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Chapter 5

Integrals

5.1 Areas and Distances

Example 1. Use rectangles to estimate the area under the parabola y = 22
from 0 to 1.
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Example 2. For the region in Example 1, show that the sum of the areas of

the upper approximating rectangles approaches %, that is,

1
lim R, = -.
im 3



Calculus II - Areas and Distances

Definition 5.1.1. The area A of the region S that lies under the graph of the
continuous function f is the limit of the sum of the areas of approximating
rectangles:

n—oo

A=lim R, = nli_)n(}o[f(:cl)A:c—I—f(xQ)Ax—I—~'—I—f(a:n)A:c] = Jinolto(xl)Aa:

The last equality is an example of the use of sigma notation to write sums
with many terms more compactly.

Definition 5.1.2. Numbers z in the ith subinterval [z;_1, x;] are called sam-
ple points. We form lower (and upper) sums by choosing the sample points z}
so that f(x}) is the minimum (and maximum) value of f on the ith subinterval.

y
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x¥F x¥ x5 xF Xk

Example 3. Let A be the area of the region that lies under the graph of
f(z) = e " between z = 0 and x = 2.

(a) Using right endpoints, find an expression for A as a limit. Do not evaluate
the limit.
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(b) Estimate the area by taking the sample points to be midpoints and using
four subintervals and then ten subintervals.
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Example 4. Suppose the odometer on a car is broken. Estimate the distance
driven in feet over a 30-second time interval by using the speedometer readings
taken every five seconds and recorded in the following table:

Time (s) 0[5 [10]15]20]25]30
Velocity (mi/h) | 17 | 21 | 24 | 29 | 32 | 31 | 28
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5.2 The Definite Integral

Definition 5.2.1. If f is a function defined for a < z < b, we divide the
interval [a,b] into n subintervals of equal width Az = (b — a)/n. We let
xo(= a),z1,x2,...,2,(= b) be the endpoints of these subintervals and we let
x], x5, ..., 2, be any sample points in these subintervals, so 2} lies in the ith
subinterval [x;_1,x;]. Then the definite integral of f from a to b is

/bf(m) dr = lim zn:f(xf)Ax
o n—o00 P

provided that this limit exists and gives the same value for all possible choices
of sample points. If it does exist, we say that f is integrable on [a, b].

Definition 5.2.2. The symbol [ is called an integral sign. In the notation

f: f(z)dz, f(zx) is called the integrand and a and b are called the limits of
integration; a is the lower limit and b is the upper limit. The procedure of
calculating an integral is called integration.

Definition 5.2.3. The sum

is called a Riemann sum and it can be used to approximate the definite integral
of an integrable function within any desired degree of accuracy.

y
L A y=fl)
-
|
|
|
|
| , ,
a xF b X 0 a b X



Calculus II - The Definite Integral

Definition 5.2.4. A definite integral can be interpreted as a net area, that
is, a difference of areas:

/bf(x)d:c:Al—A2

where A is the area of the region above the z-axis and below the graph of f,
and A, is the area of the region below the x-axis and the above the graph of

f.

YA YA
y=fx) y = f(x)
Ty, ] |l :
0| a b x 0|a b x

Theorem 5.2.1. If f is continuous on [a,b], or if f has only a finite number of
Jump discontinuities, then f is integrable on [a,b]; that is, the definite integral
f;f(x)dx exists.

Theorem 5.2.2. If f is integrable on [a,b], then

/bf(x) dr = lim zn:f(ml)Ax
o n—00 p

where

and r; = a+iAz.



Calculus II - The Definite Integral

Example 1. Express
] 3 . 1 .
nhm E (7 + z;sinx;) Ax

as an integral on the interval [0, 7].

Theorem 5.2.3. The following formulas are true when working with sigma
notation:

Z’l_ n+1
Z . (2n—|—1)

=1
n

E CcC =nc

=1

Xn: ca; = CXn: a;
=1 =1
=1 =1 =1

Z(CLZ‘ - bz) = ZCL,’ — sz

=1 =1 =1
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Example 2. (a) Evaluate the Riemann sum for f(z) = 2* — 6z, taking the
sample points to be right endpoints and a =0, b = 3, and n = 6.

3
(b) Evaluate/ (z° — 62) dz.
0
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3
Example 3. (a) Set up an expression for / e® dx as a limit of sums.
1

(b) Use a computer algebra system to evaluate the expression.

10



Calculus II - The Definite Integral

Example 4. Evaluate the following integrals by interpreting each in terms of
areas.

(a) /01de

(b) /03@ —1)dx

11
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Theorem 5.2.4 (Midpoint Rule).

[ #a)dn =3 f@) A0 = Aalf@) -+ fla)

where
B b—a

Ax =

n
and

1
T; = 5(%71 + x;) = midpoint of [x;—_1, x;].

2
1
Example 5. Use the Midpoint Rule with n =5 to approximate / —dz.
L

12
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Theorem 5.2.5 (Properties of the Definite Integral).

Z.[ff@ﬂdz:—iéaf@ﬂdx
| raydo =

3. / cdx = c¢(b— a), where ¢ is any constant.

a

Jv@ s = [ @i [ o

b
/ cf(x)dx / f(z) dx, where ¢ is any constant.

/[f( e d:c—/f dx—/ g(z) da.
fﬂ@w+fﬂ@wzlvmm

1
Example 6. Use the properties of integrals to evaluate / (4 + 32?) du.
0

o

E N

S

D

=

13
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10 8
Example 7. If it is known that / f(x)dr =17 and / f(x)dr =12, find
0 0
10

f(z)da.

8

Theorem 5.2.6 (Comparison Properties of the Integral).

b
8. If f(x) >0 fora<x <b, then/ f(x)dz > 0.

b b
9. If f(x) > g(z) fora<x <D, then/ f(z)dx > / g(x)dx.

10. If m < f(z) < M fora <z <b, then
b
m(b—a)g/ F@)dz < M(b—a).

1
Example 8. Use Property 10 to estimate / e~ dz.
0

14
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5.3 The Fundamental Theorem of Calculus

Example 1. If fis the function whose graph is shown in the
figure and g(x) = [° f(¢)dt, find the values of g(0), g(1), g(2),
9(3), g(4), and g(b). Then sketch a rough graph of g. y=fl1)

N =

Theorem 5.3.1 (The Fundamental Theorem of Calculus, Part 1). If f is
continuous on |a,b|, then the function g defined by

:/f(t)dt a<z<b

is continuous on |a,b] and differentiable on (a,b), and ¢'(x) = f(x).

Proof. If x and = + h are in (a,b), then

g(z +h) — / f(t)dt — /f
:</a f(t)dt+/x f(t)dt>—/:f(t)dt
:/j+hf(t)dt

15
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and so, for h # 0,

y
(93 + h / £ —
Y= F(x) o~ /
For now let’s assume that A > 0. Since f is continuous on [z, z+
h], the Extreme Value Theorem says that there are numbers u y
and v in [z, x + h| such that f(u) =m and f(v) = M, where m m
and M are the absolute minimum and maximum values of f on _/
[,z + h]. (See the figure.)
Then 0 X u v=x+h X

mh < F(t)dt < Mh
/xx-i-h

whs/ﬁ F(t)dt < f@)h

3 rwa <o)

gz +h) —

h

flu) <

flu) < 9@  f),

This inequality can be proved in a similar manner for the case where h < 0.
Now we let h — 0. Then u — x and v — x, since u and v lie between x and
x + h. Therefore

lim f(u) = lim f(u) = f(z)  and  lim f(v) = lim f(v) = f(z)

uU—T h—0 U—T

because f is continuous at . We conclude, from the Squeeze Theorem, that

h—0

If x = a or b, then this equation can be interpreted as a one-sided limit, and
thus g is continuous on [a, b]. O

Example 2. Find the derivative of the function g(x / V1+t2dt.

16
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Example 3. Find the derivative of the Fresnel function

S(z) = /x sin(7t?/2) dt

0

and compare its graph with that of S(z) to visually confirm the fundamental
theorem of calculus.

334
Example 4. Find i/ sect dt.
dx |,

17
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Theorem 5.3.2 (The Fundamental Theorem of Calculus, Part 2). If f is
continuous on |a,b|, then

b
/ F(@)dz = F(b) — F(a)

where F' is any antiderivative of f, that is, a function such that F' = f.

Proof. Let g(x) = [ f(t)dt. By Part 1, ¢’(x) = f(z); that is, ¢ is an an-
tiderivative of f. If F is any other antiderivative of f on [a,b], then, by
Corollary 4.2.1,

F(z)=g(x)+C

for a < x < b. By continuity, this is also true for « € [a, b], so again by Part 1,
@)= [ f(tydt=0
and thus
F(b) — F(a) = [g(b) + C] — [g(a) + C]
gb)+C—-0-C
9(b)

/a 1)

dt.
3

Example 5. Evaluate the integral / e’ dx.
1

(=

18
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Remark 1. We often use the notation
b
F(x)], = F(b) — F(a).

So the equation of the Fundamental Theorem of Calculus Part 2 can be written
as

b
/ f(z)de = F(x)}z where  F'=f.

b

Other common notations are F(z)[ and [F(z)].

Example 6. Find the area under the parabola y = 22 from 0 to 1.

6
d

Example 7. Evaluate / a
3 X

19



Calculus II - The Fundamental Theorem of Calculus

Example 8. Find the area under the cosine curve from 0 to b, where
0<b<m/2

Example 9. What is wrong with the following calculation?

3
1 4
A [ T
/_lex ]1 3 3

20
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5.4 Indefinite Integrals and the Net Change
Theorem

Definition 5.4.1. An antiderivative of f is called an indefinite integral where

/f(x) dx = F(x) means F'(z) = f(x).

Example 1. Find the general indefinite integral

/(10x4 — 2sec’ 1) dz.

cos 6
20

de.

Example 2. Evaluate / -
sin

3
Example 3. Evaluate / (z° — 62) dz.
0

21
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2
Example 4. Find / (2:U3 — 62+ —
0 T+

terms of areas.

3
1) dx and interpret the result in

9912 | 42
2t t*vt—1
Example 5. Evaluate / il t2\/_ dt.
1

22
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Theorem 5.4.1 (Net Change Theorem). The integral of a rate of change is
the net change:

Example 6. A particle moves along a line so that its velocity at time ¢ is
v(t) =t —t — 6 (measured in meters per second).

(a) Find the displacement of the particle during the time period 1 <t < 4.

(b) Find the distance traveled during this time period.

23
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Example 7. The figure shows the power consumption in the city of San Fran-
cisco for a day in September (P is measured in megawatts; ¢ is measured in
hours starting at midnight). Estimate the energy used on that day.

P
800 A4

600
/ N

400

200

0 3 6 9 12 15 18 21 t
Pacific Gas & Electric

24
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5.5 The Substitution Rule

Theorem 5.5.1 (The Substitution Rule). If u = g(z) is a differentiable func-
tion whose range is an interval I and f is continuous on I, then

/f(g(m))g’(x) dz = /f(u) du.
Proof. 1If f = F’, then, by the Chain Rule,

dr
Thus if u = g(x), then we have

/f(g(x))g’(x) dr = F(g(x)) +C = F(u) + C = /f(u) du.

Example 1. Find /x‘s cos(z* +2) da.

Example 2. Evaluate / V2r + ldx.

25
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T
Example 3. Find [ ——dx.
P / V1 — 4x2

Example 4. Calculate / e’ du.

Example 5. Find /\/1 + 222° dz.

26
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Example 6. Calculate / tan x dx.

Theorem 5.5.2 (The Substitution Rule for Definite Integrals). If ¢’ is con-
tinuous on [a,b] and f is continuous on the range of u = g(x), then

b g(b)
/ F(9(@))(x) da = /() F(u) du.

Proof. Let F be an antiderivative of f. Then F(g(x)) is an antiderivative of
f(g(z))g'(x), so by part 2 of the fundamental theorem of calculus, we have

I
o
~~
K
—~
8
S~—
—
s
I
o
—
K
N
=
—
S~—
|
o
—
K
—~
S
S~—
S~—

/f@@w@Mx

By applying part 2 a second time, we also have
g(

b)
flu)du = F(u)]"? = F(g(b)) — Flg(a)). O

o) g(a)

27
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4
Example 7. Evaluate / V2z + 1dx.
0

> dax
Example 8. Evaluate/l m

‘1
Example 9. Calculate / 2T g,
. T

28
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Theorem 5.5.3 (Integrals of Symmetric Functions). Suppose f is continuous
on [—a,al.

(a) If f is even [f(—z) = f(x)], then /_a f(z)dx = 2/0af(x) dx.

(b) If f is odd [f(—z) = —f(x)], then /_ F@)de =0,

Proof. First we split the integral:

/Zﬂx)d:@:/if(x)cm/Oaf@)dx:_/O_Gf@)dH/o“f(x)dx

By substituting © = —x we get du = —dx and u = a when © = —a, so

[t == [ o = [ a

and therefore
' de = ' —u)du + ’ dz.
/af(x) T /o f(—u)du /0 f(z)dx

(a) If f is even then f(—u) = f(u),

/Zf(x)dxz/oaf(U) u+/0af(x)dx:2/0af(x)dx‘

(b) If f is odd then f(—u) = —f(u), so

/_Zf(x)dx:—/Oaf(u)du—i-/oaf(x)dxzo. O

29
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2
Example 10. Evaluate / (2% + 1) da.

-2

1 tan x

Example 11. Evaluate / ——dx.
142?42t

30



Chapter 6

Applications of Integration

6.1 Areas Between Curves

Definition 6.1.1. The areca A of the region bounded by the
curves y = f(z), y = g(z), and the lines © = a, = b, where f y=f(x)
and ¢ are continuous and f(z) > g(z) for all z in [a, b], is

n b
A=l Y O(G0) - gaplae = [ 1f(@) - o) da, :
i=1 a
ogl b x
y=gx)
VA VA
AT [
A
| | (]! \
#) — g(xf) IR
} || } } } }
. ]| | [ | .
0 X of @l [T i;éf p X
)| Lk

31
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Example 1. Find the area of the region bounded above by y = e, bounded
below by y = z, and bounded on the sides by x = 0 and x = 1.

Example 2. Find the area of the region enclosed by the parabolas y = 22

and y = 2z — 22,

32
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Example 3. Find the approximate area of the region bounded by the curves

y=xz/Vr2+1landy=2a'— 1.

33
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Example 4. The figure shows the velocity curves for two cars,
A and B, that start side by side and move along the same road.
What does the area between the curves represent? Use the Mid-
point Rule to estimate it.

34

50
40
30
20
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=]
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Example 5. The figure is an example of a pathogenesis curve for a measles
infection. It shows how the disease develops in an individual with no immunity
after the measles virus spreads to the bloodstream from the respiratory tract.

N
g 1500 +
<
a
=
=]
=]
=
S
=}
= 1000 +
=
)
o
E
=]
2
8 5007
£
E Symptoms Pathogen
2 appear is cleared
: | |
Z 4 4 4
0 10-11 12 17-18 21 ‘
(days)
Pathogen Infectiousness Infectiousness
enters plasma begins ends

The patient becomes infectious to others once the concentration of infected
cells becomes great enough, and he or she remains infectious until the immune
system manages to prevent further transmission. However, symptoms don’t
develop until the “amount of infection” reaches a particular threshold. The
amount of infection needed to develop symptoms depends on both the con-
centration of infected cells and time, and corresponds to the area under the
pathogenesis curve until symptoms appear.

(a) The pathogenesis curve in the figure has been modeled by f(t) = —t(t —
21)(t+1). If infectiousness begins on day t; = 10 and ends on day ¢, = 18,
what are the corresponding concentration levels of infected cells?

35
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(b) The level of infectiousness for an infected person is the area between
N = f(t) and the line through the points P;(t1, (f(t1)) and Py(ta, f(t2)),
measured in (cells/mL)- days. Compute the level of infectiousness for this
particular patient.

36
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Definition 6.1.2. The area between the curves y = f(z) and y = g(x) and
between o = a and x = b is

A= / f(@) - g()] d.

Example 6. Find the area of the region bounded by the curves y = sinz,
y=-cosz, x=0,and x = 7/2.

37



Calculus II - Areas Between Curves

Remark 1. Some regions are best treated by regarding = as a
function of y. If a region is bounded by curves with equations
x = fly), r = gly), y = ¢, and y = d, where f and g are
continuous and f(y) > g(y) for ¢ < y < d (see the figure), then
its area is

A =/ Lf(y) — g(y)] dy.

Example 7. Find the area enclosed by the line y = z — 1 and
the parabola y? = 2x + 6.

38




Calculus II - Volumes

6.2 Volumes

Definition 6.2.1 (Definition of Volume). Let S be a solid that lies between
x = a and x = b. If the cross-sectional area of S in the plane P,, through
x and perpendicular to the z-axis, is A(x), where A is a continuous function,
then the volume of S is

n b
V= 7}1_)1210 Zl A(x])Ax = /a A(z) dx.

y

Ax

P
a 7N b X 0 a=x, X X2 X3 Xy Xs Xe x;=b X

X XX

Example 1. Show that the volume of a sphere of radius r is V' = %m‘g’.

39
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Example 2. Find the volume of the solid obtained by rotating about the z-
axis the region under the curve y = y/z from 0 to 1. Tllustrate the definition
of volume by sketching a typical approximating cylinder.

Example 3. Find the volume of the solid obtained by rotating the region
bounded by y = 23, y = 8, and 2 = 0 about the y-axis.

40
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Example 4. The region Z enclosed by the curves y = x and y = 22 is rotated
about the z-axis. Find the volume of the resulting solid.

Example 5. Find the volume of the solid obtained by rotating the region in
Example 4 about the line y = 2.

41
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Example 6. Find the volume of the solid obtained by rotating the region in
Example 4 about the line z = —1.

Example 7. The figure shows a solid with a circular base of

radius 1. Parallel cross-sections perpendicular to the base are
equilateral triangles. Find the volume of the solid.

/’”’f}';';:::":‘ iy
10 \
/"’f."':*t':"&"“$‘§§§§\

o “M“ \\ \ A

e \‘\}
|

g

\
L

‘0
()
, :e!‘?&“‘k\\‘\‘ﬂl‘

42
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Example 8. Find the volume of a pyramid whose base is a square with side
L and whose height is h.

Example 9. A wedge is cut out of a circular cylinder of radius 4 by two planes.
One plane is perpendicular to the axis of the cylinder. The other intersects
the first at an angle of 30° along a diameter of the cylinder. Find the volume
of the wedge.

43
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6.3 Volumes by Cylindrical Shells

Theorem 6.3.1 (Method of Cylindrical Shells). The volume of the solid in
the figure, obtained by rotating about the y-axis the region under the curve
y = f(z) from a to b, is

n b
V = lim Z 21z, f (z;) Az = / 2nx f(x) dx where 0 < a <b

a

and where Z; is the midpoint of the ith subinterval [x;_1, ;).

y

Example 1. Find the volume of the solid obtained by rotating about the
y-axis the region bounded by y = 222 — 2% and y = 0.

44
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Example 2. Find the volume of the solid obtained by rotating about the
y-axis the region between y = z and y = 22

Example 3. Use cylindrical shells to find the volume of the solid obtained by
rotating about the x-axis the region under the curve y = 1/ from 0 to 1.

45
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Example 4. Find the volume of the solid obtained by rotating the region
bounded by y =  — 22 and y = 0 about the line x = 2.

46



Calculus II - Work

6.4 Work

Definition 6.4.1. In general, if an object moves along a straight line with
position function s(t), then the force F' on the object (in the same direction)
is given by Newton’s Second Law of Motion as the product of its mass m and
its acceleration a:

d?s
F = =m—.
ma mdt2

Definition 6.4.2. In the case of constant acceleration, the force F is also
constant and the work done is defined to be the product of the force F' and
distance d that the object moves:

W = Fd work = force x distance.

Example 1. (a) How much work is done in lifting a 1.2-kg book off the floor
to put it on a desk that is 0.7 m high? Use the fact that the acceleration
due to gravity is ¢ = 9.8 m/s%

(b) How much work is done in lifting a 20-1b weight 6 ft off the ground?

47
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Definition 6.4.3. If the force f(z) on an object is variable, then we define
the work done in moving the object from a to b as

W = Jiriloif(xf)Ax = /bf(x) dx.
i=1 a

Example 2. When a particle is located a distance x feet from the origin, a
force of 2% + 2z pounds acts on it. How much work is done in moving it from
r=1tox =37

Theorem 6.4.1 (Hooke’s Law). The force required to maintain a spring
stretched x units beyond its natural length is proportional to x:

fz) = kzx

where k is a positive constant called the spring constant (see the figure). Hooke’s
Law holds provided that x is not too large.

fx)=kx
>
frictionless 0 X 0 x X
surface
(a) Natural position of spring (b) Stretched position of spring

48
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Example 3. A force of 40 N is required to hold a spring that has been
stretched from its natural length of 10 cm to a length of 15 ecm. How much
work is done in stretching the spring from 15 cm to 18 cm?

Example 4. A 200-1b cable is 100 ft long and hangs vertically from the top
of a tall building. How much work is required to lift the cable to the top of
the building?
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Calculus II - Work

Example 5. A tank has the shape of an inverted circular cone with height
10 m and base radius 4 m. It is filled with water to a height of 8 m. Find the
work required to empty the tank by pumping all of the water to the top of the
tank. (The density of water is 1000 kg/m3.)
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Calculus II - Average Value of a Function

6.5 Average Value of a Function

Definition 6.5.1. The average value of a function f on the interval [a, ] is

1 b
fave - b—(l/a f(.%‘) dx

Example 1. Find the average value of the function f(z) = 1+ 22 on the
interval [—1,2].

Theorem 6.5.1 (The Mean Value Theorem for Integrals). If f is continuous
on [a,bl], then there exists a number ¢ in |a,b] such that

[
/f F()b—a).

Proof. By applying the Mean Value Theorem for derivatives to the function
F(x) = [T f(t)dt, we see that there exists a number ¢ in [a, b] such that

f() fave:

that s,

P - POl
[ rwa)| - HH=0
£(e) = = [F(b) ~ F(a)]
S 0



Calculus II - Average Value of a Function

Example 2. Find a number ¢ in the interval [—1, 2] that satisfies the mean
value theorem for integrals for the function f(z) =1+ 2%

Example 3. Show that the average velocity of a car over a time interval [t;, ]
is the same as the average of its velocities during the trip.
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Chapter 7

Techniques of Integration

7.1 Integration by Parts

Theorem 7.1.1 (Formula for Integration by Parts). If f and g are differen-
tiable functions then

or, equivalently,

/udv:uv—/vdu

where u = f(x) and v = g(x).

Proof. By the Product Rule,

1 F(@)9(@)] = F@)d (@) + 9(2) ()

g
f(2)g(x) = / @) (2) + g(0) f'(@)] da
_ / f(2)g/ () dx + / 9(0) () de
/ f(@)d (@) do = f(x)g(x) - / 9(2) f'(z) de 0
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Calculus II - Integration by Parts

Example 1. Find /xsinxdm.

Example 2. Evaluate / Inzdx.
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Calculus II - Integration by Parts

Example 3. Find /tQGt dt.
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Calculus II - Integration by Parts

Example 4. Evaluate / e’ sinx dx.
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Calculus II - Integration by Parts

Theorem 7.1.2 (Formula for Definite Integration by Parts). If f and g are
differentiable on (a,b) and f" and ¢’ are continuous, then

[ @)@ de = g, - [ gt @) d

1
Example 5. Calculate / tan™!  da.
0
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Calculus II - Integration by Parts

Example 6. Prove the reduction formula

] 1 o n—1 e
/sm”xdx: ——cosxsin" x4+ sin" 2z dx
n n

where n > 2 is an integer.
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Calculus II - Trigonometric Integrals

7.2 'Trigonometric Integrals

Example 1. Evaluate / cos® x dx.

Example 2. Find /sin5 x cos® z dz.
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Calculus II - Trigonometric Integrals

Remark 1. Sometimes it is easier to use the half-angle identities
9 1 9 1
sin“ x = 5(1 — cos 2x) and cos” x = 5(1 + cos 2x)
to evaluate an integral.

Example 3. Evaluate / sin® z dx.
0

Example 4. Find / sin? z d.
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Calculus II - Trigonometric Integrals

Example 5. Evaluate / tan® z sec? z dz.

Example 6. Find / tan® 0 sec’ 6 d6.
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Calculus II - Trigonometric Integrals

Example 7. Find /tan?’xda:.

Example 8. Find / sec® x dx.
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Calculus II - Trigonometric Integrals

Remark 2. To evaluate the integrals (a) [ sinma cosna dz, (b) [ sinma sinnzx dz,
or (¢) [ cosma cosnax dz, use the corresponding identity:

(a) sin Acos B = %[Sin(A — B) +sin(A + B)]
(b) sin Asin B = %[COS(A — B) — cos(A + B)]

(c) cos Acos B = %[COS(A — B) + cos(A + B)].

Example 9. Evaluate / sin 4z cos 5z dx.
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7.3 'Trigonometric Substitution

Table of Trigonometric Substitutions

Expression Substitution Identity
_ . 7T ﬂ- - . 2 — 2
02— 22 :L'—CLSIHG,—§§9§§ 1 —sin“ 60 = cos 6
_ T ™ 20 _ cnp?
Va2 + 22 x—atan@,—§§9§§ 1 4 tan” 6§ = sec® 6
3
22 — a2 xzasec@,OS@ﬁgorﬂgegg sec? — 1 = tan®6
VO — 22
Example 1. Evaluate / —2xdx.
x
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Example 2. Find the area enclosed by the ellipse

IQ y2
StE=L
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Calculus II - Trigonometric Substitution

1
——dx.
2?2 +4

Example 3. Find
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Calculus II - Trigonometric Substitution

x
Example 4. Find | —— dz.
P / vaz+4

d
Example 5. Evaluate / —x, where a > 0.
2 _ a2
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Calculus II - Trigonometric Substitution

SL’S

3v/3/2
Example 6. Find /0 m dx.
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Calculus II - Trigonometric Substitution

Example 7. Evaluate / L dx.
V3 —2x — a2
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Calculus II - Integration by Partial Fractions

7.4 Integration by Partial Fractions

x3—|—x

r—1

dz.

Example 1. Find /
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Calculus II - Integration by Partial Fractions

2+ 2x—1
x.
203 4+ 322 — 22

Example 2. Evaluate /
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Calculus II - Integration by Partial Fractions

d
Example 3. Find /—I2, where a # 0.
a

xr2 —
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Calculus II - Integration by Partial Fractions

2% +4x+1
Example 4. Find/x v dz.
3 —a?—z+1
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Calculus II - Integration by Partial Fractions

Theorem 7.4.1. p )
/—x:—tan_l E +C.
22+a?2 a a

22 — 4
Example 5. Evaluate / idm.
x3+4x
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Calculus II - Integration by Partial Fractions

42 — 3x + 2
E le 6. Evaluat ——dx.
xample Vauae/4x2_4x+3 T

5



Calculus II - Integration by Partial Fractions

Example 7. Write out the form of the partial fraction decomposition of the
function
2?2 +1
r(x —1)(a2+x+ 1) (22 4+ 1)%

1 — 2 2 .3
Example 8. Evaluate / T o dx.
z(z? +1)2
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Vo +4

4
+ dx.
x

Example 9. Evaluate /

7



Calculus II - Strategy for Integration

7.5 Strategy for Integration

tan® x

dzx.

Example 1. /

cos® x

Example 2. /eﬁd:c.
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5+ 1
E le 3. dx.
xample / 2 — 312 — 10z "
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Calculus II - Strategy for Integration

dx

zvVinzx

Example 4. /

11—z
E le 5. \/ dx.
xample / T T
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Calculus II - Integration Using Tables and CAS’s

7.6 Integration Using Tables and CAS’s

Example 1. The region bounded by the curves y = arctanz, y = 0, and
x = 1 is rotated about the y-axis. Find the volume of the resulting solid.

1’2

—dx
Vb5 — 4x?

Example 2. Use the Table of Integrals to find /

81



Calculus II - Integration Using Tables and CAS’s

Example 3. Use the Table of Integrals to evaluate / 3 sinz dx.

Example 4. Use the Table of Integrals to find /x\/ 22+ 2x +4dx.
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Calculus II - Integration Using Tables and CAS’s

Example 5. Use a computer algebra system to find /x\/ 22+ 2x +4dr.

Example 6. Use a CAS to evaluate /x(m2 +5)% du.

Example 7. Use a CAS to find /sin5 x cos® x dx.
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7.7 Approximate Integration

Theorem 7.7.1 (Midpoint Rule).

y
b
[ 7@ de My = Balf(an) + £(@2) + -+ @) T
a /: | |
where ; | : : I\
n A
o ERRERR
1 I I I >
T, = 5(@,1 + x;) = midpoint of [x;_1,x;]. 0 X, X, X3 X, X
Theorem 7.7.2 (Trapezoidal Rule). y
P—
b Az \
[ #@)de T, = S0 2 ()42 ) 420 )+ )
where Ax = (b—a)/n and x; = a + iAwx.
Example 1. Use (a) the Trapezoidal Rule and (b) the Midpoint
Rule with n = 5 to approximate the integral ff(l /) dx.
0 Xo X X, X3 X, X
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Calculus II - Approximate Integration

Theorem 7.7.3 (Error Bounds). Suppose |f"(x)| < K fora <z <b. If Er

and Ey; are the errors in the Trapezoidal and Midpoint Rules, then

Kb —a)
12n?

K{b—a)?

Er| <
|Brl < 24n?

and |Ey| <

Example 2. How large should we take n in order to guarantee that the Trape-
zoidal and Midpoint Rule approximations for |, 12(1 /) dx are accurate to within
0.00017
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Calculus II - Approximate Integration

Example 3. (a) Use the Midpoint Rule with n = 10 to approximate the
integral fol e d.

(b) Give an upper bound for the error involved in this approximation.
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Theorem 7.7.4 (Simpson’s Rule).

Ax

b
[ #ta)dn x5, = SEU o)+ 4f(a0) + 2F(a) + 47 ) + -
+2f(Tn-2) +4f (Tn-1) + f(z0)]

where n is even and Az = (b— a)/n.

0 a=x, X, X, X3 X4 X5 X¢=b X

Example 4. Use Simpson’s Rule with n = 10 to approximate ff(l /x)dx.
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Calculus II - Approximate Integration

Example 5. The figure shows data traffic on the link from the United States
to SWITCH, the Swiss academic and research network, on February 10, 1998.
D(t) is the data throughput, measured in megabits per second (Mb/s). Use
Simpson’s Rule to estimate the total amount of data transmitted on the link
from midnight to noon on that day.

D
8+

6-.

0 3 6 9 12 15 18 21 24 t(hours)
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Calculus II - Approximate Integration

Theorem 7.7.5 (Error Bound for Simpson’s Rule). Suppose that |f®(z)| <
K fora <z <b. If Es is the error involved in using Simpson’s Rule, then
K(b—a)®
Egl < ———
1Bsl < —gona

Example 6. How large should we take n in order to guarantee that the Simp-
son’s Rule approximation for ff(l /) dx is accurate to within 0.00017
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Calculus II - Approximate Integration

Example 7. (a) Use Simpson’s Rule with n = 10 to approximate the integral

fol e dz.

(b) Estimate the error involved in this approximation.
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Calculus II - Improper Integrals

7.8 Improper Integrals

Definition 7.8.1 (Definition of an Improper Integral of Type 1).

(a) If fcf f(z) dx exists for every number ¢ > a, then

/aoo f(z)dz = lim /atf(:v) dx

t—o0
provided this limit exists (as a finite number).

(b) If ftb f(z) dx exists for every number ¢ < b, then

/_; f(z)dx :tEr_noo/tbf(x) dx

provided this limit exists (as a finite number).

The improper integrals [ f(z) dz and f_boo f(z)dz are called convergent if
the corresponding limit exists and divergent if the limit does not exist.

(¢) If both [ f(x)dx and [°_ f(z)dx are convergent, then we define

/_:f(JS)dx:/_;f(x)dm—l—/:of(x)dm.

In part (¢) any real number a can be used.

Example 1. Determine whether the integral [[~(1/z)dx is convergent or
divergent.
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Calculus II - Improper Integrals

0
Example 2. Evaluate / xe' dx.

—0o0
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< 1

Example 3. Evaluate / N o

dz.
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Calculus II - Improper Integrals

Example 4. For what values of p is the integral

1
/ — dx
1 P

convergent?
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Calculus II - Improper Integrals

Definition 7.8.2 (Definition of an Improper Integral of Type 2).

(a) If f is continuous on [a,b) and is discontinuous at b, then

/f dx:tl_iga_/atf(x)dx

if this limit exists (as a finite number).

(b) If f is continuous on (a, b] and is discontinuous at a, then

b b
/f( )dr = lim f()

t—sat

if this limit exists (as a finite number).

The improper integral fab f(z) dz is called convergent if the corresponding limit
exists and divergent if the limit does not exist.

(¢) If f has a discontinuity at ¢, where a < ¢ < b, and both [7 f(z)dz and
fcb f(z) dx are convergent, then we define

/abf(a:)dx:/acf(:c)dx+/be(x)dx

5
1
Example 5. Find
P /2 Vo —2

95



Calculus II - Improper Integrals

w/2
Example 6. Determine whether / sec x dx converges or diverges.
0

3
Example 7. Evaluate / :vl if possible.
0

€T —
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1
Example 8. / Inxdz.
0
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Calculus II - Improper Integrals

Theorem 7.8.1 (Comparison Theorem). Suppose that f and g are continuous
functions with f(zx) > g(z) >0 for z > a.

(a) If [ f(z)dx is convergent, then [~ g(x)dx is convergent.
(b) If [ g(z) dz is divergent, then [ ° f(z)dx is divergent.

Example 9. Show that / e " dr is convergent.
0

1+4+e®
T

Example 10. Determine whether / dx converges or diverges.
1
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Chapter 11

Infinite Sequences and Series

11.1 Sequences

Definition 11.1.1. A sequence can be thought of as a list of numbers written
in a definite order:
a1,09,03,04,...,0pn,....

The number a, is called the first term, as is the second term, and in general
a, is the nth term.

A sequence can also be defined as a function whose domain is the set of positive
integers. However, we usually write a, instead of the function notation f(n)
for the value of the function at the number n.

The sequence {ay, as,as, ...} is also denoted by

{an} or {an}nZ,.

Example 1. Some sequences can be defined by giving a formula for the nth
term. In the following examples we give three descriptions of the sequence:
one by using the preceding notation, another by using the defining formula,
and a third by writing out the terms of the sequence. Notice that n doesn’t
have to start at 1.
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Calculus II - Sequences

n 1% n 1234 n
(a) ap = N o) 4 = ) )
n+1}, _, n+1 2345 n—+1
m) {EV et , - D +1) 23 45 (=)'(n+1)
3n " 3n 3’97 27'81 3n
(c){ n—3}0073 a4, = \Vn—3,n>3 {0,1,&,\/5, \/n——S}
- 31
(d) {COS%}’”O an:COS%,TLZO {17\/7—75907- ;Cos%a }

Example 2. Find a formula for the general term a,, of the sequence

3 4 5 6 7
5 2571257 625731257

assuming that the pattern of the first few terms continues.
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Calculus II - Sequences

Example 3. Here are some sequences that don’t have a simple defining equa-
tion.

(a) The sequence {p,}, where p, is the population of the world as of January
1 in the year n.

we let a, be the digit in the nth decimal place or the number e, then
b) If 1 be the digit in th h decimal pl f th b h
{a,} is a well-defined sequence whose first few terms are

{7,1,8,2,8,1,8,2,4,5,...}.

(¢) The Fibonacci sequence {f,} is defined recursively by the conditions

flzl f2:1 fn:fn—l+fn—2 n > 3.
Each term is the sum of the two preceding terms. The first few terms are
{1,1,2,3,5,8,13,21,...}

This sequence arose when the 13th-century Italian mathematician known
as Fibonacci solved a problem concerning the breeding of rabbits.

Definition 11.1.2. A sequence {a,} has the limit L and we write

lim a, = L or a, — L asn— oo
n—oo

if we can make the terms a,, as close to L as we like by taking n sufficiently
large. If lim, .. exists, we say the sequence converges (or is convergent).
Otherwise, we say the sequence diverges (or is divergent).

Definition 11.1.3 (Precise Definition of the Limit of a Sequence). A sequence
{a,} has the limit L and we write

lim a, = L or a, -+ Lasn— oo
n—oo

if for every € > 0 there is a corresponding integer N such that
if n>N then la, — L| < e.

Theorem 11.1.1. Iflim, , f(z) = L and f(n) = a, when n is an integer,
then lim,, s~ a, = L.

Definition 11.1.4. lim,,_,, a,, = oo means that for every positive number M
there is an integer NV such that

if n>N then a, > M.
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Calculus II - Sequences

Theorem 11.1.2 (Limit Laws for Sequences). If {a,} and {b,} are convergent
sequences and ¢ is a constant, then

lim (a, + b,) = lim a, + lim b,
n—00 n—00 n—00

lim (a, — b,) = lim a, — lim b,

n—oo n—oo n—oo
lim ca, = ¢ lim a, lim c=c
n—0o0 n—oo n—oo
lim (a,b,) = lim a, - lim b,
n—oo n—oo n—oo

a lim a,
lim — = 2= if lim b, #0
n—oo by, lim b, n—00

n—oo

n—oo

p
lim af = [lim an] if p>0 and a, > 0.
n—oo

Theorem 11.1.3 (Squeeze Theorem for Sequences). If a, < b, < ¢, for

n > ng and lim a, = lim ¢, = L, then lim b, = L.
n—oo n—oo n—oo

Theorem 11.1.4. If lim |a,| =0, then lim a, = 0.
n—oo n—oo

Proof. Since lim,,_,, |a,| =0,

lim —|a,| =0= — lim |a,| = 0.
n—oo n—oo

But —|a,| < a, < |a,| for all n, so by the squeeze theorem for sequences,
lim,, o a, = 0. ]

n

Example 4. Find lim :
n—oo N + 1

102



Calculus II - Sequences

n
Example 5. Is the sequence a, = T convergent or divergent?
n

1
Example 6. Calculate lim nn
n—oo n

Example 7. Determine whether the sequence a,, = (—1)" is convergent or
divergent.
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n

if it exists.

Example 8. Evaluate lim
n—o00 n

Theorem 11.1.5. If lim a, = L and the function f is continuous at L, then

n—o0

lim f(a,) = f(L).

n—o0

Proof. Choose a particular n, say ng. By the definition of a limit of a sequence,
given 1 > 0 there exists an integer N, such that |a,, — L| < €1 for ng > N.
Similarly, by the definition of continuity, the limit of f exists at L, so for e5 > 0
there exists e; > 0 such that if |a,, — L| < &, then |f(an,) — f(L)| < 2. This
is true for arbitrary €3 > 0, so lim, o f(a,) = f(L). O
Example 9. Find lim sin(7/n).

n—oo
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Example 10. Discuss the convergence of the sequence a,, = n!/n", where

Example 11. For what values of r is the sequence {r"} convergent?
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Calculus II - Sequences

Definition 11.1.5. A sequence {a,} is called increasing if a, < a,; for all
n > 1, that is, a; < as < ag < ---. It is called decreasing if a,, > a,,, for all
n > 1. A sequence is monotonic if it is either increasing or decreasing.

3
Example 12. Is the sequence { n } increasing or decreasing?
n
Example 13. Show that the sequence a,, = 2?:_ 1 is decreasing.
n
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Definition 11.1.6. A sequence {a,} is bounded above if there is a number
M such that

a, < M for all n > 1.

It is bounded below if there is a number m such that

m < a, for all n > 1.

If it is bounded above and below, then {a,} is a bounded sequence.

Theorem 11.1.6 (Monotonic Sequence theorem). Every bounded, monotonic
sequence 1s convergent.

Example 14. Investigate the sequence {a,,} defined by the recurrence relation

1
G1:2 an+1:§(an+6) forn:1,2,3,....
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11.2 Series

Definition 11.2.1. In general, if we try to add the terms of an infinite se-
quence {a,}>2; we get an expression of the form

a1+a2+a3+...+an_’_...

which is called an infnite series (or just a series) and is denoted, for short, by

the symbol
Z an, or Z -
n=1

Definition 11.2.2. Given a series Y >, a, = a1 +as+az+--- , let s, denote
its nth partial sum:

n
Sp = 5 a; =aiy+az+ -+ ay.
i=1

If the sequence {s,} is convergent and lim,_,, S, = s exists as a real number,
then the series Y a, is called convergent and we write

o0

n=1

The number s is called the sum of the series. If the sequence {s, } is divergent,
then the series is called divergent.

Example 1. Find the sum of the series > | a, if the sum of the first n terms

of the series is
2n

3n+5

Sp=a1+ay+ -+ a, =
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Example 2. Find the sum of the geometric series

oo

a+a7’+a7’2—|—ar3—|—~~—i—ar"71+--~IZar”’l a# 0

where each term is obtained from the preceding one by multiplying it by the
common ratio 7.
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Example 3. Find the sum of the geometric series

5_94_@_@4_
3 9 27

Example 4. Is the series Y 2*"3!™" convergent or divergent?
n=1
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Example 5. A drug is administered to a patient at the same time every day.
Suppose the concentration of the drug is C), (measured in mg/mL) after the
injection on the nth day. Before the injection the next day, only 30% of the
drug remains in the bloodstream and the daily dose raises the concentration
by 0.2 mg/mL.

(a) Find the concentration after three days.

(b) What is the concentration after the nth dose?

(c) What is the limiting concentration?
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Example 6. Write the number 2.317 = 2.3171717.. .. as a ratio of integers.

Example 7. Find the sum of the series > 2", where |z| < 1.
n=0
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- 1
Example 8. Show that the series Z ( is convergent, and find its
n=1

n(n+1)

sui.

113



Calculus II - Series

Example 9. Show that the harmonic series

i1—1+1+1+1+
n 2 3 4

n=1

is divergent.
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Theorem 11.2.1. If the series Y a, is convergent, then lim a, = 0.
n=1 n—oo

Proof. Let s, = a1 +as + -+ + a,. Then a, = s, — s,—1. Since > a,
is convergent, the sequence {s,} is convergent. Let lim, .. S, = s. Since
n—1— 0o as n — 0o, we also have lim,,_,, s,,_1 = s. Therefore

lim a, = lim (s, — s,—1) = lim s, — lim s, 1 = s —s=0. O
n—oo n—oo n—oo n—oo

Corollary 11.2.1 (Test for Divergence). If lim a,, does not exist or if lim a,, #
n—oo n—oo

[e.e]

0, then the series Y a, is divergent.
n=1

Proof. 1f the series is not divergent, then it is convergent, and so lim,, o, a,, = 0
by Theorem 11.2.1. The result follows by contrapositive. O

o0 2
Example 10. Show that the series Z n diverges.

15n2+4
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Theorem 11.2.2. If > a, and b, are convergent series, then so are the
series Y ca, (where ¢ is a constant), > (a, +by,), and > (a, —by,), and

(i) ican = cian
n=1 n=1

(i1) i(an +b,) = ian + ibn
n=1 n n=1

=1
(111) i(an —b,) = ian - ibn
n=1 n=1 n=1

- 3 1
Example 11. Find the sum of the series Z (m + 2—)
n(n n

n=1

Remark 1. A finite number of terms doesn’t affect the convergence or diver-
gence of a series. For instance, suppose that we were able to show that the
series

is convergent. Since
—~ n 1 2 3 & n
2T atetmt

it follows that the entire series > >~ n/(n® + 1) is convergent. Similarly, if it
is known that the series > > . a, converges, then the full series

00 N 00
ZG”ZZCLT”L Z Ay

n=1 n=1 n=N+1

is also convergent.
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11.3 The Integral Test and Estimates of Sums

Theorem 11.3.1 (The Integral Test). Suppose f is a continuous, positive,
decreasing function on [1,00) and a, = f(n). The the series Y -, a, is con-
vergent if and only if the improper integral floo f(x) dx is convergent. In other
words:

(i) If/ f(z)dx is convergent, then Y a, is convergent.
1 n=1

(i1) If/ f(z)dx is divergent, then »_ a, is divergent.
1 n=1

Proof.

(i) If [ f(z) dz is convergent, then comparing the areas of the
rectangles with the area under y = f(x) from 1 to n in the
top figure, we see that

Zai:a2+a3—|—~~—|—anS/nf(:c)dxg/oof(x)dx

since f(z) > 0. Therefore
Sp = a1 —|—Zai < +/ f(z)dx = M, say.
i=2 1

Since s, < M for all n, the sequence {s,} is bounded above. Also
Sn+l = Sn + Any1 = Sp

since ap11 = f(n+1) > 0. Thus {s,} is an increasing bounded sequence
and so it is convergent by the Monotonic Sequence Theorem.
(i) If [° f(z) dx is divergent, then [|* f(z)dz — oo as n — oo

because f(z) > 0. But the bottom figure shows that ’

n n—1
/ f(x)dx§a1+a2+~-+an_1:Zai:sn_l
1 i=1

and so s, 1 — 00, implying that s,, — oc. O]
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oo
Example 1. Test the series g for convergence or divergence.
n=1

n?+1

o0

1
Example 2. For what values of p is the series Z — convergent? (This series
n
n=1
is called the p-series.)
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Example 3. Determine whether each series converges or diverges.

1 1 1 1 1
B2 m=mtmtmtat

n=1

z
[M]¢
%y
"
+
Sl-
+
-
_l_
-
+

o0
Inn
Example 4. Determine whether the series E —— converges or diverges.
n

n=1
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Definition 11.3.1. The remainder

Rn:*s_sn:an+1+an+2+an+3+"'

is the error made when s,,, the sum of the first n terms, is used as an approx-

imation to the total sum.

Theorem 11.3.2 (Remainder Estimate for the Integral Test).
Suppose f(k) = ag, where f is a continuous, positive, decreasing
function for x > n and > a, is convergent. If R, = s —s,, then

/n O: f(z)dz < R, < / " faydo

Proof. Comparing the rectangles with the area under y = f(x)
for x > n in the top figure, we see that

R, =api1+ apso+--- S/ f(z)dz.

Similarly, we see from the bottom figure that

Rn:an+1+an+2+---2/ f(z)dx. O]
n+1

<

a
n+1| a9

Ap+1

Ap+2

n+1

Example 5. (a) Approximate the sum of the series Y 1/n3 by using the sum
of the first 10 terms. Estimate the error involved in this approximation.
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(b) How many terms are required to ensure that the sum is accurate to within
0.0005?

Corollary 11.3.1. Suppose f(k) = ap, where f is a continuous, positive,
decreasing function for x > n and > a, is convergent. Then

sn—l—/n:f(x)dmgsgsn—f—/noof(x)dx.

Example 6. Use Corollary 11.3.1 with n = 10 to estimate the sum of the

[eS)
i 1
series E -3
n

n=1
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11.4 The Comparison Tests

Theorem 11.4.1 (The Comparison Test). Suppose that > a, and )b, are
series with positive terms.

(1) If > by, is convergent and a, < b, for alln, theny_ a, is also convergent.

(11) If > by is divergent and a, > b, for all n, then > a, is also divergent.

Proof. (i) Let
n o0
S ST S )
i=1 i=1 n=1
Since both series have positive terms, the sequences {s,} and {¢,} are
increasing (S,4+1 = Sp+ant1 > Sp). Alsot, — t,s0t, <t forall n. Since
a; < b;, we have s, < t,. Thus s, <t for all n. This means that {s,} is

increasing and bounded above and therefore converges by the Monotonic
Sequence Theorem. Thus ) a, converges.

(i) If > by, is divergent, then ¢, — oo (since {t,} is increasing). But a; > b;

SO Sy, > t,,. Thus s, — oo. Therefore > a,, diverges. O
Example 1. Determine whether the series i L converges or di
pre s = 2n2 +4n + 3 &

verges.
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“Ink
Example 2. Test the series Z - for convergence or divergence.
k=1

Theorem 11.4.2 (The Limit Comparison Test). Suppose that y a,, and > b,
are series with positive terms. If

where ¢ 1s a finite number and ¢ > 0, then either both series converge or both
diverge.

Proof. Let m and M be positive numbers such that m < ¢ < M. Because
a, /by, is close to ¢ for large n, there is an integer N such that

a
m<b—n<M when n > N,
n

and so
mb,, < a, < Mb, when n > N.

If > b, converges, so does > Mb,. Thus > a, converges by part (i) of the
Comparison Test. If > b, diverges, so does > mb, and part (ii) of the Com-
parison Test shows that > a,, diverges. ]
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oo
Example 3. Test the series g for convergence or divergence.
n=1

on 1

o0

2n? +3
Example 4. Determine whether the series Z nton

* V5 +nd

converges or diverges.

n—=
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Example 5. Use the sum of the first 100 terms to approximate the sum of
the series > 1/(n® + 1). Estimate the error involved in this approximation.
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11.5 Alternating Series

Definition 11.5.1. An alternating series is a series whose terms are alter-
nately positive and negative.

Theorem 11.5.1 (Alternating Series Test). If the alternating series

o0

S (=1)"by=by—by+ by —by+bs—bg+--- by >0

n=1
satisfies
(i) by < b, for alln
(ii) lim b, =0
n—oo

then the series is convergent.

Proof.
b,
_ b2
+ b,
— b,
+ bs
l< — b
| T T T >
0 Sy Sy Se s Ss S5 S
We first consider the even partial sums:
So=b; —by >0 since by < by
Sy = S9 + (bg — b4) 2 So since b4 S bg.
In general
Son = Son—2 + (Dan—1 — ban) > S22 since ba, < boy—1.
Thus

0<s5y<s54<56< <59 <ove

But we can also write
Sop = b1 — (bg — b3) — (by — bs) — - -+ — (ban—2 — bap—1) — bap.
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Every term in parenthesis is positive, so sg, < by for all n. Therefore, the
sequence {sy,} of even partial sums is increasing and bounded above. It is
therefore convergent by the Monotonic Sequence Theorem. Let’s call its limit
s, that is,

lim ss, = s.
n—oo

Now we compute the limit of the odd partial sums:

lim s9,11 = lm (S2, + bapi1)
n—oo n—oo

= lim s9, + lim b9,y
n—o0o

n—oo
=s5+0
= s.
Since both the even and odd partial sums converge to s, we have lim,,_,o, s, = s
and so the series is convergent. O]

Example 1. Determine whether the alternating harmonic series

1 1 1 = (—1)!
1+ -1 .= A
2 3 a’ ; n

converges or diverges.
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= (=1)"3
Example 2. Determine whether the series Z w
n

1 converges or diverges.

n=1

Example 3. Test the series Z(—l)wrl

n=1

——— for convergence or divergence.
n3 +1
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Calculus II - Alternating Series

Theorem 11.5.2 (Alternating Series Estimation Theorem). Ifs = Y (—1)""1b,,
where b, > 0, is the sum of an alternating series that satisfies

(i) bpi1 < b, and (i) lim b, =0

then
|Ru| = |5 = sn| < bpya

Proof. We know from the proof of the Alternating Series Test that s lies be-
tween any two consecutive partial sums s, and s,41. (There we showed that
s is larger than all the even partial sums. A similar argument shows that s is
smaller than all the odd sums.) It follows that

|5_5n| < |Sn+1_8n| :bn—f—l' O
oo
. . (=) .
Example 4. Find the sum of the series g ‘ correct to three decimal
n!
n=0

places.
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11.6 Absolute Convergence, Ratio and Root
Tests

Definition 11.6.1. A series ) a,, is called absolutely convergent if the series
of absolute values ) |a,| is convergent.

Example 1. Is the series

= (=1) ! 1 1 1
ey L L

n=1

absolutely convergent?

Example 2. Is the series

= (=)t 1 1 1
~ 7 -4z
Z n 2+3 4

n=1

absolutely convergent?
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Definition 11.6.2. A series Y a, is called conditionally convergent if it is

convergent but not absolutely convergent.

Theorem 11.6.1. If a series Y a,, is absolutely convergent, then it is conver-

gent.

Proof. Observe that the inequality

0 < a,+ |a,| < 2|a,|

is true because |a,| is either a,, or —a,. If > a, is absolutely convergent, then
> |ay| is convergent, so Y 2|a,| is convergent. Therefore, by the Comparison

Test, Y (a, + |a,|) is convergent. Then

Za” = Z(an + lan|) —

> lan|

is the difference of two convergent series and is therefore convergent. O]

Example 3. Determine whether the series

cos 3

. cosn cosl cos2
Z n2 o 12 + 22
n=1

is convergent or divergent.
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Theorem 11.6.2 (The Ratio Test).

o
a
(i) If lim Lasy PR PN 1, then the series Zan s absolutely convergent
n—o0 n =1

(and therefore convergent).

o0
. . An41 . Ant1 . .
(it) If lim |—=| = L > 1 or lim || = oo, then the series E ay, 1S
n—oo | Qp n—oo | Ay —
divergent.
(ii) If lim ntl) = 1, the Ratio Test is inconclusive; that is, no conclusion
n—00 | Qp

can be drawn about the convergence or divergence of »_ a,.

% 3
Example 4. Test the series Z(—l)”% for absolute convergence.
n=1

X n
n
Example 5. Test the convergence of the series E -
n!
n=1
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Theorem 11.6.3 (The Root Test).

(1) If lim {/|a,| = L < 1, then the series Zan s absolutely convergent
n—oo
n=1
(and therefore convergent).

(i) If lim {/|a,| = L > 1 or lim {/|a,| = oo, then the series Zan is
n—oo n—oo

n=1
divergent.

(i1i) If lim {/|a,| =1, the Root Test is inconclusive.
n—oo

Example 6. Test the convergence of the series Z (Bn i 2) .
n
n=1
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Definition 11.6.3. By a rearrangement of an infinite series Y a,, we mean a
series obtained by simply changing the order of the terms.

Remark 1. If Y a, is an absolutely convergent series with sum s, then any
rearrangement of Y a, has the same sum s.

Remark 2. It Y a, is a conditionally convergent series and r is any real number
whatsoever, then there is a rearrangement of > a,, that has a sum equal to 7.
For example, if we multiply the alternating harmonic series

] 1+1 1+1 1+1 1+ 2
23 145 6 7 s 77"
by %,We get
1 1+ 1 1 - 11 5
2 16 8 T a2n®
Then inserting zeros between the terms of this series gives
1 1 1 1 1
0O+-+0—-=4+0+=-4+0—=+---==In2
+ 50— 0+ 0ot ;2.

and we can add this to the alternating harmonic series to get

1—i—1 1+1+1 1+ 312
- — — — - — — cee = —In
3 2 5 7 A4 2 ’

which is a rearrangement of the alternating harmonic series with a different
sum.
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11.7 Strategy for Testing Series

n—1
n+1

Example 1. Z
n=1

n3+1

Example 2. Z m
n=1

Example 3. Zne_"Q.

n=1
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nS

nt+1

Example 4. Z(—l)"

n=1

Example 5. Z =k
n=1

1
2+ 30

Example 6. Z
n=1
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11.8 Power Series

Definition 11.8.1. A power series is a series of the form

o0
n __ 2 3
Cp" = Co + 1T + Ccx” + 3" + - - -
n=0

where x is a variable and the ¢,’s are constants called the coefficients of the
series.
More generally, a series of the form

ch(x_a)n:Co+01($—a)—|—02(x—a)2+u-

n=0

is called a power series in (r — a) or a power series centered at a or a power
series about a.

oo
Example 1. For what values of x is the series Z nlz" convergent?

n=0
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00 _3)n
Example 2. For what values of x does the series 5 u
n

n=1

converge?

Example 3. Find the domain of the Bessel function of order 0 defined by

X (—1)ran
hio) =3

n=0
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Theorem 11.8.1. For a given power series Z cn(x—a)", there are only three
n=0
possibilities:

(i) The series converges only when r = a.
(i) The series converges for all x.

(111) There is a positive number R such that the series converges if |t —a| < R
and diverges if |x — a| > R.

Definition 11.8.2. The number R in case (iii) is called the radius of conver-
gence of the power series. By convention, the radius of convergence is R = 0 in
case (i) and R = oo in case (ii). The interval of convergence of a power series
is the interval that consists of all values of x for which the series converges.

Example 4. Find the radius of convergence and interval of convergence of

the series
n+1

n=0
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Example 5. Find the radius of convergence and interval of convergence of
the series -
Z n(x+2)"

3n+1

n=0
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11.9 Representations of Functions as Power
Series

Example 1. Express 1/(1 + x?) as the sum of a power series and find the
interval of convergence.

Example 2. Find a power series representation for 1/(x + 2).

141



Calculus II - Representations of Functions as Power Series

Example 3. Find a power series representation of z3/(x + 2).

Theorem 11.9.1. If the power series Y cp(x — a)™ has radius of convergence
R > 0, then the function f defined by

f(x) =co+ci(x—a)+cy(x —a)? chm—a
is differentiable (and therefore continuous) on the interval (a — R,a+ R) and
(i) f'(z) =c1 +2co(x — a) + 3cs(x — a)? chnx—a -1

(ii) /f(.%')dx:C+CO($_&)+61(I—2(1)2+02(x_3a>3

n+1

_C+Z n_+1

The radii of convergence of the power series in Equations (i) and (ii) are both

R.
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Example 4. Find the derivative of the Bessel function

2 (—1)ra?n
Jo(x) = Z%

n=0

Example 5. Express 1/(1 — )% as a power series using differentiation. What
is the radius of convergence?
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Example 6. Find a power series representation for In(1 + ) and its radius of
convergence.

Example 7. Find a power series representation for f(z) = tan™! z.
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Example 8. (a) Evaluate [[1/(1+ z7)]dz as a power series.

(b) Use part (a) to approximate foo's[l/(l + 27)|dx correct to within 1077.
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11.10 Taylor and Maclaurin Series

Theorem 11.10.1. If f has a power series representation (expansion) at a,
that is, if

f(x):ch(x—a)” |z —al < R

then its coefficients are given by the formula

Definition 11.10.1. The Taylor series of the function f at a (or about a or
centered at a) is

>~ £n)(g
fa) =S L2 gy

n.

f'(a)
1!

f"(a)
2!

o Oy

fla) + == —a) +

For the special case a = 0 the Taylor series becomes

O 10 o, 170

3
1 9] T

O f(n)
fw) =3 e )4

n

which we call the Maclaurin Series.

Example 1. Find the Maclaurin series of the function f(x) = e* and its radius
of convergence.
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Theorem 11.10.2. If f(z) = T,,(z)+ R, (), where T,, is the nth-degree Taylor
polynomial of f at a, R, is the remainder of the Taylor series, and

lim R,(x) =0

n—o0

for |x —al < R, then f is equal to the sum of its Taylor series on the interval
|z —a| < R.

Theorem 11.10.3 (Taylor’s Inequality). If |f™+Y(z)| < M for |z —a| < d,
then the remainder R,(x) of the Taylor series satisfies the inequality

Ro(2)] < —2

< mh: —al™™ for|vr—a| <d.

Example 2. Prove that e” is equal to the sum of its Maclaurin series.
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Example 3. Find the Taylor series f(x) = e* at a = 2.

Example 4. Find the Maclaurin series for sinx and prove that it represents
sinz for all x.
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Example 5. Find the Maclaurin series for cos x.

Example 6. Find the Maclaurin series for the function f(z) = x cos .
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Example 7. Represent f(x) = sinx as the sum of its Taylor series centered
at /3.

150



Calculus II - Taylor and Maclaurin Series

Example 8. Find the Maclaurin series for f(z) = (1 + x)*, where k is any
real number.
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Theorem 11.10.4 (The Binomial Series). If k is any real number and |z| < 1,

then

Q+ay=3 (i)x g BE=Y L RE-DE=2)

2! 3!

n=0

where the coefficients

(k:) k(k—1)(k—2)-- (k—n—+1)

n n!

are called the binomial coefficients.

Example 9. Find the Maclaurin series for the function f(z) =

its radius of convergence.
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1 1 1

Example 10. Find the sum of the series 12 3.9 + 55 1.9

Example 11. (a) Evaluate [e¢=*" dz as an infinite series.

(b) Evaluate fol e~ dx correct to within an error of 0.001.
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T __ 1 _
Example 12. Evaluate lim #.
x—0 x
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Example 13. Find the first three nonzero terms in the Maclaurin series for

(a) e"sinx

(b) tanx
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11.11 Applications of Taylor Polynomials

Example 1. (a) Approximate the function f(z) = /z by a Taylor polyno-
mial of degree 2 at a = 8.

(b) How accurate is this approximation when 7 < z < 97
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Example 2. (a) What is the maximum error possible in using the approxi-

mation

3 2P

sinx ~ x — 3 + E
when —0.3 < x < 0.37 Use this approximation to find sin 12° correct to

six decimal places.

(b) For what values of x is this approximation accurate to within 0.000057
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Example 3. In Einstein’s theory of special relativity the mass of an object

moving with velocity v is
mo

where my is the mass of an object when at rest and c is the speed of light.
The kinetic energy of the object is the difference between its total energy and
its energy at rest:

m =

K = mc? — moc?.

(a) Show that when v is very small compared with ¢, this expression for K

agrees with classical Newtonian physics: K = %mOUQ.
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(b) Use Taylor’s Inequality to estimate the difference in these expressions for
K when |v| <100 m/s.
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absolutely convergent, 130
alternating series, 126
alternating series test, 126
area, 3

average value of a function, 51

binomial coefficients, 152
bounded above, 107

bounded below, 107
bounded sequence, 107

common ratio, 109
comparison test, 122
conditionally convergent, 131
convergent, 91

absolutely, 130

conditionally, 131

integral, 95

sequence, 101

series, 108

decreasing sequence, 106
definite integral, 6
disk method for volume, 39
divergent, 91

integral, 95

sequence, 101

series, 108

Fibonacci sequence, 101
force, 47
Fresnel function, 17

fundamental theorem of calculus, 15

geometric series, 109

harmonic series, 114

increasing sequence, 106
indefinite integral, 21
infinite series, 108
integrable, 6
integral
definite, 6
improper, 91
indefinite, 21
symmetric function, 29
integral sign, 6
integral test, 117
integrand, 6
integration, 6
error bounds, 85
integration by parts, 53
interval of convergence, 139

limit

of a sequence, 101
limit comparison test, 123
limits of integration, 6
lower limit, 6
lower sum, 3

Maclaurin series, 146
mean value theorem
for integrals, 51
midpoint rule, 12, 84
monotonic, 106

net area, 7

p-series, 118
partial sum, 108
power series, 137

radius of convergence, 139
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ratio test, 132

rearrangement, 134

remainder, 120
Taylor series, 147

Riemann sum, 6

root test, 133

sample points, 3
sequence, 99
series, 108
alternating, 126
coefficients, 137
geometric, 109
harmonic, 114
Maclaurin, 146
p-series, 118
power, 137
sum, 108
Taylor, 146
shell method for volume, 44
sigma notation, 3
Simpson’s rule, 87
spring constant, 48
squeeze theorem
for sequences, 102
substitution rule, 25

Taylor polynomial, 147
Taylor series, 146

test for divergence, 115
trapezoidal rule, 84

upper limit, 6
upper sum, 3

volume, 39

washer method for volume, 41
work, 47

161



Bibliography

[1] Stewart, James. Calculus: Farly Transcendentals. Boston, MA, USA: Cen-
gage Learning, 2016. Print.

162



	Integrals
	Areas and Distances
	The Definite Integral
	The Fundamental Theorem of Calculus
	Indefinite Integrals and the Net Change Theorem
	The Substitution Rule

	Applications of Integration
	Areas Between Curves
	Volumes
	Volumes by Cylindrical Shells
	Work
	Average Value of a Function

	Techniques of Integration
	Integration by Parts
	Trigonometric Integrals
	Trigonometric Substitution
	Integration by Partial Fractions
	Strategy for Integration
	Integration Using Tables and CAS's
	Approximate Integration
	Improper Integrals

	Infinite Sequences and Series
	Sequences
	Series
	The Integral Test and Estimates of Sums
	The Comparison Tests
	Alternating Series
	Absolute Convergence, Ratio and Root Tests
	Strategy for Testing Series
	Power Series
	Representations of Functions as Power Series
	Taylor and Maclaurin Series
	Applications of Taylor Polynomials

	Index
	Bibliography

