a),

t—a

so r is continuous at a if and only if its component functions f, g, and h are
continuous at a.

Definition 13.1.4. Suppose that f, g, and h are continuous
real-valued functions on an interval I. Then the set C' of all

points (x,y, z) in space, where /
C
v=f(t) y=9@) z=h()

(called the parametric equations of C' for a parameter t) and /
X

t varies throughout the interval I, is called a space curve.
If we consider the vector function r(t) = (f(t),g(t), h(t)),
then r(t) is the position vector of the point P(f(¢), g(t), h(t)) on C. Thus any
continuous vector function r defines a space curve C' that is traced out by the
tip of the moving vector r(t), as shown in the figure.

Example 3. Describe the curve defined by the vector function

r(t) = (1+1t,2+ 5t,—1 + 6t).
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Example 4. Sketch the curve whose vector equation is

r(t) = costi+ sintj + tk.

Example 5. Find a vector equation and parametric equations for the line
segment that joins the point P(1,3,—2) to the point Q(2,—1,3).
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Calculus III - Vector Functions and Space Curves

Example 6. Find a vector function that represents the curve of intersection
of the cylinder 2% + y? = 1 and the plane y + z = 2.

Example 7. Use a computer to draw the curve with vector equation r(t) =
(t,t2,¢3). This curve is called a twisted cubic.
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13.2 Vector Function Derivatives & Integrals

Definition 13.2.1. The derivative r’ of a vector function r is defined as

de = . r(t+h)—r(t)
@ T =l h

if this limit exists.

Definition 13.2.2. The vector r'(t) is called the tangent vector to the curve
defined by r at the point P, provided that r'(¢) exists and r'(¢) # 0. The tan-
gent line to C' at P is defined to be the line through P parallel to the tangent
vector r'(t). The unit tangent vector is

Theorem 13.2.1. If r(t) = (f(t), g(t), h(t)) = f()i+ g(t)j + h(t)k, where f,
g, and h are differentiable functions, then

r'(t) = (f'(t),4' (1), ' (2)) = f'(©)i+ g' ()i + M (D)k.

¥(1) = lim Ait[r(t + AL —1(0)]

= lim é[(f(t + A1), g(t + At), h(t + At)) — (f(1), (), h(t))]

At—0
_ 1 <f(t + At) — f(t) g(t+ At) —g(t) h(t+ At) — h(t)>
= Ao At ’ At ’ At
B < i LAY —f@) gt + A —g(t) A+ AL — h(t)>
— \ atso At  AES0 At AT At
= (f'(t),g'(t), W (1)) O

Example 1. (a) Find the derivative of r(t) = (1 + t3)i + te~'j + sin 2tk.

(b) Find the unit tangent vector at the point where ¢ = 0.
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Example 2. For the curve r(t) = v/t + (2 — t)j, find r'(t) and sketch the
position vector r(1) and the tangent vector r'(1).

Example 3. Find parametric equations for the tangent line to the helix with
parametric equations

T = 2cost y =sint z=t

at the point (0,1, 7/2).

Definition 13.2.3. The second derivative of a vector function r is the deriva-
tive of r/, that is, r’ = (r')".
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Theorem 13.2.2. Suppose u and v are differentiable vector functions, c is a
scalar, and f is a real-valued function. Then

d / /
1. a[u(t) +v(t)] =d(t) +Vv'(¢)
d
2. a[cu(t)] = cu'()
J. %[f(t)u(t)] = J/(Hu(t) + f(H)u'(?)
d / /
b ) V(o) = (o) V() +u) v
5. %[u(t) X v(t)] =u'(t) x v(t) +u(t) x v'(¢)
d

6. a[u( f@)] = fOu'(f(t))

Example 4. Show that if |r(¢)] = ¢ (a constant), then r'(¢) is orthogonal to
r(t) for all ¢.
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Definition 13.2.4. The definite integral of a continuous vector function r(t)
1s

b n
/a r(t)dtzé;n;ozr(ti)At

n—oo

= lim | [ Yo fenae i+ (S gnae] i+ [ Yo n)At | k
=1 =1 ;

and so

/abr(t)dt = (/abf(t)dt> i+ (/abg(t)dt> j+ (/abh(t)dt> k.

Theorem 13.2.3. We can extend the Fundamental Theorem of Calculus to
continuous vector functions as follows:

where R is an antiderivative of r, that is, R'(t) = r(t). We use the notation
[x(t)dt for indefinite integrals (antiderivatives).

Example 5. If r(t) = 2costi + sintj + 2tk, then what are [r(¢)dt and

ST e (t)dt?
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13.3 Arc Length and Curvature

Definition 13.3.1. If a space curve is given by r(t) = (f(t), g(t), h(t)), a <
t < b, or equivalently, the parametric equations z = f(t), y = g(t), z = h(t),
where f’, ¢/, and h’' are continuous, then the length of the curve traversed
exactly once as t increases from a to b is

L= [ VIOF T 0P WoTa
WERaEaE

L= /ab|r/(t>|dt.

Example 1. Find the length of the arc of the circular helix with vector equa-
tion r(t) = costi + sintj + tk from the point (1,0,0) to the point (1,0, 27).

or equivalently,

Remark 1. A single curve C' can be represented by more than one vector
function. For instance, the twisted cubic

ri(t) =12 1<t<2
could also be represented by the function
ro(u) = (e, e, ) 0<u<In2

We say that these equations are parametrizations of the curve C'. It can be
shown that our arc length equation is independent of the parametrization that
is used.
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Calculus III - Arc Length and Curvature

Definition 13.3.2. Suppose that C is a curve given by a vector function
r(t) = fOi+g)j+hik a<t<b

where 1’ is continuous and C' is traversed exactly once as ¢ increases from a to
b. We define its arc length function s by

t t dz\? dy 2 dz\>
g / s _ _ _
s(t) /a v (u)|du /a \/(du) + (du) + (du) du
where differentiating both sides of the arc length function using the Funda-
mental Theorem of Calculus gives

ds ,
L]

Remark 2. If a curve r(t) is already given in terms of a parameter ¢ and s(t)
is the arc length function, then we may be able to solve for ¢ as a function of
s: t = t(s). Then the curve can be reparametrized with respect to arc length
by substituting for ¢: r = r(t(s)).

Example 2. Reparametrize the helix r(¢) = costi + sintj + tk with respect
to arc length measured from (1,0,0) in the direction of increasing t.
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Calculus III - Arc Length and Curvature

Definition 13.3.3. The curvature of a curve C' at a given point is a measure
of how quickly the curve changes direction at that point, defined as

dT
ds

K =

where T is the unit tangent vector.

Remark 3. A parametrization is called smooth on an interval I if r’ is con-
tinuous and r'(¢) # 0 on I. A curve is called smooth if it has a smooth
parametrization. Since the unit tangent vector is only defined for smooth
curves, the curvature is only defined for smooth curves.

Theorem 13.3.1.

Proof. By the chain rule

dT _ dTds
dt — ds dt’
SO
dT dT !
__|dT| _|dT/dt| _|T(0)] -
ds ds/dt /()]

Example 3. Show that the curvature of a circle of radius a is 1/a.
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Calculus III - Arc Length and Curvature

Theorem 13.3.2. The curvature of the curve given by the vector function r

N () x ()

"= P

Proof. Since T =1r'/|r'| and |r'| = ds/dt, we have

ds
"= T=—T
r' = |r| o
d?s ds
no_ _T _T/
dt? dt

Since T x T = 0, we have

ds d?s ds
/ " — _T _T _T/
rxr =gt (dt2 Rr7 )

ds d?s ds ds
P = B 5 B B
e A e T

' xr’ = (%%) (T xT)+ (%)2(T x T')
' xr’ = (%)2 (T x T').
Since |T(t)] =1 for all £, T and T’ are orthogonal, so
I’ x| = (%)2 T x T'|
- (%)2 IT||T’| sin <g>
_ <%)2 .

Thus
o x| e x|
T = (Gsjay = P
and
T ] .
r'| r'?

44



Calculus III - Arc Length and Curvature

Example 4. Find the curvature of the twisted cubic r(t) = (¢, t%) at a
general point and at (0,0,0).

Theorem 13.3.3. Ify = f(z) is a plane curve, then

/" ()

) |
") = T ()P

Proof. Choose z as the parameter and write r(z) = i+ f(z)j. Then r'(z) =
i+ f'(x)j and v"(x) = f"(x)j. Since i x j = k and j x j = 0, it follows that

r'(z) x r"(z) = f"(x)k. We also have |r'(z)| = /1 + [f'(x)]?, and so
_ @) <@ ()]
S N T E)Ea .
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Example 5. Find the curvature of the parabola y = x? at the points (0, 0),
(1,1), and (2,4).

Definition 13.3.4. For any point where x # 0, the principal

unit normal vector N(¢) (or simply unit normal) is defined T(1)
to be B(1)
/(1) N(1)

and so it is orthogonal to the unit tangent vector T(¢). The
vector B(t) = T(t) x N(t) is called the binormal vector. It is perpendicular
to both T and N and is also a unit vector. (See the figure.)

Example 6. Find the unit normal and binormal vectors for the circular helix

r(t) = costi+sintj + tk.
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Definition 13.3.5. The plane determined by the normal and binormal vectors
N and B at point P on a curve C' is called the normal plane of C' at P. It
consists of all lines that are orthogonal to the tangent vector T. The plane
determined by the vectors T and N is called the osculating plane of C' at P.
It is the plane that comes closest to containing the part of the curve near P.

Definition 13.3.6. The circle that lies in the osculating plane of C' at P, has
the same tangent as C' at P, lies on the concave side of C' (toward which N
points), and has radius p = 1/k (the reciprocal of the curvature) is called the
osculating circle (or the circle of curvature) of C' at P. It is the circle that
best describes how C' behaves near P; it shares the same tangent, normal, and
curvature at P.

Example 7. Find equations of the normal plane and osculating plane of the
helix in Example 6 at the point P(0, 1, 7/2).
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Example 8. Find and graph the osculating circle of the parabola y = 22 at
the origin.
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Calculus III - Motion in Space

13.4 Motion in Space

Definition 13.4.1. Suppose a particle moves through space so that its posi-
tion vector at time ¢ is r(t). Then the velocity vector v(t) at time ¢ is given
by

(t) = lim r(t+ h})b =0 _ .

The speed of the particle at time ¢ is the magnitude of the velocity vector,

that is, [v(¢)|. As in the case of one-dimensional motion, the acceleration of
the particle is defined as the derivative of the velocity:

a(t) =v'(t) =r"(t).

Example 1. The position vector of an object moving in a plane is given by
r(t) = 3 + t3j. Find its velocity, speed, and acceleration when ¢t = 1 and
illustrate geometrically.
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Example 2. Find the velocity, acceleration, and speed of a particle with
position vector r(t) = (t2, €', te').

Example 3. A moving particle starts at an initial position r(0) = (1,0,0)
with initial velocity v(0) =i — j + k. Its acceleration is a(t) = 4t¢i + 6tj + k.
Find its velocity and position at time t.
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Remark 1. In general, vector integrals allow us to recover velocity when ac-
celeration is known and position when velocity is known:

t t
v(t) = v(to) —I—/ a(u)du  r(t) =r(ty) +/ v(u)du.
to to
If the force that acts on a particle is known, then the acceleration can be found
from Newton’s Second Law of Motion. The vector version of this law states
that if, at any time ¢, a force F(t) acts on an object of mass m producing an
acceleration a(t), then

F(t) = ma(t).

Example 4. An object with mass m that moves in a circular path with con-
stant angular speed w has position vector r(t) = a coswti+ asinwtj. Find the
force acting on the object and show that it is directed toward the origin.
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Calculus III - Motion in Space

Example 5. A projectile is fired with angle of elevation «
and initial velocity vo. (See the figure.) Assuming that air
resistance is negligible and the only external force is due
to gravity, find the position function r(¢) of the projectile.
What value of @ maximizes the range (the horizontal distance
traveled)?

92
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Calculus III - Motion in Space

Example 6. A projectile is fired with muzzle speed 150 m/s and angle of ele-
vation 45° from a position 10 m above ground level. Where does the projectile
hit the ground, and with what speed?
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Calculus III - Motion in Space

Theorem 13.4.1. If v = |v| is the speed of a particle in
motion, then
a=arT+ ayN

where ap = v and ay = Kkv>.

Proof.
) v v
@ vl v

T(t)

SO
v=oT
a=v =0T+ vT.
By our expression for curvature,

_ T T

vl

so |T’| = kv. Since N = T'/|T|,
T = |T'|N = xuN,
and thus
a=v'T+ kv’N [

Theorem 13.4.2.

G I T O]
Proof.
v-a=vT- (T + kv’N)
=uv/'T - T+ r*T-N
=/,
S0

o4
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Example 7. A particle moves with position function r(t) = (t?,¢2,¢3). Find
the tangential and normal components of acceleration.
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Chapter 14

Partial Derivatives

14.1 Functions of Several Variables

Definition 14.1.1. A function f of two variables is a rule that assigns to each
ordered pair of real numbers (z,y) in a set D a unique real number denoted
by f(x,y). The set D is the domain of f and its range is the set of values that
f takes on, that is, {f(z,v) | (z,y) € D}.

Remark 1. We often write z = f(x,y) to make explicit the value taken on by
f at the general point (x,y). The variables x and y are independent variables
and z is the dependent variable.

Example 1. For each of the following functions, evaluate f(3,2) and find and
sketch the domain.

vz+y+1

r—1

(a) f(z,y) =
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Actual temperature (°C)

Calculus III - Functions of Several Variables

(b) f(z,y) =2n(y* — x)

Example 2. In regions with severe winter weather, the wind-chill index is
often used to describe the apparent severity of the cold. This index W is a
subjective temperature that depends on the actual temperature 7" and the
wind speed v. So W is a function of T" and v, and we can write W = f(T,v).
The table records values of W compiled by the US National Weather Service

and the Meteorological Service of Canada.

Wind-chill index as a function of air temperature and wind speed

Wind speed (km/h)

T Y15 10 15 20 25 30 40 20 60 70 80
) 4 3 2 1 1 o -1} -1} =2 =2| =3

o, -2 -3, 4| 5| -6, 6| =7 =8| -9 -9|-10
5| -7 -9 |-11|-12|-12 | —-13| —-14| —-15| —-16 | —16 | —17
—10 | -13 | =15 | =17 | =18 | =19 | =20 | —21 | =22 | =23 | =23 | —24
—15|—-19 | =21 | =23 | =24 | =25 | =26 | =27 | =29 | =30 | =30 | =31
—20 | —-24 | =27 | =29 | =30 | =32 | =33 | =34 | =35 | =36 | =37 | =38
25| =30 | =33 | =35 | =37 | =38 | =39 | =41 | —42 | —43 | —44 | —45
30| =36 | =39 | —41 | —43 | —44 | —46 | —48 | —49 | =50 | —51 | =52
—35 | —41 | —45 | —48 | —49 | =51 | =52 | —54 | =56 | —57 | —58 | —60
—40 | =47 | =51 | =54 | =56 | =57 | =59 | —61 | —63 | —64 | —65 | —67

Find f(—5,50) and interpret its meaning in context.
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Calculus III - Functions of Several Variables

Example 3. In 1928 Charles Cobb and Paul Douglas published
a study in which they modeled the growth of the American econ-
omy during the period 1899-1922. They considered a simplified
view of the economy in which production output is determined
by the amount of labor involved and the amount of capital in-
vested. While there are many other factors affecting economic
performance, their model proved to be remarkably accurate. The
function they used to model production was of the form

P(L,K) =bL*K*'™,

known as the Cobb-Douglas production function, where P is the
total production (the monetary value of all goods produced in a
year), L is the amount of labor (the total number of person-hours
worked in a year), and K is the amount of capital invested (the
monetary worth of all machinery, equipment, and buildings).
Cobb and Douglas used economic data published by the govern-
ment to obtain the table on the right. They took the year 1899
as a baseline and P, L, and K for 1899 were each assigned the
value 100. The values for other years were expressed as percent-
ages of the 1899 figures.

Cobb and Douglas used the method of least squares to fit the
data of the table to the function

P(L,K) = 1.01L*™ K.

Use this function to compute the production in the years 1910

Year

P

1899

100

100

100

1900

101

105

107

1901

112

110

114

1902

122

117

122

1903

124

122

131

1904

122

121

138

1905

143

125

149

1906

152

134

163

1907

151

140

176

1908

126

123

185

1909

155

143

198

1910

159

147

208

1911

153

148

216

1912

177

155

226

1913

184

156

236

1914

169

152

244

1915

189

156

246

1916

225

183

298

1917

227

198

335

1918

223

201

366

1919

218

196

387

1920

231

194

407

1921

179

146

417

1922

240

161

431

and 1920, and compare your results with the actual values for these years.
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Example 4. Find the domain and range of g(z,y) = /9 — 22 — y2.

Definition 14.1.2. If f is a function of two variables with domain D, then
the graph of f is the set of all points (z,y, z) in R? such that z = f(z,y) and
(x,y) is in D.

Definition 14.1.3. The level curves of a function f of two variables are the
curves with equations f(z,y) = k, where k is a constant (in the range of f).

Example 5. Sketch the graph of the function f(z,y) =6 — 3z — 2y.
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Calculus III - Functions of Several Variables

Definition 14.1.4. The function
flx,y) =ax +by+c

is called a linear function. The graph of such a function has the equation

z=ar+by+c or ar+by —z2+c=0,

so it is a plane.

Example 6. Sketch the graph of g(z,y) = /9 — 22 — 2.

Example 7. Use a computer to draw the graph of the Cobb-Douglas produc-
tion function P(L, K) = 1.01L%™ K92,

Example 8. Find the domain and range and sketch the graph of h(x,y) =
422 4 12
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Example 9. A contour map for a function f is shown in the

S

figure. Use it to estimate the values of f(1,3) and f(4,5). — 50—

\—/

Example 10. Sketch the level curves of the function f(x,y) = 6 — 3z — 2y
for the values k = —6,0, 6, 12.

Example 11. Sketch the level curves of the function

g(x,y) =9 — a? —y? for k=0,1,2,3.
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Example 12. Sketch some level curves of the function h(x,y) = 42 +y? + 1.

Example 13. Plot level curves for the Cobb-Douglas production function of
Example 3.

Definition 14.1.5. A function of three variables, f, is a rule that assigns to
each ordered triple (z,y, z) in a domain D C R? a unique real number denoted

by f(z,y, 2).
Example 14. Find the domain of f if

f(x,y,z) =In(z —y) + xysin z.
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Definition 14.1.6. The level surfaces of a function f of three variables are
the curves with equations f(z,y, z) = k, where k is a constant.

Example 15. Find the level surfaces of the function

flx,y,2) = 2® + 4 + 22

Definition 14.1.7. A function of n variables is a rule that assigns a number
z = f(x1,29,...,2,) to an n-tuple (x1,xs, ..., x,) of real numbers. We denote
by R™ the set of all such n-tuples.

Remark 2. Sometimes we will use vector notation to write such functions
more compactly: If x = (xy,29,...,2,), we will often write f(x) in place of

f(x1,$2, e ,:L’n).
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14.2 Limits and Continuity

Definition 14.2.1. Let f be a function of two variables z
whose domain D includes points arbitrarily close to (a,b). L+e
Then we say the limit of f(z,y) as (z,y) approaches (a,b) is L

L and we write

lim x,y) =L
(myy)ﬂ(aﬂb)f( v)

if for every number € > 0 there is a corresponding number 0

6 > O such that if (z,y) € Dand 0 < \/(z —a)2+ (y — b)% < /\rFF\,

d then |f(xz,y) — L] <e. X
(a,b)

Remark 1. If f(x,y) — Ly as (x,y) — (a,b) along a path C; and f(z,y) — Lo
as (z,y) — (a,b) along a path Cy, where Ly # Lo, then limg ) (ap) f(2,y)
does not exist.

2 _ 2

does not exist.

Example 1. Show that lim
(2.9)~(0,0) 2% + y?
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Example 2. If f(z,y) = zy/(z* + y?), does  lim  f(x,y) exist?
(2,y)—(0,0)
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2
Example 3. If f(z,y) = :r;;c——iy—y‘*’ does " yl)ig(lo O)f(:c,y) exist?

Remark 2. The Limit Laws listed in section 2.3 can be extended to functions
of two variables: the limit of a sum is the sum of the limits, the limit of a
product is the product of the limits, and so on. In particular, the following

equations are true.

lim z=a lim y=25b lim c=c.
(z,y)—(ab) (z,y)—(ab) (z,y)—(a,b)

The Squeeze Theorem also holds.
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2
if it exists.

Example 4. Find lim
(2.9)=(0,0) T + Y

Definition 14.2.2. A function f of two variables is called continuous at (a, b)
if

lim f(z,y) = f(a,b).

(z,y)—(a,b)

We say that f is continuous on D if f is continuous at every point (a,b) in D.

Definition 14.2.3. A polynomial of two variables (or polynomial, for short)
is a sum of terms of the form cx™y™, where ¢ is a constant and m and n are
nonnegative integers. A rational function is a ratio of polynomials.

Remark 3. The limits in Remark 2 show that the functions f(z,y) = z,
g(x,y) =y, and h(x,y) = c are continuous. Since any polynomial can be built
up out of the simple functions f, g, and h by multiplication and addition,
it follows that all polynomials are continuous on R?. Likewise, any rational
function is continuous on its domain because it is a quotient of continuous
functions.
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Example 5. Evaluate lim (2%y® — 23y® + 3z + 2y).
(zy)—(1,2)

2 2

Example 6. Where is the function f(z,y) = % continuous?
r Y

Example 7. Where is the function

ZL‘2 —y2
g(way): $2+y2 f(]j, )7&(07())7
0 if (z,y) = (0,0)

continuous?

Remark 4. If f is a continuous function of two variables and ¢ is a continuous
function of a single variable that is defined on the range of f, then the com-
posite function h = g o f defined by h(z,y) = g(f(z,y)) is also a continuous

function.
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Example 8. Where is the function

3y
flz,y) = 2%+ y?
0 if (z,y) = (0,0)

continuous?

Example 9. Where is the function h(x,y) = arctan(y/x) continuous?

Definition 14.2.4. The notation

(z,y,2)—(a,b,c)

means that the values of f(z,y, z) approach the number L as the point (x,y, 2)
approaches the point (a, b, ¢) along any path in the domain of f. Precisely, for
every number ¢ > 0 there is a corresponding § > 0 such that if f(z,y, 2) is in
the domain of f and 0 < \/(z — a)? + (y — b)2 + (2 — ¢)? < § then |f(z,y,2)—
L| < e. The function is continuous at (a, b, ¢) if

lim  f(z,y,2) = f(a,b,c).

(z,y,2)—(a,b,c)

Definition 14.2.5. If f is defined on a subset D of R", then limy_,, f(x) = L
means that for every number € > 0 there is a corresponding number o > 0
such that if x € D and 0 < |x — a| < § then |f(x) — L| < e. The function is
continuous at a if

lim f(x) = f(a).

X—a
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14.3 Partial Derivatives

Definition 14.3.1. In general, if f is a function of two variables x and v,
suppose we only let x vary while keeping y fixed, say y = b, where b is a
constant. Then we are considering a function of a single variable z, say g(z) =
f(z,b). If g has a derivative at a, then we call it the partial derivative of f
with respect to x at (a,b) and denote it by f.(a,b). Thus

a h) — a a h.b) — a.b
fx(a,b):g’(a):}}g(l)g( +2 g():}lg%f( + f)L fla,b)

Similarly, the partial derivative of f with respect to y at (a,b), denoted by
fy(a,b), is obtained by keeping z fixed (x = a) and finding the ordinary
derivative at b of the function G(y) = f(a,y):

T f(a>b+h>_f<a7b)
fy(aab)—}l}g{l} h ~

Definition 14.3.2. If f is a function of two variables, its
partial derivatives are the functions f, and f, defined by

n(m):g <x+hy> f(z,y)
@(say):m <fvy+h> flay)

Definition 14.3.3 (Notations for Partial Derivatives). If z = f(z,y), we write

0 0 0

fle) = fo= = L) = 0= fi = Dif = Duf
0 0 0

fy(xay):fy 8:7]; a_yf(xay):a_;:f2:D2f:Dyf~

Remark 1 (Rule for Finding Partial Derivatives of z = f(x,y)).

1. To find f,, regard y as a constant and differentiate f(x,y) with respect
to x.

2. To find f,, regard = as a constant and differentiate f(x,y) with respect
to y.
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Example 1. If f(z,y) = 2® + 2%y® — 2y, find f,(2,1) and f,(2,1).

Example 2. If f(z,y) =4 — 2% — 2¢?, find f,(1,1) and f,(1,1) and interpret
these numbers as slopes.
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Example 3. The body mass index of a person is defined by

m

Calculate the partial derivatives of B for a young man with m = 64 kg and
h = 1.68 m and interpret them.

72



Calculus III - Partial Derivatives

, calculate — and —

Example 4. If f(x,y) = sin <% 5 oy

) of  of
Y

Example 5. Find 0z/0x and 0z/0y if z is defined implicitly as a function of
x and y by the equation

o+t 2+ by =1,
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Definition 14.3.4. If f is a function of three variables x, y and z, then its
partial derivative with respect to x is defined as

. f(:l?—l—h,y,z)—f(:v,y,z)
fole ) = i i

and it is found by regarding y and z as constants and differentiating f(x,y, 2)
with respect to x.

Definition 14.3.5. In general, if u is a function of n variables,

u= f(x1,x2,...,2,), its partial derivative with respect to the ith variable z;
is
au == hm f(xl" R SR + h7aji+1a e ,$n) — f(xla ey Ly e e ,l'n)
8@ h—0 h
and we also write 5 of
U
oo om  Jm = fi= D

Example 6. Find f,, f,, and f, if f(z,y,2) =e"Inz.
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Definition 14.3.6. If f is a function of two variables, then its partial deriva-
tives f, and f, are also functions of two variables, so we can consider their
partial derivatives (fy)z, (f2)y, (fy)z, and (f,),, which are called the second
partial derivatives of f. If z = f(z,y), we use the following notation:

(fx)m:fm:fnz(%@_i) :%:%
(e = fe = fur =5 (%) _ ggy _ ggy
(= b= =5 (%) e

Thus the notation f,, (or 9?f/0ydx) means that we first differentiate with
respect to  and then with respect to y, whereas in computing f,, the order
is reversed.

Example 7. Find the second partial derivatives of

f(z,y) = 2® + 2%y® — 2%
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Theorem 14.3.1 (Clairaut’s Theorem). Suppose f is defined on a disk D that
contains the point (a,b). If the functions f., and f,, are both continuous on
D, then

fwy(a7 b) = fyw(av b)

Remark 2. Partial derivatives of order 3 or higher can also be defined. For

instance,
o [ 0*f P f
Foww = (fa)y = dy <8y81:) - 0y20x

and using Clairaut’s Theorem it can be shown that f,,, = fyzy = fyyo if these
functions are continuous.

Example 8. Calculate f,.,. if f(x,y,2) = sin(3z + y=z).

Definition 14.3.7. The partial differential equation

’u  J%*u _

o2 oy

is called Laplace’s equation. Solutions of this equation are called harmonic
functions.
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Example 9. Show that the function u(z,y) = €” siny is a solution of Laplace’s
equation.

Definition 14.3.8. The wave equation

Pu 0%

o~ " o

describes the motion of a waveform, which could be an ocean wave, a sound
wave, a light wave, or a wave traveling along a vibration string.

Example 10. Verify that the function u(x,t) = sin(x — at) satisfies the wave
equation.
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14.4 Tangent Planes & Linear Approximations

Definition 14.4.1. Suppose a surface S has equation z =
f(z,y), where f has continuous first partial derivatives, and

T,
let P(zg,yo0,20) be a point on S. Let C; and Cy be the /Cl/
/P Ca

curves obtained by intersecting the vertical planes y = o
and x = xo with the surface S, so that P lies on both C; and
C5. Let T} and T5 be the tangent lines to the curves € and

{0
C5 at the point P. Then the tangent plane to the surface S / [
/ y

at the point P is defined to be the plane that contains both
tangent lines 7 and T5. (See the figure.)

Theorem 14.4.1. Suppose f has continuous partial derivatives. An equation
of the tangent plane to the surface z = f(z,y) at the point P(xo,yo, 20) 18

z— 20 = fu(To,y0)(x — x0) + [y (%0, Y0)(y — Yo)-

Proof. Any line passing through P has an equation of the form
Az —x0) + By — yo) + C(z — ) = 0.

By dividing this equation by C' and letting a = —A/C and b = —B/C, we can
write it in the form

z—zp=alx —x9) + by — vo).

If this equation represents the tangent plane at P, then its intersection with
the tangent line y = yo must be T7, so by letting y = yo we get

2z — 29 = a(x — x9)

as the equation of T, and since T has slope f,(zo, %), we have a = f,(xq, yo)-
Similarly, by letting x = ¢, we get z — 2o = b(y — yo) as the equation of 75,
so b= f,(zo, %) O

Example 1. Find the tangent plane to the elliptic paraboloid z = 222 + 12
at the point (1,1, 3).
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Definition 14.4.2. The linear function whose graph is the tangent plane at
the point to the graph of a function f of two variables at the point (a, b, f(a, b))
is called the linearization of f at (a,b) and is given by

L(z,y) = f(a,b) + fu(a,b)(x — a) + fy(a,b)(y = b).

The approximation

f(x,y) = f(a,b) + fala,0)(x — a) + fy(a, b)(y = b)

is called the linear approximation or the tangent line approximation of f at
(a,b).

Definition 14.4.3. Suppose z = f(z,y) is a function of two variables where
x changes from a to a + Ax and y changes from b to b + Ay. Then the
corresponding increment of z is

Az = f(a+ Az,b+ Ay) — f(a,b).

Definition 14.4.4. If z = f(x,y), then f is differentiable at (a,b) if Az can
be expressed in the form

Az = fo(a,b)Azx + f,(a,b)Ay + e1Ax + e2Ay
where &1 and g5 — 0 as (Az, Ay) — (0,0).

Theorem 14.4.2. If the partial derivatives f, and f, exist near (a,b) and are
continuous at (a,b), then f is differentiable at (a,b).

Example 2. Show that f(z,y) = xe™ is differentiable at (1,0) and find its
linearization there. Then use it to approximate f(1.1,—0.1).
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Example 3. On a hot day, extreme humidity makes us think the temperature
is higher than it really is, whereas in very dry air we perceive the temperature
to be lower than the thermometer indicates. The National Weather Service
has devised the heat index (also called the temperature-humidity index, or
humidex, in some countries) to describe the combined effects of temperature
and humidity. The heat index [ is the perceived air temperature when the
actual temperature is 7" and the relative humidity is H. So [ is a function of
T and H and we can write [ = f(7T, H). The following table of values of I is
an excerpt from a table compiled by the National Weather Service.

Heat index I as a function of temperature and humidity

Relative humidity (%)

TH50 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90

90 96 | 98 | 100 | 103 | 106 | 109 | 112 | 115 | 119

92 100 | 103 | 105 | 108 | 112 | 115 | 119 | 123 | 128

Actual 94 104 | 107 | 111 | 114 | 118 | 122 | 127 | 132 | 137
temperature

(°F) 96 109 | 113 | 116 | 121 | 125 | 130 | 135 | 141 | 146

98 114 | 118 | 123 | 127 | 133 | 138 | 144 | 150 | 157

100 119 | 124 | 129 | 135 | 141 | 147 | 154 | 161 | 168

Find a linear approximation for the heat index I = f(T, H) when T is near
96°F and H is near 70%. Use it to estimate the heat index when the temper-
ature is 97°F and the relative humidity is 72%.
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Definition 14.4.5. For a differentiable function of two variables, z = f(z,y),
we define the differentials dxr and dy to be independent variables; that is,
they can be given any values. Then the differential dz, also called the total
differential, is defined by

0z 0z
= Lo+ Sy )y = e+ oy

Example 4.
(a) If z = f(x,y) = 2> + 3zy — y?, find the differential dz.

(b) If x changes from from 2 to 2.05 and y changes from 3 to 2.96, compare
the values of Az and dz.

Example 5. The base radius and height of a right circular cone are measured
as 10 cm and 25 cm, respectively, with a possible error in measurement of as
much as 0.1 cm in each. Use differentials to estimate the maximum error in
the calculated volume of the cone.
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Remark 1. Linear approximations, differentiability, and differentials can be
defined in a similar manner for functions of more than two variables. A differ-
entiable function is defined by an expression similar to the one in Definition
14.4.4. For such functions the linear approximation is

f(xvyv Z) ~ f(a7 b7 C) + fw<a7 b7 C)(I - CL) + fy<a’7 b7 C)(y - b) + f2<a7b7 C)(’Z - C)

and the linearization L(z,y, z) is the right side of this expression.
If w= f(x,y,2) then the increment of w is

Aw = f(x 4+ Az, y + Ay, z + Az) — f(z,y, 2).

The differential dw is defined in terms of the differentials dzx, dy, and dz of the
independent variables by

ow ow ow
dw = —dr + —dy + —dz.
ox dy A
Example 6. The dimensions of a rectangular box are measured to be 75 cm,
60 cm, and 40 cm, and each measurement is correct to within 0.2 cm. Use
differentials to estimate the largest possible error when the volume of the box
is calculated from these measurements.
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14.5 The Chain Rule

Theorem 14.5.1 (The Chain Rule (Case 1)). Suppose that z = f(x,y) is a
differentiable function of x and y, where x = g(t) and y = h(t) are differen-
tiable functions of t. Then z is a differentiable function of t and

dz_0fdv  0fdy
dt  Oxdt Oydt’

Proof.
Az = gAa: + ﬁAy + 1Az + g5 Ay
ox dy

where €1 and €9 — 0 as (Az, Ay) — (0,0). Dividing both sides of this equation
by At, we have

Az  Of Ax  Of Ay Ax Ay

At Or At oyAr AT A
If we now let At — 0, then Az = g(t+At)—g(t) — 0 because g is differentiable
and therefore continuous. Similarly, Ay — 0. This, in turn, means that e; — 0
and €9 — 0, so

b _ g B2

dt ~ Ao At

_of .. Ax Of . Ay . . Az . . Ay
=G dim ag oy i (e ) o 5 (i) i, 37
_Ofdx  Ofdy dx dy

“ova Ty U w T
_0fdr  0fdy .
C Oxdt  Oydt’

Example 1. If z = 2%y + 3zy?, where x = sin2t and y = cost, find dz/dt
when ¢t = 0.
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Example 2. The pressure P (in kilopascals), volume V' (in liters), and tem-
perature T" (in kelvins) of a mole of an ideal gas are related by the equation
PV = 831T. Find the rate at which the pressure is changing when the tem-
perature is 300 K and increasing at a rate of 0.1 K/s and the volume is 100 L
and increasing at a rate of 0.2 L/s.

Theorem 14.5.2 (The Chain Rule (Case 2)). Suppose that z = f(x,y) is
a differentiable function of x and y, where x = g(s,t) and y = h(s,t) are
differentiable functions of s and t. Then

0z 0z0x 0z0y 0z 0z0x 0z0y

9s ozos Oyos ot ozot ogor

Example 3. If z = e¢®siny, where x = st? and y = s%t, find 9z/ds and 0z /0t.
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Theorem 14.5.3 (The Chain Rule (General Version)). Suppose that u is a
differentiable function of the n variables x1,x2,...,2, and each x; is a dif-
ferentiable function of the m wvariables ti,ts, ..., t,,. Then u is a function of
ti,ta, ..., t, and

@_ ou 0x; n ou Oxy +“'+%8xn

for eachi=1,2,...,m.

Example 4. Write out the Chain Rule for the case where w = f(x,y, 2, 1)
and z = z(u,v), y = y(u,v), z = z(u,v), and t = t(u,v).

2 -t 2

Example 5. If v = 2%y + y?23, where x = rse!, y = rs?e™!, and z = r?ssint,

find the value of Ju/ds when r =2, s =1, t = 0.
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Example 6. If g(s,t) = f(s* —t*t* — s?) and f is differentiable, show that g
satisfies the equation

dg dg

Example 7. If z = f(z,y) has continuous second-order partial derivatives
and = r? + 5% and y = 2rs, find

(a) 0z/0r
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(b) 92z/0r?

Theorem 14.5.4 (Implicit Differentiation). Suppose that an equation of the
form F(z,y) = 0 defines y implicitly as a differentiable function of x, that
is, y = f(z), where F(z, f(x)) = 0 for all x in the domain of f. If F is

differentiable,
oF

dy _ oz _ I
dx or Fy,
dy
Proof. 1f F' is differentiable, we can apply Case 1 of the Chain Rule to differ-

entiate both sides of the equation F(z,y) = 0 with respect to = to get

OFdv OFdy

Grde  Oydr

But dz/dx = 1, so if 0F /0y # 0 we can solve for dy/dz and obtain the desired
result. O
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Example 8. Find 3/ if 23 4 y® = 6xy.

Theorem 14.5.5. Suppose that z is given implicitly as a function z = f(z,y)
by an equation of the form F(x,y,z) = 0. This means that F(x,y, f(z,y)) =0
for all (x,y) in the domain of f. If F' and f are differentiable,

OF oF
9z g 0z 8_3/
or  OF oy  OF"
0z 0z

0 0
Example 9. Find % and &t 28 4 Y3+ 23 + 6ryz = 1.
ox dy
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14.6 Directional Derivatives and the Gradient

Definition 14.6.1. The directional derivative of f at (x, o) in the direction
of a unit vector u = (a,b) is

f(xo + ha,yo + hb) — f(xo,y0)

Dy f(xo,90) = ,llljf(l)

h Y

if this limit exists.

Example 1. Use the weather map in the right figure to
estimate the value of the directional derivative of the tem-
perature function at Reno in the southeasterly direction.

| S S N —
0 50 100 150 200
(Distance in miles)
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Theorem 14.6.1. If f is a differentiable function of x and y, then f has a
directional derivative in the direction of any unit vector u = (a,b) and

Dyuf(z,y) = fulz,y)a + fy(z,y)b.

Proof. 1f we define a function ¢ of the single variable h by
g(h) = f(xo + ha,yo + hb)
then, by the definition of the derivative, we have

g(h) — g(0) — lm f(xo + ha,yo + hd) — f(x0,y0)

/ I K
g <O> o llzlg(lj h h—0 h
- Duf(xOJyO)'

On the other hand, we can write g(h) = f(z,y), where x = xo+ha, y = yo+hb,
so the Chain Rule gives

yy Ofdr  Ofdy
If we now put h = 0, then x = x¢, y = yo, and
g/(O) = fx(an yO)a + fy(xo,yO)b-
Thus

Dy f(w0,90) = fa(®0,y0)a + fy (w0, Yo)b. ]

Remark 1. If the unit vector u makes an angle 6 with the Y
positive z-axis (as in the figure), then we can write u =
(cosf,sinf) and the formula in Theorem 14.6.1 becomes
Duf(x,y) = fo(x,y) cos 0 + fy(x,y) sind.
0
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Example 2. Find the directional derivative D, f(z,y) if
fla,y) =2’ = 3wy + 4y?

and u is the unit vector given by angle § = w/6. What is D, f(1,2)?

Definition 14.6.2. If f is a function of two variables  and y, then the gra-
dient of f is the vector function Vf (or gradf) defined by

0 0
Vi) = (aloo)f)) = i+ 5

Example 3. If f(x,y) =sinx + €™, then find V f(z,y) and V f(0,1).

Remark 2. With this notation for the gradient vector, we can rewrite the
equation for the directional derivative of a differentiable function as

Duf(xvy) = Vf(x,y) - W

This expresses the directional derivative in the direction of a unit vector u as
the scalar projection of the gradient vector onto u.
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Example 4. Find the directional derivative of the function f(z,y) = z%y*—4y
at the point (2, —1) in the direction of the vector v = 2i + 5j.

Definition 14.6.3. The directional derivative of f at (x¢, Yo, 20) in the direc-
tion of a unit vector u = (a, b, ¢) is
f(zo + ha,yo + hb, 2o + he) — f(xo, Yo, 20)

h

Duf(flfmyo, 20) = ,llli%

if this limit exists. More compactly,

. f(xo+ hu) — f(x0)
-Duf(XO) - fng%) h
where xg = (g, yo) if n =2 and x¢ = (%o, Yo, 20) if n = 3.
Remark 3. If f(x,y, z) is differentiable and u = (a, b, ¢), then the same method
that was used to prove Theorem 14.6.1 can be used to show that

Dllf('ru y? Z) = f:v(x7 y? Z)CL + fy(x7 317 Z)b + f2<x7 Z/; Z>C'
For a function of three variables, the gradient vector, denoted by V f or grad f,
is

vf($7y7 Z) = <fx(x7y7 Z)?fy(‘%.?y? Z)?fz(x7y7 Z)>7

0 0 0
V= oSy L) = a—ii + 8—£j + a—ﬁk.

Just as with functions of two variables, the directional derivative can be rewrit-
ten as

or, for short,

Duf(xayvz) = Vf(l’,y,Z) -u.
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Example 5. If f(z,y,2) = zsinyz,

(a) find the gradient of f

(b) find the directional derivative of f at (1,3,0) in the direction of v =
i+2j—k

Theorem 14.6.2. Suppose [ is a differentiable function of two or three vari-
ables. The maximum value of the directional derivative D, f(x) is |V f(x)| and
it occurs when u has the same direction as the gradient vector V f(x).

Proof.
Duf=Vf-u=|Vf||lu|cosd = |V f|cost

where 6 is the angle between V f and u. The maximum value of cos# is 1 and
this occurs when 6 = 0. Therefore the maximum value of Dy f is |V f| and it
occurs when # = 0, that is, when u has the same direction as V f. O
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Example 6.

(a) If f(x,y) = ze¥, find the rate of change of f at the point P(2,0) in the
direction from P to () (%, 2).

(b) In what direction does f have the maximum rate of change? What is this
maximum rate of change?
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Example 7. Suppose that the temperature at a point (z, y, z) in space is given
by T'(x,y,z) = 80/(1+ x>+ 2y*+ 32?), where T is measured in degrees Celsius
and x, y, z, in meters. In which direction does the temperature increase fastest
at the point (1,1, —2)? What is the maximum rate of increase?

Definition 14.6.4. If VF(xg, yo, 20) # 0, the tangent plane VE (X0, Yo, 20)

to the level surface F'(z,y, z) = k at P(xg, Yo, 20) is the plane
that passes through P and has normal vector V F'(xq, 4o, 20)-
(See the figure.) Using the standard equation of a plane, we
can write the equation of this tangent plane as

tangent plane

Fo. (0, Y0, 20)(x—20)+F, (20, Yo, 20) (Y—y0)+F (20, Yo, 20) (T—20).
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Calculus III - Directional Derivatives and the Gradient

Definition 14.6.5. The normal line to the level surface F(z,y,z) = k at
P(xq, 40, z0) is the line passing through P and perpendicular to the tangent
plane. The direction of the normal line is therefore given by the gradient vector
V F(xg, Yo, 20) and so its symmetric equations are

T — Zo . Y — Yo B 2= 20

Fx(x()uy(bz()) Fy(xO;yO,ZO) FZ(',L]O)yOaZU)‘

Example 8. Find the equations of the tangent plane and normal line at the
point (—2,1,—3) to the ellipsoid
2 2

x g 2
r 3
1TV Ty
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Calculus III - Maximum and Minimum Values

14.7 Maximum and Minimum Values

Definition 14.7.1. A function of two variables has a local maximum at (a, b)
if f(z,y) < f(a,b) when (z,y) is near (a,b). The number f(a,b) is called a
local maximum value. If f(z,y) > f(a,b) when (z,y) is near (a,b), then f
has a local minimum at (a,b) and f(a,b) is a local minimum value. If these
inequalities hold for all points (z,y) in the domain of f, then f has an absolute
maximum (or absolute minimum) at (a, b).

Theorem 14.7.1. If f has a local mazimum or minimum at (a,b) and the
first-order partial derivatives of f exist there, then f,(a,b) =0 and f,(a,b) =
0.

Proof. Let g(z) = f(x,b). If f has a local maximum (or minimum) at (a,b),
then ¢ has a local maximum (or minimum) at a, so ¢’(a) = 0 by Fermat’s
Theorem. But ¢'(a) = f.(a,b) and so f.(a,b) = 0. Similarly, by applying
Fermat’s Theorem to the function G(y) = f(a,y), we obtain f,(a,b) =0. O

Definition 14.7.2. A point (a, b) is called a critical point (or stationary point)
of fif f.(a,b) =0 and f,(a,b) =0, or if one of these partial derivatives does
not exist.

Example 1. Find the extreme values of f(z,y) = 2® + y? — 22 — 6y + 14.
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Calculus III - Maximum and Minimum Values

Example 2. Find the extreme values of f(z,y) = y* — 22

Theorem 14.7.2 (Second Derivatives Test). Suppose the second partial deriva-
tives of [ are continuous on a disk with center (a,b), and suppose that f,(a,b) =

0 and f,(a,b) =0. Let

D= D(aa b) = fm’(a7b)fyy(a’ b) - [fwy(avb)]Q'

(a) If D >0 and f..(a,b) >0, then f(a,b) is a local minimum.
(b) If D >0 and f..(a,b) <0, then f(a,b) is a local mazimum.
(¢c) If D <0, then f(a,b) is not a local mazimum or minimum.

Remark 1. In case (c) the point (a,b) is called a saddle point of f and the
graph of f crosses its tangent plane at (a,b).

Remark 2. If D = 0, the test gives no information: f could have a local
maximum or local minimum at (a,b), or (a,b) could be a saddle point of f.

Remark 3. To remember the formula for D, it’s helpful to write it as a deter-
minant:

Jow  fay

D=1

= faolfyy — <ffcy>2'
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Calculus III - Maximum and Minimum Values

Example 3. Find the local maximum and minimum values and saddle points
of f(z,y) = a* +y* — dzy + 1.
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Calculus III - Maximum and Minimum Values

Example 4. Find and classify the critical points of the function

f(z,y) = 102%y — 52* — 4y* — x* — 2y*.
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Calculus III - Maximum and Minimum Values

Example 5. Find the shortest distance from the point (1,0, —2) to the plane
r+2y+z=4.
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Calculus III - Maximum and Minimum Values

Example 6. A rectangular box without a lid is to be made from 12 m? of
cardboard. Find the maximum volume of such a box.
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Calculus III - Maximum and Minimum Values

Definition 14.7.3. A closed set in R? is one that contains all its boundary
points. [A boundary point of D is a point (a,b) such that every disk with
center (a,b) contains points in D and also points not in D.]

A bounded set in R? is one that is contained within some disk.

Closed sets
N
I |
| I

AN /

Sets that are not closed

Theorem 14.7.3 (Extreme Value Theorem for Functions of Two Variables).
If f is continuous on a closed, bounded set D in R?, then f attains an absolute
mazximum value f(xq,y1) and an absolute minimum value f(xs9,ys) at some
points (z1,y1) and (xe,y2) in D.

Remark 4. To find the absolute maximum and minimum values of a continuous
function f on a closed, bounded set D:

1. Find the values of f at the critical points of f in D.
2. Find the extreme values of f on the boundary of D.

3. The largest of the values from steps 1 and 2 is the absolute maximum
value; the smallest of these values is the absolute minimum value.
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Calculus III - Maximum and Minimum Values

Example 7. Find the absolute maximum and minimum values of the function
f(z,y) = 2* — 2zy + 2y on the rectangle D = {(x,y) |0 <z < 3,0 <y < 2}.
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Calculus III - Lagrange Multipliers

14.8 Lagrange Multipliers

Theorem 14.8.1 (Method of Lagrange Multipliers). To find the mazimum
and minimum values of f(x,y,z) subject to the constraint g(z,y,z) = k [as-
suming that these extreme values exist and Vg # 0 on the surface g(x,y, z) =

kJ:

(a) Find all values of x, y, z, and X\ such that

Vf(z,y,2) = AVy(z,y,2)

and
g(x,y,z) = k.

The number X\ is called a Lagrange multiplier.

(b) Evaluate f at the points (x,y, z) that result from step (a). The largest of
these values is the mazimum value of f; the smallest is the minimum value

of f.
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Calculus III - Lagrange Multipliers

Example 1. A rectangular box without a lid is to be made from 12 m? of
cardboard. Find the maximum volume of such a box.

106



Calculus III - Lagrange Multipliers

Example 2. Find the extreme values of the function f(z,y) = 2% + 2y* on
the circle 2% + y* = 1.

Example 3. Find the extreme values of f(x,y) = x?+2y? on the disk 22 +y? <
1.
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Calculus III - Lagrange Multipliers

Example 4. Find the points on the sphere 22 + y? + 22 = 4 that are closest
to and farthest from the point (3,1, —1).
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Calculus III - Lagrange Multipliers

Theorem 14.8.2 (Method of Lagrange Multipliers for Two
Constraints). To find the mazimum and minimum values
of f(x,y,z) subject to the constraints g(x,y,z) = k and
h(z,y,z) = ¢ [assuming that these extreme values exist and P
Vg #0, Vh #0, and Vg is not parallel to Vh]: ' Vg
(a) Find all values of x, y, z, A, and pu such that -
P

Vf(x,y,2) = AVg(z,y, 2) + pVh(z,y, 2) V/ i

and g=k
9(@,y,2) =k  hz,y,2) =c

The numbers A and p are called Lagrange multipliers.

(b) Evaluate f at the points (x,y,z) that result from step
(a). The largest of these values is the mazimum value of
f; the smallest is the minimum value of f.

Example 5. Find the maximum value of the function f(x,y,2) = z+2y+3z
on the curve of intersection of the plane z — y + 2z = 1 and the cylinder
22+ =1.
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Chapter 15

Multiple Integrals

15.1 Double Integrals over Rectangles

Definition 15.1.1. The double integral of f over the rectangle R is

//R floy)dA= Tim > > flxjy;) A4

i=1 j=1

if this limit exists. The points (77}, y;;) are called sample points, AA = Az Ay
is the area of the subrectangle R;; formed by the subintervals [z;_, ;] and
[y;—1,y;], and the sum is called a double Riemann sum.
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Calculus III - Double Integrals over Rectangles

Definition 15.1.2. If f(x,y) > 0, then the volume V' of the solid that lies
above the rectangle R and below the surface z = f(x,y) is

V://Rf(x,y)dA.

Example 1. Estimate the volume of the solid that lies above the square
R =10,2] x [0,2] and below the elliptic paraboloid z = 16 — 2% — 2y%. Divide
R into four equal squares and choose the sample point to be the upper right
corner of each square R;;. Sketch the solid and the approximating rectangular
boxes.

Example 2. If R = {(z,y) | -1 <2 <1,-2 <y < 2}, evaluate the integral

//Rmcm.
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Calculus III - Double Integrals over Rectangles

Theorem 15.1.1 (Midpoint Rule for Double Integrals).

[[remar= 33 s an

i=1 j=1
where Z; is the midpoint of [x;_1,x;] and y; is the midpoint of [y;—1,y;].

Example 3. Use the Midpoint Rule with m = n = 2 to estimate the value of
the integral [[,(z — 3y®) dA, where R = {(z,y) |0 <2 <2,1 <y <2}

Definition 15.1.3. Suppose that f is a function of two variables that is in-
tegrable on the rectangle R = [a, b] X [¢,d]. We use the notation fab f(z,y)dz
to mean that y is held fixed and f(z,y) is integrated with respect to x from
x = a to x = b. This procedure is called partial integration with respect to z.
Integrating this function gives us an iterated integral

/j/jf(x,y)d:cdy:/cd [/abfu,y)dx] dy

where we first integrate with respect to = (holding y fixed) from z = a toz = b
and then we integrate the resulting function of y with respect to y from y = ¢
toy =d.
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Calculus III - Double Integrals over Rectangles

Example 4. Evaluate the iterated integrals.

3 2
(a) / / oy dy dx
o J1

2 3
(b) / / oy dx dy
1 Jo

Theorem 15.1.2 (Fubini’s Theorem). If f is continuous on the rectangle
R={(z,y) [a <z <bec<y<d}, then

//Rf(x’y)dA:/ab/cdf(%y)dydxz/Cd/abf(x,y)dxdy.

More generally, this is true if we assume that f is bounded on R, f is discon-

tinuous only on a finite number of smooth curves, and the iterated integrals
erist.
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Calculus III - Double Integrals over Rectangles

Example 5. Evaluate the double integral [[,,(z—3y*) dA, where R = {(z,y) |
0<2<21<y<2)

Example 6. Evaluate [[,,ysin(zy)dA, where R = [1,2] x [0, 7].

Example 7. Find the volume of the solid S that is bounded by the elliptic
paraboloid 2% + 2y + z = 16, the planes + = 2 and y = 2, and the three
coordinate planes.
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Calculus III - Double Integrals over Rectangles

Theorem 15.1.3.

//R g(@)h(y) dA = / bg(m) dx / dh(y) dy  where R=[a,b] x [c, d].

Proof. By Fubini’s Theorem,

J[ stemtaa= | d / ' g(e)h(y) de dy = / d [ / ' o(@)h) dx] "

In the inner integral, y is a constant, so h(y) is a constant and we can write

/Cd [/abg(x)h(y) dx] dy = /Cd h(y) </abg(x) dx) dy = /abg(x) dr /Cd h(y) dy

since fab g(x) dx is a constant. O

Example 8. Find [[,sinzcosydA if R =[0,7/2] x [0,7/2].

Definition 15.1.4. The average value of a function f of two variables defined
on a rectangle R is

1 //
ave — — X, dA
where A(R) is the area of R.
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Calculus IIT - Double Integrals over Rectangles

Example 9. The contour map in the figure shows the snowfall, in inches, that
fell on the state of Colorado on December 20 and 21, 2006. (The state is in
the shape of a rectangle that measures 388 mi west to east and 276 mi south
to north.) Use the contour map to estimate the average snowfall for the entire
state of Colorado on those days.
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Calculus III - Double Integrals over General Regions

15.2 Double Integrals over General Regions

Definition 15.2.1. If F' is integrable over R and D is a bounded region then

we define the double integral of f over D by

//Df(x,y)dA://RF(x,y)dA

Flz.y) f(x,y) if (z,y)isin D,
Z, =
770 if (,y) is in R but not in D.

where F' is given by

P "~
)

I

I

raph of F'
Xg ap

Definition 15.2.2. A plane region D is said to be of type I if it lies between

the graphs of two continuous functions of x, that is,

D={(z,y) |la<z<bg(r) <y<g(r)}

where g; and gy are continuous on [a, b]. Some examples of type I regions are

shown in the figure.

Y =g>(x)

Y=gi(x)

y y
Yy =¢,(x) y=¢,(x)

D | D f

| | | l

| | | |

I y=gi(x) I : y=gi(x) l :

a b X 0 a b X 0 a
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Calculus III - Double Integrals over General Regions

Theorem 15.2.1. If f is continuous on a type I region D such that

D={(z.y)|a<e<bagle)<y<glx))

ﬂﬁ@wmz[lﬁﬁmw@m

Definition 15.2.3. A plane region D is said to be of type II if it lies between
the graphs of two continuous functions of y, that is,

then

D={(z,y) | c<y<d h(y) <z<h(y)}

where hy and hy are continuous on [c, d]. Some examples of type II regions are
shown in the figure.

VA
db————
y
x=m) ) p x=y(y) d—————
cb_ x=hy(y) D x=1,(y)
0 b 0 X
C _______

Theorem 15.2.2. If f is continuous on a type II region D such that

D={(z,y) | c<y<dh(y) <z<hy(y)}

ﬂjmwM—féﬁwmwmw

then
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Calculus III - Double Integrals over General Regions

Example 1. Evaluate [ p(@+2y)dA, where D is the region bounded by the
parabolas y = 222 and y = 1 + 22
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Calculus III - Double Integrals over General Regions

Example 2. Find the volume of the solid that lies under the paraboloid
2z = 22 + y? and above the region D in the zy-plane bounded by the line
y = 2x and the parabola y = z2.
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Calculus III - Double Integrals over General Regions

Example 3. Evaluate [f p oy dA, where D is the region bounded by the line
= 7 — 1 and the parabola y? = 2z + 6.
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Calculus III - Double Integrals over General Regions

Example 4. Find the volume of the tetrahedron bounded by the planes x +
2+ z2z=2, =2y, x=0,and z = 0.

Example 5. Evaluate the iterated integral fol fxl sin(y?) dy dx.
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Calculus III - Double Integrals over General Regions

Theorem 15.2.3 (Properties of Double Integrals).

// (z,y) + g(x,y)] dA = /fasyd/H—// g(x,y)d

2. // cf(x,y)dA = c/ f(z,y) dA where ¢ is a constant.
D D

3. If f(x,y) > g(z,y) for all (x,y) in D, then

//D f(e,y)dA > //D g(z,y) dA

4. If D = Dy U Dy, where Dy and Dy don’t overlap except perhaps on their
boundaries, then

//Dﬂ“"’y)dA:/le(xv?J)dAJr/DQf(x,y)dA

This property can be used to evaluate double integrals over regions D that
are neither type I nor type II but can be expressed as a union of regions
of type I or type 11, as illustrated by the figure.

y y
D,
D D,
0 X 0 ;
(a) D is neither type I nor type II. (b) D=D, U D,, D, is type I, D, is type 1L

5. // 1dA = A(D) where A(D) is the area of D.
D

6. If m < f(x,y) < M for all (x,y) in D, then

D) < / f(x,y)dA < MA(D).
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Example 6. Use Property 6 to estimate the integral [[, I esnreosy d A where
D is the disk with center the origin and radius 2.
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Calculus III - Double Integrals in Polar Coordinates

15.3 Double Integrals in Polar Coordinates

Definition 15.3.1. The region given by
R={(r0)|a<r<ba<d<pj}

is called a polar rectangle, as shown in the figure.

0=6;-
r=>b le \ * gk
6= \,./(”iaej)
R
A6O
/ /// f
// m// / r=r
r=a — / / / =T
/ pt ome U _
(g - = r=ri
et ="
0 . 0

Theorem 15.3.1 (Change to Polar Coordinates in a Double Integral). If f is
continuous on a polar rectangle R given by 0 < a <r <b, a <0 < 3, where
0<pB—a<2r, then

//Rf(x’y)dA_/j/abf(rcose,rsine)rdrde,

Proof. The “center” of the polar subrectangle
Rij = {(7’, 6) ‘ rio1 <1< 7"1',(9];1 <f< 9]}

has polar coordinates

. 1 |
r, = 5(7”1;14‘7’@') Qj = 5(6j71+9j>.
Since the area of a sector of a circle with radius r and central angle 6 is %TQG,
the area of R;; is

1 1 1
AA; = grif0 — orl (A = S(r] — ) A6
1
= 5 (ri i) (ri = ri1) A0 = r] ArAd.
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Calculus III - Double Integrals in Polar Coordinates

Therefore we have

m n

//R flz,y)dA = m17llr—r>loo Z Z f(ricost,risint;) AA;

i=1 j=1
B b
:/ /f(rcosQ,rsiné’)rdrdQ. O

Example 1. Evaluate [[,(3z + 4y*) dA, where R is the region in the upper
half-plane bounded by the circles 22 + y* = 1 and 22 + y? = 4.

Example 2. Find the volume of the solid bounded by the plane z = 0 and
the paraboloid z = 1 — 2% — 3.
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Calculus III - Double Integrals in Polar Coordinates

Theorem 15.3.2. If f is continuous on a polar region of the form

D={(r,0)]a<0<pB,h(0) <r<hy(0)}

0=p r=h,(0)
D
/
/
/,3 B 0=«
e
0 r=nh6)

then

B rha(0)
//f(q:,y)dA:/ / f(rcos@,rsin®)rdrdd.
D a Jhi(0)

Example 3. Use a double integral to find the area enclosed by one loop of
the four-leaved rose r = cos 26.
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Calculus III - Double Integrals in Polar Coordinates

Example 4. Find the volume of the solid that lies under the paraboloid
2z = 22 + 9%, above the zy-plane, and inside the cylinder 22 + y? = 2.
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Calculus IIT - Applications of Double Integrals

15.4 Applications of Double Integrals

Definition 15.4.1. Suppose a lamina occupies a region D of the zy-plane
and its density (in units of mass per unit area) at a point (x,y) in D is given
by p(z,y), where p is a continuous function on D. Then the total mass of the
lamina is given by

k l

m = k:,lllinoo Z Z p(ry, yi5) AA = //D p(r,y) dA.

i=1 j=1

Similarly, if an electric charge is distributed over a region D and the charge
density (in units of charge per unit area) is given by o(z,y) at a point (z,y)
in D, then the total charge () is given by

Q- //D o, y) dA.

Example 1. Charge is distributed over the triangular region y

D in the figure so that the charge density at (x,y) is o(x,y) =

zy, measured in coulombs per square meter (C/m?). Find y=1

the total charge. I b
y=1—x
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Calculus IIT - Applications of Double Integrals

Definition 15.4.2. Suppose a lamina occupies a region D and has density
function p(z,y). The moment of the lamina about the z-axis is

M, = lim Y yiplar;,u;) AA = // yp(z,y) dA.
m,n— 00 D

i=1 j=1

Similarly, moment about the y-axis is

My = Jim S wptean)ad = [ apteyaa
m,n—00 D

i=1 j=1

Definition 15.4.3. The coordinates (z,y) of the center of mass of a lamina
occupying the region D and having density function p(z,y) are

M, 1 M, 1
i:—y:—//xp(x,y)d/l g:_:—//yp(x,y)dA
m m J/p m m JJp

where the mass m is given by

m = //D oz, y) dA.

The lamina balances horizontally when supported at its center of mass (see

the figure).
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Calculus IIT - Applications of Double Integrals

Example 2. Find the mass and center of mass of a triangular lamina with
vertices (0,0), (1,0), and (0, 2) if the density function is p(x,y) = 1+ 3z + v.
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Calculus IIT - Applications of Double Integrals

Example 3. The density at any point on a semicircular lamina is proportional
to the distance from the center of the circle. Find the center of mass of the

lamina.
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Calculus IIT - Applications of Double Integrals

Definition 15.4.4. The moment of inertia (also called the second moment)
of a particle of mass m about an axis is defined to be mr?, where r is the
distance from the particle to the axis. The moment of inertia of the lamina
about the z-axis is defined to be

L=t Y0 () otel ) 84 = [[ oty da
m,n—00 D

i=1 j=1

Similarly, the moment of inertia about the y-axis is defined to be

1= lim 77 ole p) A4 = //D (i, y) dA.

i=1 j=1

The moment of inertia about the origin, also called the polar moment of inertia

is defined to be

Iy = m},igloo i i [(@;)2 + (?/1*3)2] p(ai; yi;) AA = //D<$2 +y%)p(x, y) dA.

i=1 j=1

Example 4. Find the moments of inertia I, I,,, and I of a homogeneous disk
D with density p(z,y) = p, center the origin, and radius a.
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Calculus IIT - Applications of Double Integrals

Definition 15.4.5. The radius of gyration of a lamina about an axis is the
number R such that

mR? =1
where m is the mass of the lamina and I is the moment of inertia about the
given axis. In particular, the radius of gyration y with respect to the z-axis and
the radius of gyration z with respect to the y-axis are given by the equations
my? =1, mz® = I,.
Example 5. Find the radius of gyration about the z-axis of the disk in Ex-
ample 4.

Definition 15.4.6. The joint density function of two continuous random vari-
ables X and Y is a function f of two variables such that the probability that
(X,Y) lies in a region D is

P((X,Y) € D) = //D Fa,y) dA.

In particular, if the region is a rectangle, the probability that X lies between
a and b and Y lies between ¢ and d is

b pd
P(aSXSb,cSYSd)z//f(x,y)dydx.

(See the figure.)
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Calculus IIT - Applications of Double Integrals

Remark 1. Because probabilities aren’t negative and are measured on a scale
from 0O to 1, the joint density function has the following properties:

flz,y) >0 /sz(x,y)dAzl

r //RQf(x,y)dAz/_:/_Zf(x,y)dydx:c}i_{go/Daf(x’y)dA

where D, is the disk with radius a and center the origin.

fo

Example 6. If the joint density function for X and Y is given by

Clz+2y) if0<x<10,0<y<10
flx,y) = .
0 otherwise

find the value of the constant C. Then find P(X < 7,Y > 2).

Definition 15.4.7. Suppose X is a random variable with probability density
function fi(z) and Y is a random variable with density function f(y). Then X
and Y are called independent random variables if their joint density function
is the product of their individual density functions:

f(@y) = fi(@) fa(y).
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Calculus IIT - Applications of Double Integrals

Example 7. The manager of a movie theater determines that the average
time moviegoers wait in line to buy a ticket for this week’s film is 10 minutes
and the average time they wait to buy popcorn is 5 minutes. Assuming that
the waiting times are independent, find the probability that a moviegoer waits
a total of less than 20 minutes before taking his or her seat.
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Calculus IIT - Applications of Double Integrals

Definition 15.4.8. If X and Y are random variables with joint density func-
tion f, we define the X-mean and Y-mean, also called the expected values of
X and Y, to be

mz//RQﬂff(fv,y)dA mz//Rzyf(x,y)dA-

Example 8. A factory produces (cylindrically shaped) roller bearings that
are sold as having diameter 4.0 cm and length 6.0 cm. In fact, the diameters
X are normally distributed with mean 4.0 cm and standard deviation 0.01 cm
while the lengths Y are normally distributed with mean 6.0 cm and standard
deviation 0.01 cm. Assuming that X and Y are independent, write the joint
density function and graph it. Find the probability that a bearing randomly
chosen from the production line has either length or diameter that differs from
the mean by more than 0.02 cm.
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Calculus III - Surface Area

15.5 Surface Area

Definition 15.5.1. Let S be a surface with equation z =
f(z,y), where f has continuous partial derivatives. We de-
fine the surface area of S to be

A = 33,

i=1 j=1

where AT;; is the part of the tangent plane to S at the point
P;; on the surface corresponding to a rectangle R;; in the
domain D of f.

Theorem 15.5.1. The area of the surface with equation z = f(x,y), (z,y) €
D, where f, and f, are continuous, is

AS) = [ Ife P+ el + a4

Proof. Let a and b be the vectors that start at P;; and lie along the sides of
the parallelogram with area AT;;. Then AT;; = |a x b|. Since f,(z;,y;) and
fy(xi,y;) are the slopes of the tangent lines through P,; in the directions of a
and b, we have

a=Azi+ f.(x;,y;) Ark
b=Ayj+ f,(z;,y;) Ayk.

and
i j k
axb=|Az 0 fi(z;,y;)Ax
0 Ay fylzi,y;) Ay
= —fulzi,yj) Az Ayi— f,(75,y;) Az Ayj+ Ax Ayk
= [—f:p(l’i, Z/j)i - fy(SCm Z/j)j + k] AA.
Thus

A) = fim 323 AT, = i 353

=1 j=1 i=1 j=1

= m Z Z \/[fm(xi, Y2 + [fy (@, y)]2 + L AA. 0
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Example 1. Find the surface area of the part of the surface z = 22 + 2y that
lies above the triangular region 7" in the zy-plane with vertices (0,0), (1,0),
and (1,1).

Example 2. Find the area of the part of the paraboloid z = 2% + y? that lies
under the plane z = 9.
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15.6 Triple Integrals

Definition 15.6.1. The triple integral of f over the box B
is

l m n
JI[ f@maav = m STSTS i) AV

i=1 j=1 k=1

if this limit exists. The points (27, yi, 2i;;) are called sam-
ple points, AV = Az Ay Az is the volume of the sub-box
Biji = [wi—1, %] X [yj—1, y;] X [#k—1, 2], and the sum is called
a triple Riemann sum.

Theorem 15.6.1 (Fubini’s Theorem for Triple Integrals). If f is continuous
on the rectangular box B = [a,b] x [¢,d] X [r, s], then

//Bf(x,y,Z)de/Ts/cd/abf(x,y,z)dxdydz.

Example 1. Evaluate the triple integral [[[, zyz*>dV where B is the rectan-
gular box given by

B={(z,y,2) | 0<2x<1,-1<y<20<z<3}
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Calculus III - Triple Integrals

Definition 15.6.2. If F' is integrable over B and FE is a bounded region then
we define the triple integral of f over £ by

//Ef(x,y,z) dV = ///BF(x,y,z) av

where F' is defined so that it agrees with f on F but is 0 for points in B that
are outside F.

Definition 15.6.3. A solid region FE is said to be of type 1 A
if it lies between the graphs of two continuous functions of x 2=y, )
and y, that is

E= {(IayVZ) | (xay) S D»“l(x7y) <z< u2(x,y)} a Z=uy(X, y)

|

where D is the projection of E onto the xy-plane as shown 0 W
in the figure. . I D : | y
Theorem 15.6.2. If f is continuous on a type 1 region E such that '

E={(z,y,2) | (z,y) € D,ui(z,y) < 2z < uz(z,y)}
then

uQ(xvy)
] swnav=[[ [ seyzas| an
E D u1(z,y)

Remark 1. If the projection D of E onto the zy-plane is a type
I plane region (as in the figure), then ’ 2=, y)

E = {(Z‘,y, Z) | a S Y S ba gl('r) S ) S 92(x)7u1(x7y> S < S UQ('Tay)}7 'E

SO
b rg2(z) pruz(z.y) 0 [
// f(x,y,z)dV:// / f(x,y,2)dzdydzx. /\I{\|JI\,
E a Jgi(x) Jui(zy) Xb :

y=gix)\ D

If, on the other hand, D is a type II plane region (as in the
figure), then

E={(z,y,2) | c<y <d, h(y) <z <h(y),u(z,y) <z <wus(z,y)},

SO i > ‘
\
d rho(y)  rus(zy) O\L«“\/TL\)
| tewnav= [ [ [ gz dzdeay pay=; ‘
E c hi(y) u1 (z,y) B \ D t J
|
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Calculus III - Triple Integrals

Example 2. Evaluate [[],  2dV, where E is the solid tetrahedron bounded
by the four planes xt =0,y =0,2=0,and x +y + z = 1.

Definition 15.6.4. A solid region F is of type 2 if it is of
the form

E= {(x>y7 Z) ‘ (y7 Z) € D7u1<ya Z) Sx < UQ(Q:Z)}

where D is the projection of E onto the yz-plane as shown
in the figure.

Theorem 15.6.3. If f is continuous on a type 2 region E
such that

E= {(x,y, Z) | (y,Z) € D7u1(y7 Z) Sx < uQ(yaz)}

[ aamav = || [ / (())f(y) da
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Definition 15.6.5. A solid region E is of type 3 if it is of .
the form

E= {(l‘,y, z) | (:L’,Z) € D7u1($7z) <y< UQ(ZL‘,Z)}

where D is the projection of F onto the xz-plane as shown
in the figure.

Theorem 15.6.4. If f is continuous on a type 3 region E
such that

E={(z,y,2) | (x,2) € D,us(x,2) <y < wus(z,2)}

fema = [ | [ fey.2) ay
E D uy(z,z)

Example 3. Evaluate [[[, Va2 + 22dV, where E is the region bounded by
the paraboloid y = 2 + 22 and the plane y = 4.

then
dA.
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1’2
Example 4. Express the iterated integral fol fo foyf(m,y,z) dzdydr as a
triple integral and then rewrite it as an iterated integral in a different order,
integrating first with respect to x, then z, and then y.

Theorem 15.6.5.

V(E) = ///E dv.

Example 5. Use a triple integral to find the volume of the tetrahedron T
bounded by the planes x +2y+ 2 =2, z =2y, x =0, and 2z = 0.
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Definition 15.6.6. If the density function of a solid object that occupies the
region E is p(x,y, z), in units of mass per unit volume, at any given point

(x,y, z), then its mass is
m = /// p(z,y,2)dV
E

and its moments about the three coordinate planes are

Myzz///Exp(x,y,Z) dv szz///Ey,O(x,y,z) dv
Mxy:///Ezp(x,y, z)dV.

The center of mass is located at the point (Z, 7, Z), where

Myz _ Mrz _ Mxy
m m m

xr =

If the density is constant, the center of mass of the solid is called the centroid
of E. The moments of inertia about the three coordinate axes are

I, = ///E(yf + 22)p(z,y,2)dV I, = ///E(xz + 22)p(z,y,2)dV
I = //[E(fff2 +y°)p(x,y, 2) dV.

Definition 15.6.7. The total electric charge on a solid object occupying a
region E and having charge density o(z,vy, z) is

Q= ///Ea(x,y,z) dv.

Definition 15.6.8. If we have three continuous random variables X, Y, and
7, their joint density function is a function of three variables such that the
probability that (XY, Z) lies in FE is

P(X,Y,Z) € E) = //Ef(x,y,z) av.

In particular,

b d s
P(aﬁXﬁb,cﬁYﬁd,rSZSs)—///f(x,y,z)dzdydx.

The joint density function satisfies

F(z,y,2) >0 /Z/:/Zf(x,y,z)dzdydle.
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Example 6. Find the center of mass of a solid of constant density that is
bounded by the parabolic cylinder 2 = y? and the planes z = z, z = 0, and
r=1.
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15.7 Integrals in Cylindrical Coordinates

Definition 15.7.1. In the cylindrical coordinate system, a ZA
point P in three-dimensional space is represented by the or-
dered triple (r,6, z), where r and 6 are polar coordinates of ? P(r, 0,2)
the projection of P onto the xy-plane and z is the directed
distance from the zy-plane to P. (See the figure.)

Theorem 15.7.1. To convert from cylindrical to rectangular
coordinates, we use the equations

x =rcosft y =rsinf z2=2z

whereas to convert from rectangular to cylindrical coordinates, we use

r? =2 4+ 97 tanf = 7 z=z.
x
Example 1. (a) Plot the point with cylindrical coordinates (2,27/3,1) and

find its rectangular coordinates.

(b) Find cylindrical coordinates of the point with rectangular coordinates
(3,—-3,—7).
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Calculus III - Integrals in Cylindrical Coordinates

Example 2. Describe the surface whose equation in cylindrical coordinates is
Z=r.

Theorem 15.7.2. Suppose that E is a type 1 region whose ,
projection D onto the xy-plane is described in polar coordi- 2= uy(% y)

nates (see the figure). In particular, suppose that f is con-
tinuous and

E={(z,y,2) | (z,9) € D,ur(x,y) < 2 < ug(z,y)}

where D is given in polar coordinates by

D ={(r,0) ] a<0<p8 h(0) <r<hy(0)}.

Then the formula for triple integration in cylindrical coordi-
nates is

B8 h2(0) 2(r cos 6,rsin 6)
// f(x,y,z)dV:// / f(rcos@,rsind, z)rdzdrdf.
E « h1(0) (rcosf,rsinf)
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Calculus III - Integrals in Cylindrical Coordinates

Example 3. A solid F lies within the cylinder 22 + 3% = 1, z

below the plane z = 4, and above the paraboloid z = 1 —a2% — z=4

y%. (See the figure.) The density at any point is proportional (0,0, 4)
to its distance from the axis of the cylinder. Find the mass ]
of E.

2 pVA—2Z 2
Example 4. Evaluate / / / (2% +v?) dz dy dx.
—2J —4—22 J /22 +y?
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15.8 Integrals in Spherical Coordinates

Definition 15.8.1. The spherical coordinates (p, 6, ¢) of a P
point P in space are shown in the figure, where p = |OP]
is the distance from the origin to P, # is the same angle as
in cylindrical coordinates, and ¢ is the angle between the

positive z-axis and the line segment OP. Note that P(x,y,z)
P(p. 0, )
p>0 0<¢<m
Theorem 15.8.1. The relationship between rectangular and
spherical coordinates can be seen from the figure. To convert
from spherical to rectangular coordinates, we use the equa- \§
tions
P'(x,y,0)

x = psin¢cos b y = psin¢psinf Z = pcos .
To convert from rectangular to spherical coordinates, we use the equation

,02 :x2+y2—|—z2.
Example 1. The point (2,7/4,7/3) is given in spherical coordinates. Plot
the point and find its rectangular coordinates.
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Calculus III - Integrals in Spherical Coordinates

Example 2. The point ((), 24/3, —2) is given in rectangular coordinates. Find

spherical coordinates for this point.

Theorem 15.8.2. The formula for triple integration in spherical coordinates

//E F,y,2)dV

d B8 b
:///f(,osinqbcos@,psinqbsin@,pcosgb)pzsingbddedgb.

where E 1s a spherical wedge given by

E={(p,0,0) | a<p<ba<d<pc<¢<d}

S
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Calculus III - Integrals in Spherical Coordinates

Example 3. Evaluate [[[, @ +v*+22 17 where B is the unit ball:

B={(z,y,2) | 2> +y* + 2> <1}
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Calculus III - Integrals in Spherical Coordinates

Example 4. Use spherical coordinates to find the volume of the solid that
lies above the cone z = y/22 + y? and below the sphere % + 3% + 2% = 2. (See
the figure.)
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15.9 Change of Variables in Multiple Integrals

Definition 15.9.1. A change of variables is given by a transformation 7" from
the uv-plane to the xy-plane:

T(u,v) = (x,y)
where x and y are related to u and v by the equations
x = g(u,v) y = h(u,v).

We usually assume that T is a O transformation, which means that g and h
have continuous first-order partial derivatives.

Remark 1. A transformation T is really just a function whose domain and
range are both subsets of R%. If T'(uy,v1) = (w1, y1), then the point (z1,%,) is
called the image of the point (u1,v1). If no two points have the same image,
T is called one-to-one. The figure shows the effect of a transformation 7" on
a region S in the wv-plane. T transforms S into a region R in the zy-plane
called the image of S, consisting of the images of all points in S.

DA VA
T
S —_— R
(11, 07) T
.\(—/ ® (%, )
0 u 0 X

If T is a one-to-one transformation, then it has an inverse transformation 71
from the xy-plane to the uv-plane and it may be possible to solve for v and v
in terms of x and y:
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Calculus III - Change of Variables in Multiple Integrals

Example 1. A transformation is defined by the equations

r=u®—v* Y = 2uv.

Find the image of the square S = {(u,v) |0 <u <1,0 <wv < 1}.

Definition 15.9.2. The Jacobian of the transformation 7" given by = g(u, v)
and y = h(u,v) is

or v
8(x,y)_ ou Ov _%@_%@

O(u,v) |9y Oy C Oudv  Ovou
ou Ov

Remark 2. This notation can be used to show that the area AA of the image
R in the xy-plane of a rectangle in the uv-plane is approximately

Au Av.

|9z, y)
adw ‘aw, )

Theorem 15.9.1 (Change of Variables in a Double Integral). Suppose that T
is a O transformation whose Jacobian is nonzero and that T maps a region S
in the uv-plane onto a region R in the xy-plane. Suppose that f is continuous
on R and that R and S are type I or type II plane regions. Suppose also that
T is one-to-one, except perhaps on the boundary of S. Then

[ s@maa= [[ statuovwon |52
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Example 2. Use the change of variables x = u? — v?, y = 2uv to evaluate

the integral [f rYdA, where R is the region bounded by the z-axis and the
parabolas y? = 4 — 4z and y? = 4 + 4z, y > 0.
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Example 3. Evaluate the integral [[ R e@tv)/(@=Y) dA where R is the trape-
zoidal region with vertices (1,0), (2,0), (0,—2), and (0, —1).
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Definition 15.9.3. The Jacobian of the transformation 7' given by z =
g(u,v,w), y = h(u,v,w), and z = k(u,v,w) is

Oor Ox Ox
ou v Ow
owyz) |2 By Oy
O(u,v,w) |Ou v Odwl|’
0z 0z 0z

du v dw

Theorem 15.9.2 (Change of Variables in a Triple Integral). Under hypotheses
similar to those in Theorem 15.9.1,

I swzrav = ] stuvw. vt o, stu.u) \%

Example 4. Use Theorem 15.9.2 to derive the formula for triple integration
in spherical coordinates.

du dv dw.
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Chapter 16

Vector Calculus

16.1 Vector Fields

Definition 16.1.1. Let D be a set in R? (a plane region). A

VA
vector field on R? is a function F that assigns to each point F(x,y)
(x,y) in D a two-dimensional vector F(z,y). D— \

(%)

Remark 1. Since F(x,y) is a two-dimensional vector, we can » L,
write it in terms of its component functions P and @ as ¥ 0 — x
follows:

.\\

F(z,y) = P(z,y)i+ Q(z,y)j = (P(z,y), Q(z,y))

or, for short,
F = Pi+ Qj.

Note that P and () are scalar functions of two variables and are sometimes
called scalar fields to distinguish them from vector fields.

Definition 16.1.2. Let E be a subset of R3. A vector field on R? is a function
F that assigns to each point (z,y, 2) in F a three-dimensional vector F(x,y, z).

Remark 2. We can express a vector field F on R3 in terms of its component
functions P, @), and R as

F(z,y,2) = P(x,y,2)i+ Q(z,y,2)] + R(x,y, 2)k.
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Calculus III - Vector Fields

Example 1. A vector field on R? is defined by F(z,y) = —yi + xj. Describe
F by sketching some of the vectors F(x,y).

Example 2. Sketch the vector field on R? given by F(x,v, z) = zk.
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Calculus III - Vector Fields

Example 3. Imagine a fluid flowing steadily along a pipe and let V(z,y, 2)
be the velocity vector at a point (x,y,z). Then V assigns a vector to each
point (z,y,2) in a certain domain F (the interior of the pipe) and so V is a
vector field on R? called a velocity field. Sketch a possible velocity field in a
fluid flow.

Example 4. Newton’s Law of Gravitation states that the magnitude of the
gravitational force between two objects with masses m and M is

mMG

r2

F| =

where r is the distance between the objects and G is the gravitational constant.
Let’s assume that the object with mass M is located at the origin in R? and
let the position vector of the object with mass m be x = (x,y, z). Write and
sketch an equation for the gravitational field F.
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Example 5. Suppose an electric charge @) is located at the origin. According
to Coulomb’s Law, the magnitude of the electric force F(x) exerted by this

charge on a charge ¢ located at a point (z,y,z) with position vector x =
(x,y,2) is

£4Q
r2

[ =

where ¢ is a constant (that depends on the units used). This vector field and
the one in Example 4 are examples of force fields. Instead of considering the
electric force F, physicists often consider the force per unit charge E(x) =
%F(X), called the electric field of (). Write equations for F and E.

Definition 16.1.3. If f is a scalar function of two variables, its gradient

Vi, y) = felz, y)i+ fy(z,9)]

is a vector field on R? called a gradient vector field. Likewise, if f is a scalar
function of two variables, its gradient is a vector field on R? given by

Vi(x,y, 2) = folz,y, 2)i+ fy(z,y,2)] + f.(z,y, 2)k.
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Calculus III - Vector Fields

Example 6. Find the gradient vector field of f(z,y) = %y — y3. Plot the
gradient vector field together with a contour map of f. How are they related?

Definition 16.1.4. A vector field F is called a conservative vector field if it is
the gradient of some scalar function, that is, if there exists a function f such
that F = Vf. In this situation f is called a potential function for F.
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16.2 Line Integrals

Definition 16.2.1. If f is defined on a smooth curve C' given

by the parametric equations r4
x = xz(t) y =y(t) a<t<hb,
then the line integral of f along C'is
[ Feds = lim 3 pau) s v
c n—o00 Py

if this limit exists. The lengths As; are of subarcs of C' and a
the points (z},y}) are sample points in the ith subarc.

Remark 1. Using the formula for the length of C' we can write

[ s [ bf(sc(w,y(t))\/ (%) ¥ (%)th.

Example 1. Evaluate fc(2 + 2%y) ds, where C' is the upper half of the unit
circle 22 + % = 1.
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Definition 16.2.2. Suppose that C' is a piecewise-smooth
curve; that is, C' is a union of a finite number of smooth
curves C1, Oy, ..., C,, where, as illustrated in the figure, the
initial point of C;y; is the terminal point of C;. Then we
define the integral of f along C' as the sum of the integrals
of f along each of the smooth pieces of C"

/C fawyis= [ sepds+ [ faaiset [ s

Ca Cn

A
y c,
N
c
C, }
— Cl
0

Example 2. Evaluate [ o 27 ds where C consists of the arc C of the parabola

y = 2 from (0,0) to (1,1) followed by the vertical line segment Cy from (1,1)

to (1,2).
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Definition 16.2.3. Suppose that p(x,y) represents the linear density at a
point (z,y) of a thin wire shaped like a curve C'. Then the mass m of the wire
is given by

m = lim ) p(fv?,y?)ﬁsiz/p(x,y)d&
n—oo
i=1 ¢

The center of mass of the wire with density function p is located at the point
(Z,y), where

_ 1 B 1
T = —/xp(:v,y) ds  y= —/yp(x,y) ds.
m Jo m Jo

Example 3. A wire takes the shape of the semicircle 2 + ¢ = 1, y > 0, and
is thicker near its base than near the top. Find the center of mass of the wire
if the linear density at any point is proportional to its distance from the line

y=1.
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Calculus III - Line Integrals

Definition 16.2.4. The integrals
[ Fade = lim 3 et ) A

/Cf(x,y) dy = JLH;OZf(ff7yf)Ayi
=1

are called the line integrals of f along C with respect to z and y. The original
line integral [ o f(x,y)ds is called the line integral with respect to arc length.

Theorem 16.2.1. Line integrals with respect to x and y can also be evaluated
by expressing everything in terms of t:

[jmwmszmmWWMMt
[ sy = [ a0

Remark 2. When line integrals with respect to z and y occur together we
abbreviate by writing

/CP(w,y)de+/CQ(x,y)dy=/CP(x,y)derQ(x,y)dy-
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Example 4. Evaluate fC y? dov+x dy, where (See the figure.)

(a) C' = () is the line segment from (-5, —3) to (0, 2)

= (, is the arc of the parabola z = 4 — y? from
(—5,-3) to (0,2).
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Definition 16.2.5. Suppose that C is a smooth space curve given by the
parametric equations

x = x(t) y =y(t) z = z(t) a<t<b,

or by a vector equation r(t) = x(t)i + y(¢)j + z(t)k. If f is a function three
variables that is continuous on some region containing C', then the line integral
of f along C' (with respect to arc length) is

f(z,y,2)ds = lim fx;‘kay;{azzik As;
/C (2. 2)ds = Jim 3 1 )

if this limit exists.

Remark 3. Using the formula for the length of C' we can write

[ sz [ bf(x(t),y(t),Z(t))\/ (%) + (%) + (%)

or, more compactly,

[ sl

For the special case f(z,y,2) =1, we get

/Cds:/ab|r’(t)|dt:L

where L is the length of the curve C.
Definition 16.2.6. The integrals

[ 1) de = i 3Gt An = [ 10000, 20) 0 d
n b
[ 1) dy = lim 3 i =) A= [ (0.0, 20 0 d

n b
[ Hy 2z = i Y gtz As = [ Ha 0,000,200 d

are called the line integrals of f along C' with respect to x, y, and z.

Remark 4. As with line integrals in the plane, we evaluate integrals of the
form

/ Pla,y, =) da + Q. y, 2) dy + R(zy, =) d
C

by expressing everything (x,y, z, dx, dy, dz) in terms of the parameter t.
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Example 5. Evaluate [, cysinzds, where C' is the circular
helix given by the equations x = cost, y = sint, z = t,
0 <t < 2m. (See the figure.)
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Example 6. Evaluate fcydx + zdy + xdz, where C' consists of the line
segment C from (2,0,0) to (3,4,5), followed by the vertical line segment Cj
from (3,4,5) to (3,4,0).
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Definition 16.2.7. Suppose that F = Pi+ Qj + Rk is a B
continuous force field on R3. We define the work W done by
the force field F as the limit of the Riemann sums

n

Y IF(af,yi =) - T, yi )] Asy

=1

and T(z,vy, z) is the unit tangent vector at the point (x,y, 2)

where P (x},yf, zf) is a point on the ith subarc P;,_; P; of C, /
on C. That is, .

W:/F(:L’,y,z)'T(x,y,z)ds:/F~Tds.
c C

Remark 5. If the curve C' is given by the vector equation r(t) = z(t)i+y(t)j+
z(t)k, then T(t) = r'(t)/|r'(t)], so

w- [ b P | = | Be(t) (1) dt

which we abbreviate as |, oF-dr.

Definition 16.2.8. Let F be a continuous vector field defined on a smooth
curve C' given by a vector function r(t), a <t < b. Then the line integral of
F along C'is

/CF-dr:/abF(r(t))-r’(t)dt:/CF-Tds.

Example 7. Find the work done by the force field F(z,y) = 2% — zyj in
moving a particle along the quarter-circle r(t) = costi + sintj, 0 <t < 7/2.
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Example 8. Evaluate [, F - dr, where F(xz,y,2) = zyi + yzj + zrk and C is
the twisted cubic given by

r=t y=t* =t 0<t<l1.

Theorem 16.2.2. Suppose the vector field F on R? is given in component
form by F = Pi+ Qj+ Rk. Then

/F~dr—/de+Qdy+Rdz.
c c

/CF-dr:/ F(r(t)) - v'(t) dt
(Pi+Qj+ Bk) - (¢'(t)i+y'(t)j + 2’ (H)k) dt

[P((t), y(t), 2(t))2"(t) + Q(x(t), y(8), 2(t))y () + R(x(t), y(t), 2(1))2'(t)] dt

/ab
f
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16.3 Fundamental Theorem for Line Integrals

Theorem 16.3.1 (Fundamental Theorem for Line Integrals). Let C' be a
smooth curve given by the vector function r(t), a <t <b. Let f be a differen-
tiable function of two or three variables whose gradient vector V f is continuous

on C. Then
tLVfwsz@wﬂ—f@w»

Proof. If f is a function of three variables and C' is a space
curve joining the point A(x1,y1, 21) to the point B(xg, ya, 22),
as in the figure, then the theorem becomes

/Cvf ~dr = f($2,y2722) - f(xhylazl)-

In this case (the case for two variables is similar),

/CVf-dr:/abe(r(t))-r’(t)dt

brofde  Ofdy Ofdz
—L(£E+@a+@aﬁt
b d
= — t))dt
| gt
= f(x(b)) — f(r(a)). O
Example 1. Find the work done by the gravitational field
mMG

TP

F(x) =

in moving a particle with mass m from the point (3,4, 12) to the point (2,2, 0)
along a piecewise-smooth curve C. (See Example 16.1.4.)
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Remark 1. In general, if F is a continuous vector field with

domain D, we say that the line integral [, F - dr is inde-

pendent of path if [, F-dr = [, F -dr for any two paths

C7 and Cy in D that have the same initial points and the

same terminal points. By Theorem 16.3.1, line integrals of

conservative vector fields are independent of path. A curve

is called closed if its terminal point coincides with its initial point, that is,
r(b) =r(a). (See the figure.)

Theorem 16.3.2. [, F-dr is independent of path in D if and only if [, F-dr =
0 for every closed path C' in D.

Proof. 1f [, o F - dr is independent of path in D and C'is any
closed path in D, we can choose any two points A and B on
C as being composed of the path C from A to B followed
by the path Cy from B to A. (See the figure.) Then

A
/F-dr:/ F-dr—I—/ F-dr:/ F~dr—/ F-dr=0
C Cl 02 Cl *02

since 7 and —C'y have the same initial and terminal points.

Conversely, if it is true that [ o F - dr = 0 whenever C is a closed path in D,
then we demonstrate independence of path as follows. Take any two paths
C: and Cs from A to B in D and define C' to be the curve consisting of C
followed by —C5. Then

O:/F-dr:/F-dr+/ F-dr:/F-dr—/ F.-dr
C C1 —CQ C1 C2

and so fch-dr:fCQF-dr. O

G

Theorem 16.3.3. Suppose F is a vector field that is continuous on an open
connected region D. (By open we mean that for every point P in D there is
a disk with center P that lies entirely in D, and by connected we mean that
any two points in D can be joined by a path that lies in D.) If fCF -dr is
independent of path in D, then F is a conservative vector field on D; that is,
there exists a function f such that Vf =F.

Theorem 16.3.4. IfF(z,y) = P(z,y)i+Q(z,y)j is a conservative vector field,
where P and Q) have continuous first-order partial derivatives on a domain D,

then throughout D we have
orP  0Q

Oy ox
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Definition 16.3.1. A simple curve is a curve that does not intersect itself
anywhere between its endpoints. [See the figure; r(a) = r(b) for a simple
closed curve, but r(t;) # r(t) when a < ty <ty < b.]

N E

simple, not simple,
not closed not closed

simple, not simple,

closed closed

Definition 16.3.2. A simply-connected region in the plane is a connected
region D such that every simple closed curve in D encloses only points that
are in D. [See the figure; a simply-connected region contains no hole and
cannot consist of two separate pieces. |

simply-connected region

regions that are not simply-connected

Theorem 16.3.5. Let F = Pi+ Q) be a vector field on an open simply-
connected region D. Suppose that P and () have continuous first-order partial

derivatives oP 00
8_y = o throughout D.

Then F s conservative.
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Example 2. Determine whether or not the vector field

F(z,y) = (x —y)i+ (v - 2)]

1s conservative.

Example 3. Determine whether or not the vector field
F(z,y) = (3 + 2zy)i+ (2° - 3y°);

1s conservative.

177



Calculus IIT - Fundamental Theorem for Line Integrals

Example 4. (a) If F(z,y) = (3 + 2zy)i + (z* — 3y?)j, find a function f such
that F =V f.

(b) Evaluate the line integral | o F - dr, where C is the curve given by

r(t) = e'sinti + e’ costj 0<t<m.
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Example 5. If F(z,y, 2) = y*i + (2zy + €*)j + 3ye*’k, find a function f such
that Vf =F.
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16.4 Green’s Theorem

Definition 16.4.1. The positive orientation of a simple closed curve C' refers
to a single counterclockwise traversal of C'. Thus if C' is given by the vector
function r(t), a <t < b, then the region D is always on the left as the point
r(t) traverses C. (See the figure.)

YA YA
C
D D
C
0 X 0 X
(a) Positive orientation (b) Negative orientation

Theorem 16.4.1 (Green’s Theorem). Let C' be a positively oriented, piecewise-
smooth, simple closed curve in the plane and let D be the region bounded by C'.
If P and Q) have continuous partial derivatives on an open region that contains

D, then
/Pd:c—l—@dy:// (a—Q—a—P>dA.
c p\odzr 0Oy

Remark 1. The notation
%de—f—@dy or %Pdw—l—@dy

is sometimes used to indicate that the line integral is calculated using the
positive orientation of the closed curve C. Another notation for the positively
oriented boundary curve of D is 0D, so the equation in Green’s Theorem can

be written as 5 op
//(—Q——>dA:/ Pdx+ Qdy.
p \ O dy 8D
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Example 1. Evaluate |, c x*dx + xy dy, where C is the triangular curve con-
sisting of the line segments from (0, 0) to (1,0), from (1,0) to (0,1), and from
(0,1) to (0,0).

Example 2. Evaluate ¢,(3y — e™"*)dz + (7z + \/y* + 1) dy, where C'is the
circle 22 + 3% = 9.
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Theorem 16.4.2. The area of a region D 1is

1
Az}ﬁxdy:—ygydx:—ygxdy—ydx.
c c 2 Jc

Proof. Since the area of D is [[,,1dA, we wish to choose P and @ so that

0Q oP )
or Oy
There are several possibilities:
1
1
Then the result follows by Green’s Theorem.
22 ?
Example 3. Find the area enclosed by the ellipse — + e 1.
a
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Example 4. Evaluate 36() y?dx + 3xydy, where C' is the boundary of the
semiannular region D in the upper half-plane between the circles 22 + ¢y = 1

and 2% + 9% = 4.

Remark 2. Green’s Theorem can be extended to apply to
regions with holes, that is, regions that are not simply-
connected. Observe that the boundary C of the region D
in the top figure consists of two simple closed curves C; and

C5. By dividing the region D into two regions D’ and D" <
by means of the lines shown in the bottom figure, and then
applying Green’s Theorem to each of D’ and D", we get C
0Q 0P 0Q 0P 0Q OP
— —— |dA = — —— ) dA — —— | dA
//D(ax ay) //(ax ay) *////(89: Iy
:/ de—i—@dy—i—/ Pdz+ Qdy ,
oD/ oD D
:/ de+Qdy+/ Pdr+Qdy T—
Cq Cs
= / Pdx + Qdy.
c
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Example 5. If F(z,y) = (—yi + zj)/(z* + y®), show that [, F - dr = 27 for
every positively oriented simple closed path that encloses the origin.
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16.5 Curl and Divergence

Definition 16.5.1. If F = Pi+ Qj+ Rk is a vector field on R? and the partial
derivatives of P, (), and R all exist, then the curl of F is the vector field on
R3 defined by

_(OR 0Q\. (0P OR\. (0Q 0P
CurlF_(@y 8z)l+(8z (9:E)J+(8x 8y)k’

Remark 1. The equation for curl can be rewritten using operator notation by
introducing the vector differential operator V (“del”) as

V:i3+j2+k2.
ox Yy

It has meaning when it operates on a scalar function to produce the gradient

of f:
.0 .0 0 of. of. 9of
—(iZ 2 ) =Y Y Yy
v (18x+J8y+ 8z>f 8x1+ 8y‘1+ 0z
If we think of V as a vector with components 0/0z, 9/dy, and 9/0z, we can

also consider the formal cross product of V with the vector field F as follows:

i j k
o o0 0
VxF=|— — —
% Oor 0Oy 0z
P @ R
_(OR 0QY. oP ORY. oQ 0P
_(8y 8z>1+(8z 8:}6)‘]+<8x 8y>k

= curl F.

Example 1. If F(x,vy, 2) = x2i + 2yzj — y°k, find curl F.
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Theorem 16.5.1. If f is a function of three variables that has continuous
second-order partial derivatives, then

curl(Vf) = 0.
Proof.
i J k
9 90 9
cwrl(Vf) =V x(Vf)= oz oy 0z
of of of
Jdr Jdy 0z
*f Pf . *f Pf . *f 0%
= - 1+ - J+ - k
Oydz 020y 0z0x  0x0z Oxdy  Oyor
=0i+0j+0k=0
by Clairaut’s Theorem. O

Example 2. Show that the vector field F(z,y, z) = z2i + 2yzj — y?k is not
conservative.

Theorem 16.5.2. If F is a vector field defined on all of R® whose component
functions have continuous partial derivatives and curl B = 0, then F is a
conservative vector field.

Example 3. (a) Show that
F(z,y,2) = y*2°1i + 22y2°j + 329227k

is a conservative vector field.
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(b) Find a function f such that F =V f.

Definition 16.5.2. If F = Pi+ Qj + Rk is a vector field on R* and dP/dz,
0Q /0y, and OR/0z exist, then the divergence of F is the function of three
variables defined by

oP 0Q OR
divF = —+ — + —.
v ox + dy + 0z
Remark 2. In terms of the gradient operator V = (9/0x)i+(9/9y)j+(0/0z)k,
the divergence of F can be written symbolically as the dot product of V and
F:
divF=V_.F.
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Example 4. If F(z,y, 2) = xzi + zyzj — y°k, find div F.

Theorem 16.5.3. If F = Pi+ Qj+ Rk is a vector field on R and P, @, and

R have continuous second-order partial derivatives, then

divecurl F = 0.

Proof.

divewlF =V - (V xF)
SO (Gr 09y, 0 (20 _omy b (00 or)
or \dy 0Oz oy \ 0z Ox 0z \Or Oy
R B 0%Q n 0?P B 0’R N 0%Q B 0?pP
Ox0y 0x0z Oydz Oydxr 0z0xr  0z0y

=0.

O

Example 5. Show that the vector field F(z,y, z) = x2i+ zyzj — v’k can’t be
written as the curl of another vector field, that is, F # curl G.
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Theorem 16.5.4. Suppose a plane region D, its boundary curve C, and the
functions P and @) satisfy the hypotheses of Green’s Theorem where F = Pi—+

Qj. Then
51{ F.dr = // (curl F) - kdA.
c D

Proof. Regarding F as a vector field on R? with third component 0, we have

¢F~dr:7§de+Qdy
C C

and
i j k
0 0 0 oQ 0P
IF=| — — —|=(=—-—=— 1k
o Ox dy 0z ( Jdr Oy )
P(z,y) Qz,y) 0
Therefore 90 0P 90 op
IF) k=(——-— )k-k=—— —
(curl F) ( oxr Oy > ox Oy’
and the result follows by Green’s Theorem. n
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Theorem 16.5.5. Suppose a plane region D, its boundary curve C, and the
functions P and @) satisfy the hypotheses of Green’s Theorem where F = Pi—+

Qj. Then
%F-ndSZ//divF(x,y)dA.
c D

Proof. 1f C' is given by the vector equation
r(t) =x(t)i+y(t)j a<t<b
then the unit tangent vector is

() = L0 YO

=
<~
—~
~
~
=<
<
~—~
+
~—
—

PO QD]
l{ 1) ()] h(m“

:/;w@wuwoa—<<>w><>

:/de de—//(ap 9@ 14

by Green’s Theorem. O
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16.6 Parametric Surfaces and Their Areas

Definition 16.6.1. Suppose that
r(u,v) = z(u,v)i+ y(u,v)j + z(u,v)k

is a vector-valued function defined on a region D in the wv-plane. So x, vy,
and z, the component functions of r, are functions of the two variables u and
v with domain D. The set of all points (z,¥, z) in R? such that

r = x(u,v) y = y(u,v) z = z(u,v)

and (u,v) varies throughout D, is called a parametric surface S and the equa-
tions are called parametric equations of S. The surface S is traced out by the
tip of the position vector r(u,v) as (u,v) moves throughout the region D. (See
the figure.)

(u, 1)

0 u 0

e

Example 1. Identify and sketch the surface with vector equation

r(u,v) = 2cosui + vj + 2sinuk.
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Definition 16.6.2. If a parametric surface S is given by a vector function
r(u,v) and we keep u constant by putting u = ug, then r(ug,v) becomes a
vector function of the single parameter v and defines a curve C lying on S.
(See the figure.)

Similarly, if we keep v constant by putting v = vy, we get a curve Cy given by
r(u,vp) that lies on S. We call these curves grid curves.

Example 2. Use a computer algebra system to graph the surface
r(u,v) = ((2 + sinv) cosu, (2 + sinv) sinwu, u 4 cosv).

Which grid curves have u constant? Which have v constant?
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Example 3. Find a vector function that represents the plane that passes
through the point Fy with position vector rg and that contains two nonparallel
vectors a and b.

Example 4. Find a parametric representation of the sphere

x2+y2—|—22:a2.
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Example 5. Find a parametric representation for the cylinder

x2+y2:4 0<z<1.

Example 6. Find a vector function that represents the elliptic paraboloid
z = 2?4 2y°.

Example 7. Find a parametric representation for the surface z = 2/x2 + y2,
that is, the top half the cone 2?2 = 422 + 412
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Remark 1. Surfaces of revolution can be represented
parametrically and thus graphed using a computer. For
instance, let’s consider the surface S obtained by rotat-
ing the curve y = f(x), a < z < b, about the z-axis,
where f(x) > 0. Let 6 be the angle of rotation as shown
in the figure. If (z,y, z) is a point on S, then

rT=2x y = f(z)cosf z = f(z)sinb.

Therefore we take x and 0 as parameters and regard these
equations as parametric equations of S. The parameter
domain is given by a < x <b, 0 < 0 < 27.

Example 8. Find parametric equations for the surface generated by rotating
the curve y = sinz, 0 < x < 27, about the z-axis. Use these equations to
graph the surface of revolution.
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Definition 16.6.3. If S is a parametric surface traced out by a vector function
r(u,v) = (u, )i + y(u,0)j + 2(u, v)k

at a point Py with position vector r(ug, vg), and if we keep u constant by putting
u = ug, then r(ug,v) becomes a vector function of the single parameter v and
defines a grid curve 'y lying on S. The tangent vector to C; at F, is obtained
by taking the partial derivative of r with respect to v:

ox . . 9%
r, = %(UO; 'U0>1 + 6—Z(U0> UO)J + %(UO, Uo)k-

Similarly, if we keep v constant by putting v = vy, we get a grid curve Cs given
by r(u,vp) that lies on S, and its tangent vector at Py is

0
r, = a—z(uo, V)i + 8_z(u0’ v0)j + i(uo, vo)k.
D zZ
(o, o)
V=1,
D u=u,

If r, x r, is not 0, then the surface S is called smooth (it has no “corners”).
For a smooth surface, the tangent plane is the plane that contains the tangent
vectors r, and r,, and the vector r, X r, is a normal vector to the tangent
plane.
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Example 9. Find the tangent plane to the surface with parametric equations
r=u? y =02 z=u+2v at the point (1,1, 3).

Definition 16.6.4. If a smooth parametric surface S is given by the equation
r(u,v) = z(u,v)i+ y(u,v)j+ z(u,v)k (u,v) € D

and S is covered just once as (u,v) ranges throughout the parameter domain
D, then the surface area of S is

A(S) = //D]ru X 1| dA

where or. dy. 0 or. oy, 0
xT. y . ya xX. y . ya
S W N = Y Py
Tu 8u1 + 8u‘] + ou To (%1 + 81)'] + ov
| R

(7, v5)
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Example 10. Find the surface area of a sphere of radius a.
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Theorem 16.6.1. If a surface S has equation z = f(x,y), where (z,y) lies
i D and f has continuous partial derivatives, then the surface areas of S is

w9 = [ () (2)

Proof. We take x and y as parameters. The parametric equations are

r=z y=y z=f(z,y)

SO
. (of (o
r;,;—l—i-(%)k ry—J+(a—y)k
and
i j k
ofl  ar. o
Iy X Iy = 1o 1 :—a—ii—a—‘;j'—i-k.
01 Y
y

Thus we have

afr\®  [of\’ 92\ (02"
. =/ == L) 1=y f1+ (= =) . O
ez x| \/(39&) * <3y * * Ox i dy
Example 11. Find the area of the part of the paraboloid z = 22 + 2 that
lies under the plane z = 9.

199



Calculus III - Surface Integrals

16.7 Surface Integrals

Definition 16.7.1. Suppose that a surface S has a vector
equation

r(u,v) = z(u,v)i+ y(u,v)j + z(u, v)k (u,v) € D.

Then the surface integral of f over the surface S is

m n

//s @y z)dS = lm > > f(B5)ASy

i=1 j=1

where the areas AS;; are of patches of S that correspond
to subrectangles R;; with dimensions Au and Av, and the
points Pj; are sample points in each patch.

Remark 1. It can be shown, even when the parameter domain
D is not a rectangle, that

//Sf(x,y, z) dsz//Df(r(u,v))|ruxrv|dA,
and thus
//Sldsz//DervWA:A(S)_

Example 1. Compute the surface integral [[; 2 dS, where S is the unit sphere

4y’ + 22 =1
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Theorem 16.7.1. If S is a surface with equation z = g(x,y), then

//Sf(x,y,z)dS://l)f(:v,y,g(x,y))\/(%)2+(2_2)2+1dA_

Proof. Any surface S with equation z = g(z, y) can be regarded as a paramet-
ric surface with parametric equations

and so we have

Thus

and

92\’ 9z\>
o= (2) 5 (2) e

Example 2. Evaluate [[;ydS, where S is the surface z =
r4+y% 0<2<1,0<y<2 (See the figure.)
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Definition 16.7.2. If S is a piecewise-smooth surface, that is, a finite union
of smooth surfaces Si,Ss,...,S, that intersect only along their boundaries,
then the surface integral of f over S is defined by

//Sf(x,y,z)dS:/Slf(x,y,z)der...+//Snf<x,y7z)d3

Example 3. Evaluate [J. ¢ 2dS, where S is the surface whose sides S| are given
by the cylinder 22 + 3> = 1, whose bottom S, is the disk 22 + y?> < 1 in the
plane z = 0, and whose top S3 is the part of the plane z = 1 4+ x that lies
above Ss.
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Definition 16.7.3. If S is a surface that has a tangent plane at every point
(x,y, 2z) (except at any boundary point), and if it is possible to choose a unit
normal vector n at every such point so that n varies continuously over S, then
S is called an oriented surface and the given choice of n provides S with an
orientation. There are two possible orientations for any orientable surface (see
the figure).

Remark 2. For a closed surface, that is, a surface that is the boundary of a
solid region F, the convention is that the positive orientation is the one for
which the normal vectors point outward from E, and inward-pointing normals
give the negative orientation (see the figure).

Positive orientation Negative Orientation

Definition 16.7.4. If F is a continuous vector field defined on an oriented
surface S with unit normal vector n, then the surface integral of F over S is

//SF~dS://SF-ndS.

This integral is also called the flux of F across S.

Theorem 16.7.2. If S is given by a vector function r(u,v), then

//SF-dS://DF-(ruxrv)dA

where D is the parameter domain.

203



Calculus III - Surface Integrals

Proof. If S is given by a vector function r(u,v), then n is given by

r, X r,
n=——
v, X 1,

and thus we have
// F.dS — // T X g
]ru X Ty |
_ //D [F(r(u,v)) : % v, % T,| dA. 0

Example 4. Find the flux of the vector field F(z,y, z) = zi + yj + xk across
the unit sphere 22 +y% + 22 = 1.
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Remark 3. In the case of a surface S given by a graph z = g(z,y), we can
think of x and y as parameters and write

F-(r, xr,) = (Pi+Qj+ Rk)- <__xi——j+k

dg dg
F-dS:// (—P—— —+R)dA.
//s D Ox 83/

Example 5. Evaluate [[F - dS, where F(z,y, 2) = yi+ j+ zk and S is the
boundary of the solid region E enclosed by the paraboloid z = 1 — 22 — 2 and
the plane z = 0.

Thus
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Definition 16.7.5. If E is an electric field, then the surface integral

//SE-dS

is called the electric flux of E through the surface S. Gauss’s Law says that
the net charge enclosed by a closed surface S is

Q:ao//SE-dS

where gq is a constant (called the permittivity of free space) that depends on
the units used.

Definition 16.7.6. Suppose the temperature at a point (z,y, z) in a body is
u(zx,y, z). Then the heat flow is defined as the vector field

F=-KVu

where K is an experimentally determined constant called the conductivity of
the substance. The rate of heat flow across the surface S in the body is then
given by the surface integral

//SF-dS:—K//SVu-dS.

Example 6. The temperature u in a metal ball is proportional to the square
of the distance from the center of the ball. Find the rate of heat flow across a
sphere S of radius a with center at the center of the ball.
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16.8 Stokes’ Theorem

Definition 16.8.1. The figure shows an oriented surface .
with unit normal vector n. The orientation of S induces

the positive orientation of the boundary curve C' shown in

the figure. This means that if you walk in the positive direc-

tion around C' with your head pointing in the direction of n,

then the surface will always be on your left.

0

Theorem 16.8.1 (Stokes” Theorem). Let S be an oriented x/\—»

piecewise-smooth surface that is bounded by a simple, closed,
piecewise-smooth boundary curve C with positive orientation.

Let F be a vector field whose components have continuous partial derivatives
on an open region in R3 that contains S. Then

/F-dr://curlF-dS.
c s

Example 1. Evaluate [, F - dr, where F(z,y,2) = —y*i + zj + 2’k and C'is
the curve of intersection of the plane y + z = 2 and the cylinder 2% + y? = 1.
(Orient C' to be counterclockwise when viewed from above).
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Example 2. Use Stokes’ Theorem to compute the integral
[[gcurl F - dS, where F(z,y, 2) = xzi + yzj + xyk and S is
the part of the sphere 22 + y? + 22 = 4 that lies inside the
cylinder 22+1? = 1 and above the zy-plane. (See the figure.)
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16.9 The Divergence Theorem

Definition 16.9.1. Regions E that are simultaneously of types 1, 2, and 3
are called simple solid regions. The boundary of F is a closed surface, and we
use the convention that the positive orientation is outward; that is, the unit
normal vector n is directed outward from FE.

Theorem 16.9.1 (The Divergence Theorem). Let E be a simple solid region
and let S be the boundary surface of E, given with positive (outward) orien-
tation. Let F be a vector field whose component functions have continuous
partial derivatives on an open region that contains E. Then

//SF-dS:///EdiVFdV.

Example 1. Find the flux of the vector field F(x,y, z) = 2i + yj + 2k over
the unit sphere x2 + y? + 22 = 1.
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Example 2. Evaluate [[(F -dS, where
F(z,y,2) = ayi+ (y* + **)j + sin(zy)k
and S is the surface of the region £ bounded by the parabolic

cylinder 2 = 1—22 and the planes 2 = 0, y = 0, and y+2 = 2.
(See the figure.)
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Remark 1. The Divergence Theorem can be extended to ap-
ply to regions that are finite unions of simple solid regions.
For example, let’s consider the region E that lies between
the closed surfaces S; and Sy where Sy lies inside Sy. Let n;
and nsy be outward normals of S; and Sy. Then the bound-
ary surface of £ is S = 57 U S, and its normal n is given by
n = —n; on Sy and n = ny on Sy. (See the figure.) Applying
the Divergence Theorem to S, we get

///EdideV //F ds = //F ndS
//91 —n; ds+//52F n, dS
= //51F dS+//SQF'dS.

Example 3. In Example 16.1.5 we considered the electric field

E(x) = WX

where the electric charge @ is located at the origin and x = (z,y,2) is a
position vector. Use the Divergence Theorem to show that the electric flux of
E through any closed surface Sy that encloses the origin is

//S E - dS = 47e@).
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16.10 Summary

Fundamental Theorem of Calculus

Fundamental Theorem for Line Integrals

Green’s Theorem

Stokes’ Theorem

Divergence Theorem

Q
S

C

(222 as= [ passqu @

//curlF-dS:/F-dr
s c

///E;dideV://SF-dS

n
N
n
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Index

acceleration vector, 49 definite integral, 40

arc length, 41 density, 129

arc length function, 42 dependent variable, 56

average value, 115 determinant, 16
differentiable, 79

binormal VeCtOI', 46 differential, 81, 89

bounded set, 103 direction angles, 13

center of mass, 145, 166 d%rect%on cosines, 13
centroid, 145 direction numbers, 21

chain rule, 83 directional derivative, 89, 92

change of variables, 155, 158 d%splacen.lent Vecto‘r, 5, 1_5
distance in three dimensions, 3

closed 1
curve, 175 d}vergence, 187
surface, 203 dlvergence theorem, 209
closed set, 103 domain, 56

dot product, 11
double integral, 110, 117
double Riemann sum, 110

component functions, 33, 159
conductivity, 206
connected, 175

conservative vector field, 163 electric charge, 145

continuous, 67, 69 electric field, 162
vector function, 34 electric flux, 206

coordinate axes
three-dimensional, 1

coordinate planes
three-dimensional, 1

equivalent vectors, 5
expected value, 137
extreme value theorem, 103

coordinates first octant, 1
three-dimensional, 1 flux, 203

coplanar, 19 force field, 162

critical point, 97 Fubini’s Theorem, 113, 140

cross product, 16 function

curl, 185 of n variables, 63

curvature, 43 of three variables, 62

cylinder, 28 of two variables, 56

cylindrical coordinate system, 147 vector, 33
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fundamental theorem
for line integrals, 174

Gauss’s Law, 206
gradient, 91, 92, 162
graph, 59
gravitational field, 161
Green’s Theorem, 180
grid curves, 192

harmonic functions, 76

heat flow, 206

image, 154

implicit differentiation, 87
increment, 79, 82
independent of path, 175
independent variable, 56
initial point, 5

inverse transformation, 154
iterated integral, 112

Jacobian, 155, 158
joint density function, 134, 145

Lagrange multiplier, 105, 109
Laplace’s equation, 76
level curves, 59
level surfaces, 63
limit, 64

vector function, 33
line

vector equation, 21
line integral, 164, 167, 169, 172
linear approximation, 79, 82
linear equation, 24
linear function, 60
linearization, 79

magnitude of a vector, 7
mass, 145, 166
maximum

absolute, 97

local, 97

midpoint rule, 112
minimum

absolute, 97

local, 97
moment, 130, 145

of inertia, 133, 145

Newton’s Second Law of Motion, 51

normal line, 96
normal plane, 47
normal vector, 23

octacts, 1

one-to-one, 154

open, 175

orientation, 203
oriented surface, 203
orthogonal vectors, 12
osculating circle, 47
osculating plane, 47

parametric equations, 34, 191
parametric surface, 191
parametrizations, 41
partial derivative, 70
piecewise-smooth curve, 165
plane

parallel, 25

scalar equation, 23

vector equation, 23
polar rectangle, 125
polynomial, 67
position vector, 6

positive orientation, 180, 203, 207

potential function, 163
projections, 1

quadric surface, 29

radius of gyration, 134
range, 56

rational function, 67
reparametrization, 42
resultant force, 10
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right-hand rule, 1
rulings, 28

saddle point, 98
sample points, 110, 140
scalar fields, 159
scalar projection, 14
scalar triple product, 19
second derivative, 38
second derivative test, 98
second partial derivative, 75
simple curve, 176
simple solid region, 209
simply-connected region, 176
skew lines, 23
smooth
curve, 43
reparametrization, 43
surface, 196
space curve, 34
speed, 49
spherical coordinates, 150
standard basis vectors, 8
Stokes’ theorem, 207
surface area, 138, 197
surface integral, 200, 203
symmetric equations, 21

tangent line, 37

tangent plane, 78, 95, 196
tangent vector, 37
terminal point, 5

three-dimensional coordinates, 1

torque, 20

traces, 28

transformation, 154
inverse, 154

triple integral, 140

triple Riemann sum, 140

twisted cubic, 36

type 1 region, 141

type 2 region, 142

type 3 region, 143

type I region, 117
type II region, 118

unit normal vector, 46
unit tangent vector, 37
unit vector, 9

vector, 5
addition, 5
components, 6
difference, 5
magnitude, 7
negative, 5
orthogonal, 12
parallel, 5
properties, 8
representation, 6
scalar multiplication, 5
vector field, 159
vector function, 33
vector projection, 14
velocity field, 161
velocity vector, 49

wave equation, 77
wind-chill index, 57
work, 15, 172

zero vector, 5
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