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Chapter 5

Integrals

5.1 Areas and Distances

Example 1. Use rectangles to estimate the area under the parabola y = x2

from 0 to 1.
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Calculus II - Areas and Distances

Example 2. For the region in Example 1, show that the sum of the areas of
the upper approximating rectangles approaches 1

3
, that is,

lim
n→∞

Rn =
1

3
.

2



Calculus II - Areas and Distances

Definition 5.1.1. The area A of the region S that lies under the graph of the
continuous function f is the limit of the sum of the areas of approximating
rectangles:

A = lim
n→∞

Rn = lim
n→∞

[f(x1)∆x+f(x2)∆x+ · · ·+f(xn)∆x] = lim
n→∞

n∑
i=1

f(xi)∆x.

The last equality is an example of the use of sigma notation to write sums
with many terms more compactly.

Definition 5.1.2. Numbers x∗
i in the ith subinterval [xi−1, xi] are called sam-

ple points. We form lower (and upper) sums by choosing the sample points x∗
i

so that f(x∗
i ) is the minimum (and maximum) value of f on the ith subinterval.

 SECTION 5.1  Areas and Distances 371

2   De!nition The area A of the region S that lies under the graph of the contin-
uous function f  is the limit of the sum of the areas of approximating rectangles:

A − lim
n l `

 Rn − lim
n l ` 

f f sx1d Dx 1 f sx2 d Dx 1 ∙ ∙ ∙ 1 f sxn d Dxg

It can be proved that the limit in De"nition 2 always exists, since we are assuming that 
f  is continuous. It can also be shown that we get the same value if we use left endpoints:

 A − lim
n l `

 Ln − lim
n l `

 f f sx0 d Dx 1 f sx1d Dx 1 ∙ ∙ ∙ 1 f sxn21d Dxg

In fact, instead of using left endpoints or right endpoints, we could take the height of 
the ith rectangle to be the value of f  at any number xi* in the ith subinterval fxi21, xig. 
We call the numbers x1*, x2*, . . . , xn* the sample points. Figure 13 shows approximating 
rectangles when  the sample points are not chosen to be endpoints. So a more general 
expression for the area of S is

 A − lim
n l ` 

f f sx1*d Dx 1 f sx2*d Dx 1 ∙ ∙ ∙ 1 f sxn* d Dxg

xixi-10

y

xa bx2⁄ ‹ xn-1

x¡* x™* x£* xn*xi*

Îx

f(xi*)

NOTE It can be shown that an equivalent de"nition of area is the following: A is the 
unique number that is smaller than all the upper sums and bigger than all the lower sums.
We saw in Examples 1 and 2, for instance, that the area sA − 1

3d is trapped between 
all the left approximating sums Ln and all the right approximating sums Rn. The function 
in those examples, f sxd − x 2, happens to be increasing on f0, 1g and so the lower sums 
arise from left endpoints and the upper sums from right endpoints. (See Figures 8 and 9.) 
In gen eral, we form lower (and upper) sums by choosing the sample points xi* so that 
f sxi*d is the minimum (and maximum) value of f  on the ith subinterval. (See Figure 14 
and Exercises 7–8.)

0

y

xa b

3

4

FIGURE 13

FIGURE 14
Lower sums (short rectangles) and 

upper sums (tall rectangles)
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Example 3. Let A be the area of the region that lies under the graph of
f(x) = e−x between x = 0 and x = 2.

(a) Using right endpoints, find an expression for A as a limit. Do not evaluate
the limit.

3



Calculus II - Areas and Distances

(b) Estimate the area by taking the sample points to be midpoints and using
four subintervals and then ten subintervals.

4



Calculus II - Areas and Distances

Example 4. Suppose the odometer on a car is broken. Estimate the distance
driven in feet over a 30-second time interval by using the speedometer readings
taken every five seconds and recorded in the following table:

Time (s) 0 5 10 15 20 25 30
Velocity (mi/h) 17 21 24 29 32 31 28

5



Calculus II - The Definite Integral

5.2 The Definite Integral

Definition 5.2.1. If f is a function defined for a ≤ x ≤ b, we divide the
interval [a, b] into n subintervals of equal width ∆x = (b − a)/n. We let
x0(= a), x1, x2, . . . , xn(= b) be the endpoints of these subintervals and we let
x∗
1, x

∗
2, . . . , x

∗
n be any sample points in these subintervals, so x∗

i lies in the ith
subinterval [xi−1, xi]. Then the definite integral of f from a to b is

ˆ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗
i )∆x

provided that this limit exists and gives the same value for all possible choices
of sample points. If it does exist, we say that f is integrable on [a, b].

Definition 5.2.2. The symbol
´

is called an integral sign. In the notation´ b
a
f(x)dx, f(x) is called the integrand and a and b are called the limits of

integration; a is the lower limit and b is the upper limit. The procedure of
calculating an integral is called integration.

Definition 5.2.3. The sum

n∑
i=1

f(x∗
i )∆x

is called a Riemann sum and it can be used to approximate the definite integral
of an integrable function within any desired degree of accuracy.

 SECTION 5.2  The De!nite Integral 379

 yb
a  f sxd dx, f sxd is called the integrand and a and b are called the limits of integration; 

a is the lower limit and b is the upper limit. For now, the symbol dx has no meaning by 
itself; yb

a  f sxd dx is all one symbol. The dx simply indicates that the independent vari able 
is x. The procedure of calculating an integral is called integration.

NOTE 2 The de!nite integral yb
a  f sxd dx is a number; it does not depend on x. In fact, 

we could use any letter in place of x without changing the value of the integral:

yb

a
 f sxd dx − yb

a
 f std dt − yb

a
 f srd dr

NOTE 3 The sum

o
n

i−1
 f sxi*d Dx

that occurs in De!nition 2 is called a Riemann sum after the German mathematician 
Bernhard Riemann (1826 –1866). So De!nition 2 says that the de!nite integral of an 
integrable function can be approximated to within any desired degree of accuracy by a 
Riemann sum.

We know that if f  happens to be positive, then the Riemann sum can be interpreted 
as a sum of areas of approximating rectangles (see Figure 1). By comparing De!nition 2 
with the de!nition of area in Section 5.1, we see that the de!nite integral yb

a  f sxd dx can 
be interpreted as the area under the curve y − f sxd from a to b. (See Figure 2.)

xi*0

y

xa

Îx y=ƒ

0

y

xab b

FIGURE 1  
If f sxd > 0, the Riemann sum o  f sxi*d Dx  
is the sum of areas of rectangles.

FIGURE 2  
If f sxd > 0, the integral yb

a f sxd dx is the  
area under the curve y − f sxd from a to b.

If f  takes on both positive and negative values, as in Figure 3, then the Riemann sum 
is the sum of the areas of the rectangles that lie above the x-axis and the negatives of the 
areas of the rectangles that lie below the x-axis (the areas of the blue rectangles minus 
the areas of the gold rectangles). When we take the limit of such Riemann sums, we get 
the situation illustrated in Figure 4. A de!nite integral can be interpreted as a net area, 
that is, a difference of areas:

yb

a
 f sxd dx − A1 2 A2

where A1 is the area of the region above the x-axis and below the graph of f , and A2 is 
the area of the region below the x-axis and above the graph of f .

NOTE 4 Although we have de!ned yb
a  f sxd dx by dividing fa, bg into subintervals of 

equal width, there are situations in which it is advantageous to work with subintervals of 
unequal width. For instance, in Exercise 5.1.16, NASA provided velocity data at times 
that were not equally spaced, but we were still able to estimate the distance traveled. And 
there are methods for numerical integration that take advantage of unequal subintervals.

Riemann
Bernhard Riemann received his Ph.D. 
under the direction of the legendary 
Gauss at the University of Göttingen and 
remained there to teach. Gauss, who 
was not in the habit of praising other 
mathematicians, spoke of Riemann’s  
“creative, active, truly mathematical 
mind and gloriously fertile originality.” 
The de!nition (2) of an integral that we 
use is due to Riemann. He also made 
major contributions to the theory of 
functions of a complex variable, math-
ematical physics, number theory, and 
the foundations of geometry. Riemann’s 
broad concept of space and geometry 
turned out to be the right setting, 50  
years later, for Einstein’s general rela-
tivity theory. Riemann’s health was poor  
throughout his life, and he died of 
tuberculosis at the age of 39.

0

y=ƒ
y

a b x

FIGURE 3  

o  f sxi*d Dx is an approximation 
  to the net area.

y=ƒ
y

xa b0

FIGURE 4  

yb

a
 f sxd dx is the net area.
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Calculus II - The Definite Integral

Definition 5.2.4. A definite integral can be interpreted as a net area, that
is, a difference of areas:

ˆ b

a

f(x) dx = A1 − A2

where A1 is the area of the region above the x-axis and below the graph of f ,
and A2 is the area of the region below the x-axis and the above the graph of
f .
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 yb
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is x. The procedure of calculating an integral is called integration.

NOTE 2 The de!nite integral yb
a  f sxd dx is a number; it does not depend on x. In fact, 

we could use any letter in place of x without changing the value of the integral:

yb

a
 f sxd dx − yb

a
 f std dt − yb

a
 f srd dr

NOTE 3 The sum

o
n

i−1
 f sxi*d Dx

that occurs in De!nition 2 is called a Riemann sum after the German mathematician 
Bernhard Riemann (1826 –1866). So De!nition 2 says that the de!nite integral of an 
integrable function can be approximated to within any desired degree of accuracy by a 
Riemann sum.

We know that if f  happens to be positive, then the Riemann sum can be interpreted 
as a sum of areas of approximating rectangles (see Figure 1). By comparing De!nition 2 
with the de!nition of area in Section 5.1, we see that the de!nite integral yb

a  f sxd dx can 
be interpreted as the area under the curve y − f sxd from a to b. (See Figure 2.)
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If f sxd > 0, the Riemann sum o  f sxi*d Dx  
is the sum of areas of rectangles.
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a f sxd dx is the  
area under the curve y − f sxd from a to b.
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is the sum of the areas of the rectangles that lie above the x-axis and the negatives of the 
areas of the rectangles that lie below the x-axis (the areas of the blue rectangles minus 
the areas of the gold rectangles). When we take the limit of such Riemann sums, we get 
the situation illustrated in Figure 4. A de!nite integral can be interpreted as a net area, 
that is, a difference of areas:

yb

a
 f sxd dx − A1 2 A2

where A1 is the area of the region above the x-axis and below the graph of f , and A2 is 
the area of the region below the x-axis and above the graph of f .

NOTE 4 Although we have de!ned yb
a  f sxd dx by dividing fa, bg into subintervals of 

equal width, there are situations in which it is advantageous to work with subintervals of 
unequal width. For instance, in Exercise 5.1.16, NASA provided velocity data at times 
that were not equally spaced, but we were still able to estimate the distance traveled. And 
there are methods for numerical integration that take advantage of unequal subintervals.

Riemann
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under the direction of the legendary 
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remained there to teach. Gauss, who 
was not in the habit of praising other 
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a  f sxd dx, f sxd is called the integrand and a and b are called the limits of integration; 

a is the lower limit and b is the upper limit. For now, the symbol dx has no meaning by 
itself; yb

a  f sxd dx is all one symbol. The dx simply indicates that the independent vari able 
is x. The procedure of calculating an integral is called integration.

NOTE 2 The de!nite integral yb
a  f sxd dx is a number; it does not depend on x. In fact, 

we could use any letter in place of x without changing the value of the integral:

yb

a
 f sxd dx − yb

a
 f std dt − yb

a
 f srd dr

NOTE 3 The sum

o
n

i−1
 f sxi*d Dx

that occurs in De!nition 2 is called a Riemann sum after the German mathematician 
Bernhard Riemann (1826 –1866). So De!nition 2 says that the de!nite integral of an 
integrable function can be approximated to within any desired degree of accuracy by a 
Riemann sum.

We know that if f  happens to be positive, then the Riemann sum can be interpreted 
as a sum of areas of approximating rectangles (see Figure 1). By comparing De!nition 2 
with the de!nition of area in Section 5.1, we see that the de!nite integral yb

a  f sxd dx can 
be interpreted as the area under the curve y − f sxd from a to b. (See Figure 2.)
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a f sxd dx is the  
area under the curve y − f sxd from a to b.
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the situation illustrated in Figure 4. A de!nite integral can be interpreted as a net area, 
that is, a difference of areas:
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where A1 is the area of the region above the x-axis and below the graph of f , and A2 is 
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a  f sxd dx by dividing fa, bg into subintervals of 
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that were not equally spaced, but we were still able to estimate the distance traveled. And 
there are methods for numerical integration that take advantage of unequal subintervals.
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The de!nition (2) of an integral that we 
use is due to Riemann. He also made 
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functions of a complex variable, math-
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broad concept of space and geometry 
turned out to be the right setting, 50  
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Theorem 5.2.1. If f is continuous on [a, b], or if f has only a finite number of
jump discontinuities, then f is integrable on [a, b]; that is, the definite integral´ b
a
f(x)dx exists.

Theorem 5.2.2. If f is integrable on [a, b], then

ˆ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(xi)∆x

where

∆x =
b− a

n
and xi = a+ i∆x.

7



Calculus II - The Definite Integral

Example 1. Express

lim
n→∞

n∑
i=1

(x3
i + xi sinxi)∆x

as an integral on the interval [0, π].

Theorem 5.2.3. The following formulas are true when working with sigma
notation:

n∑
i=1

i =
n(n+ 1)

2

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =

[
n(n+ 1)

2

]2
n∑

i=1

c = nc

n∑
i=1

cai = c

n∑
i=1

ai

n∑
i=1

(ai + bi) =
n∑

i=1

ai +
n∑

i=1

bi

n∑
i=1

(ai − bi) =
n∑

i=1

ai −
n∑

i=1

bi.

8



Calculus II - The Definite Integral

Example 2. (a) Evaluate the Riemann sum for f(x) = x3 − 6x, taking the
sample points to be right endpoints and a = 0, b = 3, and n = 6.

(b) Evaluate

ˆ 3

0

(x3 − 6x) dx.

9



Calculus II - The Definite Integral

Example 3. (a) Set up an expression for

ˆ 3

1

ex dx as a limit of sums.

(b) Use a computer algebra system to evaluate the expression.
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Calculus II - The Definite Integral

Example 4. Evaluate the following integrals by interpreting each in terms of
areas.

(a)

ˆ 1

0

√
1− x2 dx

(b)

ˆ 3

0

(x− 1) dx

11



Calculus II - The Definite Integral

Theorem 5.2.4 (Midpoint Rule).

ˆ b

a

f(x) dx ≈
n∑

i=1

f(x̄i)∆x = ∆x[f(x̄1) + · · ·+ f(x̄n)]

where

∆x =
b− a

n

and

x̄i =
1

2
(xi−1 + xi) = midpoint of [xi−1, xi].

Example 5. Use the Midpoint Rule with n = 5 to approximate

ˆ 2

1

1

x
dx.

12



Calculus II - The Definite Integral

Theorem 5.2.5 (Properties of the Definite Integral).

1.

ˆ b

a

f(x) dx = −
ˆ a

b

f(x) dx.

2.

ˆ a

a

f(x) dx = 0.

3.

ˆ b

a

c dx = c(b− a), where c is any constant.

4.

ˆ b

a

[f(x) + g(x)] dx =

ˆ b

a

f(x) dx+

ˆ b

a

g(x) dx.

5.

ˆ b

a

cf(x) dx = c

ˆ b

a

f(x) dx, where c is any constant.

6.

ˆ b

a

[f(x)− g(x)] dx =

ˆ b

a

f(x) dx−
ˆ b

a

g(x) dx.

7.

ˆ c

a

f(x) dx+

ˆ b

c

f(x) dx =

ˆ b

a

f(x) dx.

Example 6. Use the properties of integrals to evaluate

ˆ 1

0

(4 + 3x2) dx.

13



Calculus II - The Definite Integral

Example 7. If it is known that

ˆ 10

0

f(x) dx = 17 and

ˆ 8

0

f(x) dx = 12, find
ˆ 10

8

f(x) dx.

Theorem 5.2.6 (Comparison Properties of the Integral).

8. If f(x) ≥ 0 for a ≤ x ≤ b, then

ˆ b

a

f(x) dx ≥ 0.

9. If f(x) ≥ g(x) for a ≤ x ≤ b, then

ˆ b

a

f(x) dx ≥
ˆ b

a

g(x) dx.

10. If m ≤ f(x) ≤ M for a ≤ x ≤ b, then

m(b− a) ≤
ˆ b

a

f(x) dx ≤ M(b− a).

Example 8. Use Property 10 to estimate

ˆ 1

0

e−x2

dx.

14



Calculus II - The Fundamental Theorem of Calculus

5.3 The Fundamental Theorem of Calculus

392 CHAPTER 5  Integrals

The Fundamental Theorem of Calculus is appropriately named because it establishes a  
con nection between the two branches of calculus: differential calculus and integral 
calculus. Differential calculus arose from the tangent problem, whereas integral calcu-
lus arose from a seemingly unrelated problem, the area problem. Newton’s mentor at 
Cambridge, Isaac Barrow (1630 –1677), discovered that these two problems are actu-
ally closely related. In fact, he realized that differentiation and integration are inverse 
processes. The Fundamental Theorem of Calculus gives the precise inverse relationship 
between the derivative and the integral. It was Newton and Leibniz who exploited this 
relationship and used it to develop calculus into a systematic mathema tical method. In 
particular, they saw that the Fundamental Theorem enabled them to compute areas and 
integrals very easily without having to compute them as limits of sums as we did in Sec-
tions 5.1 and 5.2.

The first part of the Fundamental Theorem deals with functions defined by an equa-
tion of the form

tsxd − y x

a
 f std dt

where f  is a continuous function on fa, bg and x varies between a and b. Observe that t 
depends only on x, which appears as the variable upper limit in the integral. If x is a fixed 
number, then the integral yx

a f std dt is a definite number. If we then let x vary, the number 
yx
a f std dt also varies and defines a function of x denoted by tsxd.

If f  happens to be a positive function, then tsxd can be interpreted as the area under the 
graph of f  from a to x, where x can vary from a to b. (Think of t as the “area so far” 
function; see Figure 1.)

EXAMPLE 1  If f  is the function whose graph is shown in Figure 2 and 
tsxd − yx

0 f std dt, find the values of ts0d, ts1d, ts2d, ts3d, ts4d, and ts5d. Then sketch a 
rough graph of t.

SOLUTION First we notice that ts0d − y0
0 f std dt − 0. From Figure 3 we see that ts1d is 

the area of a triangle:

ts1d − y1

0
 f std dt − 1

2 s1 ? 2d − 1

1

0

y

ta bx

area=©

y=f(t)

FIGURE 1  

t0

1

1

22

42

y

y=f(t)

FIGURE 2  

of x at which tsxd starts to decrease. [Unlike the integral in Problem 2, it is impossible 
to evaluate the integral defining t to obtain an explicit expression for tsxd.]

(c)  Use the integration command on your calculator or computer to estimate ts0.2d, 
ts0.4d, ts0.6d, . . . , ts1.8d, ts2d. Then use these values to sketch a graph of t.

(d)  Use your graph of t from part (c) to sketch the graph of t9 using the interpretation of 
t9sxd as the slope of a tangent line. How does the graph of t9 compare with the graph 
of f ?

 4.  Suppose f  is a continuous function on the interval fa, bg and we define a new function t 
by the equation

tsxd − yx

a
 f std dt

Based on your results in Problems 1–3, conjecture an expression for t9sxd.
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Example 1. If f is the function whose graph is shown in the
figure and g(x) =

´ x
0
f(t) dt, find the values of g(0), g(1), g(2),

g(3), g(4), and g(5). Then sketch a rough graph of g.

Theorem 5.3.1 (The Fundamental Theorem of Calculus, Part 1). If f is
continuous on [a, b], then the function g defined by

g(x) =

ˆ x

a

f(t) dt a ≤ x ≤ b

is continuous on [a, b] and differentiable on (a, b), and g′(x) = f(x).

Proof. If x and x+ h are in (a, b), then

g(x+ h)− g(x) =

ˆ x+h

a

f(t) dt−
ˆ x

a

f(t) dt

=

(ˆ x

a

f(t) dt+

ˆ x+h

x

f(t) dt

)
−
ˆ x

a

f(t) dt

=

ˆ x+h

x

f(t) dt
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Intuitively, we therefore expect that

t9sxd − lim
h  l 0

 
tsx 1 h d 2 tsxd

h
− f sxd

The fact that this is true, even when f  is not necessarily positive, is the first part of the 
Fun damental Theorem of Calculus.

 The Fundamental Theorem of Calculus, Part 1 If f  is continuous on fa, bg, then 
the function t defined by

tsxd − y x

a
 f std dt    a < x < b

is continuous on fa, bg and differentiable on sa, bd, and t9sxd − f sxd.

PROOF If x and x 1 h  are in sa, bd, then

  tsx 1 h d 2 tsxd − y x1h

a
 f std dt 2 y x

a
 f std dt

  − Sy x

a
 f std dt 1 y x1h

x
 f std dtD 2 y x

a
 f std dt    (by Property 5)

  − y x1h

x
 f std dt

and so, for h ± 0,

tsx 1 h d 2 tsxd
h

−
1
h

 y x1h

x
 f std dt

For now let’s assume that h . 0. Since f  is continuous on fx, x 1 h g, the Extreme 
Value Theorem says that there are numbers u  and v in fx, x 1 h g such that f su d − m 
and f svd − M, where m and M are the absolute minimum and maximum values of f  on 
fx, x 1 h g. (See Figure 6.)

By Property 8 of integrals, we have

 mh < y x1h

x
 f std dt < Mh

that is,  f su dh < yx1h

x
 f std dt < f svdh

Since h . 0, we can divide this inequality by h :

f su d <
1
h

 y x1h

x
 f std dt < f svd

Now we use Equation 2 to replace the middle part of this inequality:

f su d <
tsx 1 h d 2 tsxd

h
< f svd

Inequality 3 can be proved in a similar manner for the case where h , 0. (See Exer-
cise 77.)

We abbreviate the name of this theorem 
as FTC1. In words, it says that the 
derivative of a definite integral with 
respect to its upper limit is the inte-
grand evaluated at the upper limit.

0

y

xx u √=x+h

y=ƒ

m
M

FIGURE 6 

2

3

TEC Module 5.3 provides visual  
evidence for FTC1.
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and so, for h ̸= 0,
g(x+ h)− g(x)

h
=

1

h

ˆ x+h

x

f(t) dt.

For now let’s assume that h > 0. Since f is continuous on [x, x+
h], the Extreme Value Theorem says that there are numbers u
and v in [x, x+ h] such that f(u) = m and f(v) = M , where m
and M are the absolute minimum and maximum values of f on
[x, x+ h]. (See the figure.)
Then

mh ≤
ˆ x+h

x

f(t) dt ≤ Mh

f(u)h ≤
ˆ x+h

x

f(t) dt ≤ f(v)h

f(u) ≤ 1

h

ˆ x+h

x

f(t) dt ≤ f(v)

f(u) ≤ g(x+ h)− g(x)

h
≤ f(v).

This inequality can be proved in a similar manner for the case where h < 0.
Now we let h → 0. Then u → x and v → x, since u and v lie between x and
x+ h. Therefore

lim
h→0

f(u) = lim
u→x

f(u) = f(x) and lim
h→0

f(v) = lim
u→x

f(v) = f(x)

because f is continuous at x. We conclude, from the Squeeze Theorem, that

g′(x) = lim
h→0

g(x+ h)− g(x)

h
= f(x).

If x = a or b, then this equation can be interpreted as a one-sided limit, and
thus g is continuous on [a, b].

Example 2. Find the derivative of the function g(x) =

ˆ x

0

√
1 + t2 dt.
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Example 3. Find the derivative of the Fresnel function

S(x) =

ˆ x

0

sin(πt2/2) dt

and compare its graph with that of S(x) to visually confirm the fundamental
theorem of calculus.

Example 4. Find
d

dx

ˆ x4

1

sec t dt.
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Theorem 5.3.2 (The Fundamental Theorem of Calculus, Part 2). If f is
continuous on [a, b], then

ˆ b

a

f(x) dx = F (b)− F (a)

where F is any antiderivative of f , that is, a function such that F ′ = f .

Proof. Let g(x) =
´ x

a
f(t) dt. By Part 1, g′(x) = f(x); that is, g is an an-

tiderivative of f . If F is any other antiderivative of f on [a, b], then, by
Corollary 4.2.1,

F (x) = g(x) + C

for a < x < b. By continuity, this is also true for x ∈ [a, b], so again by Part 1,

g(a) =

ˆ a

a

f(t) dt = 0

and thus

F (b)− F (a) = [g(b) + C]− [g(a) + C]

= g(b) + C − 0− C

= g(b)

=

ˆ b

a

f(t) dt.

Example 5. Evaluate the integral

ˆ 3

1

ex dx.
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Remark 1. We often use the notation

F (x)
]b
a
= F (b)− F (a).

So the equation of the Fundamental Theorem of Calculus Part 2 can be written
as ˆ b

a

f(x) dx = F (x)
]b
a

where F ′ = f.

Other common notations are F (x)|ba and [F (x)]ba.

Example 6. Find the area under the parabola y = x2 from 0 to 1.

Example 7. Evaluate

ˆ 6

3

dx

x
.
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Example 8. Find the area under the cosine curve from 0 to b, where
0 ≤ b ≤ π/2.

Example 9. What is wrong with the following calculation?

ˆ 3

−1

1

x2
dx =

x−1

−1

]3
−1

= −1

3
− 1 = −4

3
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Calculus II - Indefinite Integrals and the Net Change Theorem

5.4 Indefinite Integrals and the Net Change

Theorem

Definition 5.4.1. An antiderivative of f is called an indefinite integral where

ˆ
f(x) dx = F (x) means F ′(x) = f(x).

Example 1. Find the general indefinite integral

ˆ
(10x4 − 2 sec2 x) dx.

Example 2. Evaluate

ˆ
cos θ

sin2 θ
dθ.

Example 3. Evaluate

ˆ 3

0

(x3 − 6x) dx.
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Example 4. Find

ˆ 2

0

(
2x3 − 6x+

3

x2 + 1

)
dx and interpret the result in

terms of areas.

Example 5. Evaluate

ˆ 9

1

2t2 + t2
√
t− 1

t2
dt.
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Theorem 5.4.1 (Net Change Theorem). The integral of a rate of change is
the net change: ˆ b

a

F ′(x) dx = F (b)− F (a).

Example 6. A particle moves along a line so that its velocity at time t is
v(t) = t2 − t− 6 (measured in meters per second).

(a) Find the displacement of the particle during the time period 1 ≤ t ≤ 4.

(b) Find the distance traveled during this time period.
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Calculus II - Indefinite Integrals and the Net Change Theorem

Example 7. The figure shows the power consumption in the city of San Fran-
cisco for a day in September (P is measured in megawatts; t is measured in
hours starting at midnight). Estimate the energy used on that day.

408 CHAPTER 5  Integrals

EXAMPLE 7  Figure 4 shows the power consumption in the city of San Francisco for 
a day in September (P is measured in megawatts; t is measured in hours starting at 
midnight). Estimate the energy used on that day.

P

0 181512963 t21

400

600

800

200

Pacific Gas & Electric

SOLUTION Power is the rate of change of energy: Pstd − E9std. So, by the Net Change 
Theorem,

y24

0
 Pstd dt − y24

0
 E9std dt − Es24d 2 Es0d

is the total amount of energy used on that day. We approximate the value of the integral 
using the Midpoint Rule with 12 subintervals and Dt − 2:

 y24

0
 Pstd dt < fPs1d 1 Ps3d 1 Ps5d 1 ∙ ∙ ∙ 1 Ps21d 1 Ps23dg Dt

 < s440 1 400 1 420 1 620 1 790 1 840 1 850

1 840 1 810 1 690 1 670 1 550ds2d

− 15,840

The energy used was approximately 15,840 megawatt-hours. ■

How did we know what units to use for energy in Example 7? The integral y24
0  Pstd dt 

is defined as the limit of sums of terms of the form Psti*d Dt. Now Psti*d is measured in 
megawatts and Dt is measured in hours, so their product is measured in megawatt-hours. 
The same is true of the limit. In general, the unit of measurement for yb

a f sxd dx is the 
product of the unit for f sxd and the unit for x.

FIGURE 4

A note on units

1–4 Verify by differentiation that the formula is correct.

 1. y 
1

x 2s1 1 x 2 
 dx − 2

s1 1 x 2 

x
1 C

 2. y cos2 x dx − 1
2 x 1 1

4 sin 2x 1 C

 3. y tan2 x dx − tan x 2 x 1 C

 4. y xsa 1 bx  dx −
2

15b2 s3bx 2 2adsa 1 bxd3y2 1 C

5–18 Find the general indefinite integral.

 5. y sx1.3 1 7x 2.5d dx

 6. y s4 x5  dx
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5.5 The Substitution Rule

Theorem 5.5.1 (The Substitution Rule). If u = g(x) is a differentiable func-
tion whose range is an interval I and f is continuous on I, then

ˆ
f(g(x))g′(x) dx =

ˆ
f(u) du.

Proof. If f = F ′, then, by the Chain Rule,

d

dx
[F (g(x))] = f(g(x))g′(x).

Thus if u = g(x), then we have

ˆ
f(g(x))g′(x) dx = F (g(x)) + C = F (u) + C =

ˆ
f(u) du.

Example 1. Find

ˆ
x3 cos(x4 + 2) dx.

Example 2. Evaluate

ˆ √
2x+ 1 dx.
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Example 3. Find

ˆ
x√

1− 4x2
dx.

Example 4. Calculate

ˆ
e5x dx.

Example 5. Find

ˆ √
1 + x2x5 dx.
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Example 6. Calculate

ˆ
tanx dx.

Theorem 5.5.2 (The Substitution Rule for Definite Integrals). If g′ is con-
tinuous on [a, b] and f is continuous on the range of u = g(x), then

ˆ b

a

f(g(x))g′(x) dx =

ˆ g(b)

g(a)

f(u) du.

Proof. Let F be an antiderivative of f . Then F (g(x)) is an antiderivative of
f(g(x))g′(x), so by part 2 of the fundamental theorem of calculus, we have

ˆ b

a

f(g(x))g′(x) dx = F (g(x))
]b
a
= F (g(b))− F (g(a)).

By applying part 2 a second time, we also have

ˆ g(b)

g(a)

f(u) du = F (u)
]g(b)
g(a)

= F (g(b))− F (g(a)).
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Example 7. Evaluate

ˆ 4

0

√
2x+ 1 dx.

Example 8. Evaluate

ˆ 2

1

dx

(3− 5x)2
.

Example 9. Calculate

ˆ e

1

lnx

x
dx.
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Theorem 5.5.3 (Integrals of Symmetric Functions). Suppose f is continuous
on [−a, a].

(a) If f is even [f(−x) = f(x)], then

ˆ a

−a

f(x) dx = 2

ˆ a

0

f(x) dx.

(b) If f is odd [f(−x) = −f(x)], then

ˆ a

−a

f(x) dx = 0.

Proof. First we split the integral:

ˆ a

−a

f(x) dx =

ˆ 0

−a

f(x) dx+

ˆ a

0

f(x) dx = −
ˆ −a

0

f(x) dx+

ˆ a

0

f(x) dx.

By substituting u = −x we get du = −dx and u = a when x = −a, so

−
ˆ −a

0

f(x) dx = −
ˆ a

0

f(−u) (−du) =

ˆ a

0

f(−u) du

and therefore ˆ a

−a

f(x) dx =

ˆ a

0

f(−u) du+

ˆ a

0

f(x) dx.

(a) If f is even then f(−u) = f(u), so

ˆ a

−a

f(x) dx =

ˆ a

0

f(u) du+

ˆ a

0

f(x) dx = 2

ˆ a

0

f(x) dx.

(b) If f is odd then f(−u) = −f(u), so

ˆ a

−a

f(x) dx = −
ˆ a

0

f(u) du+

ˆ a

0

f(x) dx = 0.
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Example 10. Evaluate

ˆ 2

−2

(x6 + 1) dx.

Example 11. Evaluate

ˆ 1

−1

tanx

1 + x2 + x4
dx.
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Chapter 6

Applications of Integration

6.1 Areas Between Curves

428 CHAPTER 6  Applications of Integration

In Chapter 5 we de!ned and calculated areas of regions that lie under the graphs of func-
tions. Here we use integrals to !nd areas of regions that lie between the graphs of two 
functions.

Consider the region S that lies between two curves y − f sxd and y − tsxd and 
between the vertical lines x − a and x − b, where f  and t are continuous functions and 
f sxd > tsxd for all x in fa, bg. (See Figure 1.)

Just as we did for areas under curves in Section 5.1, we divide S into n strips of equal 
width and then we approximate the ith strip by a rectangle with base Dx and height 
f sxi*d 2 tsxi*d. (See Figure 2. If we like, we could take all of the sample points to be 
right endpoints, in which case xi* − xi.) The Riemann sum

o
n

i−1
 f f sxi*d 2 tsxi*dg Dx

is therefore an approximation to what we intuitively think of as the area of S.

(a) Typical rectangle

x

y

b0 a

f(x i*)
f(x i*) -g(x i*)

_g(x i*)
x i*

Îx

(b) Approximating rectangles

x

y

b0 a

This approximation appears to become better and better as n l `. Therefore we 
de!ne the area A of the region S as the limiting value of the sum of the areas of these 
approxi mating rectangles.

A − lim
n l `

 o
n

i−1
 f f sxi*d 2 tsxi*dg Dx

We recognize the limit in (1) as the de!nite integral of f 2 t. Therefore we have the 
fol lowing formula for area.

2   The area A of the region bounded by the curves y − f sxd, y − tsxd, and the 
lines x − a, x − b, where f  and t are continuous and f sxd > tsxd for all x in 
fa, bg, is

A − yb

a
 f f sxd 2 tsxdg dx

Notice that in the special case where tsxd − 0, S is the region under the graph of f  and 
our general de!nition of area (1) reduces to our previous de!nition (De!nition 5.1.2).

FIGURE 1 
S − hsx, yd | a < x < b, 
tsxd < y < f sxdj

0
y=©

y=ƒ

S

x

y

ba

FIGURE 2 

1
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Definition 6.1.1. The area A of the region bounded by the
curves y = f(x), y = g(x), and the lines x = a, x = b, where f
and g are continuous and f(x) ≥ g(x) for all x in [a, b], is

A = lim
n→∞

n∑
i=1

[f(x∗
i )− g(x∗

i )]∆x =

ˆ b

a

[f(x)− g(x)] dx.
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 f f sxd 2 tsxdg dx
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Example 1. Find the area of the region bounded above by y = ex, bounded
below by y = x, and bounded on the sides by x = 0 and x = 1.

Example 2. Find the area of the region enclosed by the parabolas y = x2

and y = 2x− x2.
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Example 3. Find the approximate area of the region bounded by the curves
y = x/

√
x2 + 1 and y = x4 − x.
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430 CHAPTER 6  Applications of Integration

Sometimes it’s difficult, or even impossible, to find the points of intersection of two 
curves exactly. As shown in the following example, we can use a graphing calculator 
or computer to find approximate values for the intersection points and then proceed as 
before.

EXAMPLE 3  Find the approximate area of the region bounded by the curves
y − xysx 2 1 1 and y − x 4 2 x.

SOLUTION If we were to try to find the exact intersection points, we would have to 
solve the equation

x

sx 2 1 1
− x 4 2 x

This looks like a very difficult equation to solve exactly (in fact, it’s impossible), so 
instead we use a graphing device to draw the graphs of the two curves in Figure 7. One 
intersection point is the origin. We zoom in toward the other point of intersection and 
find that x < 1.18. (If greater accuracy is required, we could use Newton’s method or 
solve numerically on our graphing device.) So an approximation to the area between 
the curves is

A < y1.18

0
 F x

sx 2 1 1
2 sx 4 2 xdG dx

To integrate the first term we use the substitution u − x 2 1 1. Then du − 2x dx, and 
when x − 1.18, we have u < 2.39; when x − 0, u − 1. So

 A < 1
2 y2.39

1
 

du

su  2 y1.18

0
 sx 4 2 xd dx

 − su  g
1

2.39

2 F x 5

5
2

x 2

2 G0

1.18

 − s2.39 2 1 2
s1.18d5

5
1

s1.18d2

2

  < 0.785  n

EXAMPLE 4  Figure 8 shows velocity curves for two cars, A and B, that start side by 
side and move along the same road. What does the area between the curves represent? 
Use the Midpoint Rule to estimate it.

SOLUTION We know from Section 5.4 that the area under the velocity curve A rep-
resents the distance traveled by car A during the first 16 seconds. Similarly, the area 
under curve B is the distance traveled by car B during that time period. So the area 
between these curves, which is the difference of the areas under the curves, is the 
distance between the cars after 16 seconds. We read the velocities from the graph and 
convert them to feet per second s1 miyh − 5280

3600 ftysd.

t 0   2   4   6   8 10 12 14 16

vA 0 34 54 67 76 84 89 92 95

vB 0 21 34 44 51 56 60 63 65

vA 2 vB 0 13 20 23 25 28 29 29 30
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x
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Example 4. The figure shows the velocity curves for two cars,
A and B, that start side by side and move along the same road.
What does the area between the curves represent? Use the Mid-
point Rule to estimate it.
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Example 5. The figure is an example of a pathogenesis curve for a measles
infection. It shows how the disease develops in an individual with no immunity
after the measles virus spreads to the bloodstream from the respiratory tract.

 SECTION 6.1  Areas Between Curves 431

We use the Midpoint Rule with n − 4 intervals, so that Dt − 4. The midpoints of 
the intervals are t1 − 2, t2 − 6, t3 − 10, and t4 − 14. We estimate the distance between 
the cars after 16 seconds as follows:

 y16

0
 svA 2 vBd dt < Dt f13 1 23 1 28 1 29g

  − 4s93d − 372 ft  n

EXAMPLE 5  Figure 9 is an example of a pathogenesis curve for a measles infection. 
It shows how the disease develops in an individual with no immunity after the measles 
virus spreads to the bloodstream from the respiratory tract.
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The patient becomes infectious to others once the concentration of infected cells 
becomes great enough, and he or she remains infectious until the immune system 
manages to prevent further transmission. However, symptoms don’t develop until the 
“amount of infection” reaches a particular threshold. The amount of infection needed 
to develop symptoms depends on both the concentration of infected cells and time, 
and corresponds to the area under the pathogenesis curve until symptoms appear. (See 
Exercise 5.1.19.)
(a) The pathogenesis curve in Figure 9 has been modeled by f std − 2tst 2 21dst 1 1d. 
If infectiousness begins on day t1 − 10 and ends on day t2 − 18, what are the corre-
sponding concentration levels of infected cells?
(b) The level of infectiousness for an infected person is the area between N − f std and 
the line through the points P1st1, f st1dd and P2st2, f st2dd, measured in (cellsymL) ? days. 
(See Figure 10.) Compute the level of infectiousness for this particular patient.

SOLUTION
(a) Infectiousness begins when the concentration reaches f s10d − 1210 cellsymL and 
ends when the concentration reduces to f s18d − 1026 cellsymL.

FIGURE 9 
Measles pathogenesis curve 

Source: J. M. Heffernan et al., “An In-Host Model 
of Acute Infection: Measles as a Case Study,” 

Theoretical Population Biology  
73 (2008): 134–47.
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The patient becomes infectious to others once the concentration of infected
cells becomes great enough, and he or she remains infectious until the immune
system manages to prevent further transmission. However, symptoms don’t
develop until the “amount of infection” reaches a particular threshold. The
amount of infection needed to develop symptoms depends on both the con-
centration of infected cells and time, and corresponds to the area under the
pathogenesis curve until symptoms appear.

(a) The pathogenesis curve in the figure has been modeled by f(t) = −t(t −
21)(t+1). If infectiousness begins on day t1 = 10 and ends on day t2 = 18,
what are the corresponding concentration levels of infected cells?
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(b) The level of infectiousness for an infected person is the area between
N = f(t) and the line through the points P1(t1, (f(t1)) and P2(t2, f(t2)),
measured in (cells/mL)· days. Compute the level of infectiousness for this
particular patient.
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Definition 6.1.2. The area between the curves y = f(x) and y = g(x) and
between x = a and x = b is

A =

ˆ b

a

|f(x)− g(x)| dx.

Example 6. Find the area of the region bounded by the curves y = sinx,
y = cosx, x = 0, and x = π/2.
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 SECTION 6.1  Areas Between Curves 433

Observe that cos x > sin x when 0 < x < !y4 but sin x > cos x when 
!y4 < x < !y2. Therefore the required area is

 A − y!y2

0
 | cos x 2 sin x | dx − A1 1 A2

 − y!y4

0
 scos x 2 sin xd dx 1 y!y2

!y4
 ssin x 2 cos xd dx

 − fsin x 1 cos xg0

!y4
1 f2cos x 2 sin xg!y4

!y2

 − S 1

s2
1

1

s2
2 0 2 1D 1 S20 2 1 1

1

s2
1

1

s2D
 − 2s2 2 2

In this particular example we could have saved some work by noticing that the 
region is symmetric about x − !y4 and so

 A − 2A1 − 2 y!y4

0
 scos x 2 sin xd dx Q

Some regions are best treated by regarding x as a function of y. If a region is bounded 
by curves with equations x − f syd, x − tsyd, y − c, and y − d, where f  and t are con-
tinuous and f syd > tsyd for c < y < d (see Figure 13), then its area is

A − yd

c
 f f syd 2 tsydg dy

If we write xR for the right boundary and xL for the left boundary, then, as Fig ure 14 
illustrates, we have

A − yd

c
 sxR 2 xLd dy

Here a typical approximating rectangle has dimensions xR 2 xL and Dy.

EXAMPLE 7  Find the area enclosed by the line y − x 2 1 and the parabola 
y 2 − 2x 1 6.

SOLUTION By solving the two equations we !nd that the points of intersection are 
s21, 22d and s5, 4d. We solve the equation of the parabola for x and notice from  
Fig ure 15 that the left and right boundary curves are

xL − 1
2 y 2 2 3    and    xR − y 1 1

x

y

_2

4

0

(_1, _2)

(5, 4)
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1
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FIGURE 13 

FIGURE 14 
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Remark 1. Some regions are best treated by regarding x as a
function of y. If a region is bounded by curves with equations
x = f(y), x = g(y), y = c, and y = d, where f and g are
continuous and f(y) ≥ g(y) for c ≤ y ≤ d (see the figure), then
its area is

A =

ˆ d

c

[f(y)− g(y)] dy.

Example 7. Find the area enclosed by the line y = x − 1 and
the parabola y2 = 2x+ 6.
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6.2 Volumes

Definition 6.2.1 (Definition of Volume). Let S be a solid that lies between
x = a and x = b. If the cross-sectional area of S in the plane Px, through
x and perpendicular to the x-axis, is A(x), where A is a continuous function,
then the volume of S is

V = lim
n→∞

n∑
i=1

A(x∗
i )∆x =

ˆ b

a

A(x) dx.

SeCtion 6.2  Volumes 439

Let’s divide S into n “slabs” of equal width Dx by using the planes Px1, Px2 , . . . to slice 
the solid. (Think of slicing a loaf of bread.) If we choose sample points xi* in fxi21, xig, 
we can approximate the ith slab Si (the part of S that lies between the planes Pxi21 and Pxi)  
by a cylinder with base area Asxi*d and “height” Dx. (See Figure 3.)

xi-1 xi

y

0 xx*i

Îx

S

a b

y

0 xx¶=ba=x¸ ⁄ x™ ‹ x¢ x∞ xß

The volume of this cylinder is Asxi*d Dx, so an approximation to our intuitive concep-
tion of the volume of the ith slab Si is

VsSid < Asxi*d Dx

Adding the volumes of these slabs, we get an approximation to the total volume (that is, 
what we think of intuitively as the volume): 

V < o
n

i−1
 Asxi*d Dx

This approximation appears to become better and better as n l `. (Think of the slices 
as becoming thinner and thinner.) Therefore we define the volume as the limit of these 
sums as n l `. But we recognize the limit of Riemann sums as a definite integral and 
so we have the following definition.

 Definition of Volume Let S be a solid that lies between x − a and x − b. If the 
cross-sectional area of S in the plane Px, through x and perpendicular to the x-axis, 
is Asxd, where A is a continuous function, then the volume of S is

V − lim
n l `

 o
n

i−1
Asxi*d Dx − yb

a
 Asxd dx

When we use the volume formula V − yb
a  Asxd dx, it is important to remember that

Asxd is the area of a moving cross-section obtained by slicing through x perpendicular 
to the x-axis.

Notice that, for a cylinder, the cross-sectional area is constant: Asxd − A for all x. So 
our definition of volume gives V − yb

a  A dx − Asb 2 ad; this agrees with the formula 
V − Ah.

ExamplE 1  Show that the volume of a sphere of radius r is V − 4
3 �r 3.

SoLUtion If we place the sphere so that its center is at the origin, then the plane Px 
intersects the sphere in a circle whose radius (from the Pythagorean Theorem) is 

FIGURE 3� 

It can be proved that this definition is 
independent of how S is situated with 
respect to the x-axis. In other words, 
no matter how we slice S with parallel 
planes, we always get the same answer 
for V.
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Example 1. Show that the volume of a sphere of radius r is V = 4
3
πr3.
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Example 2. Find the volume of the solid obtained by rotating about the x-
axis the region under the curve y =

√
x from 0 to 1. Illustrate the definition

of volume by sketching a typical approximating cylinder.

Example 3. Find the volume of the solid obtained by rotating the region
bounded by y = x3, y = 8, and x = 0 about the y-axis.
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Example 4. The region R enclosed by the curves y = x and y = x2 is rotated
about the x-axis. Find the volume of the resulting solid.

Example 5. Find the volume of the solid obtained by rotating the region in
Example 4 about the line y = 2.
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Example 6. Find the volume of the solid obtained by rotating the region in
Example 4 about the line x = −1.

444 CHAPTER 6  Applications of Integration

EXAMPLE 6  Find the volume of the solid obtained by rotating the region in  
Example 4 about the line x − 21.

SOLUTION Figure 11 shows a horizontal cross-section. It is a washer with inner radius 
1 1 y and outer radius 1 1 sy  , so the cross-sectional area is

 Asyd − !souter radiusd2 2 !sinner radiusd2

 − ! (1 1 sy )2 2 !s1 1 yd2

The volume is

 V − y1

0
 Asyd dy − ! y1

0
 fs1 1 sy d2 2 s1 1 yd2 g dy

− ! y1

0
 s2sy 2 y 2 y 2 d dy − !F 4y 3y2

3
2

 y 2

2
2

 y 3

3 G0

1

−
!

2

 x=_1

y

y

x0

x=œ„y

y

x=y

y

1 y
1+y

1+œ„

 n

We now find the volumes of three solids that are not solids of revolution.

EXAMPLE 7  Figure 12 shows a solid with a circular base of radius 1. Parallel cross- 
sections perpendicular to the base are equilateral triangles. Find the volume of the solid.

SOLUTION Let’s take the circle to be x 2 1 y 2 − 1. The solid, its base, and a typical 
cross-section at a distance x from the origin are shown in Figure 13.

Since B lies on the circle, we have y − s1 2 x 2  and so the base of the triangle ABC 
is | AB | − 2y − 2s1 2 x 2 . Since the triangle is equilateral, we see from Figure 13(c) 

TEC Visual 6.2C shows how the  
solid in Figure 12 is generated.

FIGURE 12  
Computer-generated picture 
of the solid in Example 7
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Example 7. The figure shows a solid with a circular base of
radius 1. Parallel cross-sections perpendicular to the base are
equilateral triangles. Find the volume of the solid.
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Example 8. Find the volume of a pyramid whose base is a square with side
L and whose height is h.

Example 9. A wedge is cut out of a circular cylinder of radius 4 by two planes.
One plane is perpendicular to the axis of the cylinder. The other intersects
the first at an angle of 30◦ along a diameter of the cylinder. Find the volume
of the wedge.
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6.3 Volumes by Cylindrical Shells

Theorem 6.3.1 (Method of Cylindrical Shells). The volume of the solid in
the figure, obtained by rotating about the y-axis the region under the curve
y = f(x) from a to b, is

V = lim
n→∞

n∑
i=1

2πx̄if(x̄i)∆x =

ˆ b

a

2πxf(x) dx where 0 ≤ a ≤ b

and where x̄i is the midpoint of the ith subinterval [xi−1, xi].

450 Chapter 6  Applications of Integration

r2, and height h. Its volume V  is calculated by subtracting the volume V1 of the inner 
cylinder from the volume V2 of the outer cylinder:

V − V2 2 V1

− �r 2
2 h 2 �r 2

1 h − �sr 2
2 2 r 2

1 dh

− �sr2 1 r1dsr2 2 r1dh

− 2�
r2 1 r1

2
hsr2 2 r1d

If we let Dr − r2 2 r1 (the thickness of the shell) and r − 1
2 sr2 1 r1d (the average radius 

of the shell), then this formula for the volume of a cylindrical shell becomes

V − 2�rh Dr1�

and it can be remembered as

V − [circumference][height][thickness]

Now let S be the solid obtained by rotating about the y-axis the region bounded by 
y − f sxd [where f sxd > 0], y − 0, x − a,  and x − b, where b . a > 0. (See Figure 3.)

x

y

a b0

y=ƒ

a b x

y

0

y=ƒ

We divide the interval fa, bg into n subintervals fxi21, xig of equal width Dx and let xi

be the midpoint of the ith subinterval. If the rectangle with base fxi21, xig and height f sxid 
is rotated about the y-axis, then the result is a cylindrical shell with average radius xi , 
height f sxid, and thickness Dx (see Figure 4). So by Formula 1 its volume is

Vi − s2�xidf f sxidg Dx

x

y

a b0

y=ƒ

xi–

a b0 x

y

xi-1
xi

y=ƒ

x

y

a b0

y=ƒ

Therefore an approximation to the volume V  of S is given by the sum of the volumes of 

FIGURE 3�

FIGURE 4�
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Example 1. Find the volume of the solid obtained by rotating about the
y-axis the region bounded by y = 2x2 − x3 and y = 0.
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Example 2. Find the volume of the solid obtained by rotating about the
y-axis the region between y = x and y = x2.

Example 3. Use cylindrical shells to find the volume of the solid obtained by
rotating about the x-axis the region under the curve y =

√
x from 0 to 1.
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Example 4. Find the volume of the solid obtained by rotating the region
bounded by y = x− x2 and y = 0 about the line x = 2.
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6.4 Work

Definition 6.4.1. In general, if an object moves along a straight line with
position function s(t), then the force F on the object (in the same direction)
is given by Newton’s Second Law of Motion as the product of its mass m and
its acceleration a:

F = ma = m
d2s

dt2
.

Definition 6.4.2. In the case of constant acceleration, the force F is also
constant and the work done is defined to be the product of the force F and
distance d that the object moves:

W = Fd work = force× distance.

Example 1. (a) How much work is done in lifting a 1.2-kg book off the floor
to put it on a desk that is 0.7 m high? Use the fact that the acceleration
due to gravity is g = 9.8 m/s2.

(b) How much work is done in lifting a 20-lb weight 6 ft off the ground?
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Definition 6.4.3. If the force f(x) on an object is variable, then we define
the work done in moving the object from a to b as

W = lim
n→∞

n∑
i=1

f(x∗
i )∆x =

ˆ b

a

f(x) dx.

Example 2. When a particle is located a distance x feet from the origin, a
force of x2 + 2x pounds acts on it. How much work is done in moving it from
x = 1 to x = 3?

Theorem 6.4.1 (Hooke’s Law). The force required to maintain a spring
stretched x units beyond its natural length is proportional to x:

f(x) = kx

where k is a positive constant called the spring constant (see the figure). Hooke’s
Law holds provided that x is not too large. SECTION 6.4 Work 457

W − y0.08

0.05
 800x dx − 800 

x 2

2 G0.05

0.08

− 400fs0.08d2 2 s0.05d2g − 1.56 J Q

EXAMPLE 4  A 200-lb cable is 100 ft long and hangs vertically from the top of a tall 
building. How much work is required to lift the cable to the top of the building?

SOLUTION Here we don’t have a formula for the force function, but we can use an 
argument similar to the one that led to Definition 4.

Let’s place the origin at the top of the building and the x-axis pointing downward as 
in Figure 2. We divide the cable into small parts with length Dx. If xi* is a point in the 
ith such interval, then all points in the interval are lifted by approximately the same 
amount, namely xi*. The cable weighs 2 pounds per foot, so the weight of the ith part is 
(2 lbyft)(Dx ft) − 2Dx lb. Thus the work done on the ith part, in foot-pounds, is 

s2Dxd ? xi* − 2xi* Dx
force distance

We get the total work done by adding all these approximations and letting the num-
ber of parts become large (so Dx l 0):

W − lim
n l `

 o
n

i−1
 2xi*Dx − y100

0
 2x dx

− x 2g100

0 − 10,000 ft-lb Q

EXAMPLE 5  A tank has the shape of an inverted circular cone with height 10 m and 
base radius 4 m. It is filled with water to a height of 8 m. Find the work required to 
empty the tank by pumping all of the water to the top of the tank. (The density of water 
is 1000 kgym3.)

x0frictionless
surface

x0 x

ƒ=kx

(a) Natural position of spring (b) Stretched position of spring

0

100

x*i

x

Îx

FIGURE 2 

If we had placed the origin at the 
bottom of the cable and the x-axis 
upward, we would have gotten

W − y100

0
 2s100 2 xd dx

which gives the same answer.
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Example 3. A force of 40 N is required to hold a spring that has been
stretched from its natural length of 10 cm to a length of 15 cm. How much
work is done in stretching the spring from 15 cm to 18 cm?

Example 4. A 200-lb cable is 100 ft long and hangs vertically from the top
of a tall building. How much work is required to lift the cable to the top of
the building?
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Example 5. A tank has the shape of an inverted circular cone with height
10 m and base radius 4 m. It is filled with water to a height of 8 m. Find the
work required to empty the tank by pumping all of the water to the top of the
tank. (The density of water is 1000 kg/m3.)
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6.5 Average Value of a Function

Definition 6.5.1. The average value of a function f on the interval [a, b] is

fave =
1

b− a

ˆ b

a

f(x) dx.

Example 1. Find the average value of the function f(x) = 1 + x2 on the
interval [−1, 2].

Theorem 6.5.1 (The Mean Value Theorem for Integrals). If f is continuous
on [a, b], then there exists a number c in [a, b] such that

f(c) = fave =
1

b− a

ˆ b

a

f(x) dx,

that is, ˆ b

a

f(x) dx = f(c)(b− a).

Proof. By applying the Mean Value Theorem for derivatives to the function
F (x) =

´ x
a
f(t)dt, we see that there exists a number c in [a, b] such that

F ′(c) =
F (b)− F (a)

b− a

d

dx

[ˆ x

a

f(t) dt

]∣∣∣∣∣
c

=
F (b)− F (a)

b− a

f(c) =
1

b− a
[F (b)− F (a)]

=
1

b− a

ˆ b

a

f(x) dx.
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Example 2. Find a number c in the interval [−1, 2] that satisfies the mean
value theorem for integrals for the function f(x) = 1 + x2.

Example 3. Show that the average velocity of a car over a time interval [t1, t2]
is the same as the average of its velocities during the trip.
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Chapter 7

Techniques of Integration

7.1 Integration by Parts

Theorem 7.1.1 (Formula for Integration by Parts). If f and g are differen-
tiable functions then

ˆ
f(x)g′(x) dx = f(x)g(x)−

ˆ
g(x)f ′(x) dx,

or, equivalently, ˆ
u dv = uv −

ˆ
v du

where u = f(x) and v = g(x).

Proof. By the Product Rule,

d

dx
[f(x)g(x)] = f(x)g′(x) + g(x)f ′(x)

f(x)g(x) =

ˆ
[f(x)g′(x) + g(x)f ′(x)] dx

=

ˆ
f(x)g′(x) dx+

ˆ
g(x)f ′(x) dx

ˆ
f(x)g′(x) dx = f(x)g(x)−

ˆ
g(x)f ′(x) dx

53



Calculus II - Integration by Parts

Example 1. Find

ˆ
x sinx dx.

Example 2. Evaluate

ˆ
lnx dx.
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Example 3. Find

ˆ
t2et dt.
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Example 4. Evaluate

ˆ
ex sinx dx.
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Calculus II - Integration by Parts

Theorem 7.1.2 (Formula for Definite Integration by Parts). If f and g are
differentiable on (a, b) and f ′ and g′ are continuous, then

ˆ b

a

f(x)g′(x) dx = f(x)g(x)
]b
a
−
ˆ b

a

g(x)f ′(x) dx.

Example 5. Calculate

ˆ 1

0

tan−1 x dx.
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Example 6. Prove the reduction formula

ˆ
sinn x dx = − 1

n
cosx sinn−1 x+

n− 1

n

ˆ
sinn−2 x dx

where n ≥ 2 is an integer.
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7.2 Trigonometric Integrals

Example 1. Evaluate

ˆ
cos3 x dx.

Example 2. Find

ˆ
sin5 x cos2 x dx.
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Remark 1. Sometimes it is easier to use the half-angle identities

sin2 x =
1

2
(1− cos 2x) and cos2 x =

1

2
(1 + cos 2x)

to evaluate an integral.

Example 3. Evaluate

ˆ π

0

sin2 x dx.

Example 4. Find

ˆ
sin4 x dx.
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Example 5. Evaluate

ˆ
tan6 x sec4 x dx.

Example 6. Find

ˆ
tan5 θ sec7 θ dθ.
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Example 7. Find

ˆ
tan3 x dx.

Example 8. Find

ˆ
sec3 x dx.
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Remark 2. To evaluate the integrals (a)
´
sinmx cosnx dx, (b)

´
sinmx sinnx dx,

or (c)
´
cosmx cosnx dx, use the corresponding identity:

(a) sinA cosB =
1

2
[sin(A−B) + sin(A+B)]

(b) sinA sinB =
1

2
[cos(A−B)− cos(A+B)]

(c) cosA cosB =
1

2
[cos(A−B) + cos(A+B)].

Example 9. Evaluate

ˆ
sin 4x cos 5x dx.
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7.3 Trigonometric Substitution

Table of Trigonometric Substitutions

Expression Substitution Identity

√
a2 − x2 x = a sin θ, −π

2
≤ θ ≤ π

2
1− sin2 θ = cos2 θ

√
a2 + x2 x = a tan θ, −π

2
≤ θ ≤ π

2
1 + tan2 θ = sec2 θ

√
x2 − a2 x = a sec θ, 0 ≤ θ ≤ π

2
or π ≤ θ ≤ 3π

2
sec2 θ − 1 = tan2 θ

Example 1. Evaluate

ˆ √
9− x2

x2
dx.
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Example 2. Find the area enclosed by the ellipse

x2

a2
+

y2

b2
= 1.
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Example 3. Find

ˆ
1

x2
√
x2 + 4

dx.
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Example 4. Find

ˆ
x√

x2 + 4
dx.

Example 5. Evaluate

ˆ
dx√

x2 − a2
, where a > 0.
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Example 6. Find

ˆ 3
√
3/2

0

x3

(4x2 + 9)3/2
dx.
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Example 7. Evaluate

ˆ
x√

3− 2x− x2
dx.
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7.4 Integration by Partial Fractions

Example 1. Find

ˆ
x3 + x

x− 1
dx.
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Example 2. Evaluate

ˆ
x2 + 2x− 1

2x3 + 3x2 − 2x
dx.
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Example 3. Find

ˆ
dx

x2 − a2
, where a ̸= 0.
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Example 4. Find

ˆ
x4 − 2x2 + 4x+ 1

x3 − x2 − x+ 1
dx.
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Theorem 7.4.1. ˆ
dx

x2 + a2
=

1

a
tan−1

(
x

a

)
+ C.

Example 5. Evaluate

ˆ
2x2 − x+ 4

x3 + 4x
dx.
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Example 6. Evaluate

ˆ
4x2 − 3x+ 2

4x2 − 4x+ 3
dx.
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Example 7. Write out the form of the partial fraction decomposition of the
function

x3 + x2 + 1

x(x− 1)(x2 + x+ 1)(x2 + 1)3
.

Example 8. Evaluate

ˆ
1− x+ 2x2 − x3

x(x2 + 1)2
dx.
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Example 9. Evaluate

ˆ √
x+ 4

x
dx.
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7.5 Strategy for Integration

Example 1.

ˆ
tan3 x

cos3 x
dx.

Example 2.

ˆ
e
√
x dx.
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Example 3.

ˆ
x5 + 1

x3 − 3x2 − 10x
dx.
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Example 4.

ˆ
dx

x
√
lnx

.

Example 5.

ˆ √
1− x

1 + x
dx.
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7.6 Integration Using Tables and CAS’s

Example 1. The region bounded by the curves y = arctanx, y = 0, and
x = 1 is rotated about the y-axis. Find the volume of the resulting solid.

Example 2. Use the Table of Integrals to find

ˆ
x2

√
5− 4x2

dx.
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Example 3. Use the Table of Integrals to evaluate

ˆ
x3 sinx dx.

Example 4. Use the Table of Integrals to find

ˆ
x
√
x2 + 2x+ 4 dx.
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Example 5. Use a computer algebra system to find

ˆ
x
√
x2 + 2x+ 4 dx.

Example 6. Use a CAS to evaluate

ˆ
x(x2 + 5)8 dx.

Example 7. Use a CAS to find

ˆ
sin5 x cos2 x dx.
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7.7 Approximate Integration

 SECTION 7.7  Approximate Integration 515

example, it is impossible to evaluate the following integrals exactly:

y1

0
 ex 2 

dx      y1

21
 s1 1 x 3  dx

The second situation arises when the function is determined from a scienti!c experi-
ment through instrument readings or collected data. There may be no formula for the 
function (see Example 5).

In both cases we need to !nd approximate values of de!nite integrals. We already 
know one such method. Recall that the de!nite integral is de!ned as a limit of Riemann 
sums, so any Riemann sum could be used as an approximation to the integral: If we 
divide fa, bg into n subintervals of equal length Dx − sb 2 adyn, then we have

yb

a
 f sxd dx < o

n

i−1
 f sxi*d Dx

where x i* is any point in the ith subinterval fxi21, xig. If x i* is chosen to be the left end-
point of the interval, then x i* − xi21 and we have

yb

a
 f sxd dx < Ln − o

n

i−1
 f sxi21d Dx

If f sxd > 0, then the integral represents an area and (1) represents an approximation of 
this area by the rectangles shown in Figure 1(a). If we choose x i* to be the right endpoint, 
then x i* − xi and we have

yb

a
 f sxd dx < Rn − o

n

i−1
 f sxid Dx

[See Figure 1(b).] The approximations Ln and Rn de!ned by Equations 1 and 2 are called 
the left endpoint approximation and right endpoint approximation, respectively.

In Section 5.2 we also considered the case where x i* is chosen to be the midpoint xi 
of the subinterval fxi21, xig. Figure 1(c) shows the midpoint approximation Mn, which 
appears to be better than either Ln or Rn.

Midpoint Rule 

yb

a
 f sxd dx < Mn − Dx f f sx1d 1 f sx2 d 1 ∙ ∙ ∙ 1 f sxn dg

where  Dx −
b 2 a

n

and  xi − 1
2 sxi21 1 xid − midpoint of fxi21, xig

Another approximation, called the Trapezoidal Rule, results from averaging the 
approximations in Equations 1 and 2:

 yb

a
 f sxd dx <

1
2

 Fo
n

i−1
 f sxi21 d Dx 1 o

n

i−1
 f sxid DxG −

Dx
2

 Fo
n

i−1
 s f sxi21 d 1 f sxiddG

 −
Dx
2

 fs f sx0 d 1 f sx1dd 1 s f sx1d 1 f sx2 dd 1 ∙ ∙ ∙ 1 s f sxn21d 1 f sxn ddg

 −
Dx
2

 f f sx0 d 1 2 f sx1d 1 2 f sx2 d 1 ∙ ∙ ∙ 1 2 f sxn21d 1 f sxn dg

1

⁄ ¤– – ––

(a) Left endpoint approximation

y

x¸ ⁄ ¤ ‹ x¢

x¸ ⁄ ¤ ‹ x¢

‹ x¢

x0

(b) Right endpoint approximation

y

x0

x

(c) Midpoint approximation

y

0

FIGURE 1 

2
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Theorem 7.7.1 (Midpoint Rule).

ˆ b

a

f(x) dx ≈ Mn = ∆x[f(x̄1) + f(x̄2) + · · ·+ f(x̄n)]

where

∆x =
b− a

n

and

x̄i =
1

2
(xi−1 + xi) = midpoint of [xi−1, xi]. 516 CHAPTER 7  Techniques of Integration

Trapezoidal Rule 

yb

a
 f sxd dx < Tn −

Dx
2

 f f sx0 d 1 2 f sx1d 1 2 f sx2 d 1 ∙ ∙ ∙ 1 2 f sxn21d 1 f sxn dg

where Dx − sb 2 adyn and xi − a 1 i Dx.

The reason for the name Trapezoidal Rule can be seen from Figure 2, which illustrates 
the case with f sxd > 0 and n − 4. The area of the trapezoid that lies above the ith sub-
interval is

Dx S  f sxi21d 1 f sxid
2 D −

Dx
2

 f f sxi21d 1 f sxidg

and if we add the areas of all these trapezoids, we get the right side of the Trapezoidal 
Rule.

EXAMPLE 1  Use (a) the Trapezoidal Rule and (b) the Midpoint Rule with n − 5 to  
approximate the integral y2

1
 s1yxd dx.

SOLUTION
(a) With n − 5, a − 1, and b − 2, we have Dx − s2 2 1dy5 − 0.2, and so the Trape-
zoidal Rule gives

 y2

1
 
1
x

 dx < T5 −
0.2
2

 f f s1d 1 2 f s1.2d 1 2 f s1.4d 1 2 f s1.6d 1 2 f s1.8d 1 f s2dg

 − 0.1S 1
1

1
2

1.2
1

2
1.4

1
2

1.6
1

2
1.8

1
1
2D

 < 0.695635

This approximation is illustrated in Figure 3.

(b) The midpoints of the "ve subintervals are 1.1, 1.3, 1.5, 1.7, and 1.9, so the Mid-
point Rule gives

 y2

1
 
1
x

 dx < Dx f f s1.1d 1 f s1.3d 1 f s1.5d 1 f s1.7d 1 f s1.9dg

 −
1
5

 S 1
1.1

1
1

1.3
1

1
1.5

1
1

1.7
1

1
1.9D

 < 0.691908

This approximation is illustrated in Figure 4. Q

In Example 1 we deliberately chose an integral whose value can be computed explic-
itly so that we can see how accurate the Trapezoidal and Midpoint Rules are. By the 
Fundamental Theorem of Calculus,

y2

1
 
1
x

 dx − ln xg 1

2
− ln 2 − 0.693147 . . .

The error in using an approximation is de"ned to be the amount that needs to be added 
to the approximation to make it exact. From the values in Example 1 we see that the 

0

y

xx¸ ⁄ ¤ ‹ x¢

1 2

1 2

1
xy=

1
xy=

FIGURE 2  
Trapezoidal approximation

FIGURE 3  

FIGURE 4  

yb

a
 f sxd dx − approximation 1 error
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Theorem 7.7.2 (Trapezoidal Rule).

ˆ b

a

f(x) dx ≈ Tn =
∆x

2
[f(x0)+2f(x1)+2f(x2)+· · ·+2f(xn−1)+f(xn)]

where ∆x = (b− a)/n and xi = a+ i∆x.

Example 1. Use (a) the Trapezoidal Rule and (b) the Midpoint

Rule with n = 5 to approximate the integral
´ 2
1
(1/x) dx.
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Theorem 7.7.3 (Error Bounds). Suppose |f ′′(x)| ≤ K for a ≤ x ≤ b. If ET

and EM are the errors in the Trapezoidal and Midpoint Rules, then

|ET | ≤
K(b− a)3

12n2
and |EM | ≤ K(b− a)3

24n2
.

Example 2. How large should we take n in order to guarantee that the Trape-
zoidal and Midpoint Rule approximations for

´ 2
1
(1/x) dx are accurate to within

0.0001?
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Example 3. (a) Use the Midpoint Rule with n = 10 to approximate the

integral
´ 1

0
ex

2
dx.

(b) Give an upper bound for the error involved in this approximation.
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Theorem 7.7.4 (Simpson’s Rule).

ˆ b

a

f(x) dx ≈ Sn =
∆x

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·

+ 2f(xn−2) + 4f(xn−1) + f(xn)]

where n is even and ∆x = (b− a)/n.
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EXAMPLE 3  
(a) Use the Midpoint Rule with n − 10 to approximate the integral y1

0 e
x 2

dx.
(b) Give an upper bound for the error involved in this approximation.

SOLUTION
(a) Since a − 0, b − 1, and n − 10, the Midpoint Rule gives

 y1

0
 ex 2

dx < Dx f f s0.05d 1 f s0.15d 1 ∙ ∙ ∙ 1 f s0.85d 1 f s0.95dg

 − 0.1fe 0.0025 1 e 0.0225 1 e 0.0625 1 e 0.1225 1 e 0.2025 1 e 0.3025

    1 e 0.4225 1 e 0.5625 1 e 0.7225 1 e 0.9025g

 < 1.460393

Figure 6 illustrates this approximation.

(b) Since f sxd − ex 2
, we have f 9sxd − 2xex 2

 and f 0sxd − s2 1 4x 2dex 2
. Also, since 

0 < x < 1, we have x 2 < 1 and so

0 < f 0sxd − s2 1 4x 2dex 2
< 6e

Taking K − 6e, a − 0, b − 1, and n − 10 in the error estimate (3), we see that an 
upper bound for the error is

 
6es1d3

24s10d2 −
e

400
< 0.007 Q

Simpson’s Rule
Another rule for approximate integration results from using parabolas instead of straight 
line segments to approximate a curve. As before, we divide fa, bg into n subintervals  
of equal length h − Dx − sb 2 adyn, but this time we assume that n is an even number. 
Then on each consecutive pair of intervals we approximate the curve y − f sxd > 0  
by a parabola as shown in Figure 7. If yi − f sxid, then Pisxi, yid is the point on the curve 
lying above xi. A typical parabola passes through three consecutive points Pi, Pi11,  
and Pi12.

0

y

xa=x¸ ⁄ x™ x¢x£ xß=bx∞

P¸ P¡

P™
P¢

P£

PßP∞

0

y

xh_h

P¸(_h, y¸) P¡(0, ›)

P™(h, fi)

To simplify our calculations, we "rst consider the case where x0 − 2h, x1 − 0, and 
x2 − h. (See Figure 8.) We know that the equation of the parabola through P0, P1, and 

FIGURE 6 

0

y

x1

y=ex2

Error estimates give upper bounds 
for the error. They are theoretical, 
worst-case scenarios. The actual 
error in this case turns out to be 
about 0.0023.

FIGURE 7 FIGURE 8
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Example 4. Use Simpson’s Rule with n = 10 to approximate
´ 2

1
(1/x) dx.
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Example 5. The figure shows data traffic on the link from the United States
to SWITCH, the Swiss academic and research network, on February 10, 1998.
D(t) is the data throughput, measured in megabits per second (Mb/s). Use
Simpson’s Rule to estimate the total amount of data transmitted on the link
from midnight to noon on that day.
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EXAMPLE 4  Use Simpson’s Rule with n − 10 to approximate y2
1  s1yxd dx.

SOLUTION Putting f sxd − 1yx, n − 10, and Dx − 0.1 in Simpson’s Rule, we obtain

 y2

1
 
1
x

 dx < S10

 −
Dx
3

 f f s1d 1 4 f s1.1d 1 2 f s1.2d 1 4 f s1.3d 1 ∙ ∙ ∙ 1 2 f s1.8d 1 4 f s1.9d 1 f s2dg

 −
0.1
3

 S 1
1

1
4

1.1
1

2
1.2

1
4

1.3
1

2
1.4

1
4

1.5
1

2
1.6

1
4

1.7
1

2
1.8

1
4

1.9
1

1
2D

< 0.693150 Q

Notice that, in Example 4, Simpson’s Rule gives us a much  better approximation 
sS10 < 0.693150d to the true value of the integral sln 2 < 0.693147. . .d than does the 
Trapezoidal Rule sT10 < 0.693771d or the Midpoint Rule sM10 < 0.692835d. It turns out 
(see Exercise 50) that the approximations in Simpson’s Rule are weighted averages of 
those in the Trapezoidal and Midpoint Rules:

S2 n − 1
3 Tn 1 2

3 Mn

(Recall that ET and EM usually have opposite signs and | EM | is about half the size of 
| ET |.)

In many applications of calculus we need to evaluate an integral even if no explicit 
formula is known for y as a function of x. A function may be given graphically or as a 
table of values of collected data. If there is evidence that the values are not changing 
rapidly, then the Trapezoidal Rule or Simpson’s Rule can still be used to find an approxi-
mate value for yb

a y dx, the integral of y with respect to x. 

EXAMPLE 5  Figure 9 shows data traffic on the link from the United States to 
SWITCH, the Swiss academic and research network, on February 10, 1998. Dstd is the 
data throughput, measured in megabits per second sMbysd. Use Simpson’s Rule to esti-
mate the total amount of data transmitted on the link from midnight to noon on that day.

0

2

4

6

D
8

3 6 9 12 15 18 21 24 t (hours)

SOLUTION Because we want the units to be consistent and Dstd is measured in mega-
bits per second, we convert the units for t from hours to seconds. If we let Astd be the  
amount of data (in megabits) transmitted by time t, where t is measured in seconds, 
then A9std − Dstd. So, by the Net Change Theorem (see Section 5.4), the total amount 

FIGURE 9 
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Theorem 7.7.5 (Error Bound for Simpson’s Rule). Suppose that |f (4)(x)| ≤
K for a ≤ x ≤ b. If ES is the error involved in using Simpson’s Rule, then

|ES| ≤
K(b− a)5

180n4
.

Example 6. How large should we take n in order to guarantee that the Simp-
son’s Rule approximation for

´ 2
1
(1/x) dx is accurate to within 0.0001?
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Example 7. (a) Use Simpson’s Rule with n = 10 to approximate the integral´ 1
0
ex

2
dx.

(b) Estimate the error involved in this approximation.
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7.8 Improper Integrals

Definition 7.8.1 (Definition of an Improper Integral of Type 1).

(a) If
´ t

a
f(x) dx exists for every number t ≥ a, then

ˆ ∞

a

f(x) dx = lim
t→∞

ˆ t

a

f(x) dx

provided this limit exists (as a finite number).

(b) If
´ b

t
f(x) dx exists for every number t ≤ b, then

ˆ b

−∞
f(x) dx = lim

t→−∞

ˆ b

t

f(x) dx

provided this limit exists (as a finite number).

The improper integrals
´∞
a

f(x) dx and
´ b
−∞ f(x) dx are called convergent if

the corresponding limit exists and divergent if the limit does not exist.

(c) If both
´∞
a

f(x) dx and
´ a
−∞ f(x) dx are convergent, then we define

ˆ ∞

−∞
f(x) dx =

ˆ a

−∞
f(x) dx+

ˆ ∞

a

f(x) dx.

In part (c) any real number a can be used.

Example 1. Determine whether the integral
´∞
1
(1/x) dx is convergent or

divergent.
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Example 2. Evaluate

ˆ 0

−∞
xex dx.
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Example 3. Evaluate

ˆ ∞

−∞

1

1 + x2
dx.
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Example 4. For what values of p is the integral

ˆ ∞

1

1

xp
dx

convergent?
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Definition 7.8.2 (Definition of an Improper Integral of Type 2).

(a) If f is continuous on [a, b) and is discontinuous at b, then

ˆ b

a

f(x) dx = lim
t→b−

ˆ t

a

f(x) dx

if this limit exists (as a finite number).

(b) If f is continuous on (a, b] and is discontinuous at a, then

ˆ b

a

f(x) dx = lim
t→a+

ˆ b

t

f(x) dx

if this limit exists (as a finite number).

The improper integral
´ b

a
f(x) dx is called convergent if the corresponding limit

exists and divergent if the limit does not exist.

(c) If f has a discontinuity at c, where a < c < b, and both
´ c
a
f(x) dx and´ b

c
f(x) dx are convergent, then we define

ˆ b

a

f(x) dx =

ˆ c

a

f(x) dx+

ˆ b

c

f(x) dx.

Example 5. Find

ˆ 5

2

1√
x− 2

dx.
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Example 6. Determine whether

ˆ π/2

0

secx dx converges or diverges.

Example 7. Evaluate

ˆ 3

0

dx

x− 1
if possible.
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Example 8.

ˆ 1

0

lnx dx.
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Theorem 7.8.1 (Comparison Theorem). Suppose that f and g are continuous
functions with f(x) ≥ g(x) ≥ 0 for x ≥ a.

(a) If
´∞
a

f(x) dx is convergent, then
´∞
a

g(x) dx is convergent.

(b) If
´∞
a

g(x) dx is divergent, then
´∞
a

f(x) dx is divergent.

Example 9. Show that

ˆ ∞

0

e−x2

dx is convergent.

Example 10. Determine whether

ˆ ∞

1

1 + e−x

x
dx converges or diverges.
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Chapter 11

Infinite Sequences and Series

11.1 Sequences

Definition 11.1.1. A sequence can be thought of as a list of numbers written
in a definite order:

a1, a2, a3, a4, . . . , an, . . . .

The number a1 is called the first term, a2 is the second term, and in general
an is the nth term.
A sequence can also be defined as a function whose domain is the set of positive
integers. However, we usually write an instead of the function notation f(n)
for the value of the function at the number n.
The sequence {a1, a2, a3, . . .} is also denoted by

{an} or {an}∞n=1.

Example 1. Some sequences can be defined by giving a formula for the nth
term. In the following examples we give three descriptions of the sequence:
one by using the preceding notation, another by using the defining formula,
and a third by writing out the terms of the sequence. Notice that n doesn’t
have to start at 1.
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(a)

{
n

n+ 1

}∞

n=1

an =
n

n+ 1

{
1

2
,
2

3
,
3

4
,
4

5
, . . . ,

n

n+ 1
, . . .

}
(b)

{
(−1)n(n+ 1)

3n

}
an =

(−1)n(n+ 1)

3n

{
−2

3
,
3

9
,− 4

27
,
5

81
, . . . ,

(−1)n(n+ 1)

3n
, . . .

}
(c)

{√
n− 3

}∞

n=3
an =

√
n− 3, n ≥ 3

{
0, 1,

√
2,
√
3, . . . ,

√
n− 3, . . .

}
(d)

{
cos

nπ

6

}∞

n=0

an = cos
nπ

6
, n ≥ 0

{
1,

√
3

2
,
1

2
, 0, . . . , cos

nπ

6
, . . .

}

Example 2. Find a formula for the general term an of the sequence{
3

5
,− 4

25
,

5

125
,− 6

625
,

7

3125
, . . .

}
assuming that the pattern of the first few terms continues.
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Example 3. Here are some sequences that don’t have a simple defining equa-
tion.

(a) The sequence {pn}, where pn is the population of the world as of January
1 in the year n.

(b) If we let an be the digit in the nth decimal place of the number e, then
{an} is a well-defined sequence whose first few terms are

{7, 1, 8, 2, 8, 1, 8, 2, 4, 5, . . .}.

(c) The Fibonacci sequence {fn} is defined recursively by the conditions

f1 = 1 f2 = 1 fn = fn−1 + fn−2 n ≥ 3.

Each term is the sum of the two preceding terms. The first few terms are

{1, 1, 2, 3, 5, 8, 13, 21, . . .}

This sequence arose when the 13th-century Italian mathematician known
as Fibonacci solved a problem concerning the breeding of rabbits.

Definition 11.1.2. A sequence {an} has the limit L and we write

lim
n→∞

an = L or an → L as n → ∞

if we can make the terms an as close to L as we like by taking n sufficiently
large. If limn→∞ exists, we say the sequence converges (or is convergent).
Otherwise, we say the sequence diverges (or is divergent).

Definition 11.1.3 (Precise Definition of the Limit of a Sequence). A sequence
{an} has the limit L and we write

lim
n→∞

an = L or an → L as n → ∞

if for every ε > 0 there is a corresponding integer N such that

if n > N then |an − L| < ε.

Theorem 11.1.1. If limx→∞ f(x) = L and f(n) = an when n is an integer,
then limn→∞ an = L.

Definition 11.1.4. limn→∞ an = ∞ means that for every positive number M
there is an integer N such that

if n > N then an > M.
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Theorem 11.1.2 (Limit Laws for Sequences). If {an} and {bn} are convergent
sequences and c is a constant, then

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn

lim
n→∞

(an − bn) = lim
n→∞

an − lim
n→∞

bn

lim
n→∞

can = c lim
n→∞

an lim
n→∞

c = c

lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn

lim
n→∞

an
bn

=
lim
n→∞

an

lim
n→∞

bn
if lim

n→∞
bn ̸= 0

lim
n→∞

apn =

[
lim
n→∞

an

]p
if p > 0 and an > 0.

Theorem 11.1.3 (Squeeze Theorem for Sequences). If an ≤ bn ≤ cn for
n ≥ n0 and lim

n→∞
an = lim

n→∞
cn = L, then lim

n→∞
bn = L.

Theorem 11.1.4. If lim
n→∞

|an| = 0, then lim
n→∞

an = 0.

Proof. Since limn→∞ |an| = 0,

lim
n→∞

−|an| = 0 = − lim
n→∞

|an| = 0.

But −|an| ≤ an ≤ |an| for all n, so by the squeeze theorem for sequences,
limn→∞ an = 0.

Example 4. Find lim
n→∞

n

n+ 1
.
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Example 5. Is the sequence an =
n√

10 + n
convergent or divergent?

Example 6. Calculate lim
n→∞

lnn

n
.

Example 7. Determine whether the sequence an = (−1)n is convergent or
divergent.
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Example 8. Evaluate lim
n→∞

(−1)n

n
if it exists.

Theorem 11.1.5. If lim
n→∞

an = L and the function f is continuous at L, then

lim
n→∞

f(an) = f(L).

Proof. Choose a particular n, say n0. By the definition of a limit of a sequence,
given ε1 > 0 there exists an integer N , such that |an0 − L| < ε1 for n0 > N .
Similarly, by the definition of continuity, the limit of f exists at L, so for ε2 > 0
there exists ε1 > 0 such that if |an0 − L| < ε1 then |f(an0)− f(L)| < ε2. This
is true for arbitrary ε2 > 0, so limn→∞ f(an) = f(L).

Example 9. Find lim
n→∞

sin(π/n).
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Example 10. Discuss the convergence of the sequence an = n!/nn, where
n! = 1 · 2 · 3 · · · · · n.

Example 11. For what values of r is the sequence {rn} convergent?
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Definition 11.1.5. A sequence {an} is called increasing if an < an+1 for all
n ≥ 1, that is, a1 < a2 < a3 < · · · . It is called decreasing if an > an+1 for all
n ≥ 1. A sequence is monotonic if it is either increasing or decreasing.

Example 12. Is the sequence

{
3

n+ 5

}
increasing or decreasing?

Example 13. Show that the sequence an =
n

n2 + 1
is decreasing.
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Definition 11.1.6. A sequence {an} is bounded above if there is a number
M such that

an ≤ M for all n ≥ 1.

It is bounded below if there is a number m such that

m ≤ an for all n ≥ 1.

If it is bounded above and below, then {an} is a bounded sequence.

Theorem 11.1.6 (Monotonic Sequence theorem). Every bounded, monotonic
sequence is convergent.

Example 14. Investigate the sequence {an} defined by the recurrence relation

a1 = 2 an+1 =
1

2
(an + 6) for n = 1, 2, 3, . . . .
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11.2 Series

Definition 11.2.1. In general, if we try to add the terms of an infinite se-
quence {an}∞n=1 we get an expression of the form

a1 + a2 + a3 + · · ·+ an + · · ·

which is called an infnite series (or just a series) and is denoted, for short, by
the symbol

∞∑
n=1

an or
∑

an.

Definition 11.2.2. Given a series
∑∞

n=1 an = a1+a2+a3+ · · · , let sn denote
its nth partial sum:

sn =
n∑

i=1

ai = a1 + a2 + · · ·+ an.

If the sequence {sn} is convergent and limn→∞ sn = s exists as a real number,
then the series

∑
an is called convergent and we write

a1 + a2 + · · ·+ an + · · · = s or
∞∑
n=1

= s.

The number s is called the sum of the series. If the sequence {sn} is divergent,
then the series is called divergent.

Example 1. Find the sum of the series
∑∞

n=1 an if the sum of the first n terms
of the series is

sn = a1 + a2 + · · ·+ an =
2n

3n+ 5
.
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Example 2. Find the sum of the geometric series

a+ ar + ar2 + ar3 + · · ·+ arn−1 + · · · =
∞∑
n=1

arn−1 a ̸= 0

where each term is obtained from the preceding one by multiplying it by the
common ratio r.
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Example 3. Find the sum of the geometric series

5− 10

3
+

20

9
− 40

27
+ · · · .

Example 4. Is the series
∞∑
n=1

22n31−n convergent or divergent?
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Example 5. A drug is administered to a patient at the same time every day.
Suppose the concentration of the drug is Cn (measured in mg/mL) after the
injection on the nth day. Before the injection the next day, only 30% of the
drug remains in the bloodstream and the daily dose raises the concentration
by 0.2 mg/mL.

(a) Find the concentration after three days.

(b) What is the concentration after the nth dose?

(c) What is the limiting concentration?
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Example 6. Write the number 2.317 = 2.3171717 . . . as a ratio of integers.

Example 7. Find the sum of the series
∞∑
n=0

xn, where |x| < 1.
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Example 8. Show that the series
∞∑
n=1

1

n(n+ 1)
is convergent, and find its

sum.
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Example 9. Show that the harmonic series

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ · · ·

is divergent.
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Theorem 11.2.1. If the series
∞∑
n=1

an is convergent, then lim
n→∞

an = 0.

Proof. Let sn = a1 + a2 + · · · + an. Then an = sn − sn−1. Since
∑

an
is convergent, the sequence {sn} is convergent. Let limn→∞ sn = s. Since
n− 1 → ∞ as n → ∞, we also have limn→∞ sn−1 = s. Therefore

lim
n→∞

an = lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = s− s = 0.

Corollary 11.2.1 (Test for Divergence). If lim
n→∞

an does not exist or if lim
n→∞

an ̸=

0, then the series
∞∑
n=1

an is divergent.

Proof. If the series is not divergent, then it is convergent, and so limn→∞ an = 0
by Theorem 11.2.1. The result follows by contrapositive.

Example 10. Show that the series
∞∑
n=1

n2

5n2 + 4
diverges.
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Theorem 11.2.2. If
∑

an and
∑

bn are convergent series, then so are the
series

∑
can (where c is a constant),

∑
(an + bn), and

∑
(an − bn), and

(i)
∞∑
n=1

can = c
∞∑
n=1

an

(ii)
∞∑
n=1

(an + bn) =
∞∑
n=1

an +
∞∑
n=1

bn

(iii)
∞∑
n=1

(an − bn) =
∞∑
n=1

an −
∞∑
n=1

bn

Example 11. Find the sum of the series
∞∑
n=1

(
3

n(n+ 1)
+

1

2n

)
.

Remark 1. A finite number of terms doesn’t affect the convergence or diver-
gence of a series. For instance, suppose that we were able to show that the
series

∞∑
n=4

n

n3 + 1

is convergent. Since

∞∑
n=1

n

n3 + 1
=

1

2
+

2

9
+

3

28
+

∞∑
n=4

n

n3 + 1

it follows that the entire series
∑∞

n=1 n/(n
3 + 1) is convergent. Similarly, if it

is known that the series
∑∞

n=N+1 an converges, then the full series

∞∑
n=1

an =
N∑

n=1

an +
∞∑

n=N+1

an

is also convergent.
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11.3 The Integral Test and Estimates of Sums

Theorem 11.3.1 (The Integral Test). Suppose f is a continuous, positive,
decreasing function on [1,∞) and an = f(n). The the series

∑∞
n=1 an is con-

vergent if and only if the improper integral
´∞
1

f(x) dx is convergent. In other
words:

(i) If

ˆ ∞

1

f(x) dx is convergent, then
∞∑
n=1

an is convergent.

(ii) If

ˆ ∞

1

f(x) dx is divergent, then
∞∑
n=1

an is divergent.

Proof. SECTION 11.3  The Integral Test and Estimates of Sums 725

Proof of the Integral Test
We have already seen the basic idea behind the proof of the Integral Test in Figures 1 and 
2 for the series o  1yn2 and o  1ysn . For the general series o  an, look at Figures 5 and 6.
The area of the "rst shaded rectangle in Figure 5 is the value of f  at the right endpoint of 
f1, 2g, that is, f s2d − a2. So, comparing the areas of the shaded rectangles with the area 
under y − f sxd from 1 to n, we see that

a2 1 a3 1 ∙ ∙ ∙ 1 an < yn

1
 f sxd dx

(Notice that this inequality depends on the fact that f  is decreasing.) Likewise, Figure 6 
shows that

yn

1
 f sxd dx < a1 1 a2 1 ∙ ∙ ∙ 1 an21

(i) If y`

1
 f sxd dx is convergent, then (4) gives

o
n

i−2
 ai < yn

1
f sxd dx < y`

1
 f sxd dx

since f sxd > 0. Therefore

sn − a1 1 o
n

i−2
 ai < a1 1 y`

1
 f sxd dx − M, say

Since sn < M for all n, the sequence hsn j is bounded above. Also

sn11 − sn 1 an11 > sn

since an11 − f sn 1 1d > 0. Thus hsn j is an increasing bounded sequence and so it is 
con vergent by the Monotonic Sequence Theorem (11.1.12). This means that o  an is  
convergent.

(ii) If y`
1 f sxd dx is divergent, then yn

1  f sxd dx l ` as n l ` because f sxd > 0. But  
(5) gives

yn

1
f sxd dx < o

n21

i−1
 ai − sn21

and so sn21 l `. This implies that sn l ` and so o  an diverges. Q
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1. Draw a picture to show that

o
`

n−2

1
n 1.3 , y`

1

1
x 1.3  dx

 What can you conclude about the series?

2.   Suppose f  is a continuous positive decreasing function for
x > 1 and an − f snd. By drawing a picture, rank the following
three quantities in increasing order:

y6

1
 f sxd dx   o

5

i−1
 ai   o

6

i−2
 ai

3–8 Use the Integral Test to determine whether the series is  
convergent or divergent.
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`
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(i) If
´∞
1

f(x) dx is convergent, then comparing the areas of the
rectangles with the area under y = f(x) from 1 to n in the
top figure, we see that

n∑
i=2

ai = a2 + a3 + · · ·+ an ≤
ˆ n

1

f(x) dx ≤
ˆ ∞

1

f(x) dx

since f(x) ≥ 0. Therefore

sn = a1 +
n∑

i=2

ai ≤ a1 +

ˆ ∞

1

f(x) dx = M, say.

Since sn ≤ M for all n, the sequence {sn} is bounded above. Also

sn+1 = sn + an+1 ≥ sn

since an+1 = f(n+1) ≥ 0. Thus {sn} is an increasing bounded sequence
and so it is convergent by the Monotonic Sequence Theorem.
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(ii) If
´∞
1

f(x) dx is divergent, then
´ n
1
f(x) dx → ∞ as n → ∞

because f(x) ≥ 0. But the bottom figure shows that

ˆ n

1

f(x) dx ≤ a1 + a2 + · · ·+ an−1 =
n−1∑
i=1

ai = sn−1

and so sn−1 → ∞, implying that sn → ∞.
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Example 1. Test the series
∞∑
n=1

1

n2 + 1
for convergence or divergence.

Example 2. For what values of p is the series
∞∑
n=1

1

np
convergent? (This series

is called the p-series.)
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Example 3. Determine whether each series converges or diverges.

(a)
∞∑
n=1

1

n3
=

1

13
+

1

23
+

1

33
+

1

43
+ · · ·

(b)
∞∑
n=1

1
3
√
n
= 1 +

1
3
√
2
+

1
3
√
3
+

1
3
√
4
+ · · ·

Example 4. Determine whether the series
∞∑
n=1

lnn

n
converges or diverges.
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Definition 11.3.1. The remainder

Rn = s− sn = an+1 + an+2 + an+3 + · · ·

is the error made when sn, the sum of the first n terms, is used as an approx-
imation to the total sum.

SECTION 11.3  The Integral Test and Estimates of Sums 723

Estimating the Sum of a Series
Suppose we have been able to use the Integral Test to show that a series o  an is conver-
gent and we now want to !nd an approximation to the sum s of the series. Of course, any 
partial sum sn is an approximation to s because limn l ` sn − s. But how good is such an 
approximation? To !nd out, we need to estimate the size of the remainder

Rn − s 2 sn − an11 1 an12 1 an13 1 ∙ ∙ ∙

The remainder Rn is the error made when sn, the sum of the !rst n terms, is used as an 
approximation to the total sum.

We use the same notation and ideas as in the Integral Test, assuming that f  is decreas-
ing on fn, ̀ d . Comparing the areas of the rectangles with the area under y − f sxd for 
x . n in Figure 3, we see that

Rn − a n11 1 a n12 1 ∙ ∙ ∙ < y`

n
 f sxd dx

Similarly, we see from Figure 4 that

Rn − an11 1 an12 1 ∙  ∙ ∙ > y`

n11
 f sxd d x

So we have proved the following error estimate.

2   Remainder Estimate for the Integral Test Suppose f skd − ak, where f  is 
a continuous, positive, decreasing function for x > n and o an is convergent. If 
Rn − s 2 sn, then

y`

n11
f sxd dx < Rn < y`

n
 f sxd dx

EXAMPLE 5
(a) Approximate the sum of the series o1yn3 by using the sum of the !rst 10 terms.
Estimate the error involved in this approximation.
(b) How many terms are required to ensure that the sum is accurate to within 0.0005?

SOLUTION In both parts (a) and (b) we need to know y`
n  f sxd dx. With f sxd − 1yx 3, 

which satis!es the conditions of the Integral Test, we have

y`

n

1
x 3  dx − lim

t l `
 F2

1
2x 2G

n

t

− lim
t l `

S2
1

2t 2 1
1

2n2D −
1

2n2

(a) Approximating the sum of the series by the 10th partial sum, we have

o
`

n−1

1
n3 < s10 −

1
13 1

1
23 1

1
33 1 ∙ ∙ ∙ 1

1
103 < 1.1975

According to the remainder estimate in (2), we have

R10 < y`

10

1
x 3  dx −

1
2s10d2 −

1
200

So the size of the error is at most 0.005.

0 x
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. . .

y=ƒ
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Theorem 11.3.2 (Remainder Estimate for the Integral Test).
Suppose f(k) = ak, where f is a continuous, positive, decreasing
function for x ≥ n and

∑
an is convergent. If Rn = s− sn, then

ˆ ∞

n+1

f(x) dx ≤ Rn ≤
ˆ ∞

n

f(x) dx.

Proof. Comparing the rectangles with the area under y = f(x)
for x > n in the top figure, we see that

Rn = an+1 + an+2 + · · · ≤
ˆ ∞

n

f(x) dx.

Similarly, we see from the bottom figure that

Rn = an+1 + an+2 + · · · ≥
ˆ ∞

n+1

f(x) dx.

Example 5. (a) Approximate the sum of the series
∑

1/n3 by using the sum
of the first 10 terms. Estimate the error involved in this approximation.

120



Calculus II - The Integral Test and Estimates of Sums

(b) How many terms are required to ensure that the sum is accurate to within
0.0005?

Corollary 11.3.1. Suppose f(k) = ak, where f is a continuous, positive,
decreasing function for x ≥ n and

∑
an is convergent. Then

sn +

ˆ ∞

n+1

f(x) dx ≤ s ≤ sn +

ˆ ∞

n

f(x) dx.

Example 6. Use Corollary 11.3.1 with n = 10 to estimate the sum of the

series
∞∑
n=1

1

n3
.
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11.4 The Comparison Tests

Theorem 11.4.1 (The Comparison Test). Suppose that
∑

an and
∑

bn are
series with positive terms.

(i) If
∑

bn is convergent and an ≤ bn for all n, then
∑

an is also convergent.

(ii) If
∑

bn is divergent and an ≥ bn for all n, then
∑

an is also divergent.

Proof. (i) Let

sn =
n∑

i=1

ai tn =
n∑

i=1

bi t =
∞∑
n=1

bn

Since both series have positive terms, the sequences {sn} and {tn} are
increasing (sn+1 = sn+an+1 ≥ sn). Also tn → t, so tn ≤ t for all n. Since
ai ≤ bi, we have sn ≤ tn. Thus sn ≤ t for all n. This means that {sn} is
increasing and bounded above and therefore converges by the Monotonic
Sequence Theorem. Thus

∑
an converges.

(ii) If
∑

bn is divergent, then tn → ∞ (since {tn} is increasing). But ai ≥ bi
so sn ≥ tn. Thus sn → ∞. Therefore

∑
an diverges.

Example 1. Determine whether the series
∞∑
n=1

5

2n2 + 4n+ 3
converges or di-

verges.
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Example 2. Test the series
∞∑
k=1

ln k

k
for convergence or divergence.

Theorem 11.4.2 (The Limit Comparison Test). Suppose that
∑

an and
∑

bn
are series with positive terms. If

lim
n→∞

an
bn

= c

where c is a finite number and c > 0, then either both series converge or both
diverge.

Proof. Let m and M be positive numbers such that m < c < M . Because
an/bn is close to c for large n, there is an integer N such that

m <
an
bn

< M when n > N,

and so
mbn < an < Mbn when n > N.

If
∑

bn converges, so does
∑

Mbn. Thus
∑

an converges by part (i) of the
Comparison Test. If

∑
bn diverges, so does

∑
mbn and part (ii) of the Com-

parison Test shows that
∑

an diverges.
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Example 3. Test the series
∞∑
n=1

1

2n − 1
for convergence or divergence.

Example 4. Determine whether the series
∞∑
n=1

2n2 + 3n√
5 + n5

converges or diverges.
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Example 5. Use the sum of the first 100 terms to approximate the sum of
the series

∑
1/(n3 + 1). Estimate the error involved in this approximation.
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11.5 Alternating Series

Definition 11.5.1. An alternating series is a series whose terms are alter-
nately positive and negative.

Theorem 11.5.1 (Alternating Series Test). If the alternating series

∞∑
n=1

(−1)n−1bn = b1 − b2 + b3 − b4 + b5 − b6 + · · · bn > 0

satisfies

(i) bn+1 ≤ bn for all n

(ii) lim
n→∞

bn = 0

then the series is convergent.

Proof.

 SECTION 11.5  Alternating Series 733

Before giving the proof let’s look at Figure 1, which gives a picture of the idea behind 
the proof. We !rst plot s1 − b1 on a number line. To !nd s2 we subtract b2, so s2 is to 
the left of s1. Then to !nd s3 we add b3, so s3 is to the right of s2. But, since b3 , b2, s3 
is to the left of s1. Continuing in this manner, we see that the partial sums oscillate back 
and forth. Since bn l 0, the successive steps are becoming smaller and smaller. The 
even partial sums s2, s4, s6, . . . are increasing and the odd partial sums s1, s3, s5, . . . are 
decreasing. Thus it seems plausible that both are converging to some number s, which is 
the sum of the series. Therefore we consider the even and odd partial sums separately in 
the following proof.

0 s¡s™ s£s¢ s∞sß s

b¡
-b™

+b£
-b¢

+b∞
-bß

PROOF OF THE ALTERNATING SERIES TEST We !rst consider the even partial sums:

 s2 − b1 2 b2 > 0 since b2 < b1

 s4 − s2 1 sb3 2 b4 d > s2 since b4 < b3

In general s2n − s2n22 1 sb2n21 2 b2n d > s2n22    since b2n < b2n21

Thus 0 < s2 < s4 < s6 < ∙ ∙ ∙ < s2n < ∙ ∙ ∙

But we can also write

s2n − b1 2 sb2 2 b3 d 2 sb4 2 b5 d 2 ∙ ∙ ∙ 2 sb2n22 2 b2n21d 2 b2n

Every term in parentheses is positive, so s2n < b1 for all n. Therefore the sequence hs2n j  
of even partial sums is increasing and bounded above. It is therefore convergent by the 
Monotonic Sequence Theorem. Let’s call its limit s, that is,

lim 
n l `

 s2n − s

Now we compute the limit of the odd partial sums:

 lim
nl`

 s2n11 − lim
nl`

 ss2n 1 b2n11d

 − lim
nl`

 s2n 1 lim
nl`

 b2n11

 − s 1 0

 − s

Since both the even and odd partial sums converge to s, we have lim n l ` sn − s  
[see Exercise 11.1.92(a)] and so the series is convergent. Q

FIGURE 1

[by condition (ii)]

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

We first consider the even partial sums:

s2 = b1 − b2 ≥ 0 since b2 ≤ b1

s4 = s2 + (b3 − b4) ≥ s2 since b4 ≤ b3.

In general

s2n = s2n−2 + (b2n−1 − b2n) ≥ s2n−2 since b2n ≤ b2n−1.

Thus
0 ≤ s2 ≤ s4 ≤ s6 ≤ · · · ≤ s2n ≤ · · · .

But we can also write

s2n = b1 − (b2 − b3)− (b4 − b5)− · · · − (b2n−2 − b2n−1)− b2n.
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Every term in parenthesis is positive, so s2n ≤ b1 for all n. Therefore, the
sequence {s2n} of even partial sums is increasing and bounded above. It is
therefore convergent by the Monotonic Sequence Theorem. Let’s call its limit
s, that is,

lim
n→∞

s2n = s.

Now we compute the limit of the odd partial sums:

lim
n→∞

s2n+1 = lim
n→∞

(s2n + b2n+1)

= lim
n→∞

s2n + lim
n→∞

b2n+1

= s+ 0

= s.

Since both the even and odd partial sums converge to s, we have limn→∞ sn = s
and so the series is convergent.

Example 1. Determine whether the alternating harmonic series

1− 1

2
+

1

3
− 1

4
+ · · · =

∞∑
n=1

(−1)n−1

n

converges or diverges.
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Example 2. Determine whether the series
∞∑
n=1

(−1)n3n

4n− 1
converges or diverges.

Example 3. Test the series
∞∑
n=1

(−1)n+1 n2

n3 + 1
for convergence or divergence.
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Theorem 11.5.2 (Alternating Series Estimation Theorem). If s =
∑

(−1)n−1bn,
where bn > 0, is the sum of an alternating series that satisfies

(i) bn+1 ≤ bn and (ii) lim
n→∞

bn = 0

then
|Rn| = |s− sn| ≤ bn+1.

Proof. We know from the proof of the Alternating Series Test that s lies be-
tween any two consecutive partial sums sn and sn+1. (There we showed that
s is larger than all the even partial sums. A similar argument shows that s is
smaller than all the odd sums.) It follows that

|s− sn| ≤ |sn+1 − sn| = bn+1.

Example 4. Find the sum of the series
∞∑
n=0

(−1)n

n!
correct to three decimal

places.
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11.6 Absolute Convergence, Ratio and Root

Tests

Definition 11.6.1. A series
∑

an is called absolutely convergent if the series
of absolute values

∑
|an| is convergent.

Example 1. Is the series

∞∑
n=1

(−1)n−1

n2
= 1− 1

22
+

1

32
− 1

42
+ · · ·

absolutely convergent?

Example 2. Is the series

∞∑
n=1

(−1)n−1

n
= 1− 1

2
+

1

3
− 1

4
+ · · ·

absolutely convergent?
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Definition 11.6.2. A series
∑

an is called conditionally convergent if it is
convergent but not absolutely convergent.

Theorem 11.6.1. If a series
∑

an is absolutely convergent, then it is conver-
gent.

Proof. Observe that the inequality

0 ≤ an + |an| ≤ 2|an|

is true because |an| is either an or −an. If
∑

an is absolutely convergent, then∑
|an| is convergent, so

∑
2|an| is convergent. Therefore, by the Comparison

Test,
∑

(an + |an|) is convergent. Then∑
an =

∑
(an + |an|)−

∑
|an|

is the difference of two convergent series and is therefore convergent.

Example 3. Determine whether the series

∞∑
n=1

cosn

n2
=

cos 1

12
+

cos 2

22
+

cos 3

32
+ · · ·

is convergent or divergent.
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Theorem 11.6.2 (The Ratio Test).

(i) If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L < 1, then the series
∞∑
n=1

an is absolutely convergent

(and therefore convergent).

(ii) If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L > 1 or lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ∞, then the series
∞∑
n=1

an is

divergent.

(iii) If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1, the Ratio Test is inconclusive; that is, no conclusion

can be drawn about the convergence or divergence of
∑

an.

Example 4. Test the series
∞∑
n=1

(−1)n
n3

3n
for absolute convergence.

Example 5. Test the convergence of the series
∞∑
n=1

nn

n!
.
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Theorem 11.6.3 (The Root Test).

(i) If lim
n→∞

n
√
|an| = L < 1, then the series

∞∑
n=1

an is absolutely convergent

(and therefore convergent).

(ii) If lim
n→∞

n
√

|an| = L > 1 or lim
n→∞

n
√

|an| = ∞, then the series
∞∑
n=1

an is

divergent.

(iii) If lim
n→∞

n
√

|an| = 1, the Root Test is inconclusive.

Example 6. Test the convergence of the series
∞∑
n=1

(
2n+ 3

3n+ 2

)n

.

133



Calculus II - Absolute Convergence, Ratio and Root Tests

Definition 11.6.3. By a rearrangement of an infinite series
∑

an we mean a
series obtained by simply changing the order of the terms.

Remark 1. If
∑

an is an absolutely convergent series with sum s, then any
rearrangement of

∑
an has the same sum s.

Remark 2. If
∑

an is a conditionally convergent series and r is any real number
whatsoever, then there is a rearrangement of

∑
an that has a sum equal to r.

For example, if we multiply the alternating harmonic series

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+ · · · = ln 2

by 1
2
, we get

1

2
− 1

4
+

1

6
− 1

8
+ · · · = 1

2
ln 2.

Then inserting zeros between the terms of this series gives

0 +
1

2
+ 0− 1

4
+ 0 +

1

6
+ 0− 1

8
+ · · · = 1

2
ln 2,

and we can add this to the alternating harmonic series to get

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+ · · · = 3

2
ln 2,

which is a rearrangement of the alternating harmonic series with a different
sum.
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11.7 Strategy for Testing Series

Example 1.
∞∑
n=1

n− 1

2n+ 1
.

Example 2.
∞∑
n=1

√
n3 + 1

3n3 + 4n2 + 2
.

Example 3.
∞∑
n=1

ne−n2

.
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Example 4.
∞∑
n=1

(−1)n
n3

n4 + 1
.

Example 5.
∞∑
n=1

2k

k!
.

Example 6.
∞∑
n=1

1

2 + 3n
.
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11.8 Power Series

Definition 11.8.1. A power series is a series of the form

∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + c3x
3 + · · ·

where x is a variable and the cn’s are constants called the coefficients of the
series.
More generally, a series of the form

∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + · · ·

is called a power series in (x− a) or a power series centered at a or a power
series about a.

Example 1. For what values of x is the series
∞∑
n=0

n!xn convergent?
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Example 2. For what values of x does the series
∞∑
n=1

(x− 3)n

n
converge?

Example 3. Find the domain of the Bessel function of order 0 defined by

J0(x) =
∞∑
n=0

(−1)nx2n

22n(n!)2
.
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Theorem 11.8.1. For a given power series
∞∑
n=0

cn(x−a)n, there are only three

possibilities:

(i) The series converges only when x = a.

(ii) The series converges for all x.

(iii) There is a positive number R such that the series converges if |x−a| < R
and diverges if |x− a| > R.

Definition 11.8.2. The number R in case (iii) is called the radius of conver-
gence of the power series. By convention, the radius of convergence is R = 0 in
case (i) and R = ∞ in case (ii). The interval of convergence of a power series
is the interval that consists of all values of x for which the series converges.

Example 4. Find the radius of convergence and interval of convergence of
the series

∞∑
n=0

(−3)nxn

√
n+ 1

.
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Example 5. Find the radius of convergence and interval of convergence of
the series

∞∑
n=0

n(x+ 2)n

3n+1
.
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11.9 Representations of Functions as Power

Series

Example 1. Express 1/(1 + x2) as the sum of a power series and find the
interval of convergence.

Example 2. Find a power series representation for 1/(x+ 2).
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Example 3. Find a power series representation of x3/(x+ 2).

Theorem 11.9.1. If the power series
∑

cn(x− a)n has radius of convergence
R > 0, then the function f defined by

f(x) = c0 + c1(x− a) + c2(x− a)2 + · · · =
∞∑
n=0

cn(x− a)n

is differentiable (and therefore continuous) on the interval (a−R, a+R) and

(i) f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + · · · =
∞∑
n=1

ncn(x− a)n−1

(ii)

ˆ
f(x) dx = C + c0(x− a) + c1

(x− a)2

2
+ c2

(x− a)3

3
+ · · ·

= C +
∞∑
n=0

cn
(x− a)n+1

n+ 1
.

The radii of convergence of the power series in Equations (i) and (ii) are both
R.
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Example 4. Find the derivative of the Bessel function

J0(x) =
∞∑
n=0

(−1)nx2n

22n(n!)2
.

Example 5. Express 1/(1− x)2 as a power series using differentiation. What
is the radius of convergence?
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Example 6. Find a power series representation for ln(1+x) and its radius of
convergence.

Example 7. Find a power series representation for f(x) = tan−1 x.
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Example 8. (a) Evaluate
´
[1/(1 + x7)]dx as a power series.

(b) Use part (a) to approximate
´ 0.5

0
[1/(1 + x7)]dx correct to within 10−7.
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11.10 Taylor and Maclaurin Series

Theorem 11.10.1. If f has a power series representation (expansion) at a,
that is, if

f(x) =
∞∑
n=0

cn(x− a)n |x− a| < R

then its coefficients are given by the formula

cn =
f (n)(a)

n!
.

Definition 11.10.1. The Taylor series of the function f at a (or about a or
centered at a) is

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n

= f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · · .

For the special case a = 0 the Taylor series becomes

f(x) =
∞∑
n=0

f (n)(0)

n!
xn = f(0) +

f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · · ,

which we call the Maclaurin Series.

Example 1. Find the Maclaurin series of the function f(x) = ex and its radius
of convergence.
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Theorem 11.10.2. If f(x) = Tn(x)+Rn(x), where Tn is the nth-degree Taylor
polynomial of f at a, Rn is the remainder of the Taylor series, and

lim
n→∞

Rn(x) = 0

for |x− a| < R, then f is equal to the sum of its Taylor series on the interval
|x− a| < R.

Theorem 11.10.3 (Taylor’s Inequality). If |f (n+1)(x)| ≤ M for |x − a| ≤ d,
then the remainder Rn(x) of the Taylor series satisfies the inequality

|Rn(x)| ≤
M

(n+ 1)!
|x− a|n+1 for |x− a| ≤ d.

Example 2. Prove that ex is equal to the sum of its Maclaurin series.
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Example 3. Find the Taylor series f(x) = ex at a = 2.

Example 4. Find the Maclaurin series for sinx and prove that it represents
sinx for all x.
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Example 5. Find the Maclaurin series for cosx.

Example 6. Find the Maclaurin series for the function f(x) = x cosx.
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Example 7. Represent f(x) = sinx as the sum of its Taylor series centered
at π/3.
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Example 8. Find the Maclaurin series for f(x) = (1 + x)k, where k is any
real number.
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Theorem 11.10.4 (The Binomial Series). If k is any real number and |x| < 1,
then

(1 + x)k =
∞∑
n=0

(
k

n

)
xn = 1 + kx+

k(k − 1)

2!
x2 +

k(k − 1)(k − 2)

3!
x3 + · · ·

where the coefficients(
k

n

)
=

k(k − 1)(k − 2) · · · (k − n+ 1)

n!

are called the binomial coefficients.

Example 9. Find the Maclaurin series for the function f(x) =
1√
4− x

and

its radius of convergence.
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Example 10. Find the sum of the series
1

1 · 2
− 1

2 · 22
+

1

3 · 23
− 1

4 · 24
+ · · · .

Example 11. (a) Evaluate
´
e−x2

dx as an infinite series.

(b) Evaluate
´ 1
0
e−x2

dx correct to within an error of 0.001.
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Example 12. Evaluate lim
x→0

ex − 1− x

x2
.
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Example 13. Find the first three nonzero terms in the Maclaurin series for

(a) ex sinx

(b) tan x
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11.11 Applications of Taylor Polynomials

Example 1. (a) Approximate the function f(x) = 3
√
x by a Taylor polyno-

mial of degree 2 at a = 8.

(b) How accurate is this approximation when 7 ≤ x ≤ 9?
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Example 2. (a) What is the maximum error possible in using the approxi-
mation

sinx ≈ x− x3

3!
+

x5

5!

when −0.3 ≤ x ≤ 0.3? Use this approximation to find sin 12◦ correct to
six decimal places.

(b) For what values of x is this approximation accurate to within 0.00005?
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Example 3. In Einstein’s theory of special relativity the mass of an object
moving with velocity v is

m =
m0√

1− v2/c2

where m0 is the mass of an object when at rest and c is the speed of light.
The kinetic energy of the object is the difference between its total energy and
its energy at rest:

K = mc2 −m0c
2.

(a) Show that when v is very small compared with c, this expression for K
agrees with classical Newtonian physics: K = 1

2
m0v

2.
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(b) Use Taylor’s Inequality to estimate the difference in these expressions for
K when |v| ≤ 100 m/s.
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absolutely convergent, 130
alternating series, 126
alternating series test, 126
area, 3
average value of a function, 51

binomial coefficients, 152
bounded above, 107
bounded below, 107
bounded sequence, 107

common ratio, 109
comparison test, 122
conditionally convergent, 131
convergent, 91

absolutely, 130
conditionally, 131
integral, 95
sequence, 101
series, 108

decreasing sequence, 106
definite integral, 6
disk method for volume, 39
divergent, 91

integral, 95
sequence, 101
series, 108

Fibonacci sequence, 101
force, 47
Fresnel function, 17
fundamental theorem of calculus, 15

geometric series, 109

harmonic series, 114

increasing sequence, 106
indefinite integral, 21
infinite series, 108
integrable, 6
integral

definite, 6
improper, 91
indefinite, 21
symmetric function, 29

integral sign, 6
integral test, 117
integrand, 6
integration, 6

error bounds, 85
integration by parts, 53
interval of convergence, 139

limit
of a sequence, 101

limit comparison test, 123
limits of integration, 6
lower limit, 6
lower sum, 3

Maclaurin series, 146
mean value theorem

for integrals, 51
midpoint rule, 12, 84
monotonic, 106

net area, 7

p-series, 118
partial sum, 108
power series, 137

radius of convergence, 139
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ratio test, 132
rearrangement, 134
remainder, 120

Taylor series, 147
Riemann sum, 6
root test, 133

sample points, 3
sequence, 99
series, 108

alternating, 126
coefficients, 137
geometric, 109
harmonic, 114
Maclaurin, 146
p-series, 118
power, 137
sum, 108
Taylor, 146

shell method for volume, 44
sigma notation, 3
Simpson’s rule, 87
spring constant, 48
squeeze theorem

for sequences, 102
substitution rule, 25

Taylor polynomial, 147
Taylor series, 146
test for divergence, 115
trapezoidal rule, 84

upper limit, 6
upper sum, 3

volume, 39

washer method for volume, 41
work, 47
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