Linear Algebra Homework #6

Replace this text with your name

Due: Replace this text with a due date

Exercise (6.1.21). Find ||U|| and d(U, V) relative to the standard inner product on M_{22} for

 $U = \begin{bmatrix} 3 & -2 \\ 4 & 8 \end{bmatrix}, \quad V = \begin{bmatrix} -1 & 3 \\ 1 & 1 \end{bmatrix}.$

Solution: Replace this text with your solution.

Exercise (6.1.23). Let

$$\mathbf{p} = x + x^3 \quad \text{ and } \quad \mathbf{q} = 1 + x^2.$$

Find $\|\mathbf{p}\|$ and $d(\mathbf{p}, \mathbf{q})$ relative to the evaluation inner product on P_3 at the sample points $x_0 = -2$, $x_1 = -1$, $x_2 = 0$, and $x_3 = 1$.

Solution: Replace this text with your solution.

Exercise (6.1.33). Let $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$. Show that the expression

$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1^2 v_1^2 + u_2^2 v_2^2 + u_3^2 v_3^2$$

does *not* define an inner product on \mathbb{R}^3 , and list all inner product axioms that fail to hold.

Solution: Replace this text with your solution.

Exercise (6.2.27). Find a basis for the orthogonal complement of the subspace of \mathbb{R}^n spanned by the vectors $\mathbf{v}_1 = (1, 4, 5, 2), \ \mathbf{v}_2 = (2, 1, 3, 0), \ \text{and} \ \mathbf{v}_3 = (-1, 3, 2, 2).$

Solution: Replace this text with your solution.

Exercise (6.2.33). Let C[-1,1] have the integral inner product

$$\langle \mathbf{p}, \mathbf{q} \rangle = \int_{-1}^{1} p(x) q(x) dx$$

and let $p = p(x) = x^2 - x$ and q = q(x) = x + 1.

- (a) Find $\langle \mathbf{p}, \mathbf{q} \rangle$.
- (b) Find $\|\mathbf{p}\|$ and $\|\mathbf{q}\|$.

Solution: Replace this text with your solution.

Exercise (6.2.39). Let $C[0,\pi]$ have the integral inner product

$$\langle \mathbf{p}, \mathbf{q} \rangle = \int_{-1}^{1} p(x)q(x) \, dx$$

and let $\mathbf{f}_n = \cos nx$ (n = 0, 1, 2, ...). Show that if $k \neq l$, then \mathbf{f}_k and \mathbf{f}_l are orthogonal vectors.

Solution: Replace this text with your solution. \Box

Exercise (6.3.29). Let R^3 have the Euclidean inner product and use the Gram-Schmidt process to transform the basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ into an orthonormal basis where $\mathbf{u}_1 = (1, 1, 1), \mathbf{u}_2 = (-1, 1, 0), \text{ and } \mathbf{u}_3 = (1, 2, 1).$

Solution: Replace this text with your solution.

Exercise (6.3.43). Let P_2 have the inner product

$$\langle \mathbf{p}, \mathbf{q} \rangle = \int_0^1 p(x)q(x) \, dx.$$

Apply the Gram-Schmidt process to transform the standard basis $S = \{1, x, x^2\}$ into an orthonormal basis.

Solution: Replace this text with your solution.

Exercise (6.3.49). Find a QR-decomposition of the matrix

$$A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix}.$$

Solution: Replace this text with your solution.