Linear Algebra Homework #4

Replace this text with your name

Due: Replace this text with a due date

Exercise (4.1.11). Show that the set of all pairs of real numbers of the form (1, x) with the operations

$$(1,y) + (1,y') = (1,y+y')$$
 and $k(1,y) = (1,ky)$

is a vector space.

Solution: Replace this text with your solution. \Box

Exercise (4.1.17). Show that the set of all points in \mathbb{R}^2 lying on a line is a vector space with respect to the standard operations of vector addition and scalar multiplication if and only if the line passes through the origin.

Solution: Replace this text with your solution. \Box

Exercise (4.1.27). Prove that the set M_{mn} of all $m \times n$ matrices with the usual operations of addition and scalar multiplication is a vector space.

Exercise (4.2.17). Which of the following are subspaces of R^{∞} ?

- (a) All sequences of the form $\mathbf{v} = (v_1, v_2, \dots, v_n, \dots)$ such that $\lim_{n \to \infty} v_n = 0$.
- (b) All convergent sequences (that is, all sequences of the form) $\mathbf{v} = (v_1, v_2, \dots, v_n, \dots)$ such that $\lim_{n \to \infty} v_n$ exists).
- (c) All sequences of the form $\mathbf{v} = (v_1, v_2, \dots, v_n, \dots)$ such that $\sum_{n=1}^{\infty} v_n = 0$.
- (d) All sequences of the form $\mathbf{v} = (v_1, v_2, \dots, v_n, \dots)$ such that $\sum_{n=1}^{\infty} v_n$ converges.

Solution: Replace this text with your solution.

Exercise (4.2.19). Determine whether the solution space of the system $A\mathbf{x} = \mathbf{0}$ is a line through the origin, or the origin only. If it is a plane, find an equation for it. If it is a line, find parametric equations for it.

(a)
$$A = \begin{bmatrix} -1 & 1 & 1 \\ 3 & -1 & 0 \\ 2 & -4 & -5 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$

(c)
$$A = \begin{bmatrix} 1 & -3 & 1 \\ 2 & -6 & 2 \\ 3 & -9 & 3 \end{bmatrix}$$

(d)
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 4 \\ 3 & 1 & 11 \end{bmatrix}$$

Solution: Replace this text with your solution.

Exercise (4.2.21). Show that the set of continuous functions $\mathbf{f} = f(x)$ on [a, b] such that

$$\int_{a}^{b} f(x) \, dx = 0$$

is a subspace of C[a, b].

Exercise (4.3.15). Let W be the solution space to the system $A\mathbf{x} = \mathbf{0}$. Determine whether the set $\{\mathbf{u}, \mathbf{v}\}$ spans W.

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

(a)
$$\mathbf{u} = (1, 0, -1, 0), \mathbf{v} = (0, 1, 0, -1)$$

(b)
$$\mathbf{u} = (1, 0, -1, 0), \mathbf{v} = (1, 1, -1, -1)$$

Solution: Replace this text with your solution.

Exercise (4.3.17). In each part, let $T_A : R^2 \to R^2$ be multiplication by A, and let $\mathbf{u}_1 = (1,2)$ and $\mathbf{u}_2 = (-1,1)$. Determine whether the set $\{T_A(\mathbf{u}_1), T_A(\mathbf{u}_2)\}$ spans R^2 .

(a)
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix}$$

Solution: Replace this text with your solution.

Exercise (4.3.21). Let V and W be subspaces of R^2 that are spanned by (3,1) and (2,1), respectively. Find a vector \mathbf{v} in V and a vector \mathbf{w} in W for which $\mathbf{v} + \mathbf{w} = (3,5)$.

Exercise (4.4.9). (a) Show that the three vectors $\mathbf{v}_1 = (0, 3, 1, -1)$, $\mathbf{v}_2 = (6, 0, 5, 1)$, and $\mathbf{v}_3 = (4, -7, 1, 3)$ form a linearly dependent set in \mathbb{R}^4 .

(b) Express each vector in part (a) as a linear combination of the other two.

Solution: Replace this text with your solution. \Box

Exercise (4.4.13). In each part, let $T_A: R^2 \to R^2$ be multiplication by A, and let $\mathbf{u}_1 = (1,2)$ and $\mathbf{u}_2 = (-1,1)$. Determine whether the set $\{T_A(\mathbf{u}_1, T_A(\mathbf{u}_2))\}$ is linearly independent in R^2 .

(a)
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix}$$

Solution: Replace this text with your solution.

Exercise (4.4.21). Use the Wronskian to show that the functions $f_1(x) = \sin x$, $f_2(x) = \cos x$, and $f_3(x) = x \cos x$ are linearly independent vectors in $C^{\infty}(-\infty,\infty)$.

Exercise (4.5.13). Find the coordinate vector of \mathbf{v} relative to the basis $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ for R^3 .

(a)
$$\mathbf{v} = (2, -1, 3); \mathbf{v}_1 = (1, 0, 0), \mathbf{v}_2 = (2, 2, 0), \mathbf{v}_3 = (3, 3, 3)$$

(b)
$$\mathbf{v} = (5, -12, 3); \mathbf{v}_1 = (1, 2, 3), \mathbf{v}_2 = (-4, 5, 6), \mathbf{v}_3 = (7, -8, 9)$$

Solution: Replace this text with your solution.

Exercise (4.5.15). First show that the set $S = \{A_1, A_2, A_3, A_4\}$ is a basis for M_{22} , then express A as a linear combination of the vectors in A, and then find the coordinate vector of A relative to S for

$$A_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix},$$
$$A_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}; \quad A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}.$$

Solution: Replace this text with your solution.

Exercise (4.5.21). In each part, let $T_A : R^3 \to R^3$ be multiplication by A, and let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be the standard basis for R^3 . Determine whether the set $\{T_A(\mathbf{e}_1), T_A(\mathbf{e}_2), T_A(\mathbf{e}_3)\}$ is linearly independent in R^2 .

(a)
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -3 \\ -1 & 2 & 0 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ -1 & 2 & 1 \end{bmatrix}$$

Exercise (4.6.15). The vectors $\mathbf{v}_1 = (1, -2, 3)$ and $\mathbf{v}_2 = (0, 5, -3)$ are linearly independent. Enlarge $\{\mathbf{v}_1, \mathbf{v}_2\}$ to a basis for R^3 .

Solution: Replace this text with your solution.

Exercise (4.6.17). Find a basis for the subspace of \mathbb{R}^3 that is spanned by the vectors

$$\mathbf{v}_1 = (1, 0, 0), \quad \mathbf{v}_2 = (1, 0, 1), \quad \mathbf{v}_3 = (2, 0, 1), \quad \mathbf{v}_4 = (0, 0, -1).$$

Solution: Replace this text with your solution.

Exercise (4.6.19). In each part, let $T_A : R^3 \to R^3$ be multiplication by A and find the dimension of the subspace of R^3 consisting of all vectors \mathbf{x} for which $T_A(\mathbf{x}) = \mathbf{0}$.

(a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 0 \end{bmatrix}$$

(c)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Exercise (4.7.9). Let S be the standard basis for R^3 , and let $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be the basis in which $\mathbf{v}_1 = (1, 2, 1), \mathbf{v}_2 = (2, 5, 0), \text{ and } \mathbf{v}_3 = (3, 3, 8).$

- (a) Find the transition matrix $P_{B\to S}$ by inspection.
- (b) Find the transition matrix $P_{S\to B}$.
- (c) Confirm that $P_{B\to S}$ and $P_{S\to B}$ are inverses of one another.
- (d) Let $\mathbf{w} = (5, -3, 1)$. Find $[\mathbf{w}]_B$ and then compute $[\mathbf{w}]_S$.
- (e) Let $\mathbf{w} = (3, -5, 0)$. Find $[\mathbf{w}]_S$ and then compute $[\mathbf{w}]_B$.

Solution: Replace this text with your solution.

Exercise (4.7.15). Consider the matrix

$$P = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 1 \end{bmatrix}.$$

- (a) P is the transition matrix from what basis B to the standard basis $S = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ for R^3 ?
- (b) P is the transition matrix from the standard basis $S = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ to what basis B for R^3 ?

Solution: Replace this text with your solution.

Exercise (4.7.17). Let $S = \{\mathbf{e}_1, \mathbf{e}_2\}$ be the standard basis for R^2 , and let $B = \{\mathbf{v}_1, \mathbf{v}_2\}$ be the basis that results when the linear transformation defined by

$$T(x_1, x_2) = (2x_1 + 3x_2, 5x_1 - x_2)$$

is applied to each vector in S. Find the transition matrix $P_{B\to S}$.

Exercise (4.8.9). Find bases for the null space and row space of A.

(a)
$$A = \begin{bmatrix} 1 & -1 & 3 \\ 5 & -4 & -4 \\ 7 & -6 & 2 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 4 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

Solution: Replace this text with your solution.

Exercise (4.8.17). Find a subset of the vectors $\mathbf{v}_1 = (1,0,1,1)$, $\mathbf{v}_2 = (-3,3,7,1)$, $\mathbf{v}_3 = (-1,3,9,3)$, and $\mathbf{v}_4 = (-5,3,5,-1)$ that forms a basis for the space spanned by those vectors, and then express each vector that is not in the basis as a linear combination of the basis vectors.

Solution: Replace this text with your solution. \Box

Exercise (4.8.21). In each part, let $A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & -1 & 4 \end{bmatrix}$. For the given vector **b**, find the general form of all vectors **x** in R^3 for which $T_A(\mathbf{x}) = \mathbf{b}$ if such vectors exist.

- (a) $\mathbf{b} = (0,0)$
- (b) $\mathbf{b} = (1,3)$
- (c) $\mathbf{b} = (-1, 1)$

Exercise (4.9.13). Find the dimensions and bases for the four fundamental spaces of the matrix.

$$A = \begin{bmatrix} 0 & -1 & -4 \\ -1 & 0 & -4 \\ -2 & 3 & 4 \end{bmatrix}$$

Solution: Replace this text with your solution.

Exercise (4.9.19). Find bases for the four fundamental spaces of the matrix.

$$A = \begin{bmatrix} 0 & 2 & 8 & -7 \\ 2 & -2 & 4 & 0 \\ -3 & 4 & -2 & 5 \end{bmatrix}$$

Solution: Replace this text with your solution.

Exercise (4.9.23). Let $T: \mathbb{R}^5 \to \mathbb{R}^3$ be the linear transformation defined by the formula

$$T(x_1, x_2, x_3, x_4, x_5) = (x_1 + x_2, x_2 + x_3 + x_4, x_4 + x_5).$$

- (a) Find the rank of the standard matrix for T.
- (b) Find the nullity of the standard matrix for T.