

Real Analysis Homework #1

Replace this text with your name

Due: Replace this text with a due date

Exercise (1.2.2). Show that there is no rational number r satisfying $2^r = 3$.

Solution: Replace this text with your solution. \square

Exercise (1.2.7). Given a function f and a subset A of its domain, let $f(A)$ represent the range of f over the set A ; that is, $f(A) = \{f(x) : x \in A\}$.

- (a) Let $f(x) = x^2$. if $A = [0, 2]$ (the closed interval $\{x \in \mathbf{R} : 0 \leq x \leq 2\}$) and $B = [1, 4]$, find $f(A)$ and $f(B)$. Does $f(A \cap B) = f(A) \cap f(B)$ in this case? Does $f(A \cup B) = f(A) \cup f(B)$?
- (b) Find two sets A and B for which $f(A \cap B) \neq f(A) \cap f(B)$.
- (c) Show that, for an arbitrary function $g : \mathbf{R} \rightarrow \mathbf{R}$, it is always true that $g(A \cap B) \subseteq g(A) \cap g(B)$ for all sets $A, B \subseteq \mathbf{R}$.
- (d) Form and prove a conjecture about the relationship between $g(A \cup B)$ and $g(A) \cup g(B)$ for an arbitrary function g .

Solution: Replace this text with your solution. \square

Exercise (1.3.5). As in Example 1.3.4, let $A \subseteq \mathbf{R}$ be nonempty and bounded above, and let $c \in \mathbf{R}$. This time define the set $cA = \{ca : a \in A\}$.

- (a) If $c \geq 0$, show that $\sup(cA) = c \sup A$.
- (b) Postulate a similar type of statement for $\sup(cA)$ for the case $c < 0$.

Solution: Replace this text with your solution. □

Exercise (1.3.7). Prove that if a is an upper bound for A , and if a is also an element of A , then it must be that $a = \sup A$.

Solution: Replace this text with your solution. □

Exercise (1.4.2). Let $A \subseteq \mathbf{R}$ be nonempty and bounded above, and let $s \in \mathbf{R}$ have the property that for all $n \in \mathbf{N}$, $s + \frac{1}{n}$ is an upper bound for A and $s - \frac{1}{n}$ is not an upper bound for A . Show $s = \sup A$.

Solution: Replace this text with your solution. □

Exercise (1.4.3). Prove that $\bigcap_{n=1}^{\infty} (0, 1/n) = \emptyset$. Notice that this demonstrates that the intervals in the Nested Interval Property must be closed for the conclusion of the theorem to hold.

Solution: Replace this text with your solution. □

Exercise (1.5.5). (a) Why is $A \sim A$ for every set A ?

(b) Given sets A and B , explain why $A \sim B$ is equivalent to asserting $B \sim A$.

(c) For three sets A , B , and C , show that $A \sim B$ and $B \sim C$ implies $A \sim C$. These three properties are what is meant by saying that \sim is an *equivalence relation*.

Solution: Replace this text with your solution. \square

Exercise (1.5.9). A real number $x \in \mathbf{R}$ is called *algebraic* if there exist integers $a_0, a_1, a_2, \dots, a_n \in \mathbf{Z}$, not all zero, such that

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0.$$

Said another way, a real number is algebraic if it is the root of a polynomial with integer coefficients. Real numbers that are not algebraic are called *transcendental* numbers. The final question posed here is closely related to the question of whether or not transcendental numbers exist.

(a) Show that $\sqrt{2}$, $\sqrt[3]{2}$, and $\sqrt{3} + \sqrt{2}$ are algebraic.

(b) Fix $n \in \mathbf{N}$, and let A_n be the algebraic numbers obtained as roots of polynomials with integer coefficients that have degree n . Using the fact that every polynomial has a finite number of roots, show that A_n is countable.

(c) Now argue that the set of all algebraic numbers is countable. What may we conclude about the set of transcendental numbers?

Solution: Replace this text with your solution. \square

Exercise (1.6.1). Show that $(0, 1)$ is uncountable if and only if \mathbf{R} is uncountable.

Solution: Replace this text with your solution. \square

Exercise (1.6.9). Using the various tools and techniques developed in the last two sections, give a compelling argument showing that $P(\mathbf{N}) \sim \mathbf{R}$.

Solution: Replace this text with your solution. \square