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Chapter 1

Preliminaries

1.1 Mathematical Induction

Well-Ordering Principle. Every nonempty set S of nonnegative integers
contains a least element; that is, there is some integer a in S such that a <b
for all b’s belonging to S.

Theorem 1.1.1 (Archimedean property). If a and b are any positive integers,
then there exists a positive integer n such that na > b.

Proof. Assume that the statement of the theorem is not true, so that for some
a and b, na < b for every positive integer n. Then the set

S = {b—na | n a positive integer}

consists entirely of positive integers. By the Well-Ordering Principle, S will
possess a least element, say b — ma. Notice that b — (m + 1)a also lies in S,
because S contains all integers of this form. Furthermore, we have

b—(m+1)a=(b—ma)—a<b—ma

contrary to the choice of b—ma as the smallest integer in S. This contradiction
arose out of our original assumption that the Archimedean property did not
hold; hence, this property is proven true. O

Theorem 1.1.2 (First Principle of Finite Induction). Let S be a set of positive
integers with the following properties:

(a) The integer 1 belongs to S.
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(b) Whenever the integer k is in S, the next integer k + 1 must also be in S.

Then S is the set of all positive integers.

Proof. Let T be the set of all positive integers not in S, and assume that T
is nonempty. The Well-Ordering Principle tells us that T possesses a least
element, which we denote by a. Because 1 is in S, certainly a > 1, and so
0 < a—1 < a. The choice of a as the smallest positive integer in T' implies
that a — 1 is not a member of 7', or equivalently that a — 1 belongs to S. By
hypothesis, S must also contain (a — 1) + 1 = a, which contradicts the fact
that a lies in T'. We conclude that the set T" is empty and in consequence that
S contains all the positive integers. O

Example 1. Prove that

2 1 1
12+22+32+_”+n2:”( n+6)(n+ )

forn=1,2,3,....
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Example 2. Find a formula for
1+2+22 4284 ... 4 2n!

for every positive integer n.

Remark 1. As with the first version, the Second Principle of Finite Induction
gives two conditions that guarantee a certain set of positive integers actually
consists of all positive integers. We retain requirement (a), but (b) is replaced
by

(b’) If k is a positive integer such that 1,2, ...,k belong to S, then k+ 1 must
also be in S.
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Example 3. Consider the so-called Lucas sequence:

1,3,4,7,11,18,29,47,76, . ...

Except for the first two terms, each term of this sequence is the sum of the
preceding two, so that the sequence may be defined inductively by

a; = 1
a9 = 3
Ap = Qp—1 + Ap_2 for all n > 3.

Show that the inequality
a, < (7/4)"

holds for every positive integer n.
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1.2 The Binomial Theorem

Definition 1.2.1. For any positive integer n and any integer k satisfying
0 < k < n, the binomial coefficients are defined by

(:)

Example 1. Prove Pascal’s rule:

1)+ () =("7")  rsren
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Theorem 1.2.1 (Binomial Theorem). The complete expansion of (a + b)",

n > 1, is given by
(a+b)" = Z <Z> a"kpk

k=0

Proof. Mathematical induction provides the best means for confirming this
formula. When n = 1, the conjectured formula reduces to

1
1 LY ke (1) 170 L\ o1
(a+b)—Z(ka b" = Oab+ ) a’b’ =a+b,

k=0
which is certainly correct. Assuming that the formula holds for some fixed

integer m, we go on to show that it also must hold for m + 1. The starting
point is to notice that

(a+ )™ = a(a+b)™ + b(a + b)™.

Under the induction hypothesis,

ala +b)™ = Z (T]g) a™m Rk

k=0

_ m+l MY mtl—kpk
_p +Z(k) ;

(m> Mt
0 J

m m+l—kyk m+1
(k: B 1) a b +b )

Upon adding these expressions, we obtain

(a+b)™t = gt Z {(?) + (k;T 1)] QR ket
k=1
m+1
_ Z (m + 1) a1k pk
kj Y

k=0

and

bla+0)"

|

J

I
NE

b
Il

1

which is the formula in the case n = m + 1. This establishes the binomial
theorem by induction. O]
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Example 2. (a) Derive Newton’s identity

(Z) (i)ch) (Z::) n>k>r>0

(b) Use part (a) to express (7 ) in terms of its predecessor:

— 1
(1) =" () e
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Example 3. The Catalan numbers, defined by

|
o =L (2y_ et
n+1\n nl(n +1)!

form the sequence 1,1,2,5,14,42, 132,429, 1430, 4862, . ... They first appeared
in 1838 when Eugene Catalan (1814-1894) showed that there are C,, ways of
parenthesizing a nonassociative product of n + 1 factors. [For instance, when
n = 3 there are five ways: ((ab)c)d, (a(bc))d, a((bc)d), a(b(cd)), (ab)(ac).] For
n > 1, prove that (), can be given inductively by

2(2n — 1)

c,=—C,_1.
n—+1 !



Chapter 2

Divisibility Theory in the
Integers

2.1 Early Number Theory

Example 1. Each of the numbers
1=1,3=1+26=1+2+3,10=1+2+3+4,...

represents the number of dots that can be arranged evenly in an equilateral
triangle:

This led the ancient Greeks to call a number triangular if it is the sum of
consecutive integers, beginning with 1. Prove the following facts concerning
triangular numbers:

(a) A number is triangular if and only if it is of the form n(n + 1)/2 for some
n > 1. (Pythagoras, circa 550 B.C.)

(b) The integer n is a triangular number if and only if 8n + 1 is a perfect
square. (Plutarch, circa 100 A.D.)

¢) The sum of any two consecutive triangular numbers is a perfect square.
y g
(Nicomachus, circa 100 A.D.)



Number Theory - Early Number Theory

(d) If n is a triangular number, then so are 9n + 1, 25n + 3, and 49n + 6.
(Euler, 1775)

10
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Example 2. If ¢,, denotes the nth triangular number, prove that in terms of

the binomial coefficients,
n—+1
- > 1.
t, ( 9 ) n>1

Example 3. Derive the following formula for the sum of triangular numbers,
attributed to the Hindu mathematician Aryabhata (circa 500 A.D.):

nn+1)(n+2)

n>1.
6

th+ty+t3+---+1,=

[Hint: Group the terms on the left-hand side in pairs, noting the identity
te—1 + by = k2]

11
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2.2 The Division Algorithm

Theorem 2.2.1 (Division Algorithm). Given integers a and b, with b > 0,
there exist unique integers q and r satisfying

a=qb+r 0<r<hb.

The integers q and r are called, respectively, the quotient and remainder in the
division of a by b.

Proof. We begin by proving that the set
S = {a — xb | x an integer; a — xb > 0}

is nonempty. To do this, it suffices to exhibit a value of x making a — zb
nonnegative. Because the integer b > 1, we have |a|b > |a|, and so

a—(—la|)b=a+|alb>a+|a| > 0.

For the choice z = —|a|, then, a — b lies in S. This paves the way for an
application of the Well-Ordering Principle (Chapter 1), from which we infer
that the set S contains a smallest integer; call it . By the definition of S,
there exists an integer ¢ satisfying

r=a—qb 0<r
We argue that r < b. If this were not the case, then r > b and
a—(¢g+1b=(a—qb)—b=r—0b>0.

The implication is that the integer a — (¢ + 1)b has the proper form to belong
to the set S. But a — (¢ + 1)b = r — b < r, leading to a contradiction of the
choice of r as the smallest member of S. Hence, r < b.

Next we turn to the task of showing the uniqueness of ¢ and r. Suppose
that a has two representations of the desired form, say,

a=qgb+r=q¢b+r

where 0 < r < b, 0 <7 <b. Then ' —r = b(q — ¢') and, owing to the fact
that the absolute value of a product is equal to the product of the absolute
values,
" —r| =0lg —q.
Upon adding the two inequalities —b < —r < 0 and 0 < ' < b, we obtain
—b <1’ —r < bor, in equivalent terms, |7’ —r| < b. Thus, blqg — ¢'| < b, which
yields
0<lg—d|<L

Because |¢—¢'| is a nonnegative integer, the only possibility is that |¢—¢'| = 0,
whence ¢ = ¢/; this, in turn, gives r = r/, ending the proof. H

12
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Example 1. Prove that if a and b are integers, with b > 0, then there exist
unique integers g and r satisfying a = ¢gb + r, where 2b < r < 3b.

Corollary 2.2.1. If a and b are integers, with b # 0, then there exist unique
integers q and r such that

a=qb+r 0<r<lbl.

Proof. Tt is enough to consider the case in which b is negative. Then |b| > 0,
and Theorem 2.2.1 produces unique integers ¢’ and r for which

a=dbl+r 0<r<]|b

Noting that |b| = —b, we may take ¢ = —¢’ to arrive at a = ¢b + r, with
0<r<|b. O

Example 2. Tllustrate the Division Algorithm by taking b = —7 for the choices
of a =1, -2, 61, and —59.

Example 3. Use the Division Algorithm to establish the following:

(a) The square of any integer is of the form 4k + 1.

(b) The square of any odd integer is either of the form 8k + 1.

13
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Example 4. Use the Division Algorithm to establish the following:

(a) The square of any integer is either of the form 3k or 3k + 1.
(b) The cube of any integer has one of the forms: 9k, 9k + 1, or 9k + 8.

(c¢) The fourth power of any integer is either of the form 5k or 5k + 1.

14
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Example 5. Show that the expression a(a® +2)/3 is an integer for all a > 1.

15
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2.3 The Greatest Common Divisor

Definition 2.3.1. An integer b is said to be divisible by an integer a # 0, in
symbols a | b, if there exists some integer ¢ such that b = ac. We write a t b
to indicate that b is not divisible by a.

Theorem 2.3.1. For integers a, b, ¢, the following hold:
(a) a]0,1]a,ala.
(b) a| 1 if and only if a = +1.

)
)
(¢) Ifa|b and c|d, then ac | bd.
(d) Ifa|bandb]|c, thena | c.
(e) a|bandb|a if and only if a = +b.
(f) Ifa | b and b # 0, then |a| < |b].
(g) Ifa|banda|c, then a| (bx + cy) for arbitrary integers x and y.

Proof. For (a), a | 0 is the same as saying that 0 = ac for some integer ¢, and
we can simply take ¢ = 0. Similarly, we can take ¢ = a for 1| a and ¢ =1 for
a| a.

For (b), if a | 1 then 1 = ac for some integer ¢ = 1/a, implying a = +1.
Conversely, if a = £1 then 1 = ac is true for the integer ¢ = £1, implying
all.

For (c), the relations a | b and ¢ | d ensure that b = ar and d = c¢s for
suitable integers r and s. Thus bd = (ac)rs, where rs is an integer, i.e., ac | bd.

For (d), the relations a | b and b | ¢ ensure that b = ar and ¢ = bs for
suitable integers r and s. Thus ¢ = (a)rs, where rs is an integer, i.e., a | c.

For (e), if a | b and b | a, then b = ar and a = bs for suitable integers r
and s. Thus a = (ar)s, i.e., 1 = rs. This implies that r = s = +1, and so
a = £b. Conversely, if a = £b, then b = ar and a = bs is true for +1 =r = s,
implying a | b and b | a.

As for (f), if @ | b, then there exists an integer ¢ such that b = ac; also, b # 0
implies that ¢ # 0. Upon taking absolute values, we get |b| = |ac| = |a||c|.
Because ¢ # 0, it follows that |c¢| > 1, whence |b| = |al|c| > |al.

Finally, as regards (g), the relations a | b and a | ¢ ensure that b = ar and
¢ = as for suitable integers r and s. But then whatever the choice of x and v,

bx + cy = arz + asy = a(rz + sy).

Because rx + sy is an integer, this says that a | (bx 4 cy), as desired. O

16
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Example 1. If a | b, show that (—a) | b, a | (=b), and (—a) | (=b).

Definition 2.3.2. Let a and b be given integers, with at least one of them
different from zero. The greatest common divisor of a and b, denoted by
ged(a, d), is the positive integer d satisfying the following:

(a) d|aandd|b.
(b) If ¢| a and ¢ | b, then ¢ < d.

Example 2. Find ged(—12,30), ged(—5,5), ged(8,17), and ged(—8, —36).

Example 3. For a nonzero integer a, show that ged(a,0) = |a|, ged(a, a) = |al,
and ged(a, 1) = 1.

17
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Theorem 2.3.2. Given integers a and b, not both of which are zero, there
exist integers x and y such that

ged(a, b) = ax + by.

Proof. Notice first that S is not empty. For example, if a # 0, then the integer
la| = au + b -0 lies in S, where we choose u = 1 or u = —1 according as a is
positive or negative. By virtue of the Well-Ordering Principle, S must contain
a smallest element d. Thus, from the very definition of S, there exist integers
x and y for which d = ax + by. We claim that d = ged(a, b).

Taking stock of the Division Algorithm, we can obtain integers ¢ and r
such that a = qd 4+ r, where 0 < r < d. Then r can be written in the form

r=a—qd=a—q(ax + by)
= a(l — qz) + b(—qy).

If » were positive, then this representation would imply that r is a member of
S, contradicting the fact that d is the least integer in S (recall that r < d).
Therefore, » = 0, and so a = ¢d, or equivalently d | a. By similar reasoning,
d | b, the effect of which is to make d a common divisor of a and b.

Now if ¢ is an arbitrary positive common divisor of the integers a and b,
then part (g) of Theorem 2.3.1 allows us to conclude that ¢ | (ax +by); that is,
¢ | d. By part (f) of the same theorem, ¢ = |¢| < |d| = d, so that d is greater
than every positive common divisor of a and b. Piecing the bits of information
together, we see that d = ged(a, d). O

Example 4. If a | be, show that a | ged(a, b) ged(a, c).

18
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Corollary 2.3.1. If a and b are given integers, not both zero, then the set
T ={ax + by | z,y are integers}
is precisely the set of all multiples of d = ged(a, d).

Proof. Because d | a and d | b, we know that d | (ax + by) for all integers =,
y. Thus, every member of 7" is a multiple of d. Conversely, d may be written
as d = axg + byp for suitable integers xy and 1y, so that any multiple nd of d
is of the form

nd = n(axy + byo) = a(nxy) + b(nyo).

Hence, nd is a linear combination of a and b, and, by definition, lies in 7. [

Definition 2.3.3. Two integers a and b, not both of which are zero, are said
to be relatively prime whenever ged(a, b) = 1.

Theorem 2.3.3. Let a and b be integers, not both zero. Then a and b are
relatively prime if and only if there exist integers x andy such that 1 = ax+by.

Proof. If a and b are relatively prime so that ged(a, b) = 1, then Theorem 2.3.2
guarantees the existence of integers z and y satisfying 1 = ax + by. As for
the converse, suppose that 1 = ax + by for some choice of  and y, and that
d = ged(a, b). Because d | a and d | b, Theorem 2.3.1 yields d | (ax + by), or
d | 1. Inasmuch as d is a positive integer, this last divisibility condition forces
d to equal 1 (part (b) of Theorem 2.3.1 plays a role here), and the desired
conclusion follows. O

Corollary 2.3.2. If ged(a,b) = d, then ged(a/d,b/d) = 1.

Proof. Before starting with the proof proper, we should observe that although
a/d and b/d have the appearance of fractions, in fact, they are integers because
d is a divisor of both a and of b. Now, knowing that gcd(a, d) = d, it is possible
to find integers x and y such that d = ax + by. Upon dividing each side of this
equation by d, we obtain the expression

1= (5)e+ b
=(=)x - ).
d )"’
Because a/d and b/d are integers, an appeal to the theorem is legitimate. The
conclusion is that a/d and b/d are relatively prime. O

Corollary 2.3.3. Ifa | c and b | ¢, with ged(a,b) =1, then ab | c.

19
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Proof. ITnasmuch as a | ¢ and b | ¢, integers r and s can be found such that
¢ = ar = bs. Now the relation ged(a,b) = 1 allows us to write 1 = ax + by for
some choice of integers x and y. Multiplying the last equation by ¢, it appears
that

c=c-1=c(ax + by) = acx + bey.

If the appropriate substitutions are now made on the right-hand side, then
¢ =a(bs)x + blar)y = ab(sx + ry),
or, as a divisibility statement, ab | c. O

Example 5. Prove: The product of any three consecutive integers is divisible
by 6; the product of any four consecutive integers is divisible by 24; the product
of any five consecutive integers is divisible by 120.

20
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Theorem 2.3.4 (Euclid’s Lemma). If a | be, with ged(a,b) =1, then a | c.

Proof. We start again from Theorem 2.3.2, writing 1 = ax + by, where x and
y are integers. Multiplication of this equation by ¢ produces

c=1-c=(ax+ by)c = acx + bey.

Because a | ac and a | be, it follows that a | (acx + bey), which can be recast
as a | c. O

Theorem 2.3.5. Let a, b be integers, not both zero. For a positive integer d,
d = ged(a,b) if and only if

(a) d|a andd|b.
(b) Whenever ¢ | a and c | b, then ¢ | d.

Proof. To begin, suppose that d = ged(a, b). Certainly, d | a and d | b, so that
(a) holds. In light of Theorem 2.3.2, d is expressible as d = az + by for some
integers z, y. Thus, if ¢ | @ and ¢ | b, then ¢ | (ax + by), or rather ¢ | d. In
short, condition (b) holds. Conversely, let d be any positive integer satisfying
the stated conditions. Given any common divisor ¢ of a and b, we have ¢ | d
from hypothesis (b). The implication is that d > ¢, and consequently d is the
greatest common divisor of a and b. O]

Example 6. (a) Prove that if d | n, then 2 — 1] 2" — 1.

(b) Verify that 2°> — 1 is divisible by 31 and 127.

21
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2.4 The Euclidean Algorithm

Remark 1. The Euclidean Algorithm may be described as follows: let a and b
be two integers whose greatest common divisor is desired. Because ged(|al, |b]) =
ged(a, b), there is no harm in assuming that a > b > 0. The first step is to
apply the Division Algorithm to a and b to get

a:qlb—l—ﬁ 0<ry <hb.

If it happens that r; = 0, then b | a and ged(a,b) = b. When 7 # 0, divide b
by r; to produce integers ¢, and ro satisfying

b:(]ng—FTQ 0<ry<rg.
If ro = 0, then we stop; otherwise, proceed as before to obtain
TL = (Q3rg + T3 O§T3<7“2.

This division process continues until some zero remainder appears, say, at the
(n + 1)th stage where 7, is divided by r, (a zero remainder occurs sooner
or later because the decreasing sequence b > r; > ry > --- > 0 cannot contain
more than b integers).

Lemma 2.4.1: If a = gb + r, then ged(a,b) = ged(b, ).

Proof. 1t d = ged(a,b), then the relations d | a and d | b together imply that
d | (a —gb), or d | r. Thus, d is a common divisor of both b and r. On the
other hand, if ¢ is an arbitrary common divisor of b and r, then ¢ | (¢gb + r),

whence ¢ | a. This makes ¢ a common divisor of a and b, so that ¢ < d. It
now follows from the definition of ged(b, r) that d = ged(b, 7). O

Example 1. Calculate ged(12378,3054).

22
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Example 2. Use the Euclidean Algorithm to obtain integers x and y satisfying
the following;:

(a) ged(56,72) = 56z + 72y.

(b) ged(24,138) = 24z + 138y.

(c) ged(119,272) = 119z + 272y.
) ged(

(d) ged(1769,2378) = 1769z + 2378y.

23
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Theorem 2.4.1. If k > 0, then ged(ka, kb) = k ged(a, b).

Proof. If each of the equations appearing in the Euclidean Algorithm for a
and b is multiplied by k, we obtain

ak = q1(bk) + rik 0 <rk < bk
bk = QQ(T'lk') + rok 0 < rok <mk

Tnok = qu(rn_1k) + rpk 0<rpk <rp_ik

Tho1k = QnJrl(rnk) + 0.
But this is clearly the Euclidean Algorithm applied to the integers ak and bk,
so that their greatest common divisor is the last nonzero remainder r,k; that

is,

ged(ka, kb) = rpk = kged(a, b),
as stated in the theorem. ]
Corollary 2.4.1. For any integer k # 0, ged(ka, kb) = |k| ged(a, b).

Proof. Tt suffices to consider the case in which & < 0. Then —k = |k| > 0 and,
by Theorem 2.4.1,

ged(ak, bk) = ged(—ak, —bk)
= ged(alk|, blk])
= |k|ged(a, b). O

Example 3. Prove that if d is a common divisor of a and b, then d = ged(a, b)
if and only if ged(a/d,b/d) = 1.

24
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Definition 2.4.1. The least common multiple of two nonzero integers a and
b, denoted by lem(a, b), is the positive integer m satisfying the following:

(a) a|m and b |m.
(b) If a | c and b | ¢, with ¢ > 0, then m < c.

Theorem 2.4.2. For positive integers a and b
ged(a, b) lem(a, b) = ab.

Proof. To begin, put d = ged(a,b) and write a = dr, b = ds for integers r
and s. If m = ab/d, then m = as = rb, the effect of which is to make m a
(positive) common multiple of a and b.

Now let ¢ be any positive integer that is a common multiple of a and b;
say, for definiteness, ¢ = au = bv. As we know, there exist integers x and y
satisfying d = ax + by. In consequence,

¢ cd  clax+by) c c
_—= == 7 = <-)x+<—>y:vx+uy.
m  ab ab b a

This equation states that m | ¢, allowing us to conclude that m < ¢. Thus, in
accordance with Definition 2.4.1, m = lem(a, b); that is,

ab ab
1 b)=—=———+
emla,b) == @)’
which is what we started out to prove. O

Corollary 2.4.2. For any choice of positive integers a and b, lem(a, b) = ab
if and only if ged(a,b) = 1.

Example 4. Prove that the greatest common divisor of two positive integers
divides their least common multiple.
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2.5 The Diophantine Equation azx + by = ¢

Theorem 2.5.1. The linear Diophantine equation ax + by = ¢ has a solution
if and only if d | ¢, where d = ged(a,b). If xo, yo is any particular solution of
this equation, then all other solutions are given by

x:xo—i-(g)t y=y0—<%)t

where t 1s an arbitrary integer.

Proof. We know that there are integers r and s for which a = dr and b = ds.
If a solution of ax + by = ¢ exists, so that axy + byy = ¢ for suitable xy and yj,
then

c=azg+ byy = c = drxy + dsyy = d(rzo + syo),

which simply says that d | c¢. Conversely, assume that d | ¢, say ¢ = dt. Using
Theorem 2.3.2, integers xy and yy can be found satisfying d = axy+byy. When
this relation is multiplied by ¢, we get

c=dt = (axg + byo)t = a(txo) + b(tyo).

Hence, the Diophantine equation ax + by = c has © = txy and y = ty as a
particular solution.

To establish the second assertion of the theorem, let us suppose that a
solution x, yo of the given equation is known. If 2/, ¢/ is any other solution,
then

axg + byo = ¢ = ax’ + by,

which is equivalent to
a(z' — xo) = blyo — ).

By Corollary 2.3.2, there exist relatively prime integers r and s such that
a = dr, b = ds. Substituting these values into the last-written equation and
canceling the common factor d, we find that

r(z' — o) = s(yo — ).
The situation is now this: r | s(yo — '), with ged(r,s) = 1. Using Euclid’s
lemma, it must be the case that r | (yo — ¥/'); or, in other words, yo — ¢/ = rt

for some integer t. Substituting, we obtain

x’ — xy = st.
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This leads us to the formulas

b
1’/:$0+St:l‘o+(8)t

=yt =y (5)
Y =Y =% )b

It is easy to see that these values satisfy the Diophantine equation, regardless
of the choice of the integer ¢; for

az’ + by = a {xo + (g) t} +b [yo - (%) t}

ab ab
= (aﬂﬁo + byo) + (E — E) t

=c+0-t

= C.

Thus, there are an infinite number of solutions of the given equation, one for
each value of t. O

Example 1. Consider the linear Diophantine equation
1722 + 20y = 1000.

Find the solutions in the positive integers.
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Corollary 2.5.1. If ged(a,b) = 1 and if xg, yo is a particular solution of the
linear Diophantine equation ax + by = ¢, then all solutions are given by

x = xo+ bt y=1yo—at
for integral values of t.

Example 2. A customer bought a dozen pieces of fruit, apples and oranges,
for $1.32. If an apple costs 3 cents more than an orange and more apples than
oranges were purchased, how many pieces of each kind were bought?
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Example 3. When Mr. Smith cashed a check at his bank, the teller mistook
the number of cents for the number of dollars and vice versa. Unaware of this,
Mr. Smith spent 68 cents and then noticed to his surprise that he had twice
the amount of the original check. Determine the smallest value for which the
check could have been written.
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Chapter 3

Primes and Their Distribution

3.1 The Fundamental Theorem of Arithmetic

Definition 3.1.1. An integer p > 1 is called a prime number, or simply a
prime, if its only positive divisors are 1 and p. An integer greater than 1 that
is not a prime is termed composite.

Example 1. If p > 5 is a prime number, show that p? + 2 is composite.

Theorem 3.1.1. If p is a prime and p | ab, then p | a orp | b.

Proof. 1f p | a, then we need go no further, so let us assume that p { a. Because
the only positive divisors of p are 1 and p itself, this implies that ged(p,a) = 1.
(In general, ged(p,a) = p or ged(p,a) = 1 according as p | a or p 1 a.) Hence,
citing Euclid’s lemma, we get p | b. O]

Corollary 3.1.1. If p is a prime and p | ajaz - - a,, then p | ai for some k,
where 1 < k < n.
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Proof. We proceed by induction on n, the number of factors. When n = 1,
the stated conclusion obviously holds; whereas when n = 2, the result is the
content of Theorem 3.1.1. Suppose, as the induction hypothesis, that n > 2
and that whenever p divides a product of less than n factors, it divides at
least one of the factors. Now p | ajay---a,. From Theorem 3.1.1, either
pl|a,orp|aas--a,1. If p| a,, then are through. As regards the case
where p | ayas - - - a,_1, the induction hypothesis ensures that p | a; for some
choice of k, with 1 < k < n — 1. In any event, p divides one of the integers
1,02, ..., 0. O

Example 2. (a) Given that p is a prime and p | a”, prove that p" | a™.

(b) If ged(a,b) = p, a prime, what are the possible values of ged(a?,b?),
ged(a?,b) and ged(a?, b%)?

Corollary 3.1.2. If p,q1,q2,...,q, are all primes and p | q1q2+- - qn, then
p = qr for some k, where 1 < k <n.

Proof. By virtue of Corollary 3.1.1, we know that p | g, for some k, with
1 < k < n. Being a prime, g is not divisible by any positive integer other
than 1 or g itself. Because p > 1, we are forced to conclude that p = ¢q,. O

Theorem 3.1.2 (Fundamental Theorem of Arithmetic). Every positive integer
n > 1 is either a prime or a product of primes; this representation is unique,
apart from the order in which the factors occur.

Proof. Either n is a prime or it is composite; in the former case, there is nothing
more to prove. If n is composite, then there exists an integer d satisfying d | n
and 1 < d < n. Among all such integers d, choose p; to be the smallest (this
is possible by the Well-Ordering Principle). Then p; must be a prime number.
Otherwise it too would have a divisor ¢ with 1 < ¢ < py; but then ¢ | p;
and p; | n imply that ¢ | n, which contradicts the choice of p; as the smallest
positive divisor, not equal to 1, of n.

We therefore may write n = pin;, where p; is prime and 1 < ny < n. If
ny happens to be a prime, then we have our representation. In the contrary
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case, the argument is repeated to produce a second prime number p, such that
N1 = pang; that is,
n = P1PaNo 1 <ng <ny.

If ny is a prime, then it is not necessary to go further. Otherwise, write
ny = p3ng, with p3 a prime:

N = PaPaP3n3 I <nz <ns.
The decreasing sequence
n>ny>ng>--->1

cannot continue indefinitely, so that after a finite number of steps ny_; is a
prime, call it, px. This leads to the prime factorization

n=pip2- - - Pk-

To establish the second part of the proof—the uniqueness of the prime
factorization—Iet us suppose that the integer n can be represented as a product
of primes in two ways; say,

n=pip2--"Pr = q1q2" " Gs r<s
where the p; and ¢; are all primes, written in increasing magnitude so that
PEp2<- <SP @ S@<-<gs

Because p; | ¢1¢2 - - - g5, Corollary 3.1.2 of Theorem 3.1.1 tells us that p; = gy
for some k; but then p; > ¢;. Similar reasoning gives ¢; > p;, whence p; = ¢;.
We may cancel this common factor and obtain

P2p3 - Pr = q2q2 " " (gs-
Now repeat this process to get po = g2 and, in turn,

P3Psa---Pr = 4344 (Gs.

Continue in this fashion. If the inequality » < s were to hold, we would
eventually arrive at

I =q1Gr42- " Gs,

which is absurd, because each ¢; > 1. Hence, r = s and
1= P2 =4q2,...,Pr = (qr

making the two factorizations of n identical. The proof is now complete. [J
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Example 3. Find all primes that divide 50!.

Corollary 3.1.3. Any positive integer n > 1 can be written uniquely in a
canonical form

_ k'l k? kr
n=py Py Py
where, for 1 =1,2,...,r, each k; is a positive integer and each p; is a prime,

with p1 < pg < -+ Pr.

Example 4. Prove that a positive integer a > 1 is a square if and only if in
the canonical form of a all the exponents of the primes are even integers.

Theorem 3.1.3 (Pythagoras). The number \/2 is irrational.

Proof. Suppose, to the contrary, that v/2 is a rational number, say, v/2 = a/b,
where a and b are both integers with ged(a,b) = 1. Squaring, we get a® =
20%, so that b | a®>. If b > 1, then the Fundamental Theorem of Arithmetic
guarantees the existence of a prime p such that p | b. It follows that p | a?
and, by Theorem 3.1.1, that p | a; hence, ged(a,b) > p. We therefore arrive
at a contradiction, unless b = 1. But if this happens, then a?> = 2, which is
impossible. Our supposition that v/2 is a rational number is untenable, and
so v/2 must be rational. ]
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3.2 The Sieve of Eratosthenes

Example 1. Determine whether 509 is a prime number.

Example 2. Determine the canonical form of 2093.

Example 3. Find all primes not exceeding 100.
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Theorem 3.2.1 (Euclid). There is an infinite number of primes.

Proof. Euclid’s proof is by contradiction. Let py =2, po =3,p3 =5,p4 =17, ...
be the primes in ascending order, and suppose that there is a last prime, called
pn. Now consider the positive integer

P=pipy---po+ 1.

Because P > 1, we may put Theorem 3.1.2 to work once again and conclude
that P is divisible by some prime p. But pi,ps,...,p, are the only prime
numbers, so that p must be equal to one of py,ps,...,p,. Combining the
divisibility relation p | pips - p, with p | P, we arrive at p | P — pip2 -+ pn
or, equivalently, p | 1. The only positive divisor of the integer 1 is 1 itself
and, because p > 1, a contradiction arises. Thus, no finite list of primes is

complete, whence the number of primes is infinite. ]
2n71

Theorem 3.2.2. If p, is the nth prime number, then p, < 2= .

Proof. Let us proceed by induction on n, the asserted inequality being clearly
true when n = 1. As the hypothesis of the induction, we assume that n > 1
and that the result holds for all integers up to n. Then

Pn+1 §p1p2---pn+1
S 2. 22 Ce 22"71 + 1= 21+2+22+.‘.+2n71 i 1

Recalling the identity 1 +2 + 2%+ ... 4271 = 2" — 1, we obtain
Pop1 <277 41
However, 1 < 22" for all n; whence

pn+1 S 227171 + 22n71
_ 2 . 22n71 _ 2277,
completing the induction step, and the argument. O
Corollary 3.2.1. Forn > 1, there are at least n + 1 primes less than 2*".

Proof. From the theorem, we know that pi,ps, ..., pni1 are all less than 22",
m

Example 4. Assuming that p,, is the nth prime number, establish each of the
following statements:

(a) pp >2n — 1 for n > 5.
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(b) None of the integers P, = pips---p, + 1 is a perfect square.

(¢) The sum

is never an integer.
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3.3 The Goldbach Conjecture

Example 1. (a) If 1is added to a product of twin primes, prove that a perfect
square is always obtained.

(b) Show that the sum of twin primes p and p + 2 is divisible by 12, provided
that p > 3.
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Example 2. Prove that the Goldbach conjecture that every even integer
greater than 2 is the sum of two primes is equivalent to the statement that
every integer greater than 5 is the sum of three primes.

Lemma 3.3.1: The product of two or more integers of the form 4n + 1 is of
the same form.

Proof. 1t is sufficient to consider the product of just two integers. Let us take
k=4n + 1 and k' = 4m + 1. Multiplying these together, we obtain

kk' = (4n+ 1)(4m + 1)
=16nm+4n+4m+1=4(4nm+n+m) + 1,

which is of the desired form. O
Theorem 3.3.1. There are an infinite number of primes of the form n + 3.

Proof. In anticipation of a contradiction, let us assume that there exist only
finitely many primes of the form 4n + 3; call them ¢, qs, ..., qs. Consider the
positive integer

N=4qq¢ ¢ —1=4(q1q2---qs — 1)+ 3

and let N = ryry---1; be its prime factorization. Because N is an odd integer,
we have 1, # 2 for all k, so that each ry is either of the form 4n + 1 or 4n + 3.
By the lemma, the product of any number of primes of the form 4n+1 is again
an integer of this type. For N to take the form 4n + 3, as it clearly does, N
must contain at least one prime factor r; of the form 4n + 3. But r; cannot be

found among the listing ¢1, ¢o, . . ., g5, for this would lead to the contradiction
that r; | 1. The only possible conclusion is that there are infinitely many
primes of the form 4n + 3. O
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Example 3. Show that there are infinitely many primes of the form 6n + 5.

Theorem 3.3.2 (Dirichlet). If a and b are relatively prime positive integers,
then the arithmetic progression

a,a+b,a+ 2b,a+ 3D, ...
contains infinitely many primes.
Theorem 3.3.3. If all the n > 2 of the arithmetic progression
p,p+d,p+2d,...,p+(n—1)d

are prime numbers, then the common difference d is divisible by every prime
q < n.

Proof. Consider a prime number ¢ < n and assume to the contrary that ¢ 1 d.
We claim that the first ¢ terms of the progression

pp+dp+2d,....p+(¢—1)d (1)
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will leave different remainders, when divided by ¢g. Otherwise there exist inte-
gers 7 and k, with 0 < j < k < ¢—1, such that the numbers p+ jd and p+ kd
yield the same remainder upon division by g. Then ¢ divides their difference
(k—j)d. But ged(q,d) = 1, and so Euclid’s lemma leads to ¢ | k — j, which is
nonsense in light of the inequality k — j < ¢ — 1.

Because the ¢ different remainders produced from equation (1) are drawn
from the ¢ integers 0,1,...,qg — 1, one of these remainders must be zero. This
means that ¢ | p + td for some t satisfying 0 < ¢t < ¢ — 1. Because of the
inequality ¢ < n < p < p + td, we are forced to conclude that p + td is com-
posite. (If p were less than n, one of the terms of the progression would be
p+ pd = p(1 4+ d).) With this contradiction, the proof ¢ | d is complete. ]

Example 4. (a) If p is a prime and p t b, prove that in the arithmetic pro-
gression
a,a+b,a+ 2b,a+ 30, ...

every pth term is divisible by p.

(b) From part (a), conclude that if b is an odd integer, then every other term
in the indicated progression is even.
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Chapter 4

The Theory of Congruences

4.2 Basic Properties of Congruence

Definition 4.2.1. Let n be a fixed positive integer. Two integers a and b are
said to be congruent modulo n, symbolized by

a =b (mod n)

if n divides the different a — b; that is, provided that a — b = kn for some
integer k.

Remark 1. When n t (a — b), we say that a is incongruent to b modulo n, and
in this case we write a # b (mod n).

Given an integer a, let ¢ and r be its quotient and remainder upon division by
n, so that

a=qn-+r 0<r<n.

Then, by definition of congruence, a = r (mod n). Because there are n choices
for r, we see that every integer is congruent modulo n to exactly one of the
values 0,1,2,...,n — 1; in particular, a = 0 mod n if and only if n | a. The
set of n integers 0,1,2,...,n — 1 is called the set of least nonnegative residues
modulo n.

In general, a collection of n integers aq,as,...a, is said to form a complete
set of residues (or a complete system of residues) modulo n if every integer is
congruent modulo n to one and only one of the a;. To put it another way,
ai,as, . ..a, are congruent modulo n to 0,1,2,...n — 1, taken in some order.

Theorem 4.2.1. For arbitrary integers a and b, a = b (mod n) if and only if
a and b leave the same nonnegative remainder when divided by n.

40



Number Theory - Basic Properties of Congruence

Proof. First take a = b (mod n), so that a = b + kn for some integer k.
Upon division by n, b leaves a certain remainder r; that is, b = gn + r, where
0 < r < n. Therefore,

a=b+kn=(n+r)+kn=(q+kn+r,

which indicates that a has the same remainder as b.
On the other hand, suppose we can write a = g1n+r and b = gan+r, with
the same remainder 7 (0 < r < n). Then

a—b=(qan+r)—(gn+r)= (0 —@hn
whence n | a — b. In the language of congruences, we have a = b (mod n). O

Example 1. Show that —56 = —11 (mod 9), and show that —31 = 11 (mod 7)
implies that —31 and 11 have the same remainder when divided by 7.

Theorem 4.2.2. Let n > 1 be fized and a,b,c,d be arbitrary integers. Then
the following properties hold:

a) a =a (mod n).

(a)

(b) If a =0 (mod n), then b = a (mod n).

(¢) If a=b (mod n) and b = ¢ (mod n), then a = ¢ (mod n).
)

(d) If a = b (mod n) and ¢ = d (mod n), then a + ¢ = b+ d (mod n) and
ac = bd (mod n).

(e) If a=b (mod n), then a+c=0b+ ¢ (mod n) and ac = be (mod n).
(f) If a =0 (mod n), then a* = b* (mod n) for any positive integer k.

Proof. For any integer a, we have a —a = 0 - n, so that a = a (mod n). Now
if a = b (mod n), then a — b = kn for some integer k. Hence, b —a = —(kn) =
(—k)n and because —k is an integer, this yields property (b).

Property (c) is slightly less obvious: Suppose that a = b (mod n) and also
b = ¢ (mod n). Then there exist integers h and k satisfying a« — b = hn and
b — c = kn. It follows that

a—c=(a—b)+(b—c)=hn+kn=(h+k)n,
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which is @ = ¢ (mod n) in congruence notation.

In the same vein, if @ = b (mod n) and ¢ = d (mod n), then we are assured
that a — b = kyn and ¢ — d = kon for some choice of k1 and ky. Adding these
equations, we obtain

(a+c¢)—(b+d)=(a—b)+ (c—d)
= kin + kan = (k1 + ko)n

or, as a congruence statement, a + ¢ = b+ d (mod n). As regards the second
assertion of property (d), note that

ac = (b+ kin)(d + kan) = bd + (bka + dky + ki1kan)n.

Because bky + dky + kikon is an integer, this says that ac — bd is divisible by
n, whence ac = bd (mod n).

The proof of property (e) is covered by (d) and the fact that ¢ = ¢ (mod n).
Finally, we obtain property (f) by making an induction argument. The state-
ment certainly holds for £ = 1, and we will assume it is true for some fixed k.
From (d), we know that @ = b (mod n) and a* = b* (mod n) together imply
that aa® = bb* (mod n), or equivalently a**! = 0*! (mod n). This is the form
the statement should take for k+ 1, and so the induction step is complete. [J

Example 2. Show that 41 divides 220 — 1.

Example 3. Find the remainder obtained upon dividing the sum
4214+ 3+ 41 4 - - 499! + 100!

by 12.
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Theorem 4.2.3. If ca = ¢b (mod n), then a = b (mod n/d), where d =
ged(e,n).

Proof. By hypothesis, we can write
cla—b) =ca—cb=kn

for some integer k. Knowing that ged(c,d) = d, there exist relatively prime
integers r and s satisfying ¢ = dr, n = ds. When these values are substituted
in the displayed equation and the common factor d canceled, the net result is

r(a —b) = ks.

Hence, s | r(a — b) and ged(r, s) = 1. Euclid’s lemma yields s | a — b, which
may be recast as a = b (mod s); in other words, a = b (mod n/d). O

Corollary 4.2.1. If ca = ¢b (mod n) and ged(e,n) =1, then a = b (mod n).

Example 4. Prove that whenever ab = ¢d (mod n) and b = d (mod n), with
ged(b,n) =1, then a = ¢ (mod n).

Corollary 4.2.2. ca = ¢b (mod p) and p t ¢, where p is a prime number, then
a =b (mod p).

Proof. The conditions p { ¢ and p a prime imply that ged(e,p) = 1. ]

Example 5. Find equivalent congruences to 33 = 15 (mod 9) and —35
45 (mod 8).
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4.3 Binary and Decimal Representations of In-
tegers

Example 1. Calculate 5 (mod 131).

Theorem 4.3.1. Let P(z) = > -, cxa® be a polynomial function of x with
integral coefficients cx. If a = b (mod n), then P(a) = P(b) (mod n).

Proof. Because a = b (mod n), part (f) of Theorem 4.2.2 can be applied to
give a¥ = b* (mod n) for k =0,1,..., m. Therefore,

cpa® = cpb® (mod n)

for all such k. Adding these m + 1 congruences, we conclude that

chak = chbk (mod n)
k=0 k=0
or, in different notation, P(a) = P(b) (mod n). O

Corollary 4.3.1. If a = b (mod n) and a is a solution of P(x) =0 (mod n),
i.e., P(a) =0 (mod n), then b also is a solution.

Proof. From the last theorem, it is known that P(a) = P(b) (mod n). Hence,
if a is a solution of P(z) = 0 (mod n), then P(b) = P(a) = 0 (mod n), making
b a solution. 0

Theorem 4.3.2. Let N = a,,10™ +a,,_110™ 1+ - -4+ a;104aq be the decimal
expansion of the positive integer N, 0 < ap < 10, and let T = ay — a3 + ay —
-+ (=1)"ay,. Then 11 | N if and only if 11| T

Proof. As in the proof of Theorem 4.3.1, put P(z) = > -, axz*. Because
10 = —1 (mod 11), we get P(10) = P(—1) (mod 11). But P(10) = N,
whereas P(—1) =ag—a;+as—---+(—1)"a,, =T, so that N =T (mod 11).
The implication is that either both N and T are divisible by 11 or neither is
divisible by 11. 0
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Example 2. Determine whether N = 1,571,724 is divisible by 9 and 11.

Example 3. Show that 2" divides an integer N if and only if 2" divides the
number made up of the last n digits of V.
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4.4 Linear Congruences and the Chinese Re-
mainder Theorem

Definition 4.4.1. An equation of the form ax = b (mod n) is called a linear
congruence, and by a solution of such an equation we mean an integer x for
which azg = b (mod n).

Theorem 4.4.1. The linear congruence ax = b (mod n) has a solution if and
only if d | b, where d = ged(a,n). If d | b, then it has d mutually incongruent
solutions modulo n.

Proof. The given congruence is equivalent to the linear Diophantine equation
ax —ny = b. From Theorem 2.5.1, it is known that the latter equation can be
solved if and only if d | bl moreover, if it is solvable and xg, yo is one specific
solution, then any other solution has the form

+nt +at
=z — = -
0 d Y=Y d

for some choice of t.
Among the various integers satisfying the first of these formulas, consider
that occur when ¢ takes on the successive values t =0,1,2,...,d — 1:

2n (d—1)n

n
$0,$0+—,$0+ .,l'0+ d

d F, ..
We claim that these integers are incongruent modulo n, and all other such
integers x are congruent to some of them. If it happened that

xo + ﬁtl =10+ Etz (mod n),

d d

where 0 < t; <ty < d — 1, then we would have

n n
Etl = EtZ (mod n).

Now ged(n/d,n) = n/d, and therefore by Theorem 4.2.3 the factor n/d could
be canceled to arrive at the congruence

t1 =ty (mod d),
which is to say that d | to —t;. But this is impossible in view of the inequality

0<ty—t <d.
It remains to argue that any other solution zy + (n/d)t is incongruent
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modulo n to one of the d integers listed above. The Division Algorithm permits
us to write t as t = qd + r, where 0 <r < d — 1. Hence

n n
ro+ st =x0+ =(qgd +7)

d d
=29+ ng+ Er
0 q d
=xo + %r (mod n)
with x¢ + (n/d)r being one of our d selected solutions. O

Corollary 4.4.1. Ifgcd(a,n) = 1, then the linear congruence ax = b (mod n)
has a unique solution modulo n.

Example 1. Solve the linear congruence 18z = 30 (mod 42).

Example 2. Solve the linear congruence 9z = 21 (mod 30).
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Theorem 4.4.2 (Chinese Remainder Theorem). Let ny,na,...,n, be posi-
tive integers such that ged(ng,n;) = 1 for i # j. Then the system of linear
CONGTuUences

r = a; (mod ny)

T = ay (mod ny)

r = a, (mod n,)
has a simultaneous solution, which is unique modulo the integer ning - --n,.

Proof. We start by forming the product n = nyny---n,. For each k =
1,2,...,7r, let

n

ng
In words, Ny is the product of all the integers n; with the factor n; omitted.
By hypothesis, the n; are relatively prime in pairs, so that ged(Ng, ng) = 1.
According to the theory of a single linear congruence, it is therefore possible
to solve the congruence Nyz = 1 (mod ny); call the unique solution x. Our

aim is to prove that the integer
T = a;N1x1 + aaNoxoy + - - - + a, N, z,

is a simultaneous solution of the given system.
First, observe that N; = 0 (mod ny) for i # k, because ny, | IV; in this case.
The result is

T =aNiz1 + - + a, Nz, = ap Nyxp (mod ny).

But the integer x; was chosen to satisfy the congruence Nyz = 1 (mod ny),
which forces
T =ag-1=a, (mod ny).

This shows that a solution to given system of congruences exists.
As for the uniqueness of the solution, suppose that x’ is any other integer
that satisfies these congruences. Then

T =ap =2 (mod ny) k=1,2,...,r

and so ny | T — 2’ for each value of k. Because ged(n;, n;) = 1, Corollary 2.3.3

supplies us with the crucial point that ning - - - n, | Z—2’; hence & = 2’/ (mod n).

O
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Example 3. Solve the system

x =2 (mod 3)
x =3 (mod 5)
x =2 (mod 7).

Example 4. Solve the linear congruence

172z = 9 (mod 276).
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Theorem 4.4.3. The system of linear congruences

ax + by =r (mod n)
cx +dy = s (mod n)

has a unique solution modulo n whenever ged(ad — be,n) = 1.

Proof. Let us multiply the first congruence of the system by d, the second con-
gruence by b, and subtract the lower result from the upper. These calculations
yield

(ad — be)x = dr — bs (mod n). (1)

The assumption ged(ad — be,n) = 1 ensures that the congruence
(ad — be)z = 1 (mod n)

possesses a unique solution; denote the solution by ¢. When congruence (1) is
multiplied by ¢, we obtain

x = t(dr — bs) (mod n).

A value for y is found by a similar elimination process. That is, multiply the
first congruence of the system by ¢, the second one by a, and subtract to end
up with

(ad — be)y = as — cr (mod n). (2)

Multiplication of this congruence by t leads to
y = t(as — cr) (mod n). O
Example 5. Solve the system

7z + 3y = 10 (mod 16)
22+ 5y =9 (mod 16).
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Chapter 5

Fermat’s Theorem

5.2 Fermat’s Little Theorem and Pseudoprimes

Theorem 5.2.1 (Fermat’s Theorem). Let p be a prime and suppose that p t a.
Then a?~' =1 (mod p).

Proof. We begin by considering the first p — 1 positive multiples of a; that is,
the integers
a,2a,3a,...,(p—1a.

None of these numbers is congruent modulo p to any other, nor is any congruent
to zero. Indeed, if it happened that

ra = sa (mod p) 1<r<s<p-1,

then a could be canceled to give r = s (mod p), which is impossible. Therefore,
the previous set of integers must be congruent modulo p to 1,2,3,...,p — 1,
taken in some order. Multiplying all these congruences together, we find that

a-2a-3a---(p—1a=1-2-3---(p—1) (mod p),

whence
a”(p—1)!'=(p—1)! (mod p).

Once (p — 1)! is canceled from both sides of the preceding congruence (this
is possible because since p 1 (p — 1)!), our line of reasoning culminates in the
statement that a?~' =1 (mod p), which is Fermat’s theorem. O

Corollary 5.2.1. If p is a prime, then a’? = a (mod p) for any integer a.
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Proof. When p | a, the statement obviously holds; for, in this setting, a?
0 = a (mod p). If pfa, then according to Fermat’s theorem, we have a?~*
1 (mod p). When this congruence is multiplied by a, the conclusion a?
a (mod p) follows.

(I 1

Example 1. Use Fermat’s theorem to show that 117 is composite.

Example 2. If p and ¢ are distinct primes, prove that

pq_1 + qp_1 =1 (mod pq).
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Lemma 5.2.1: If p and ¢ are distinct primes with ¢ = a (mod ¢) and
a? = a (mod p), then a?? = a (mod pq).

Proof. The last corollary tells us that (a?)? = a? (mod p), whereas a? =
a (mod p) holds by hypothesis. Combining these congruences, we obtain a?? =
a (mod p) or, in different terms, p | a?? — a. In an entirely similar manner,
q | a?* — a. Corollary 2.3.3 now yields pq | a?? — a, which can be recast as
a’? = a mod pq.

U

Example 3. Show that 23° =1 (mod 341) to illustrate that the converse to
Fermat’s theorem is false.

Definition 5.2.1. A composite integer n is called pseudoprime whenever n |
2" — 2.

Theorem 5.2.2. If n is an odd pseudoprime, then M, = 2" — 1 is a larger
one.

Proof. Because n is a composite number, we can write n = rs, with 1 < r <
s < m. Then, according to Example 6 of Section 2.3, 2" — 1 | 2" — 1, or
equivalently 2" — 1 | M,,, making M, composite. By our hypotheses, 2" =
2 (mod n); hence 2" — 2 = kn for some integer k. It follows that

2Mn—1 — 22"—2 — an‘
This yields
oMn=l _ 1 —gkn _ 1
= (2" — 1)(2"D qogn(k=2) g gn )
= M, (20D yoonlk=2) L 9n )
=0 (mod M,,).

We see immediately that 2" — 2 = 0 (mod M,), in light of which M, is a
pseudoprime. O
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Definition 5.2.2. A composite integer n that is a pseudoprime to every base
a, that is, "' =1 (mod n) for all integers a with ged(a,n) = 1, is called an
absolute pseudoprime or Carmichael number.

Theorem 5.2.3. Letn be a composite square-free integer, say, n = pips - - - Pr,
where the p; are distinct primes. If p; —1|n—1 fori=1,2,...,r, thenn is
an absolute pseudoprime.

Proof. Suppose that a is an integer satisfying ged(a, n) = 1, so that ged(a, p;) =
1 for each 7. Then Fermat’s theorem yields p; | a?~! — 1. From the divisibility

hypothesis p; —1 | n — 1, we have p; | a"~! — 1, and therefore p; | " — a for all
aandi=1,2,...,r. As a result of Corollary 2.3.3, we end up with n | a” — a
which makes n an absolute pseudoprime. O

Example 4. Prove that any integer of the form
n = (6k+1)(12k + 1)(18k + 1)

is an absolute pseudoprime if all three factors are prime; hence 1729 = 7-13-19
is an absolute pseudoprime.
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5.3 Wilson’s Theorem

Theorem 5.3.1 (Wilson). If p is a prime, then (p — 1)! = —1 (mod p).

Proof. Dismissing the cases p = 2 and p = 3 as being evident, let us take
p > 3. Suppose that a is any one of the p — 1 positive integers

1,2,3,...,p—1

and consider the linear congruence ax = 1 (mod p). Then ged(a,p) = 1. By
Theorem 4.4.1, this congruence admits a unique solution modulo p; hence,
there is a unique integer o', with 1 < a’ < p — 1, satisfying aa’ = 1 (mod p).

Because p is prime, a = @' if and only if @ = 1 or a = p — 1. Indeed, the
congruence a®> = 1 (mod p) is equivalent to (a — 1) - (a + 1) = 0 (mod p).
Therefore, either a—1 = 0 (mod p), in which case a = 1, or a+1 = 0 (mod p),
in which case a = p — 1.

If we omit the number 1 and p — 1, the effect is to group the remaining
integers 2,3,...,p — 2 into pairs a,a’, where a # o', such that their product
aa’ =1 (mod p). When these (p — 2)/2 congruences are multiplied together
and the factors rearranged, we get

2-3---(p—2) =1 (mod p)

or rather
(p—2)!'=1 (mod p).
Now multiply by p — 1 to obtain the congruence
(p—1D!'=p—1= -1 (mod p),
as was to be proved. O

Example 1. Illustrate Wilson’s theorem with p = 13.
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Example 2. Given a prime number p, establish the congruence

(p—1)!=p—1(mod 1+2+3+ -+ (p—1)).

Theorem 5.3.2. The quadratic congruence z*> +1 = 0 (mod p), where p is
an odd prime, has a solution if and only if p =1 (mod 4).

Proof. Let a be any solution of 22 +1 = 0 (mod p), so that a* = —1 (mod p).
Because p 1 a, the outcome of applying Fermat’s theorem is

1=aP! = (a®)P Y2 = (=1)P~Y/2 (mod p).

The possibility that p = 4k + 3 for some k& does not arise. If it did, we would

have
(_1)(p—1)/2 _ (_1)2k+1 _ _17

hence, 1 = —1 (mod p). The net result of this is that p | 2, which is patently
false. Therefore, p must be of the form 4k + 1.
Now for the opposite direction. In the product

p-=1-2————-(p-2)p—-1)

we have the congruences
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Rearranging the factors produces

2 2

= (1) (1 . 2...1%1>2 (mod p)

(p—1)!51-(—1)-2-(—2)---p_1-(—p_l) (mod p)

because there are (p — 1)/2 minus signs involved. It is at this point that
Wilson’s theorem can be brought to bear; for, (p — 1)! = —1 (mod p), whence

—1=(-1)P- b2 Kp%l)!r (mod p).

The conclusion is that the integer [(p—1)/2]! satisfies the quadratic congruence
22+ 1=0 (mod p). O

Example 3. Show that if p = 4k + 3 is prime and a? + b* = 0 (mod p), then
a=b=0 (mod p).

57



Number Theory - The Fermat-Kraitchik Factorization Method

5.4 The Fermat-Kraitchik Factorization Method

Example 1. Factor the integer n = 119143.

Example 2. Factor the integer n = 2189.
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Example 3. Factor the integer n = 12499.
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Chapter 6

Number-Theoretic Functions

6.1 The Sum and Number of Divisors

Definition 6.1.1. Given a positive integer n, let 7(n) denote the number of
positive divisors of n and o(n) denote the sum of these divisors.

Theorem 6.1.1. [fn = pipk2.. -pkr is the prime factorization of n > 1, then
the positive divisors of n are precisely those integers d of the form

al a2

d=py'py’ - pr
where 0 < a; <k; (i=1,2,...,7r).

Proof. Note that the divisor d = 1 is obtained when a; = a; = --- = a, = 0,
and n itself occurs when ay = kq, a9 = ko, ..., a, = k.. Suppose that d divides
n nontrivially; say, n = dd’, where d > 1, d > 1. Express both d and d’ as
products of (not necessarily distinct) primes:

szqu"'QS d/:tltZ"'tu
with ¢;,t; prime. Then
k

PEY P =gty

are two prime factorizations of the positive integer n. By the uniqueness of
the prime factorization, each prime g; must be one of the p;. Collecting the
equal primes into a single integral power, we get

d=qq2---qs = pi'py* - - py"
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where the possibility that a; = 0 is allowed.
Conversely, every number d = p{'p3* - - - p2 (0 < a; < k;) turns out to be a
divisor of n. For we can write
n=piey )

= (pIp5* - p) (py TR plr )

= dd'
with d' = p{'~“ph2= ... pkr=ar and k; — a; > 0 for each 4. Then @’ > 0 and
d|n. O

Theorem 6.1.2. Ifn = p’flp;€2 .- pkr is the prime factorization of n > 1, then

(a) 7(n) = (k1 + 1)(ka+1)--- (k. + 1), and

ki+1 1 ko+1 1 kr+1 _ 1
(b) o(n) = X Pa b
pr—1 pp—1 pr— 1

Proof. According to Theorem 6.1.1, the positive divisors of n are precisely
those integers

Zflzlpg’2 .. p?’“
where 0 < a; < k;. There are k; + 1 choices for the exponent aq; ks + 1 choices
for as,...; and k, + 1 choices for a,. Hence, there are

(k1 +1)(ka+1)--- (k. + 1)

possible divisors of n.
To evaluate o(n), consider the product

(L+pr+pi+ -+ P (Lo +p5 + -+ py?)
(Lt pedpl A ).

Each positive divisor of n appears once and only once as a term in the expan-
sion of this product, so that

o(n) = (L+pr+pi+-p) - (Lhp +07 + -+ 7).

Applying the formula for the sum of a finite geometric series to the ith factor
on the right-hand side, we get

k;+1
. st — 1
1+pi—|—p?—|—~~+p§’:pl—
pi—1
It follows that
k1+1_1 k2+1_1 kr-l-l_l
U(n):pl p2 L Er
pr—1 py—1 pr—1
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Example 1. Find 7 and ¢ for the number 180.

Example 2. If n is a square-free integer, prove that 7(n) = 2", where r is the
number of prime divisors of n.

Definition 6.1.2. A number-theoretic function f is said to be multiplicative
if

f(mn) = f(m)f(n)
whenever ged(m,n) = 1.
Theorem 6.1.3. The functions T and o are both multiplicative functions.
Proof. Let m and n be relatively prime integers. Because the result is trivially
true if either m or n is equal to 1, we may assume that m > 1 and n > 1. If

k1 ko k- _ J1,.J2 Js
m=py'py - py and n=q'¢ - q

are the prime factorizations of m and n, then because ged(m,n) = 1, no p;
can occur among the g;. It follows that the prime factorization of the product
mn is given by .
mn = pitepra gl
Appealing to Theorem 6.1.2, we obtain
T(mn) = [(k+ 1) (k + DJ[(Ga + 1) -+ (Js + 1)]

=7(m)7(n).

In a similar fashion, Theorem 6.1.2 gives

D T e VAL et T Al
o(mn) =
pr—1 pr—1 o —1 gs — 1
=o(m)o(n).
Thus, 7 and ¢ are multiplicative functions. O
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Lemma 6.1.1: If ged(m,n) = 1, then the set of positive divisors of mn
consists of all products dids, where d; | m, dy | n, and ged(dy,dy) = 1;

furthermore, these products are all distinct.

Proof. Tt is harmless to assume that m > 1 and n > 1; let m = ]9]1‘“1012€2 cophr

and n = q{1q§2 -+ ¢’ be their respective prime factorizations. Inasmuch as the
primes p1,...,Prq1,- - -, Qs are all distinct, the prime factorization of mn is

_ k1 kr g1 J
mn=mpy ---p.qy g5

Hence, any positive divisor d of mn will be uniquely representable in the form
d=pi-plrq gk 0<a; <k;,0<b <ji

This allows us to write d as d = dydy, where d; = pi*---p? divides m and
dy = qll’1 -+ ¢b divides n. Because no p; is equal to any g;, we surely must have
ng(dl,dg) =1. ]

Theorem 6.1.4. If f is a multiplicative function and F is defined by
F(n) =Y f(d)
dln
then F' 1s also multiplicative.
Proof. Let m and n be relatively prime integers. Then

F(mn) = f(d)

dlmn

= f(didy)

di|m
da|n

because every divisor d of mn can be uniquely written as a product of a divisor
d; of m and a divisor dy of n, where ged(dy,ds) = 1. By the definition of a
multiplicative function,

f(d1d2> = f(d1>f<d2)'
It follows that

F(mn) = f(didy)

Al
= | D fld) | [ D f(do)
dilm da|n
= F(m)F(n). O
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Example 3. Illustrate Theorem 6.1.4 using n = 24.

Corollary 6.1.1. The functions 7 and o are multiplicative functions.

Proof. The constant function f(n) = 1 is multiplicative, as is the identity
function f(n) = n. Because 7 and ¢ may be represented in the form

T(n) = Zl and o(n) = Zd

din din

the stated result follows immediately from Theorem 6.1.4. O
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Example 4. Let w(n) denoted the number of distinct prime divisors of n > 1,
with w(1) = 0. For instance, w(360) = w(2%-3%-5) = 3.

(a) Show that 2( is a multiplicative function.

(b) For a positive integer n, establish the formula

7(n?) = Z ow(d),

dn

65



Number Theory - The Mobius Inversion Formula

6.2 The Mobius Inversion Formula

Definition 6.2.1. For a positive integer n, define p by the rules
1 ifn=1
pu(n) =<0 if p? | n for some prime p
(—=1)" if n = pipy---p., where p; are distinct primes.
Theorem 6.2.1. The function i s a multiplicative function.

Proof. We want to show that u(mn) = u(m)u(n), whenever m and n are
relatively prime. If either p? | m or p? | n, p a prime, then p? | mn; hence,
u(mn) = 0 = p(m)u(n), and the formula holds trivially. We therefore may
assume that both m and n are square-free integers. Say, m = pips--- Dy,
n = qiqz2 - - - Gs, with all the primes p; and ¢; being distinct. Then

p(mn) = p(pr--prqr---qs) = (=1)"°

= (=1)"(=1)" = p(m)p(n),
which completes the proof. O]
Theorem 6.2.2. For each positive integer n > 1,

1 ifn=1

> p(d) = ,

i 0 ¢fn>1
where d runs through the positive divisors of n.

Proof. Suppose n > 1 and put

F(n) = " u(d).
din

We first calculate F(n) for the power of a prime, say, n = p*. The positive
divisors of p* are just the k + 1 integers 1,p, p?, ..., p", so that

F(p*) = p(d) = p(1) + p(p) + p(p®) + - - + p(0")
dlpk

=p(1) +pu(p) =1+ (-1) =0.

Because p is multiplicative, Theorem 6.1.4 guarantees that F' also is multi-
plicative. Thus, if the canonical factorization of n is n = p]flp];2 - pFr then
F(n) is the product of the values assigned to F' for the prime powers in this
representation:

F(n)=F (/") F (p5?) --- F (p") = 0. O
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Example 1. The Mangoldt function A is defined by

logp if n = p*, where pis a prime and k£ > 1
An) =

0 otherwise.

Prove that A(n) =>_,, p(n/d)logd = =3, u(d)logd.

67



Number Theory - The Mobius Inversion Formula

Theorem 6.2.3 (The M6bius Inversion Formula). Let F' and f be two number-
theoretic functions related by the formula

Fin) = 3" 1(d).
din

Then

) =Y u@F (2) =3 n(5) F).
dln dln

Proof. The two sums mentioned in the conclusion of the theorem are seen to
be the same upon replacing the dummy index d by d’ = n/d; as d ranges over
all positive divisors of n, so does d'.

Carrying out the required computation, we get

S () =3 (nd) Y £
)

din dn cl(n/d
=> 1 D wdf(o]. (1)
din \el(n/d)

It is easily verified that d | n and ¢ | (n/d) if and only if ¢ | n and d | (n/c).
Because of this, the last expression in equation (1) becomes

SIS ware | =3 X reua

dln  \c|(n/d) cn \dl(n/c)
=S 10 3wy 2)
cn dl(n/c)

In compliance with Theorem 6.2.2, the sum >, /. (d) must vanish except
when n/c =1 (that is, when n = ¢), in which case it is equal to 1; the upshot
is that the right-hand side of equation (2) simplifies to

D@ > ud) | = fe)-1

cln d|(n/c)
= f(n),
giving us the stated result. O]
Theorem 6.2.4. If F' is a multiplicative function
F(n) =) f(d)
din

then f 1s also multiplicative.
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Proof. Let m and n be relatively prime positive integers. We recall that any
divisor d of mn can be uniquely written as d = didsy, where dy | m, dy | n, and
ged(dy, dy) = 1. Thus, using the inversion formula,

flmn) = > p(d)F (=)

dlmn
mn
= pldado)F | ——
dydo
dilm
da|n
m n
= 3" uldu(d)F (T) (2
s di do
da|n
m n
= di)F | — do)F | —
ZN( 1) (d1>ZN( 2) (d2>
dilm da2|n
= f(m)f(n),
which is the assertion of the theorem. Needless to say, the multiplicative
character of p and of F' is crucial to the previous calculation. O]

Example 2. Let S(n) denote the number of square-free divisors of n. Estab-

lish that
S(n) = 3 lu(d)| = 24

dln

where w(n) is the number of distinct prime divisors of n.
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6.3 The Greatest Integer Function

Definition 6.3.1. For an arbitrary real number x, we denote by [z] the largest
integer less than or equal to x; that is, [z] is the unique integer satisfying
r—1<[z] <.

Theorem 6.3.1. If n is a positive integer and p a prime, then the exponent
of the highest power of p that divides n! is

>[5

k=1
where the series is finite, because [n/p*] = 0 for p& > n.

Proof. Among the first n positive integers, those divisible by p are p, 2p, ..., tp,
where ¢ is the largest integer such that tp < n; in other words, ¢ is the largest
integer less than or equal to n/p (which is to say ¢t = [n/p]). Thus, there are
exactly [n/p] multiples of p occurring in the product that defines n!, namely,

2.2p,..., [g} p. (1)

The exponent of p in the prime factorization of n! is obtained by adding to
the number of integers in equation (1), the number of integers among 1,2, ..., n
divisible by p?, and then the number divisible by p?, and so on. Reasoning as
in the first paragraph, the integers between 1 and n that are divisible by p?
are

n
p272p27"'a |:]?:| p27 (2)

which are [n/p?] in number. Of these, [n/p?®] are again divisible by p:
n
p372p37"'7 |:p_3:| pg' (3)

After a finite number of repetitions of this process, we are led to conclude that
the total number of times p divides n! is

>[5 .

1
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Example 1. Find the number of zeros with which the decimal representation
of 50! terminates.

Example 2. For an integer n > 0, show that [n/2] — [-n/2] = n.
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Theorem 6.3.2. If n and r are positive integers with 1 < r < n, then the

binomial coefficient
ny n!
r)  rl(n—r)!

Proof. The argument rests on the observation that if @ and b are arbitrary
real numbers, then [a 4 b] > [a] 4 [b]. In particular, for each prime factor p of

ri(n — 7)),
BRCHCC R

Adding these inequalities, we obtain

ol ol 5 S R

E>1 E>1 E>1

1s also an integer.

The left-hand side of equation (4) gives the exponent of the highest power of
the prime p that divides n!, whereas the right-hand side equals the highest
power of this prime contained r!(n—r)!. Hence, p appears in the numerator of
n!/rl(n —r)! at least as many times as it occurs in the denominator. Because
this holds true for every prime divisor of the denominator, r!(n — r)! must
divide n!, making n!/r!(n — r)! an integer. O

Corollary 6.3.1. For a positive integer r, the product of any r consecutive
positive integers is divisible by r!.

Proof. The product of r consecutive positive integers, the largest of which is
n, is
nn—1)n-2)---(n—r+1).

Now we have

an—1)--(n—r+1)= (”—',)rv

rl(n —r)!

Because n!/rl(n — r)! is an integer by the theorem, it follows that r! must
divide the product n(n —1)---(n —r + 1), as asserted. O

Theorem 6.3.3. Let f and F' be number-theoretic functions such that

F(n) =7 f(d).
dln

Then, for any positive integer N,

gm) S]]

k=1
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Proof. We begin by noting that

Y Fm)=) "% fd). ()
n=1 n=1 djn

The strategy is to collect terms with equal values of f(d) in this double sum.
For a fixed positive integer k < N, the term f(k) appears in >, f(d) if and
only if k is a divisor of n. (Because each integer has itself as a divisor, the
right-hand side of equation (5) includes f(k), at least once.) Now, to calculate
the number of sums >, f(d) in which f(k) occurs as a term, it is sufficient to
find the number of integers among 1,2, ..., N, which are divisible by k. There
are exactly [N/k| of them:

k, 2k, 3k, . ... [5] 3

Thus, for each k such that 1 <k < N, f(k) is a term of the sum }, f(d)
for [N/k] different positive integers less than or equal to N. Knowing this, we
may rewrite the double sum in equation (5) as

N N N
TS WICIE
n=1 d‘n k=1
and our task is complete. O

Corollary 6.3.2. If N is a positive integer, then

n=1 n=1

Proof. Noting that 7(n) = 3_,, 1, we may write 7 for I and take f to be the
constant function f(n) = 1 for all n. ]

Corollary 6.3.3. If N is a positive integer, then

ia(n):in{%}.

n=1 n=1

Example 3. Apply the preceding corollaries to in the case N = 6.
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Example 4. Given a positive integer N, show the following:

() Spy p(n)[N/n] = 1.
(b) |3,y pu(n)/n| < 1.
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6.4 An Application to the Calendar

Theorem 6.4.1. The date with month m, day d, year Y = 100c + y where
c>16 and 0 <y < 100, has weekday number

w=d+[(2.6)m—02] —2c+y+ [ﬂ + [%] (mod 7)

provided that March is taken as the first month of the year and January and
February are assumed to be the eleventh and twelfth months of the previous
year.

Proof. The weekday number Dy for March 1 of any year ¥ > 1600 will satisfy
the congruence

Dy = D1600 + (Y - 1600) +L (mod 7), (1)

where L is the number of leap year days between March 1, 1600, and March 1
of the year Y.

To find L, observe that since [x — a] = [z] — a whenever a is an integer,
the number of years n in the interval 1600 < n <Y that are divisible by 4 is

given by
Y — 1600 Y 1 'Y
{ : } {4 o) = | 4} 00
Likewise, the number of elapsed century years is
Y —1 | [
Y1600 1Y el C (X g
100 100 | | 100

whereas among those there are

Y -1600| |V Al = Y 4

400 ] 400 1400

century years that are divisible by 400. Taken together, these statements yield

Y Y Y

L=||—|—-4 —||—=]-1 —1| —4
(L] =)= (] - 0) (] )
Y Y Y
- |- i)+ ] o=

By writing the year Y as Y = 100c + y, the previous expression for L
becomes

[ser ] [er L]+ [Cr L]
L [25c+4 et 10) T 13+ 205) ~ 38
y C
_ 24 H H _ 388,
c+ 1 + 1
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Then the congruence for Dy appears as

Dy = 3+ (100¢ + y — 1600) + 24¢ + [ﬂ + E] — 388 (mod 7),

which reduces to

Dy =3—-2c+y+ E] + [%] (mod 7).

Now for m = 1,2,...,12, the expression
[(2.6)m — 0.2] — 2 (mod 7)

produces the value that must be added to the day-number of March 1 to arrive
at the number of the first day of each month in any year Y. Thus the number
of the first day of the mth month of the year Y is given by

Dy + [(2.6)m — 0.2] — 2 (mod 7).

Finally, the number w of day d, month m, year Y = 100c+ y is determined
from congruence

w=(d—1)+ Dy + [(2.6)m — 0.2] — 2 (mod 7)
— 09 — ¢ Yy
= d+[(26)m — 02— 2c+y+ [5] + [£] (mod 7). 0
Example 1. Calculate the day of the week on which March 1, 1990 fell.

Example 2. On what day of the week did January 14, 2020 occur?

7
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Example 3. Find the years in the decade 2000 to 2009 when November 29 is
on a Sunday.
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Chapter 7

FEuler’s Generalization of
Fermat’s Theorem

7.2 FEuler’s Phi-Function

Definition 7.2.1. For n > 1, let ¢(n) denote the number of positive integers
not exceeding n that are relatively prime to n.

Theorem 7.2.1. If p is a prime and k > 0, then
k ko k=1 k 1
o(p")=p"—p" =p (1—]—9>-

Proof. Clearly, ged(n,p*) = 1 if and only if p { n. There are p*~! integers
between 1 and p* divisible by p, namely,

k—l)

p,2p,3p, ..., (p" " )p.

Thus, the set {1,2,...,p"} contains exactly p* — p*~! integers that are rel-

atively prime to p*, and so by the definition of the phi-function, ¢(p*) =
|

Pt —pT. O
Lemma 7.2.1: Given integers a, b, ¢, ged(a, be) = 1 if and only if ged(a, b) =1
and ged(a,c) = 1.
Proof. First suppose that ged(a,bc) = 1, and put d = ged(a,b). Then d | a
and d | b, whence d | a and d | be. This implies that ged(a,be) > d, which
forces d = 1. Similar reasoning gives rise to the statement ged(a, c) = 1.

For the other direction, take ged(a,b) = 1 = ged(a,c) and assume that
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ged(a, be) = dy > 1. Then dy must have a prime divisor p. Because d; | be, it
follows that p | be; in consequence, p | bor p | c. If p | b, then (by virtue of the
fact that p | a) we have ged(a,b) > p, a contradiction. In the same way, the
condition p | ¢ leads to the equally false conclusion that ged(a,c) > p. Thus,
d; = 1 and the lemma is proven. O

Theorem 7.2.2. The function ¢ is a multiplicative function.

Proof. 1t is required to show that ¢(mn) = ¢(m)¢p(n), wherever m and n have
no common factor. Because ¢(1) = 1, the result obviously holds if either m or
n equals 1. Thus, we may assume that m > 1 and n > 1. Arrange the integers
from 1 to mn in m columns of n integers each, as follows:

1 2 “ .. ’r‘ o .. m
m—+1 m + 2 m-+r 2m
2m +1 2m + 2 2m +r 3m

m—=1)m+1 (n—1)m+2 (n—1)m-+r nm

We know that ¢(mn) is equal to the number of entries in this array that are
relatively prime to mn; by virtue of the lemma, this is the same as the number
of integers that are relatively prime to both m and n.
Now the entries in the rth column (where it is assumed that ged(r,m) = 1)
are
rrmA4r2m—+r,... (n—1)m-+r.

There are n integers in this sequence and no two are congruent modulo n.
Indeed, if
km +r = jm+r (mod n)

with 0 < k < j < n, it would follow that km = jm (mod n). Because
ged(m,n) = 1, we could cancel m from both sides of this congruence to arrive
at the contradiction that £ = j (mod n). Thus, the numbers in the rth
column are congruent modulo n to 0,1,2,...,n — 1, in some order. But if
s =t (mod n), then ged(s,n) = 1 if and only if ged(¢,n) = 1. The implication
is that the rth column contains as many integers that are relatively prime to n
as does the set {0,1,2,...,n — 1}, namely, ¢(n) integers. Therefore, the total
number of entries in the array that are relatively prime to both m and n is

¢(m)o(n). O
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Theorem 7.2.3. If the integer n > 1 has the prime factorization
n= plflpl;? . -p’jT, then

o(n) = (pi* —p*7") (52 = pb* ") -+ (pf — Pl )

L )

Proof. We intend to use induction on r, the number of distinct prime factors
of n. By Theorem 7.2.1, the result is true for » = 1. Suppose that it holds for
r = 1. Because

ok
ng (plflpSQ cee p?z,pi_:ll) =1
the definition of multiplicative function gives
o (s o) = 0 (- 9) 0 ()

k k‘i ki ki -1
= ¢ (]911 Y ) <pz‘+4il - i-ijil ) .

Invoking the induction assumption, the first factor on the right-hand side
becomes

gb (pllflpl2€2 . piﬁ) _ (pllﬂ . pllﬂ—l) (plzfz . p/2€2—1) o (pf:z . pfi—l)
and this serves to complete the induction step and with it the proof. O

Example 1. Calculate the value of ¢(360).

Example 2. Prove that the equation ¢(n) = ¢(n + 2) is satisfied by n =
2(2p — 1) whenever p and 2p — 1 are both odd primes.
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Theorem 7.2.4. Forn > 2, ¢(n) is an even integer.

Proof. First, assume that n is a power of 2, let us say that n = 2¥, with & > 2.
By Theorem 7.2.3,

o) = o2 =2 (1- 3] =2,

an even integer. If n does not happen to be a power of 2, then it is divisible
by an odd prime p; we therefore may write n as n = p*m where k > 1 and
ged(p®, m) = 1. Exploiting the multiplicative nature of the phi-function, we
obtain

¢(n) = o(p")d(m) = p*~(p — D)e(m),

which again is even because 2 | p — 1. O]

Example 3. Prove that if the integer n has r distinct odd prime factors, then

2" | ¢(n).

Example 4. If every prime that divides n also divides m, establish that
é(nm) = nd(m); in particular, ¢(n?) = ng(n) for every positive integer n.
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7.3 FEuler’s Theorem

Lemma 7.3.1: Let n > 1 and ged(a,n) = 1. If ai,as,...,a40m) are the
positive integers less than n and relatively prime to n, then

aay, aag, . . ., Ag(n)

are congruent modulo n to ay, ay, ..., agmn) in some order.

Proof. Observe that no two of the integers aa,,aas, ..., aaqyy) are congruent
modulo n. For if aa; = aa; (mod n), with 1 < ¢ < j < ¢(n), then the
cancellation law yields a; = a; (mod n) and thus a; = a;, a contradiction.
Furthermore, because ged(a;,n) = 1 for all ¢ and ged(a,n) = 1, Lemma 7.2.1
guarantees that each of the aa; is relatively prime to n.

Fixing on a particular aa;, there exists a unique integer b, where 0 < b < n,
for which aa; = b (mod n). Because

ged(b,n) = ged(aa;,n) =1,

b must be one of the integers aj,as,...,agm). All told, this proves that
the numbers aay, aas, . . ., aayy) and the numbers ay, as, . . ., ag@y) are identical
(modulo n) in a certain order. O

Theorem 7.3.1 (Euler). Ifn > 1 and ged(a,n) = 1, then a®™ =1 (mod n).

Proof. There is no harm in taking n > 1. Let a;,as, ..., agp) be the positive
integers less than n that are relatively prime to n. Because ged(a,n) = 1, it
follows from the lemma that aa,, aas, ..., aag,) are congruent, not necessarily
in order to of appearance, to ay,as, ..., a@). Then

aa; = aj (mod n)

aas = ay (mod n)

A g(n)y = Ay, (mod n)

where a/, d, . .. ,a;(n) are the integers ay, as, . .., ag(n) in some order. On taking
the product of these ¢(n) congruences, we get

(aa1)(aag) - - - (aag(ny) = aydy ... ay,y (mod n)

= a10y . .. Gyn) (Mod n)

and so
a¢(")(a1a2 . %(n)) = 102 . . . Qg(n) (mod n).
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Because ged(a;,n) =1 for each ¢, Lemma 7.2.1 implies that
ged(aias . . . gy, n) = 1. Therefore, we may divide both sides of the foregoing
congruence by the common factor ajas . .. ag), leaving us with

a®™ =1 (mod n). O
Corollary 7.3.1 (Fermat). If p is a prime and p{ a, then a?~!' =1 (mod p).

Example 1. Find the last two digits in the decimal representation of 32°.

Example 2. Use Euler’s Theorem to prove the Chinese Remainder Theorem.

Example 3. Show that if n is an odd integer that is not a multiple of 5, then
n divides an integer all of whose digits are equal to 1.
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Example 4. Use Euler’s Theorem to evaluate 2'9°°% (mod 77).
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7.4 Some Properties of the Phi-Function

Theorem 7.4.1 (Gauss). For each positive integer n > 1,
n=>_0(d)
din

the sum being extended over all positive divisors of n.

Proof. The integers between 1 and n can be separated into classes as follows:
If d is a positive divisor of n, we put the integer m in the class Sy provided
that ged(m,n) = d. Stated in symbols,

Sqa={m|ged(m,n) =d;1 <m <n}.

Now ged(m,n) = d if and only if ged(m/d,n/d) = 1. Thus, the number of
integers in the class S, is equal to the number of positive integers not exceeding
n/d that are relatively prime to n/d; in other words, equal to ¢(n/d). Because
each of the n integers in the set {1,2,...,n} lies in exactly one class Sy, we

obtain the formula n
=2 (2)

But as d runs through all positive divisors of n, so does n/d; hence,

>0 (%) =Y sl

din dln
which proves the theorem. O

Example 1. Illustrate the previous theorem using n = 10.

Theorem 7.4.2. Forn > 1, the sum of the positive integers less than n and
relatively prime to n is %n¢(n)
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Proof. Let ai,as,...,ayn) be the positive integers less than n and relatively
prime to n. Now because ged(a,n) = 1 if and only if ged(n — a,n) = 1, the
numbers n—ay, n—dasy, ...,n— a4 are equal in some order to ay, ag, . . ., Agn).
Thus,

a1+ az+ o Qg = (0 —ar) + (0= ag) + o+ (0= ag)
= p(n)n — (a1 +az + -+ + ag(n))-

Hence,
2(@1 + a9+ -+ a¢(n)) = ¢(n>n7

leading to the stated conclusion. O]

Example 2. Illustrate the preceding theorem for the case where n = 30.

Theorem 7.4.3. For any positive integer n,
w(d
ofn) = 35 P
dln

Proof. 1f we apply the Mdbius inversion formula to

F(n)=n=>_¢(d)
din
the result is

o(n) = > ud)F (5)

d|n

= Zu(d)% O

din

87



Number Theory - Some Properties of the Phi-Function

Example 3. For a positive integer n, prove that
n

%;u (d)p(d) = o)’

Example 4. Given an integer n, prove that there exists at least one k for
which n | ¢(k).
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Chapter 8

Primitive Roots and Indices

8.1 The Order of an Integer Modulo n

Definition 8.1.1. Let n > 1 and ged(a,n) = 1. The order of a modulo n is
the smallest positive integer k such that a* =1 (mod n).

Theorem 8.1.1. Let the integer a have order k modulo n. Then a" =
1 (mod n) if and only if k| h; in particular, k | ¢p(n).

Proof. Suppose that we begin with k& | h, so that h = jk for some integer
j. Because a* = 1 (mod n), Theorem 4.2.2 yields (a*) = 17 (mod n) or
a =1 (mod n).

Conversely, let h be any positive integer satisfying a” = 1 (mod n). By the
Division Algorithm, there exist ¢ and r such that h = gk +r, where 0 < r < k.

Consequently,
(Zh — aqk—H“ — (ak)qar.

By hypothesis, both a" = 1 (mod n) and a* = 1 (mod n), the implication
of which is that ¢ = 1 (mod n). Because 0 < r < k, we end up with
r = 0; otherwise, the choice of k as the smallest positive integer such that
a® =1 (mod n) is contradicted. Hence, h = gk, and k | h. O
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Example 1. Prove that ¢(2" — 1) is a multiple of n for any n > 1.

Theorem 8.1.2. If the integer a has order k modulo n, then a' = o/ (mod n)
if and only if i = j (mod k).

Proof. First, suppose that a’ = @/ (mod n), where i > j. Because a is relatively
prime to n, we may cancel a power of a to obtain a*7 = 1 (mod n). According
to Theorem 8.1.1, this last congruence holds only if &£ | i — j, which is just
another way of saying that ¢ = j (mod k).

Conversely, let i = j (mod k). Then we have i = j + gk for some integer
q. By the definition of k, a* =1 (mod n), so that

a' = a’ = o/ (") = o/ (mod n),

which is the desired conclusion. O
Corollary 8.1.1. If a has order k modulo n, then the integers a,a?, ..., a"

are incongruent modulo n.

Proof. If " = @/ (mod n) for 1 < i < j < k, then the theorem ensures that
i =7 (mod k). But this is impossible unless i = j. O

Theorem 8.1.3. If the integer a has order k modulo n and h > 0, then a”
has order k/ ged(h, k) modulo n.

Proof. Let d = ged(h, k). Then we may write h = hyd and k = kid, with
ged(hy, kp) = 1. Clearly,

(a")* = (@M = (aF)" =1 (mod n).

If a" is assumed to have order r modulo n, then Theorem 8.1.1 asserts that
r | k1. On the other hand, because a has order k£ modulo n, the congruence

a" = (a")" =1 (mod n)
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indicates that k | hr; in other words, kid | hydr or ky | hyr. But ged(ky, hy) =
1, and therefore k; | r. This divisibility relation, when combined with the one

obtained earlier, gives
k

" ged(hy k)’
proving the theorem. O]

k
T:klzg

Corollary 8.1.2. Let a have order k modulo n. Then a" also has order k if
and only if ged(h, k) = 1.

Example 2. List the orders modulo 13 of the positive integers less than 13,
and then illustrate the preceding theorem by identifying the integers that have
order 12 modulo 13.

Definition 8.1.2. If ged(a,n) = 1 and a is of order ¢(n) modulo n, then a is
a primitive root of the integer n.

Example 3. Show that if F,, = 22" + 1, n > 1, is a prime, then 2 is not a
primitive root of F,.

Theorem 8.1.4. Let ged(a,n) = 1 and let ay,as,...,aem) be the positive
integers less than n and relatively prime to n. If a is a primitive root of n,
then

are congruent modulo n to ay,as, ..., a4y, i some order.
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Proof. Because a is relatively prime to n, the same holds for all the powers of
a; hence, each a” is congruent modulo n some one of the a;. The ¢(n) num-

bers in the set {a,a?,...,a®™ are incongruent by Corollary 8.1.1; thus, these
powers must represent (not necessarily in order of appearance) the integers
A1, A2, ..., Ag(n)- ]

Corollary 8.1.3. If n has a primitive root, then it has ezactly ¢(p(n)) of
them.

Proof. Suppose that a is a primitive root of n. By the theorem, any other
primitive root of n is found among the members of the set {a,a?,...,a®™,
But the number of powers a*, 1 < k < ¢(n), that have order ¢(n) is equal to
the number of integers k for which ged(k, ¢(n)) = 1; there are ¢(¢p(n)) such
integers, hence ¢(¢(n)) primitive roots of n. O

Example 4. Let r be a primitive root of the integer n. Prove that r* is a
primitive root of n if and only if ged(k, ¢(n)) = 1.
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8.2 Primitive Roots for Primes

Theorem 8.2.1 (Lagrange). If p is a prime and
f(2) = apz™ 4+ ap_12" ' + -+ arr + ag a, Z 0 (mod p)
1 a polynomial of degree n > 1 with integral coefficients, then the congruence

f(z) =0 (mod p)
has at most n incongruent solutions modulo p.

Proof. We proceed by induction on n, the degree of f(z). If n = 1, then our
polynomial is of the form
f(z) = a1z + ay.

Because ged(ap,p) = 1, Theorem 4.4.1 asserts that the congruence a;z =
—ap (mod p) has a unique solution modulo p. Thus, the theorem holds for
n=1.

Now assume inductively that the theorem is true for polynomials of degree
k—1, and consider the case in which f(z) has degree k. Either the congruence
f(z) =0 (mod p) has no solutions (and we are finished), or it has at least one
solution, call it a. If f(x) is divided by x — a, the result is

flx) = (x —a)q(z) +r

in which ¢(z) is a polynomial of degree k — 1 with integral coefficients and r
is an integer. Substituting x = a, we obtain

0= f(a) = (a —a)q(a) + 7 =r (mod p)

and therefore f(z) = (x — a)q(x) (mod p).
If b is another one of the incongruent solutions of f(z) =0 (mod p), then

0= f(b) = (b— a)q(b) (mod p).

Because b —a # 0 (mod p), we may cancel to conclude that ¢(b) = 0 (mod p);
in other words, any solution of f(z) =0 (mod p) that is different from @ must
satisfy ¢(z) = 0 (mod p). By our induction assumption, the latter congruence
can possess at most k—1 incongruent solutions, and therefore f(z) = 0 (mod p)
has no more than k£ incongruent solutions. This completes the induction step
and the proof. O

Corollary 8.2.1. If p is a prime number and d | p — 1, then the congruence
27— 1=0 (mod p)

has exactly d solutions.
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Proof. Because d | p— 1, we have p — 1 = dk for some k. Then
P — 1= (27— 1) f(2)

where the polynomial f(z) = x®*=1) 4 zdk=2) 1 ... 4 24 1 1 has integral
coefficients and is of degree d(k — 1) = p — 1 — d. By Lagrange’s theorem,
the congruence f(z) = 0 (mod p) has at most p — 1 — d solutions. We also
know from Fermat’s theorem that zP~! — 1 = 0 (mod p) has precisely p — 1
incongruent solutions; namely, the integers 1,2,...,p — 1.

Now any solution = a (mod p) of 2P~! — 1 = 0 (mod p) that is not a
solution of f(z) =0 (mod p) must satisfy 2 — 1 =0 (mod p). For

0=a’"'—1=(a”—1)f(a) (mod p)

with p{ f(a), implies that p | a? — 1. Tt follows that ¢ — 1 =0 (mod p) must
have at least
p—1—-(p—1-d)=d

solutions. This last congruence can possess no more than d solutions by La-
grange’s theorem and, hence, has exactly d solutions. O]

Example 1. If p is an odd prime, prove the following:

(a) The only congruent solutions of 22 = 1 (mod p) are 1 and p — 1.

(b) The congruence 2?2 + -+ + 2> + x4+ 1 = 0 (mod p) has exactly p — 2
incongruent solutions, and they are the integers 2,3,...,p — 1.
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Theorem 8.2.2. If p is a prime number and d | p — 1, then there are exactly
¢(d) incongruent integers having order d modulo p.

Proof. Let d | p—1 and ¢(d) denote the number of integers k, 1 < k <p—1,
that have order d modulo p. Because each integer between 1 and p — 1 has
order d for some d | p — 1,

p—1= ) ¥(d).

d|p—1

At the same time, Gauss’s theorem tells us that

p—1="Y_ ¢(d),

dlp—1

and therefore, putting these together,

D wd) = ¢(d). (1)

d|p—1 dlp—1

Our aim is to show that ¥ (d) < ¢(d) for each divisor d of p — 1, because this,
in conjunction with equation (1), would produce the equality ¢ (d) = ¢(d) # 0
(otherwise, the first sum would be strictly smaller than the second).

Given an arbitrary divisor d of p — 1, there are two possibilities: we ei-
ther have ¢(d) = 0 or ¢(d) > 0. If ¥(d) = 0, then certainly ¥ (d) < ¢(d).
Suppose that 1(d) > 0, so there exists an integer a of order d. Then the d
integers a,a?, ..., a? are incongruent modulo p and each of them satisfies the
polynomial congruence

2?7 —1=0 (mod p) (2)

for, (a*)4 = (a®)* = 1 (mod p). By Corollary 8.2.1, there can be no other
solutions of equation (2). It follows that any integer having order d modulo p
must be congruent to one of a,a?, ..., a%. But only ¢(d) of the just-mentioned
powers have order d, namely those a* for which the exponent k has the property
ged(k,d) = 1. Hence, in the present situation 1(d) = ¢(d), and the number of
integers having order d modulo p is equal to ¥ (d). O
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Corollary 8.2.2. If p is a prime, then there are exactly ¢(p — 1) incongruent
primitive roots of p.

Example 2. Find the ¢(6) = 2 integers having order 6 modulo 31.

Example 3. If p is a prime, show that the product of the ¢(p — 1) primitive
roots of p is congruent modulo p to (—1)*®=1),
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8.3 Composite Numbers Having Primitive Roots

Theorem 8.3.1. For k > 3, the integer 2F has no primitive roots.

Proof. We start by showing that if a is an odd integer, then for k£ > 3

2/672

a® " =1 (mod 2F).

If k = 3, this congruence becomes a? = 1 (mod 8), which is certainly true
(indeed, 12 =32 =5 =72 =1 (mod 8)). For k > 3, we proceed by induction
on k. Assume that the asserted congruence holds for the integer k; that is,

a®* =1 (mod 2%). This is equivalent to the equation

@ =1+ 02"

where b is an integer. Squaring both sides, we obtain

ok—1

a® = (a7 =14 2(02%) + (b2F)?
= 142" b+ 072"
=1 (mod 2F1),

so that the asserted congruence holds for k£ + 1 and, hence, for all £ > 3.
Now the integers that are relatively prime to 2 are precisely the odd
integers, so that ¢(2%) = 2¥=1. By what was just proved, if a is an odd integer
and k£ > 3,
a®®)/? =1 (mod 2%)

and, consequently, there are no primitive roots of 2. O

Theorem 8.3.2. If ged(m,n) = 1, where m > 2 and n > 2, the integer mn
has no primitive roots.

Proof. Consider any integer a for which ged(a, mn) = 1; then ged(a,m) = 1
and ged(a,n) = 1. Put h = lem(¢p(m), ¢(n)) and d = ged(d(m), ¢(n)).
Because ¢(m) and ¢(n) are both even (Theorem 7.2.4), surely d > 2. In

consequence,
¢(m)p(n) _ ¢(mn)
d 2

Now Euler’s theorem asserts that a®™ = 1 (mod m). Raising this congruence
to the ¢(n)/d power, we get

h =

IN

al = (a®m™)¢/d = 19M/d = 1 (mod m).
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Similar reasoning leads to a" = 1 (mod n). Together with the hypothesis
ged(m,n) = 1, these congruences force the conclusion that

a" =1 (mod mn).

Therefore the order of any integer relatively prime to mn does not exceed
¢(mn)/2, whence there can be no primitive roots for mn. O

Corollary 8.3.1. The integer n fails to have a primitive root if either
(a) n is divisible by two odd primes, or
(b) n is of the form n = p™p®, where p is an odd prime and m > 2.

Example 1. if r is a primitive root of p?, p being an odd prime, show that

the solutions of the congruence xP~! = 1 (mod p?) are precisely the integers
rPor?e L e lp,
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Lemma 8.3.1: If p is an odd prime, then there exists a primitive root r of p
such that 77~! £ 1 (mod p?).

Proof. From Theorem 8.2.2, it is known that p has primitive roots. Choose
one, and call it r. If 7! 2 1 (mod p?), then we are finished. In the contrary
case, replace r by ' = r+p, which is also a primitive root of p. Then employing
the binomial theorem,

(= (r+p)P =" 4 (p = Dpr”? (mod p?).
But we have assumed that r*~! =1 (mod p?); hence,
(r"P~ =1 —pr*=? (mod p?).

Because r is a primitive root of p, ged(r,p) = 1, and therefore p  r»~2. The
outcome of all this is that ()P~ £ 1 (mod p?). O

Corollary 8.3.2. If p is an odd prime, then p? has a primitive root; in fact,
for a primitive root v of p, either r or r+p (or both) is a primitive root of p?.

Proof. If r is a primitive root of p, then the order of r modulo p? is either
p—1orp(p—1) = ¢(p?). The foregoing proof shows that if r has order p — 1
modulo p?, then r + p is a primitive root of p?. O

Lemma 8.3.2: Let p be an odd prime and let r be a primitive root of p with
the property that v~ # 1 (mod p?). Then for each positive integer k > 2,

PP e # 1 (mod pk).

Proof. The proof proceeds by induction on k. By hypothesis, the assertion
holds for k£ = 2. Let us assume that it is true for some £ > 2 and show that
it is true for k + 1. Because ged(r,p*~!) = ged(r, p*) = 1, Euler’s theorem
indicates that

PP =) = 00" = 1 (mod pb).

Hence, there exists an integer a satisfying
I D S apt

where p 1 a by our induction hypothesis. Raise both sides of this last equation
to the pth power and expand to obtain

PP D = (1 4 apt )P =14 ap® (mod pFHY).
Because the integer a is not divisible by p, we have
PP =) £ (mod p**t).

This completes the induction step, thereby proving the lemma. O
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Theorem 8.3.3. If p is an odd prime number and k > 1, then there exists a
primitive root for p*.

Proof. The two lemmas allow us to choose a primitive root r of p for which
P £ ] (mod p*); in fact, any integer r satisfying the condition rP~1 #
1 (mod p?) will do. We argue that such an r serves as a primitive root for all
powers of p.

Let n be the order of r modulo p*. In compliance with Theorem 8.1.1,
n must divide ¢(p*) = p*~1(p — 1). Because r" = 1 (mod p¥) yields r" =
1 (mod p), we also have p — 1 | n. Consequently, n assumes the form n =
p"(p — 1), where 0 < m < k — 1. If it happened that n # p*~1(p — 1), then
p*%(p — 1) would be divisible by n and we would arrive at

P 2D = 1 (mod pt),

contradicting the way in which r was initially chosen. Therefore, n = pk_l(p—
1) and r is a primitive root for p*. ]

Corollary 8.3.3. There are primitive Toots for 2p*, where p is an odd prime
and k> 1.

Proof. Let r be a primitive root for p¥. There is no harm in assuming that r
is an odd integer; for, if it is even, then r + p* is odd and is still a primitive
root for p¥. Then ged(r, 2p*) = 1. The order n of » modulo 2p* must divide

o(20") = 9(2)p(p") = ¢ (p").

But " = 1 (mod 2p*) implies that r™ = 1 (mod p*), and therefore ¢(p*) | n.
Together these divisibility conditions force n = ¢(2p*), making r a primitive
root of 2p*. O]

Theorem 8.3.4. An integer n > 1 has a primitive root if and only if
n=2.4,p% or2p*
where p is an odd prime.

Proof. By virtue of Theorems 8.3.1 and 8.3.2, the only positive integers with
primitive roots are those mentioned in the statement of our theorem. It may
be checked that 1 is a primitive root for 2, and 3 is a primitive root of 4. We
have just finished proving that primitive roots exist for any power of an odd
prime and for twice such a power. O
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Example 2. Assume that r is a primitive root of the odd prime p and (r +
tp)P~t #£ 1 (mod p?). Show that r + tp is a primitive root of p* for each k > 1.
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8.4 The Theory of Indices

Definition 8.4.1. Let r be a primitive root of n. if ged(a,n) = 1, then the
smallest positive integer k such that a = r* (mod n) is called the index of a
relative to 7.

Theorem 8.4.1. If n has a primitive root r and ind a denotes the index of a
relative to r, then the following properties hold:

(a) ind(ab) = inda 4 ind b (mod ¢(n)).
(b) inda* = kinda (mod ¢(n)) for k > 0.
(¢) ind1 =0 (mod ¢(n)), indr =1 (mod ¢(n)).

Proof. By the definition of index, r*4¢ = ¢ (mod n) and r"4® = b (mod n).
Multiplying these congruences together, we obtain

pirdatindb = g (mod n).

But 7"4®) = gb (mod n), so that

7,md atindb — de(ab) (

mod n).

It may very well happen that inda + indb exceeds ¢(n). This presents no
problem, for Theorem 8.1.2 guarantees that the last equation holds if and
only if the exponents are congruent modulo ¢(n); that is,

ind a + ind b = ind(ab) (mod ¢(n)),

which is property (a).

The proof of property (b) proceeds along much the same lines. For we

inda® — kinda _ (rinda)k =

have r = ¢ (mod n), and by the laws of exponents, r

a® (mod n); hence,

inda® _ kinda

r =r (mod n).

As above, the implication is that ind a* = kinda (mod ¢(n)). The two parts
of property (¢) should be fairly apparent. ]
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Example 1. Solve the congruence

42° = 7 (mod 13).

Theorem 8.4.2. Let n be an integer possessing a primitive root and let ged(a,n) =

1. Then the congruence x¥ = a (mod n) has a solution if and only if

a®™/? =1 (mod n)

where d = ged(k, ¢p(n)); if it has a solution, there are exactly d solutions modulo
n.

Proof. Taking indices, the congruence a®™/? = 1 (mod n) is equivalent to

@ inda =0 (mod ¢(n)),
which, in turn, holds if and only if d | inda. But we have just seen that the
latter is a necessary and sufficient condition for the congruence 2% = a (mod n)

to be solvable. O

Corollary 8.4.1. Let p be a prime and ged(a,p) = 1. Then the congruence
2F = a (mod p) has a solution if and only if a®®~V/? = 1 (mod p), where

d=ged(k,p—1).
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Example 2. Is the congruence z° = 4 (mod 13) solvable? What about z° =
5 (mod 13)7

Example 3. Find the remainder when 32* - 5'3 is divided by 17.
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Example 4. Let r be a primitive root of the odd prime p, and let d
ged(k,p — 1). Prove that the values of a for which the congruence z* =
a (mod p) is solvable are r? 724, . . plp=1)/dld
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Chapter 9

The Quadratic and Reciprocity
Law

9.1 Euler’s Criterion

Definition 9.1.1. Let p be an odd prime and ged(a,p) = 1. If the quadratic
congruence 2 = a (mod p) has a solution, then a is said to be a quadratic
residue of p. Otherwise, a is called a quadratic nonresidue of p.

Example 1. Find the quadratic residues of the prime p = 13.

Theorem 9.1.1 (Euler’s criterion). Let p be an odd prime and ged(a,p) = 1.
Then a is a quadratic residue of p if and only if a®~1/2 =1 (mod p).

Proof. Suppose that a is a quadratic residue of p, so that z* = a (mod p)
admits a solution, call it z1. Because ged(a,p) = 1, evidently ged(zq,p) = 1.

106



Number Theory - Euler’s Criterion

We may therefore appeal to Fermat’s theorem to obtain
aP2/2 = (pHP=D/2 = 2271 = 1 (mod p).

For the opposite direction, assume that the congruence a*~9/2 = 1 (mod p)
holds and let r be a primitive root of p. Then a = r* (mod p) for some integer
k, with 1 < k <p—1. It follows that

rke=1/2 = ,(-1)/2 = (mod p).

By Theorem 8.1.1, the order of r (namely, p — 1) must divide the exponent
k(p —1)/2. The implication is that k is an even integer, say k = 2j. Hence,

(r’)? = r¥ = r* = @ (mod p),

making the integer r/ a solution of the congruence z? = a (mod p). This
proves that a is a quadratic residue of the prime p. O

Corollary 9.1.1. Let p be an odd prime and ged(a,p) = 1. Then a is a
quadratic residue or nonresidue of p according to whether

a? V%=1 (mod p) or a? V2 =—-1 (mod p).
Proof. 1f p is an odd prime and ged(a, p) = 1, then
(aPV/2 —1)(a® D2 1 1) =P~ — 1 =0 (mod p),
the last congruence being justified by Fermat’s theorem. Hence, either
a? V2 =1 (mod p) or a® V%= _—1 (mod p).

but not both. For, if both congruences held simultaneously, then we would
have 1 = —1 (mod p), or equivalently, p | 2, which conflicts with our hypothe-
sis. Because a quadratic residue of P does not satisfy a®?~1/2 = 1 (mod p), it
must therefore satisfy a?~1/2 = —1 (mod p). O

Example 2. Determine whether the integers 2 and 3 are quadratic residues
of p=13.
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Example 3. Prove that the quadratic congruence 6x* + 5z + 1 = 0 (mod p)
has a solution for every prime p, even though the equation 622 +5x +1 =0
has no solution in the integers.

Example 4. If p = 2¥ + 1 is prime, verify that every quadratic nonresidue of
p is a primitive root of p.

108



Number Theory - The Legendre Symbol and its Properties

9.2 The Legendre Symbol and its Properties

Definition 9.2.1. Let p be an odd prime and let ged(a, p) = 1. The Legendre
symbol (a/p) is defined by

1 if a is a quadratic residue of p
(a/p) =

—1 if a is a quadratic nonresidue of p.

We shall refer to a as the numerator and p as the denominator of the
a

symbol (a/p). Another standard notation for the Legendre symbol is () or
(@] p).

Example 1. Illustrate the definition of the Legendre symbol using p = 13.

Remark 1. For p | a, we have purposely left the symbol (a/p) undefined.
Some authors find it convenient to extend Legendre’s definition to this case
by setting (a/p) = 0. One advantage of this is that the number of solutions of
2? = a (mod p) can then be given by the simple formula 1 + (a/p).
Theorem 9.2.1. Let p be an odd prime and let a and b be integers that are
relatively prime to p. Then the Legendre symbol has the following properties:

(a) If a=b (mod p), then (a/p) = (b/p).
(

b) (a*/p) = 1.
(a/p) = aP~ D2 (mod p).
(d) (ab/p) = (a/p)(b/p).

)
)
()
)
)

(e) (1/p) =1 and (=1/p) = (1)~ 12

Proof. If a = b (mod p), then the two congruences z? = a (mod p) and x? =
b (mod p) have exactly the same solutions, if any at all. Thus, 2 = a (mod p)
and 22 = b (mod p) are both solvable, or neither one has a solution. This is
reflected in the statement (a/p) = (b/p).

Regarding property (b), observe that the integer a trivially satisfies the

congruence 2 = a*? (mod p); hence, (a*/p) = 1. Property (c) is just the
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corollary to Theorem 9.1.1 rephrased in terms of the Legendre symbol. We
use (c) to establish property (d):

(ab/p) = (ab)*~V/2 = a@=D/2=D/2 = (4 /p)(b/p) (mod p).

Now the Legendre symbol assumes only the values 1 or —1. If (ab/p) #
(a/p)(b/p), we would have 1 = —1 (mod p) or 2 = 0 (mod p); this cannot
occur, because p > 2. It follows that

(ab/p) = (a/p)(b/p).

Finally, we observe that the first equality in property (e) is a special case
of property (b), whereas the second one is obtained from property (c) upon
setting @ = —1. Because the quantities (—1/p) and (—1)®=1/2 are either 1 or
—1, the resulting congruence

(=1/p) = (=1)*"Y/% (mod p)
implies that (—1/p) = (—1)P~1/2, O

Corollary 9.2.1. If p is an odd prime, then

) 1 ifp=1(mod4)
(=1/p) = {_1 if p=3 (mod 4).

Example 2. Determine whether the congruence 22 = —46 (mod 17) is solv-
able.
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Theorem 9.2.2. There are infinitely many primes of the form 4k + 1.

Proof. Suppose that there are finitely many such primes; let us call them
D1,P2, - ., Pn and consider the integer

N = (2p1ps - 'Pn)2 + 1.

Clearly N is odd, so that there exists some odd prime p with p | N. To put it
another way,

(2p1p2 -+ -pn)* = =1 (mod p)
or, if we prefer to phrase this in terms of the Legendre symbol, (—1/p) = 1.
But the relation (—1/p) = 1 holds only if p is of the form 4k + 1. Hence, p
is one of the primes p;, implying that p; divides N — (2p1py - -+ pn)?, or p; | 1,
which is a contradiction. O

Theorem 9.2.3. If p is an odd prime, then

p—1

> (a/p)=0.

a=1

Hence, there are precisely (p—1)/2 quadratic residues and (p—1)/2 quadratic
nonresidues of p.

Proof. Let r be a primitive root of p. We know that, modulo p, the powers
r,r?,...,rP~! are just a permutation of the integers 1,2,...,p — 1. Thus, for
any a lying between 1 and p—1, inclusive, there exists a unique positive integer
k (1 <k <p-—1), such that a = r* (mod p). By appropriate use of Euler’s

criterion, we have

(a/p) = (r*/p) = (PH)P7V2 = (FP=D2) = (~1)" (mod p) (1)

where, because 7 is a primitive root of p, 7®~1/2 = —1 (mod p). But (a/p)
and (—1)* are equal to either 1 or —1, so that equality holds in equation (1).
Now add up the Legendre symbols in question to obtain

S (a/p) = 3 (-1 =o. -

Corollary 9.2.2. The quadratic residues of an odd prime p are congruent
modulo p to the even powers of a primitive root v of p; the quadratic non-
residues are congruent to the odd powers of r.
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Example 3. For an odd prime p, prove that there are (p — 1)/2 — ¢(p — 1)
quadratic nonresidues of p that are not primitive roots of p.

Theorem 9.2.4 (Gauss’s lemma). Let p be an odd prime and let ged(a, p) = 1.
If n denotes the number of integers in the set

S = {a,Qa,Sa,..., (%) a}

whose remainders upon division by p exceed p/2, then

(a/p) = (~1)"

Proof. Because ged(a,p) = 1, none of the (p — 1)/2 integers in S is congruent
to zero and no two are congruent to each other modulo p. Let rq,...,r, be
those remainders upon division by p such that 0 < r; < p/2, and let sq,...,s,
be those remainders such that p > s; > p/2. Then m+n = (p—1)/2, and the
integers

Tlyee oy Tm P—S1,---,P— Sp
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are all positive and less than p/2.
To prove that these integers are all distinct, it suffices to show that no
p — s; is equal to any r;. Assume to the contrary that

pP— S = 7’]'
for some choice of ¢ and j. Then there exist integers u and v, with 1 < u,v <
(p —1)/2, satisfying s; = ua (mod p) and r; = va (mod p). Hence,
(u+v)a=s;+r;=p=0 (mod p),

which says that u + v = 0 (mod p). But the latter congruence cannot take
place, because 1 <u+v <p— 1.
The point we wish to bring out is that the (p — 1)/2 numbers

T1,-o5Tm P—51,-.-,P— Sn

are simply the integers 1,2,..., (p — 1)/2, not necessarily in order of appear-
ance. Thus, their product is [(p — 1)/2]!:

(p%l)' = r(p = 1) (P )
=11 rm(—51) - (—sn) (mod p)
= (—=1)"r1 - Tps1 - - S (mod p).

But we know that ry, ..., 7, $1,..., s, are congruent modulo p to a, 2a, . .., [(p—
1)/2]a, in some order, so that

<1%1)! — (—1)"a-2a--- (1%1) o (mod p)
(—1)mar=D/2 (7%1)1 (mod p).

Because [(p—1)/2]! is relatively prime to p, it may be canceled from both sides
of this congruence to give

1= (—=1)"a?"Y/2 (mod p)

or, upon multiplying by (—1)",
a®P V2 = (—1)" (mod p).
Use of Euler’s criterion now completes the argument:
(a/p) = a® V2 = (=1)" (mod p),
which implies that

(a/p) = (=1)". N
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Theorem 9.2.5. If p is an odd prime, then

(2/]?):{ 1 Z:fpfl (mod 8) 0Tpf7(mod 8)
—1 ifp=3(mod 8) or p=>5 (mod 8).

Proof. According to Gauss’s lemma, (2/p) = (—1)", where n is the number of

integers in the set
—1
S:{1-2,2-2,3-2,...,(%) -2}

which, upon division by p, have remainders greater than p/2. The members of
S are all less than p, so that it suffices to count the number that exceed p/2.
For 1 <k <(p—1)/2, we have 2k < p/2 if and only if k < p/4. If [ ] denotes
the greatest integer function, then there are [p/4] integers in S less than p/2;
hence,
. RS 4
2 4

is the number of integers that are greater than p/2.

Now we have four possibilities, for any odd prime has one of the forms
8k + 1, 8k + 3, 8k + 5, or 8k + 7. A simple calculation shows that

1
if p=8k + 1, then n = 4k — {Qk—i—ﬂ =4k — 2k = 2k
ifp=8k+3, thenn =4k + 1 — 2/€+§J =4k+1—-2k=2k+1

- -
if p =8k +5, then n =4k +2 — 2k+1+Z

=4k +2—-(2k+1)=2k+1
if p=28k+7, then n =4k +3 — 2k+1+z

=4k +3— (2k+1) =2k + 2.

Thus, when p is of the form 8k 4+ 1 or 8k + 7, n is even and (2/p) = 1;
on the other hand, when p assumes the form 8k 4+ 3 or 8k + 5, n is odd and

2/p) = —1. -
Corollary 9.2.3. If p is an odd prime, then
(2/p) = (~1)0" %
Proof. Tf the prime p is of the form 8k £+ 1 (equivalently, p = 1 (mod 8) or
p =7 (mod 8)), then
pP—1  (8k+1)2—1 64k + 16k
8 8 B 8

= 8k* £ 2k,
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which is an even integer; in this situation, (—1)?~9/8 = 1 = (2/p). On
the other hand, if p is of the form 8k £+ 3 (equivalently, p = 3 (mod 8) or
p =5 (mod 8), then
21 +£3)2 -1 4k? £ 4
Pl (BhE31 GWEASEES oo
8 8 8
which is odd; here, we have (—1)®*~1/8 = —_1 = (2/p). O

Example 4. For a prime p = 7 (mod 8), show that p | 2(P~1/2 — 1

Example 5. Confirm that the numbers 2" — 1 are composite for n = 11, 23,
83, 131, 179, 183, 239, 251.
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Theorem 9.2.6. Ifp and 2p+1 are both odd primes, then the integer (—1)®~1/22
s a primitive root of 2p + 1.

Proof. For ease of discussion, let us put ¢ = 2p + 1. We distinguish two cases:
p=1 (mod 4) and p = 3 (mod 4). If p =1 (mod 4), then (—1)P~1/22 = 2,
Because ¢(q) = ¢ — 1 = 2p, the order of 2 modulo ¢ is one of the numbers 1,
2, p, or 2p. Taking note of property (c) of Theorem 9.2.1, we have

(2/q) = 29Y/2 = 2P (mod q).

But, in the present setting, ¢ = 3 (mod 8); whence, the Legendre symbol
(2/q) = —1. Tt follows that 27 = —1 (mod ¢), and therefore 2 cannot have
order p modulo ¢q. The order of 2 being neither 1, 2, (22 = 1 (mod ¢) implies
that ¢ | 3, which is an impossibility) nor p, we are forced to conclude that the
order of 2 modulo ¢ is 2p. This makes 2 a primitive root of q.

We now deal with the case p = 3 (mod 4). This time, (—1)?~Y/22 = —2 and

(=2)P = (-2/q) = (-1/¢)(2/q) (mod g).

Because ¢ = 7 (mod 8), Corollary 9.2.1 asserts that (—1/q) = —1, whereas once
again we have (2/q) = 1. This leads to the congruence (—2)? = —1 (mod q).
From here on, the argument duplicates that of the last paragraph. O

Theorem 9.2.7. There are infinitely many primes of the form 8k — 1.

Proof. As usual, suppose that there are only a finite number of such primes.
Let these be pi1, ps,...,p, and consider the integer

N = (4pipa---pn)® — 2.

There exists at least one odd prime divisor p of N, so that

(41?11?2 o 'pn)2 =2 (mod P)

or (2/p) = 1. In view of Theorem 9.2.5, p = +1 (mod 8). If all the odd prime
divisors of N were of the form 8k + 1, then N would be of the form 8a + 1; this
is clearly impossible, because N is of the form 16a — 2. Thus, N must have a
prime divisor ¢ of the form 8k — 1. But ¢ | N, and ¢ | (4p1p2 - - pn)? leads to
the contradiction that ¢ | 2. O

Lemma 9.2.1: If p is an odd prime and a an odd integer, with ged(a, p) = 1,
then 1)/
(afp) = (~1) = e
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Proof. Consider the set of integers

S = {a,2a,3a,...

()

Divide each of these multiples of a by p to obtain

ka = qkp—i-tk
Then ka/p = qi + tx/p, so that [ka/p] = qx. Thus, for 1 <k < (p—1)/2, we

may write ka in the form

ka = [@} D+ tg.
p

If the remainder ¢, < p/2, then it is one of the integers rq, . ..
hand, if ¢, > p/2, then it is one of the integers sq,. ..

1<t,<p-—1.

(2)

, T'm; on the other
, Sn-

Taking the sum of the (p — 1)/2 equations in equation (2), we get the

relation
(p—1)/2

ka =
k=1

(p—1)/2

2.

k=1

Pm}mzrﬁzsk (3)

It was learned in proving Gauss’s lemma that the (p — 1)/2 numbers

T1y...

are just a rearrangement of the integers 1,2, ...,

(p— sk) :pn+2rk —Zsk.
k=1 k=1

1

(p—1)/2

k=1 k=1

k= ZTk—F

7Tm

n

P—51,-..,P— Sn

(p —1)/2. Hence

Subtracting equation (4) from equation (3) gives

H

(p—1)/2

=

??‘

a—l

Let us use the fact that p =1

congruence modulo 2:

(p—1)/2
0- Z k=
k=1
or
n =

(p—1)/2

’B

ka

p

2.

k=1

(5)

|

]—n ‘l'QZSk

(mod 2) and translate this last equation into a

l- @] —n | (mod 2)
= LD
(p—1)/2 1
k
{_a (mod 2).
=1 LD

The rest follows from Gauss’s lemma; for,

(a/p) =

(=D)" =

(—1)Z" ka/p]
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9.3 Quadratic Reciprocity

Theorem 9.3.1 (Quadratic Reciprocity Law). If p and q are distinct odd

primes, then
p—1g—1

(p/a)(g/p)=(-1) = =.

Proof. Consider the rectangle in the xy coordinate plane whose vertices are
(0,0), (p/2,0), (0,q/2), and (p/2,q/2). Let R denote the region within this
rectangle, not including any of the bounding lines. The general plan of attack
is to count the number of lattice points (that is, the points whose coordinates
are integers) inside R in two different ways. Because p and ¢ are both odd,
the lattice points in R consist of all points (n,m), where 1 <n < (p—1)/2
and 1 <m < (¢ —1)/2; clearly, the number of such points is
p—1 ¢-1

2 2

Now the diagonal D from (0,0) to (p/2, ¢/2) has the equation y = (¢/p)z,
or equivalently, py = qz. Because ged(p,q) = 1, none of the lattice points
inside R will lie on D For p must divide the x coordinate of any lattice point
on the line py = gx, and ¢ must divide its y coordinate; there are no such
points in R. Suppose that 7} denotes the portion of R that is below the
diagonal D, and T5 the portion above. By what we have just seen, it suffices
to count the lattice points inside each of these triangles.

The number of integers in the interval 0 < y < kq/p is equal to [kq/p].
Thus, for 1 < k < (p — 1)/2, there are precisely [kq/p] lattice points in T}
directly above the point (k,0) and below D; in other words, lying on the
vertical line segment from (k,0) to (k, kq/p). It follows that the total number
of lattice points contained in 77 is

(pzli/Q |:@:|
D .

118



Number Theory - Quadratic Reciprocity

(0.4/2) (p/2.9/2)
0,f) ® I D
[ ]
o (k,kq/p)
[ ]
o o o T
® O o o ® 6 6 6 o o o o o
o O ® 6 6 6 o o o o o o o
0o | (k.0) w/2.0)

A similar calculation, with the roles of p and ¢ interchanged, shows that the
number of lattice points within 75 is

(¢=1)/2 .
> (4]
= Ld
This accounts for all of the lattice points inside R, so that
(p—1)/2 (¢-1)/2 .
p—1 g-1_" l@%qz l@]
2 2 = LP = L4

Finally, by Gauss’s lemma,

(p—1)/2

(g—1)/2.
(p/q)(q/p) = (=1)Xs= bp/dl (1) Ea T [ka/]
= (-1 S p Al S ka2

p—1g—1

(-1) =z 7. O

Corollary 9.3.1. If p and q are distinct odd primes, then

1 ifp=1(mod4) org=1 (mod 4)

(p/a)(a/p) = {_1 if p=q=3 (mod 4).

Proof. The number (p —1)/2- (¢ — 1)/2 is even if and only if at least one of
the integers p and ¢ is of the form 4k + 1; if both are of the form 4k + 3, then
the product (p —1)/2- (¢ —1)/2 is odd. O
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Corollary 9.3.2. If p and q are distinct odd primes, then

) (g/p) ifp=1(mod4) orqg=1 (mod4)
i) = {—(q/p) if p=gq=3 (mod 4).

Example 1. Apply the preceding results to the Legendre symbol (29/53).

Theorem 9.3.2. If p # 3 is an odd prime, then

B 1 if p=+1 (mod 12)
(3/p) = {_1 if p = =£5 (mod 12).

Proof. Because 3 =3 (mod 4), the preceding corollary implies that

(p/3) ifp=1 (mod 4)

(3/p) = —(p/3) if p=3 (mod 4).

Now p =1 (mod 3) or p =2 (mod 3). By Theorems 9.2.1 and 9.2.5,

B 1 ifp=1 (mod 3)
(p/3)—{_1 if p=2 (mod 3),

the implication of which is that (3/p) = 1 if and only if
p=1 (mod 4) and p=1 (mod 3)

or
p =3 (mod 4) and p =2 (mod 3).

(1)

(2)

The restrictions in the congruencies in equation (1) are equivalent to requiring
that p =1 (mod 12) whereas those congruencies in equation (2) are equivalent

top=11=—1 (mod 12).
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Example 2. Solve the quadratic congruence

2* =196 (mod 1357).

Example 3. If F,, = 2%" 41, n > 1, is a prime, then 2 is not a primitive root
of F,. Show that the integer 3 serves as a primitive root of any prime of this
type.

121



Number Theory - Quadratic Reciprocity

Example 4. Establish that 7 is a primitive root of any prime of the form
p=21"4+1
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9.4 Quadratic Congruences with Composite Mod-
uli

Theorem 9.4.1. If p is an odd prime and gcd(a,p) = 1, then the congruence
2* = a (mod p") n>1

has a solution if and only if (a/p) = 1.

Proof. If 22 = a (mod p™) has a solution, then so does z?

fact, the same solution—whence (a/p) = 1.

For the converse, suppose that (a/p) = 1. We argue that 22 = a (mod p")
is solvable by inducting on n. If n = 1, there is really nothing to prove; indeed,
(a/p) = 1 is just another way of saying that 2? = a (mod p) can be solved.
Assume that the result holds for n = k > 1, so that 2? = a (mod p*) admits
a solution xy. Then

= a (mod p)—in

x2 = a+ bp”

for an appropriate choice of b. In passing from k to k£ + 1, we shall use zy and
b to write down explicitly a solution to the congruence 2 = a (mod p**!).
Toward this end, we first solve the linear congruence

2z0y = —b (mod p)

obtaining a unique solution y, modulo p (this is possible because ged (229, p) =
1). Next, consider the integer

T1 = 7o + Yop".

Upon squaring this integer, we get
(2o + yop")? = @ + 2zoyop” + yop™*
= a+ (b+ 2xoyo)p" + yop™"
But p | (b+ 2x0yo), from which it follows that

x% = 1(zo + yopk)2 = a (mod pkH).

Thus, the congruence 2 = a (mod p™) has a solution for n = k + 1 and, by
induction, for all positive integers n. O
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Example 1. Find a solution of the quadratic congruence

2 = 23 (mod 7%).

Theorem 9.4.2. Let a be an odd integer. Then we have the following:

(a) 2 = a (mod 2) always has a solution.
(b) 2% = a (mod 4) has a solution if and only if a =1 (mod 4).
(c) 22 =a (mod 2"), for n > 3, has a solution if and only if a = 1 (mod 8).

Proof. The first assertion is obvious. The second depends on the observation
that the square of any odd integer is congruent to 1 modulo 4. Consequently,
2? = a (mod 4) can be solved only when a is of the form 4k + 1; in this event,
there are two solutions modulo 4, namely, x =1 and x = 3.

Now consider the case in which n > 3. Because the square of any odd
integer is congruent to 1 modulo 8, we see that for the congruence z? =
a (mod 2") to be solvable a must be of the form 8k + 1. To go the other way,
let us suppose that @ = 1 (mod 8) and proceed by induction on the exponent
n. When n = 3, the congruence z? = a (mod 2") is certainly solvable; indeed,
each of the integers 1, 3, 5, 7 satisfies z2 = 1 (mod 8). Fix a value of n > 3 and
assume, for the induction hypothesis, that the congruence x*> = a (mod 2")

admits a solution zy. Then there exists an integer b for which

x8 = a+ b2".
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Because a is odd, so is the integer x¢. It is therefore possible to find a unique
solution y of the linear congruence

zoy = —b (mod 2).
We argue that the integer
Ty = T + Y2
satisfies the congruence z? = a (mod 2"*!). Squaring yields

(zo + 402" ")? = 2 + zoyo2" + y52°" >
=a+ (b+ 2oy0)2" + y222" 2.

By the way 1y, was chosen, 2 | (b+ xoyo); hence,
v = (20 + 12" 1)? = a (mod 2"1)

(we also use the fact that 2n —2 = n+ 1+ (n —3) > n+1). Thus, the

congruence z2 = a (mod 2"*1) is solvable, completing the induction step and

the proof. 0

Theorem 9.4.3. Let n = Qkoplfl .- pkr be the prime factorization of n > 1
and let ged(a,n) = 1. Then x*> = a (mod n) is solvable if and only if

(a) (a/p;)) =1 fori=1,2,...,r;
(b) a=1 (mod 4) if4|n, but 84n; a=1 (mod 8) if 8| n.

Example 2. Find the solutions of 2? + 52+ 6 = 0 (mod 5%) and 2? + x4+ 3 =
0 (mod 3%).
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Example 3. Prove that if the congruence 22 = a (mod 2"), where a is odd

and n > 3, has a solution, then it has exactly four incongruent solutions.
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Chapter 11

Numbers of Special Form

11.2 Perfect Numbers

Definition 11.2.1. A positive integer n is said to be perfect if n is equal to
the sum of all its positive divisors, excluding n itself.

Example 1. Prove that the integer n = 21°(2!' — 1) is not a perfect number
by showing that o(n) # 2n.
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Example 2. If n is a perfect number, prove that

D 1/d=2.

dln

Theorem 11.2.1. If 2% — 1 is prime (k > 1), then n = 2¥71(2% — 1) is perfect
and every even perfect number is of this form.

Proof. Let 28 —1 = p, a prime, and consider the integer n = 2¥~!p. Inasmuch
as ged(2871, p) = 1, the multiplicativity of o (as well as Theorem 6.1.2) entails
that

making n a perfect number.

For the converse, assume that n is an even perfect number. We may write
n as n = 2¥"'m, where m is an odd integer and £ > 2. It follows from
ged(2F-1,m) = 1 that

o(n) =c(2""'m) = ¢(2" Vo (m) = (2" — Do(m),
whereas the requirement for a number to be perfect gives
o(n) =2n = 2km.
Together, these relations yield
2km = (28 — 1)a(m),

which is simply to say that (28 — 1) | 2m. But 2¥ — 1 and 2* are relatively
prime, whence (2 —1) | m; say, m = (28 —1)M. Now the result of substituting
this value of m into the last-displayed equation and canceling 2 — 1 is that
o(m) = 2*M. Because m and M are both divisors of m (with M < m), we

have
"M = o(m) >m+ M =2"M,

leading to o(m) = m+ M. The implication of this equality is that m has only
two positive divisors, to wit, M and m itself. It must be that m is prime and
M = 1; in other words, m = (2¥ — 1)M = 2% — 1 is a prime number. O
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Lemma 11.2.1: If a* — 1 is prime (a > 0, k > 2), then a = 2 and k is also
prime.
Proof. 1t can be verified without difficulty that
a"—1=(a— 1) " +ad"2+- +a+1)
where, in the present setting,

P rd o fa+1>a+1>1.

Because by hypothesis a* — 1 is prime, the other factor must be 1; that is,
a—1=1so that a = 2.

If k& were composite, then we could write £ = rs, with 1 < r and 1 < s.
Thus,

a" —1=(a")" -1
_ (CLT—]_)(CLT(S_I)+GT(S_2)+"'+CLT+1)

and each factor on the right is plainly greater than 1. But this violates the
primality of a* — 1, so that by contradiction & must be prime. O]

Theorem 11.2.2. An even perfect number n ends in the digit 6 or 8; equiva-
lently, either n =6 (mod 10) or n =8 (mod 10).

Proof. Being an even perfect number, n may be represented as n = 2¥~1(2F —
1), where 2% — 1 is a prime. According to the last lemma, the exponent k must
also be prime. If k = 2, then n = 6, and the asserted result holds. We may
therefore confine our attention to the case k£ > 2. The proof falls into two
parts, according as k takes the form 4m + 1 or 4m + 3.

If £ is of the form 4m + 1, then

n = 24m<24m+1 o 1)
— 28m+1 . 24m =92. 162m - 16m

A straightforward induction argument will make it clear that 16" = 6 (mod 10)
for any positive integer t. Utilizing this congruence, we get

n=2-6—6=6 (mod 10).
Now, in the case in which k = 4m + 3,

n = 24m+2(24m+3 _ 1)

— 28m+5 o 24m+2 — 2 . 162m+1 o 4 . ].6m
Falling back on the fact that 16" = 6 (mod 10), we see that
n=2-6—4-6=-12=28 (mod 10).

Consequently, every even perfect number has a last digit equal to 6 or to 8. [
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Example 3. If o(n) = kn, where k > 3, then the positive integer n is called
a k-perfect number (sometimes multiply perfect). Establish the following as-
sertions concerning k-perfect numbers:

(a) 523776 = 2° - 3- 11 - 31 is 3-perfect.
30240 = 2° - 3% . 5. 7 is 4-perfect.
14182439040 = 27 -3*.5.7-11%-17- 19 is 5-perfect.

(b) If n is a 3-perfect number and 3 { n, then 3n is 4-perfect.
(c) If n is a 5-perfect number and 5 { n, then 5n is 6-perfect.

(d) If 3n is a 4k-perfect number and 3 { n, then n is 3k-perfect.

For each k, it is conjectured that there are only finitely many k-perfect num-
bers. The largest one discovered has 558 digits and is 9-perfect.

130



Number Theory - Mersenne Primes and Amicable Numbers

11.3 Mersenne Primes and Amicable Numbers

Remark 1. Numbers of the form
M, =2"—1 n>1

are called Mersenne numbers. Those Mersenne numbers that happen to be
prime are said to be Mersenne primes.

Theorem 11.3.1. If p and ¢ = 2p + 1 are primes, then either q | M, or
q | M, + 2, but not both.

Proof. With reference to Fermat’s theorem, we know that
2771 —1 =0 (mod q)
and, factoring the left-hand side, that

(2(51*1)/2 _ 1)(2(1171)/2 +1)= (2P —1)(2" + 1)
=0 (mod q).

What amounts to the same thing:
M, (M, +2) =0 (mod q).

The stated conclusion now follows directly from Theorem 3.1.1. We cannot
have both ¢ | M, and ¢ | M, + 2, for then ¢ | 2, which is impossible. ]

Theorem 11.3.2. If ¢ = 2n + 1 is prime, then we must have the following:
(a) q| M,, provided that ¢ =1 (mod 8) or ¢ =7 (mod 8).
(b) q| M, + 2, provided that ¢ =3 (mod 8) or ¢ =5 (mod 8).
Proof. To say that ¢ | M, is equivalent to asserting that
2(4=D/2 = 9" =1 (mod q).

In terms of the Legendre symbol, the latter condition becomes the requirement
that (2/¢q) = 1. But according to Theorem 9.2.5, (2/¢q) = 1 when we have
g =1 (mod 8) or ¢ = 7 (mod 8). The proof of (b) proceeds along similar
lines. O

Corollary 11.3.1. Ifp and ¢ = 2p+1 are both odd primes, with p = 3 (mod 4),
then q | M,.
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Proof. An odd prime p is either of the form 4k+1 or 4k+3. If p = 4k+3, then
q = 8k + 7 and Theorem 11.3.2 yields ¢ | M,. In the case in which p = 4k + 1,
q = 8k + 3 so that ¢ 1 M,,. ]

Theorem 11.3.3. If p is an odd prime, then any prime divisor of M, is of
the form 2kp + 1.

Proof. Let ¢ be any prime divisor of M, so that 2 = 1 (mod ¢). If 2 has
order k modulo ¢ (that is, if k£ is the smallest positive integer that satisfies
2% =1 (mod q)), then Theorem 8.1.1 tells us that k | p. The case k = 1 cannot
arise; for this would imply that ¢ | 1, an impossible situation. Therefore,
because both k | p and k > 1, the primality of p forces k = p.

In compliance with Fermat’s theorem, we have 297! = 1 (mod ¢), and
therefore, thanks to Theorem 8.1.1 again, k | ¢ — 1. Knowing that k = p, the
net result is p | ¢ — 1. To be definite, let us put ¢ — 1 = pt; then ¢ = pt + 1.
The proof is completed by noting that if ¢ were an odd integer, then ¢ would
be even and a contradiction occurs. Hence, we must have ¢ = 2kp+ 1 for some
choice of k, which gives ¢ the required form. O

Theorem 11.3.4. If p is an odd prime, then any prime divisor q of M, is of
the form ¢ = £1 (mod 8).

Proof. Suppose that ¢ is a prime divisor of M,, so that 2? = 1 (mod gq).
According to Theorem 11.3.3, ¢ is of the form ¢ = 2kp + 1 for some integer
k. Thus, using Euler’s criterion, (2/q) = 2@ 9/2 = 1 (mod ¢). whence
(2/q) = 1. Theorem 9.2.5 can now be brought into play again to conclude
that ¢ = +1 (mod 8). O

Example 1. Prove that the Mersenne number M3 is a prime; hence, the
integer n = 2'2(2'3 — 1) is perfect.
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Example 2. Prove that the Mersenne number Msg is composite.

Theorem 11.3.5 (Euler). If n is an odd perfect number, then
n=pypy® - pr
where the p;’s are distinct odd primes and p; = k; =1 (mod 4).
Proof. Let n = plflplz€2 ---pk be the prime factorization of n. Because n is
perfect, we can write

2n = o(n) = o(pi)o(ps’) - o(py).
Being an odd integer, either n = 1 (mod 4) or n = 3 (mod 4); in any event,
2n = 2 (mod 4). Thus, o(n) = 2n is divisible by 2, but not by 4. The
implication is that one of the o(p!"), say o(p'"), must be an even integer (but
not divisible by 4), and all the remaining o (pfi)’s are odd integers.

For a given p;, there are two cases to be considered: p; = 1 (mod 4) and
pi =3 (mod 4). If p, =3 = —1 (mod 4), we would have
o(@f) =1+pi+pi+-+pf

=1+ (-1 +(=1)2?+---+ (=1)" (mod 4)

~ |0 (mod 4) if k; is odd

~ |1 (mod 4) if k; is even.

Because o(pf') = 2 (mod 4), this tells us that p; # 3 (mod 4) or, to put it
affirmatively, p; = 1 (mod 4). Furthermore, the congruence o (pt) = 0 (mod 4)
signifies that 4 divides o(pt"), which is not possible. The conclusion: if p; =
3 (mod 4), where i = 2,..., 7, then its exponent k; is an even integer.

Should it happen that p; = 1 (mod 4)—which is certainly true for i = 1—
then

o(py) =1+pi+p;+- 41"
=1+1"+ 12+ + 1% (mod 4)
=k;+1 (mod 4).

133



Number Theory - Mersenne Primes and Amicable Numbers

The condition o(pf*) = 2 (mod 4) forces k; = 1 (mod 4). For the other values
of i, we know that o(pf) = 1 or 3 (mod 4), and therefore k; = 0 or 2 (mod 4);
in any case, k; is an even integer. The crucial point is that, regardless of
whether p; = 1 (mod 4) or p; = 3 (mod 4), k; is always even for i # 1. O

Corollary 11.3.2. If n is an odd perfect number, then n is of the form

n = p*m?

where p is a prime, p ¥ m, and p = k = 1 (mod 4); in particular, n =
1 (mod 4).

Proof. The last assertion is the only non-obvious one. Because p = 1 (mod 4),
we have p* = 1 (mod 4). Notice that m must be odd; hence, m = 1 or
3 (mod 4), and therefore upon squaring, m? = 1 (mod 4). It follows that

n=p'm?*=1-1=1 (mod 4). O

Example 3. If n is an odd perfect number, prove that n has at least three
distinct prime factors.
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11.4 Fermat Numbers

Definition 11.4.1. A Fermat number is an integer of the form

F,=2"+1 n>0.
If F, is prime, it is said to be a Fermat prime.
Theorem 11.4.1. The Fermat number Fy is divisible by 641.
Proof. We begin by putting a = 27 and b = 5, so that
1+ab=1+2"-5=641.
It is easily seen that
I+ab—0b" =1+ (a—b)3=1+3b=2"
But this implies that

F=2"+1=2"41
=2%" +1
=(1+ab—b"a*+1
= (1 +ab)a* + (1 — a*b*)
= (14 ab)[a* + (1 — ab)(1 + a*b?)],

which gives 641 | F},. O

Theorem 11.4.2. For Fermat numbers F, and F,,, where m > n > 0,
ged(F,, F) = 1.

Proof. Put d = ged(F,,, F,). Because Fermat numbers are odd integers, d
must be odd. If we set x = 22" and k = 2™ ", then

F,—2 (222" -1

E, 2241
k
-1
:x :l‘k_l—l‘k_Q_’_..._l
r+1
whence F, | (F,, —2). From d | F},, it follows that d | (F},, — 2). Now use the
fact that d | F,,, to obtain d | 2. But d is an odd integer, and so d = 1. O

Theorem 11.4.3 (Pepin’s test). Forn > 1, the Fermat number F, = 22" + 1
s prime if and only if
3Fn=1/2 = _1 (mod F,).
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Proof. First let us assume that
3Fn=1/2 = _1 (mod F,).
Upon squaring both sides, we get
31 =1 (mod F),).
The same congruence holds for any prime p that divides Fj,:
371 =1 (mod p).

Now let k£ be the order of 3 modulo p. Theorem 8.1.1 indicates that k | F, — 1,
or in other words, that k | 22"; therefore k must be a power of 2.

It is not possible that k = 2" for any r < 2™ — 1. If this were so, repeated
squaring of the congruence 3*¥ =1 (mod p) would yield

327 = (mod p)
or, what is the same thing,
3F=1/2 = 1 (mod p).

We would then arrive at 1 = —1 (mod p), resulting in p = 2, which is a
contradiction. Thus the only possibility open to us is that

k=22 =F,—1.

Fermat’s theorem tells us that £ < p — 1, which means, in turn, that F, =
k+1 < p. Because p | F,, we also have p < F,,. Together these inequalities
mean that F,, = p, so that F}, is a prime.

On the other hand, suppose that F,, n > 1, is prime. The Quadratic
Reciprocity Law gives

(3/Fn) = (Fa/3) = (2/3) = —1

when we use the fact that F,, = (=1)>" +1 = 2 (mod 3). Applying Euler’s
Criterion, we end up with

3E=/2 = _1 (mod F,). O

Theorem 11.4.4. Any prime divisor p of the Fermat number F,, = 22" 4+ 1,
where n > 2, is of the form p =k - 2"*% 4+ 1.
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Proof. For a prime divisor p of F},,
2%" = —1 (mod p)

which is to say, upon squaring, that

27L+1

2°" =1 (mod p).

If h is the order of 2 modulo p, this congruence tells us that
h | 2",
We cannot have h = 2" where 1 < r < n, for this would lead to
22" =1 (mod p)

and, in turn, to the contradiction that p = 2. This lets us conclude that
h = 2" Because the order of 2 modulo p divides ¢(p) = p — 1, we may
further conclude that 2"*! | p— 1. The point is that for n > 2, p = 1 (mod 8),
and therefore, by Theorem 9.2.5, the Legendre symbol (2/p) = 1. Using
Euler’s criterion, we immediately pass to

2P=V/2 = (2/p) = 1 (mod p).

An appeal to Theorem 8.1.1 finishes the proof. It asserts that h | (p — 1)/2,
or equivalently, 2" | (p — 1)/2. This forces 2"*% | p — 1, and we obtain
p=Fk-2""2 4+ 1 for some integer k. O

Example 1. Composite integers n for which n | 2" —2 are called pseudoprimes.
Show that every Fermat number F), is either prime or a pseudoprime.
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Example 2. For n > 2, show that the last digit of the Fermat number F,, =
22" 4 11is 7.

Example 3. Establish that 22* — 1 has at least n distinct prime divisors.
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