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Chapter 1

The Real Numbers

1.1 Discussion: The Irrationality of /2

Theorem 1.1.1. There is no rational number whose square is 2.

Proof. A rational number is any number that can be expressed in the form
p/q, where p and ¢ are integers. Assume, for contradiction, that there exist

integers p and ¢ satisfying
2
p
-] =2 (1)
<Q)

We may also assume that p and ¢ have no common factor, because, if they had
one, we could simply cancel it out and rewrite the fraction in lowest terms.
Equation (1) implies

p? = 2¢°. (2)
From this, we can see that p? is even, and hence p must be even as well, which
allows us to write p = 2r where r is also an integer. Substituting 2r for p in
equation (2) yields

(2r)* = 2¢*
2

2T2:q,

implying that ¢? is even. However, this also implies that ¢ is even, which
contradicts the assumption that p and ¢ have no common factor. O
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Example 1. (a) Prove that v/3 is irrational. Does a similar argument work
to show /6 is irrational?

(b) Where does the proof of Theorem 1.1.1 break down if we try to use it to
prove V/4 is irrational?

@ASSUM)«E« cov&m&zc}ﬁow)m exigh 'W\Jregw 09 s.t. (%)3\:3.
A\SO agare ¢4 hae 10 Common (Fo\c«\‘s\r
Thes \71: gf\
':7‘)9‘ 5 a VnuHii?le ogg = Q s o VﬂuH.l?le of 3

(3\ (p-NplptD=p*-P ) 50 3|p* = 3p>= 3] 93’(?3'F>:F>
SO We  Con lzJ‘('[+€ ?: 3r ’Q‘T Solme iln‘l“j@f‘ r.
= @r)"\:“ﬁ»;\
3,{_;\-_1:; :7%:1 5 a Vnqui?le_ o‘gg:-?(),/ s o Wuljri?|e of 3
Convadichion.
IV\ ﬂ’\& Cofe EFK’ ‘E e 139’{— ?&;@ZD‘ T—’?fP .‘5 o\hql"][l‘F{Q_ o‘g 2@.,&3
= g is o waltipl of ¢
Aho)d/Q_( Coy{\’fa\o\‘l(.’hbh,
@Iv\ M Case Wwe 52}( ‘H«ﬂ' g{g\ % o Vv\u/‘{tp[e b‘(: Lj")[oof{‘ Yt dbesuF mean
gis a wHiP\L of 4.

Remark 1. We call the natural numbers

N =1{1,2,3,4,5,...}.
The natural numbers extend to the integers
Z={...,-3,-2,—-1,0,1,2,3,...},

which we extend again to the rational numbers

Q= {all fractions b where p and ¢ are integers with ¢ # 0} .
q

By filling the gaps in Q, we obtain the real numbers R.
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1.2 Some Preliminaries

Remark 1. Intuitively speaking, a set is any collection of objects. These objects
are referred to as the elements of the set.

Given a set A, we write x € A if x is an element of A. If x is not an element of
A, then we write x ¢ A. Given two sets A and B, the union is written AU B
and is defined by asserting that

x € AU B provided x € Aor z € B.
The intersection A N B is the set defined by the rule
xr € AN B provided z € A and B.

Example 1. (i) There are many acceptable ways to assert the contents of
a set. In the previous section, the set of natural numbers was defined by
listing the elements: N = {1,2,3,...}.

(ii) Sets can also be described in words. For instance, we can define the set
E to be the collection of even natural numbers.

(iii) Sometimes it is more efficient to provide a kind of rule or algorithm for
determining the elements of a set. As an example, let

S={reQ:r* <2}

Read aloud, the definition of S says, “Let S be the set of all rational
numbers whose squares are less than 2.” It follows that 1 € S, 4/3 € S,
but 3/2 ¢ S because 9/4 > 2.

Example 2. Find NUE, NN E, NNS,and ENS.
NUE=N, NNE=E, Nas={F,e0S=¢

Remark 2. The inclusion relationship A C B or B D A is used to indicate
that every element of A is also an element of B. In this case, we say A is a
subset of B or B contains A. To assert that A = B means that A € B and
B C A.

Example 3. Let
A =N=1{1,23,...}

Ay = {2,3,4,.. .,
A ={3,4,5,.. .},
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and, in general, for each n € N, define the set
A, ={n,n+1,n+2...}
The result is a nested chain of sets
A1 DA D A3 DAL D -1
where each successive set is a subset of all the previous ones. Notationally,

GA”’ UATL7 or AjUA;UA3U---
n=1

neN

are all equivalent ways to indicate the set whose elements consist of any element
that appears in at least one particular A,. The notion of intersection has the
same kind of natural extension to infinite collections of sets. What are

GA” and ﬁAn
n=1 n=1

in this case?

(e )

}JAM:A'

[

O An= B3 becuure onsise we D Aw 2w e A Y bt i ¢ A
=1 Wl

Remark 3. Given A C R, the complement of A, written A¢, refers to the set
of all elements of R not in A. Thus, for A C R,

A={xeR:x ¢ A}
Example 4 (De Morgan’s Laws). Let A and B be subsets of R.

(a) If x € (AN B)¢, explain why x € A°U B°. This shows that (AN B)¢ C
AcU Be.

(b) Prove the reverse inclusion (AN B)¢ 2O A°U B¢, and conclude that (AN
B)¢ = A°U B-.

(c) Show (AU B)¢ = A°N B¢ by demonstrating inclusion both ways.
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D xe (ANB) = x¢ (ADP) = x ¢ A oo x48
= XeA® or xel”

= XeA' VRS
@ Xe AU = xe A or xe°
= X¢A or Xé%

= x ¢ (A0B) = xe (AND)

O To show (AUR) € ACOBY [ot xe (AUBY = x ¢ (AUB)
2 x¢A ad x¢B

= xeAC owh xeBC
c = xe AN B°

To show A OB C (A\)@ ) [ef xe ASDDBE = x e AC and xe B

> xdA oud xé¢R

= x4 (AUB)

= xe(AUDS
Definition 1.2.1. Given two sets A and B, a function from A to B is a rule
or mapping that takes each element x € A and associates with it a single
element of B. In this case, we write f : A — B. Given an element x € A, the
expression f(z) is used to represent the element of B associated with = by f.
The set A is called the domain of f. The range of f is not necessarily equal to
B but refers to the subset of B given by {y € B :y = f(x) for some z € A}.

Example 5. In 1829, Dirichlet proposed the unruly function
(z) 1 ifzeqQ
€Tr) =
g 0 ifrdQ.
What are the domain and range of g?

Aomalvx &3 \s YR ) roage 0‘? 9 s ®

Example 6 (Triangle Inequality). The absolute value function is so important
that it merits the special notation |z| in place of the usual f(z) or g(z). It is
defined for every real number via the piecewise definition

x ifz>0
2| =

—x ifx <.

With respect to multiplication and division, the absolute value function satis-
fies
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(i) |ab| = [al[b] and
(i) |a+ 0] < |a| + |0]
for all choices of a and b. Verify these properties.
(C> & a0 ondl 620 ) fles lob] = ab = (=] (b|
W& agd amh b¢0, Yo (o) =0b= () (-5)= [a[[b]
§ 0c0 ad b0 ) Fhen [abl=-0b= ()b = [alfb] ginilar for wdon w20 edl b
iﬂ) k020 an L;o)w ath>0 = |atbl = atb = (4 +[b]
.15§ aey ank beO )'ﬂm ath <0 = |otl| = -(at)=[0) +(-b)= |l 40|
X 0e0,b20) ad atb0) Han [athl = ath = - (o) ¢b = ~lal ¢]b] < Il b],
Similar for then az0 1640, and. 0 4b20
i 2o, b20)00d wtb20, Mo (attl= - (orb) = (-a) ~b = o] = Ib] <|al+ [b],
Similar &or then 220,b¢0, ol akb £0

Theorem 1.2.1. Two real numbers a and b are equal if and only if for every
real number € > 0 it follows that |a — b| < e.

Proof. 1f a = b, then |a — b| = 0, and so |a — b| < € no matter what ¢ > 0 is
chosen.

Conversely, if |a — b| < € for every € > 0, assume towards a contradiction that
a #b. Then |a — b| > 0, and so we can let

€0 = |a —bl.
However, then |a — b| < ¢y cannot be true, a contradiction. ]

Remark 4. Induction arguments are used in conjunction with the natural num-
bers N (or sometimes with the set NU{0}). The fundamental principle behind
induction is that if S is some subset of N with the property that

(i) S contains 1 and
(ii) whenever S contains a natural number n, it also contains n + 1,

then it must be that S = N.
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Example 7. Let 1 = 1, and for each n € N define
Top1 = (1/2)2, + 1.

Using this rule, we can compute xo = (1/2)(1) + 1 = 3/2, x3 = 7/4, and it is
immediately apparent how this leads to a definition of x,, for all n € N. The
sequence just defined appears at the outset to be increasing. Use induction to
prove this trend continues; that is, show

Tp S xn+1

for all values of n € N.

For wely %71 and =32 => X, 4% = | €S
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1.3 The Axiom of Completeness

Axiom of Completeness. Fuvery nonempty set of real numbers that is
bounded above has a least upper bound.

Definition 1.3.1. A set A C R is bounded above if there exists a number
b € R such that a < b for all @ € A. The number b is called an upper bound
for A.

Similarly, the set A is bounded below if there exists a lower bound [ € R
satisfying [ < a for every a € A.

Definition 1.3.2. A real number s is the least upper bound for a set A C R
if it meets the following two criteria:

(i) s is an upper bound for A;

(ii) if b is any upper bound for A, then s < b.

The least upper bound is also frequently called the supremum of the set A.
Although the notation s = lub A is sometimes used, we will always write
s = sup A for the least upper bound.

The greatest lower bound or infimum for A is defined in a similar way and is
denote by inf A.

Example 1. Let

N —
Wl

A:{%:nEN}:{l,
Find sup A and inf A.
Cleim sughA=|
(&) 125 ¥ well
@9 SU\WOS& b s an upger beundh. Thesy léA)go A

‘IV\X’L\:D )LtA M/\Zs [ \/\cmxer Xyo ?m/e,

Definition 1.3.3. A real number ay is a maximum of the set A if ag is an
element of A and ag > A for all a € A. Similarly, a number a; is a minimum
of Aif a; € A and a; < a for every a € A.
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Example 2. Consider the open interval

(0,2) ={zeR:0<z <2},

and the closed interval

0,2l ={r e R:0< 2 <2}

Find the maximum, minimum, supremum, and infimum of the two intervals.
mox (04) DNG i (0) DNE , sup (02) = 2y inf [0)3)=0
Mmoo 0 13= %) min [0/ L120) sup 0,837 2, nf 03120

Example 3. Consider again the set

S={reqQ:r* <2},

Is there a least upper bound in the rational numbers? What about in the real
numbers?

b:l)%)%)%)”' ode O\H U[?Pa.( !jDM.VlA\S
ADC = oL=Suu€S

0(9‘:3\ (Cm‘d‘ym/& Yis 7&’) = oL is l/\osg m*iow&

Example 4. Let A C R be nonempty and bounded above, and let ¢ € R.
Define the set ¢ + A by

c+A={c+a:a€ A}
Find sup(c+ A).

(C) Se Siiu?A = acs ¥V acA
= (402 (+S W acA

= (%S 1S an Ugper boqm& %or C+A
CLQ e b be an ugger bound. Ror C+A =D Cxa £h Y o eA

acb-c YaeA=Db-is ou %,r?zrlawmu for A
Dsth-C

= ct+S£b
Lemma 1.3.1: Assume s € R is an upper bound for a set A C R. Then,

s = sup A if and only if, for every choice of € > 0, there exists an element
a € A satisfying s — € < a.
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Proof. For the forward direction, we assume s = sup A and consider s — e,
where € > 0 has been arbitrarily chosen. Because s — ¢ < s, part (ii) of
Definition 1.3.2 implies that s — € is not an upper bound for A. If this is the
case, then there must be some element a € A for which s — € < a (because
otherwise s — € would be an upper bound).

Conversely, assume s is an upper bound with the property that no matter how
€ > 0 is chosen, s — € is no longer an upper bound for A. Notice that what this
implies is that if b is any number less than s, then b is not an upper bound.
(Just let € = s —b.) To prove that s = sup A, we must verify part (ii) of
Definition 1.3.2. Because we have just argued that any number smaller than s
cannot be an upper bound, it follows that if b is some other upper bound for
A, then s <b. [

10
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1.4 Consequences of Completeness

Theorem 1.4.1 (Nested Interval Property). For each n € N, assume we are
giwen a closed interval I, = [a,,b,] = {x € R : a, <z < b,}. Assume
also that each I, contains I, 1. Then, the resulting nested sequence of closed
intervals

LOoL2o2I3 21,2 -

has a nonempty intersection; that is (\,—, I, # 0.

Proof. In order to show that () _, I, is not empty, we are going to use the
Axiom of Completeness (AoC) to produce a single real number x satisfying
x € I, for every n € N. Now, AoC is a statement about bounded sets, and
the one we want to consider is the set

A={a,:neN}
of left-hand endpoints of the intervals.

A={a,:neN}

[ [ [ [ ] 1 1 ]
[ ]

al a2 a3 o .. an .. ... bn ... bS b2 bl

Because the intervals are nested, we see that every b,, serves as an upper bound
for A. Thus, we are justified in setting

x = sup A.

Now, consider a particular I,, = [a,, b,|. Because z is an upper bound for A,
we have a,, < x. The fact that each b, is an upper bound for A and that z is
the least upper bound implies x < b,,.

Altogether then, we have a,, < x < b,, which means x € I,, for every choice of
n € N. Hence, x € (), I,,, and the intersection is not empty. O

Example 1. Recall that I stands for the set of irrational numbers.
(a) Show that if a,b € Q, then ab and a + b are elements of Q as well.
(b) Show that if a € Q and t € I, then a +¢ € I and at € I as long as a # 0.

(c) Part (a) can be summarized by saying that Q is closed under addition and
multiplication. Is I closed under addition and multiplication? Given two
irrational numbers s and t, what can we say about s + ¢ and st?

11
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% Lok “:% )b:?CY for 01904629140,
Than ab:%—cx Sor Qc)i&éz = o\Lé(D\)

ol o th= _P_Aij_xﬁ— Lo P&«Lic)zcleZ:)qﬂae@.

@ Asume o+t € Q. Thew += ({'M()'-o\ €@ L:7 ). Condmdiction.
Assume of € @ The £= (ok) (Vo) e @ by (0. Confradiction.

O TE 5203w 272 Mo s+£=0€ Q T8 §=73 aud t= 202 Hon Se4=343 €T
TE 5203 ol £3-72 e st=-1 e Q. TX ¢=T3 and £33 Hon sE=TE €T

= L is l/lo'\ C(oSecb\ Mhb\ﬁr M@Jr{“‘bb\ or WM,')LIP{[C&’J(('OM.

Theorem 1.4.2 (Archimedean Property). (i) Given any number x € R,
there exists an n € N satisfying n > x.

(i) Given any real number y > 0, there exists an n € N satisfying 1/n < y.

Proof. Assume, for contradiction, that N is bounded above. By the Axiom of
Completeness (AoC), N should then have a least upper bound, and we can set
a = sup N. If we consider a — 1, then we no longer have an upper bound (see
Lemma 1.3.1), and therefore there exists an n € N satisfying o — 1 < n. But
this is equivalent to o < n + 1. Because n + 1 € N, we have a contradiction
to the fact that a is supposed to be an upper bound for N.

Part (ii) follows from (i) by letting x = 1/y. O

Theorem 1.4.3 (Density of Q in R). For every two real numbers a and b
with a < b, there exists a rational number r satisfying a < r < b.

Proof. A rational number is a quotient of integers, so we must produce m € Z
and n € N so that

m
o, 1
a<n< ()

The first step is to choose the denominator n large enough so that consecutive
increments of size 1/n are too close together to “step over” the interval (a, b).

4 3=
+ 3o
- 3w
+ 33

@]
e

12
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Using the Archimedean Property (Theorem 1.4.2), we may pick n € N large
enough so that

1
—<b-—a. 2
n< a (2)

Inequality (1) is equivalent to na < m < nb. With n already chosen, the idea
now is to choose m to be the smallest integer greater than na. In other words,

pick m € Z so that

(3) (4)
m—1<na<m.

Now, inequality (4) immediately yields a < m/n. Keeping in mind that in-
equality (2) is equivalent to a < b — 1/n, we can use (3) to write

m<na-+1
1
<n <b — —) +1
n
= nb.
Because m < nb implies m/n < b, we have a < m/n < b, as desired. ]

Corollary 1.4.1. Given any two real numbers a < b, there exists an irrational
number t satisfying a <t < b.

Example 2. Prove Corollary 1.4.1.

Theoren. 143 F e st o-Tocrel~Ta
= acrtTad b

re3 el b7 Ex | ).

Theorem 1.4.4. There exists a real number o € R satisfying o = 2.

Proof. Consider the set
T={tecR:t* <2}

and set o = supT. We are going to prove o = 2 by ruling out the possibilities
a? <2 and o? > 2.

13
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Let’s first assume a? < 2. In search of an element of T' that is larger than «,
write

n n  n?
s 200 1
<o+ —+ =
n o n
_ 9 20+ 1
n

But now assuming o? < 2 gives us a little space in which to fit the (2a+1)/n
term and keep the total less than 2. Specifically, choose ng € N large enough

so that
1 - 2 —a?
no 20é+1

This implies (2a + 1)/ng < 2 — o2, and consequently that

1\2

(a+—) <a’+(2-a%) =2
o

Thus, a + 1/ng € T, contradicting the fact that a is an upper bound for T

We conclude that o? < 2 cannot happen.

Now consider the case a? > 2. This time, write

Now we need to pick ng large enough so that

1 29 2
a or —a<0z2—2.
o 2a No

With this choice of ng, we have
(a —1/ng)* > a® = 2a/ng = a* — (a* —2) = 2.

This means (o — 1/ng) is an upper bound for 7. But (o — 1/ny) < a and
a = sup T’ is supposed to be the least upper bound. This contradiction means
that the case a® > 2 can be ruled out. Because we have already ruled out
a? < 2, we are left with o? = 2 which implies o = V2 exists in R. O

14
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1.5 Cardinality

Definition 1.5.1. A function f : A — B is one-to-one (1-1) if a; # as in A
implies f(a;) # f(a2) in B. The function f is onto if, given any b € B, it is
possible to find an element a € A for which f(a) = b.

Definition 1.5.2. The set A has the same cardinality as B if there exists
f A — B that is 1-1 and onto. In this case, we write A ~ B.

Example 1. (i) Let £ = {2,4,6,...} be the set of even natural numbers.
Show N ~ E.

(ii) Show N ~ Z.

(Q Lk ©:IN=>E be HMw)=au

N a2 % e
e300
E:d 4 6 g - an -

DLty (6o % s old

-na & w0 even

15
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Example 2. (i) Show that (—1,1) ~ R.

(ii) Show that (a,b) ~ R for any interval (a,b).

(0) &9 =

X
X3-|
((J() I\ \iv\& )ﬂl\uous'/\ (&1'\3 '\‘o Qo)\>'\5

B0) = =] 2, () ubicn dmkes (o) oufo C1,1)
and is |- \

’\'O\\QQ.S (:()‘) QU\+0 HZ GLVM&('S \_\

Definition 1.5.3. A set A is countable if N ~ A. An infinite set that is not
countable is called an uncountable set.

Theorem 1.5.1. (i) The set Q is countable.
(ii) The set R is uncountable.

Proof. (i) Set A; = {0} and for each n > 2, let A, be the set given by

A, = {ig : where p,q € N are in lowest terms with p 4+ ¢ = n} )
q

The first few of these sets look like

1 -1 1 -1 2 -2
A1:{0}7 AQZ{IaT}a A3:{§777IaT}7

1 -1 3 -3 1 -1 2 —-23 -34 —4
A= 222 4 A=t -t2 =25 =54 -4
4 {37 3 717 1 }a an 5 {47 4 737 3 72a ’1’ 1 }

The crucial observation is that each A, is finite and every rational num-
ber appears in exactly one of these sets. Our 1-1 correspondence with
N is then achieved by consecutively listing the elements in each A,,.

16
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N: 2 3 4 5 6 7 8 9 10 11 12
rtrtrr ottt
Q: L 11 12 _2 1 _1 3 _3 1
: 1 1 2 2 1 1 3 3 1 1 4
N~ —
A1 A2 A3 A4

We now see why every rational number appears in the correspondence
exactly once. Given, say, 22/7, we have that 22/7 € Ayy. Because
the set of elements in A, ..., Ay is finite, we can be confidence that
22/7 eventually gets included in the sequence. The fact that this line
of reasoning applies to any rational number p/q is our proof that the
correspondence is onto. To verify that it is 1-1, we observe that the sets
A,, were constructed to be disjoint so that no rational number appears
twice. This completes the proof of (i).

(ii) This proof is done by contradiction. Assume that there does exist a 1-1,
onto function f : N — R. If we let 1 = f(1), 2 = f(2), and so on,
then our assumption that f is onto means that we can write

R.: {I1,$2,$3,ZL’4,...} (1)

and be confident that every real number appears somewhere on the list.
We will now use the Nested Interval Property (Theorem 1.4.1) to produce
a real number that is not there.

Let I; be a closed interval that does not contain x;. Next, let I, be a
closed interval, contained in I, which does not contain x5. The existence
of such an I, is easy to verify. Certainly /; contains two smaller disjoint
closed intervals, and x5 can only be in one of these. In general, given an
interval I,,, construct I, to satisfy

(i) Iny1 C 1, and

(i) Znt1 & Inga-

I
N . Tn+1 Ty
In+1

We now consider the intersection (', I,,. If x,, is some real number
from the list in (1), then we have x,, ¢ I,,, and it follows that

Ty & ﬂ I,.
n=1

17



Real Analysis - Cardinality

Now, we are assuming that the list in (1) contains every real number,
and this leads to the conclusion that

(1. =0.
n=1

However, the Nested Interval Property (NIP) asserts that ()~ I, # 0.
By NIP, there is at least one x € (.—, I, that, consequently, cannot be
on the list in (1). This contradiction means that such an enumeration of
R is impossible, and we conclude that R is an uncountable set. O

Theorem 1.5.2. If A C B and B is countable, then A is either countable or
finite.

Example 3. Prove Theorem 1.5.2.
R is countable = ALN=>R 3([,\“\\ is | W& onto
Let ACB be inkinde .
et 0= min ima IN: £y e AL, Deding 9 N-=>A 'w\&uc*(w(f
9(\3: £l
Ny = mingue N Ky e AN 5.%"«%%
3(3)—: %("‘&}
Assume ALK is &e&(‘wz& for keam
6@0 RQQVIW‘) where N = Vn}h%\/\e{“: 59(‘0%/\\39(%) ’H"‘kﬂ)g}
T mrw fhan 0o # e = Hal)= g+ 5("”">c¥(°‘m’> because. Lis |-
= Sil}\\%A s -1
Lot aeA. ’E £ ovifo = o= 'Q(V\'> %o(‘ sove. W' & |\
= h'e §n i) e Al
AS R '\m&\hc\(\lt\"l Meimove HAQ_ Mmin ) n’ W(‘H QVU/\JFUWHV Ei m& Win
=9 N=A s oo

= A 5 countallo
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Real Analysis - Cardinality

Theorem 1.5.3. (i) If A, Ao, ..., Ay, are each countable sets, then the union

AlUAyU---UA,, is countable.

(ii) If A, is a countable set for each n € N, then |J,— | A, is countable.

Example 4. Prove Theorem 1.5.3.

(L> A] Cowh"'ﬂ[ole, = %"Q H\J@AI S,‘l‘, '¥ s \"[ OU/L& Db\'{‘o

Led B,= ANA, ’:%Xe Ay X¢‘-A(}_ & B}: ¢ )'\'L\u« A\\)A;\:A\ is Counfalle
Ig %}: iLl)b;)"')LM} ’\1'4‘/\ defie - A\UB& ‘07

NOE by, & wem
) {W‘-@

"(X— N>

his 1= cand oo becayse & (s
R B 1 'MQmiJr?.)JﬂwA iF15 countoble L7 Theores, 1:54y50 3 g N-=>8a - is

\”\ C\J/\& ler\’o) So c\e&l'me, h: IT\H A\U@g\ l07

W)= Q((‘A‘fD/}) W& s 0dX W: | 2> %S¢
o [2) iLnois e 389 \1}\1?1}
W s -] 0\!4& auito e cause Q and 0) are AVG, «, o O by o by

N&Kéi OS5 hime_ "‘t\o, Uit o§ m (;owf\lmue_ SQ&‘S i Caul/\'{'u(:lQ/~
LE,()( A\)A;)---)AM-(-( ‘ot. Couh’kﬂb(b.

Then  AOAV U Ap = (AVAD " OA) U s 15 o mion of o
tountable séﬁs) S0 i is Countable_ -

(€0) Firk consder GAY Aisioi et An=§ Gy O 0,4

136 101s  AFa, ag ag o, o -

LS 0% - Ay =00 an Qay Qg -

8 o A3 = Oy oy - o0

+ o Aﬁr = Qg Qyg 6 {MQVS(AM s 5(@:0\0(( (Qo/* no (J)k>
\\ Ag :o\§|

Tt iA.,& — c&ls:)o'u/l&) r‘e\)lqce, A, with gm :AV\\\ %,A(U“'UA\A—@
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Real Analysis - Cantor’s Theorem

1.6 Cantor’s Theorem

Theorem 1.6.1. The open interval (0,1) = {x € R:0 < x < 1} is uncount-
able.

Proof. As with Theorem 1.5.1, we proceed by contradiction and assume that
there does exist a function f : N — (0,1) that is 1-1 and onto. For each
m € N, f(m) is a real number between 0 and 1, and we represent it using the
decimal notation

f(m) = .0m10m208m3AmaQms - - -

What is meant here is that for each m,n € N is the digit from the set
{0,1,2,...,9} that represents the nth digit in the decimal expansion of f(m).
The 1-1 correspondence between N and (0, 1) can be summarized in the dou-
bly indexed array

N (0,1)

I «— f(1) = a1 a a3 au a5 ag
2 +— f(2) = .an azxy a3 ax az A
3 +— f(B) = .a; axp asy azy asx  asp
4 +— f(4) = .au ap a3 A A5 dgg
5 «— f(5) = .as1 as» as3 asy Ass G
6 <— f(6) = .ae1 Gs2 Gz Ges (g5 Age

The key assumption about this correspondence is that every real number in
(0,1) is assumed to appear somewhere on the list.
Now define a real number x € (0, 1) with the decimal expansion & = .b1bab3by . . .

using the rule
b 2 if ap, # 2
"3 ifan, =2

To compute the digit by, we look at the digit a;; in the upper left-hand corner
of the array. If a;; = 2, then we choose b; = 3; otherwise, we set b, = 2.
Since aq; and by are different, x cannot be f(1). We do the same thing when
computing by, so that ags and by are different, and thus x cannot be f(2) either.
Continuing in this fashion, the nth digit of z and f(n) will always be different,
so x # f(n) for any n € N. But this contradicts our assumption that every
real number in (0, 1) appears somewhere on the list. O
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Real Analysis - Cantor’s Theorem

Example 1. Let S be the set consisting of all 0’s and 1’s. Observe that S is
not a particular sequence, but rather a large set whose elements are sequences;
namely,

S ={(a1,aq,as,...):a, =0or 1}.

As an example, the sequence (1,0,1,0,1,0,1,0,...) is an element of S, as is
the sequence (1,1,1,1,1,1,...).

Y)Y Y ) )

Give a rigorous argument showing that .S is uncountable.

A%fw«e. 3 &R\\"’S ot is - 0%\19\ 0'«+®~

I < X)) = ., a, Q3 A¢ Qg Qg

L > HO = o5 osa Oy Opg Opg Oy, -
3 2 fB) = oy aw oy Ay ae a

T > X4) = Qe Ga g A Gy Qg
S <> j;(q = Gg Oz Og Qg Oss Q6 "'
b <

§8) = G @ Ay Oy O Qg

Whare Az | o O Kor vn)he/}\).

Der\’}vxg CX-A\) = (X')Xaﬂ(*;)--) eS [07

Xv\= O \(g Qi = |
| \‘P L -0

L0 # 06) beause @y % X,
{3+ () beamse 0% X,
S # (x) becaue Qu# X\ ne N
Con*m&ic)(s Hm‘\ \ (s outo.
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Real Analysis - Cantor’s Theorem

Given a set A, the power set P(A) refers to the collection of all subsets of A.

Example 2. (a) Let A = {a,b,c}. List the eight elements of P(A). (Do not
forget that ) is considered to be a subset of every set.)

(b) If A is finite with n elements, show that P(A) has 2" elements.

OD Q(A) = {QS) ‘20\3)%b}ﬁcl)io\,b})io\,c%)%B)c}) S O‘)Q’)Cg'g

@ Lk A"’ﬁ."\l)“a)w)&v&
U

:)\‘;) M " subsets

Example 3. (a) Using the particular set A = {a,b, c}, exhibit two different
1-1 mappings from A into P(A).

(b) Letting C'={1,2, 3,4}, produce an example of a 1-1 map g : C' — P(C).

(c¢) Explain why, in parts (a) and (b), it is impossible to construct mappings
that are onto.

D o> a] Q> 16,y D 1>191
b= G0,k b ¢ A > G4

39951
C=> ab Y = ﬁo\,cg T Z:&’;;;%

O A'>n iy so DA has foo VV\cJ/L‘/ elments © g onts ol of Hem,

Theorem 1.6.2 (Cantor’s Theorem). Given any set A, there does not exist a
function f: A — P(A) that is onto.

Proof. Assume, for contradiction, that f : A — P(A) is onto. Unlike the usual
situation in which we have sets of numbers for the domain and range, f is a
correspondence between a set and its power set. For each element a € A, f(a)
is a particular subset of A. The assumption that f is onto means that every
subset of A appears as f(a) for some a € A. To arrive at a contradiction, we
will produce a subset B C A that is not equal to f(a) for any a € A.

Construct B using the following rule. For each element a € A, consider the
subset f(a). This subset of A may contain the element a or it may not. This
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Real Analysis - Cantor’s Theorem

depends on the function f. If f(a) does not contain a, then we include a in
our set B. More precisely, let

B={acA:a¢ f(a)}.

Because we have assumed that our function f: A — P(A) is onto, it must be
that B = f(a’) for some ¢’ € A. The contradiction arises when we consider
whether or not o’ is an element of B. If ' € B, then a’ € f(a') since B = f(a').
However, by the definition of B, we have a’ ¢ f(a’), a contradiction. On the
other hand, if «’ ¢ B, then o’ ¢ f(a’), and again we have a contradiction by
the definition of B because this implies that o’ € B. n

Example 4. Answer each of the following by establishing a 1-1 correspon-
dence with a set of known cardinality.

(a) Is the set of all functions from {0, 1} to N countable or uncountable?
(b) Is the set of all functions from N to {0, 1} countable or uncountable?

(c) Given a set B, a subset A of P(B) is called an antichain if no element of A
is a subset of any other element of A. Does P(N) contain an uncountable
antichain?

Y feh = b0 5>N
\
CL(""‘)"‘)"‘”‘)"‘QN} b7 ’H(wj VV\:'F(°> au& \/l”‘{:(o) ’H«(ﬁ is |- ouA oo\+o

{ (wyn) 1y € /)Ug = 5__3{ Smu): me N} = () s My € /)U} is Covatable
b> Q:IH \%30,\} i an infinde Seguance o O ond, |‘5)Q5.) io)l)l)o)\)

So uancountably
g LQL‘ E:SQ\%),..)lm)...} C’\"‘X O:ilﬁ)...)&u\'—\)...]
Lt‘\' S )0?— “AQ SQ’\'D&’ iw@(mikf SQZ(AU/[ULS o'? O\s qma\ ‘\S

For each se§ o <= (S,)sl)ss)...) construck A €N 5o ot

ane '\W =l and
D\V\“\ eAs \X’X’ $,=0

Eﬂ0=¢ 0\\49\ N=e00 = iAsZSESE 'S an W\cow«%ue w’l‘{gLuxim

0)0)0)‘7"':%)
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Chapter 2

Sequences and Series

2.1 Discussion: Rearrangements of Infinite Se-

ries
& (-t TP L (O S B N ) _S . _.%*
.L,q’zS”—:Z sttt E et Sl—()ﬂra)sg—g)&f—'@)..
=
l Ll Lo 1 1 g
T 357 R G L g o o T
2 Lot Lot L I P
5=l *373's 3T tpogtgpo Lo
SN A W A N W S U S S IR IR |
V\Z.o(l/ﬂ _\ ?\*"f' 7>+(6 31+Zfr E%—{— 2S6 - |_(,_‘i—_5
S A L S IS S N U
\+‘f °\+(B+6‘E ‘6+D$G+\dﬁ' 3 REY
i"\gl’\/&r & \')>{) 0\6‘)-—\ W& \)=g Ow\& O\L‘S:O (& y<e
C-y L v & . £ P (g x
vt ] 22 (Eeg)-E9-0
ot | ETER)TE
o R [ oo o0
\ | e |
® 0t 3 -Z“cs’-.Z(Z“ébéZ(“@):’Q
SV J=1 vl y=1
0 0 O -[ 2
0 0 o O -
: o
ol
S A HaD s (D 204050420 HAs(1-Ds (- (1) =1 ¢040 0% -
"=
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Real Analysis - The Limit of a Sequence

2.2 The Limit of a Sequence

Definition 2.2.1. A sequence is a function whose domain is N.
Example 1. Each of the following are common ways to describe a sequence.
<1> ’ 3 4117 U )7
(if) (55%)n2 = ( )
)

(iii) (an), where a,, = 2™ for each n € N,

L,

[N
Wl

3

Il 8
=1
ol
ik

Y )

(
(
(
(

(iv) (z,), where 1 = 2 and z, 1 =

Tn+1
5 -

Definition 2.2.2 (Convergence of a Sequence). A sequence (a,,) converges to
a real number a if, for every positive number €, there exists an N € N such
that whenever n > N it follows that |a, — a|] < e.

Remark 1. To indicate that (a,) converges to a, we usually write either lim a,, =
a or (a,) — a. The notation lim, ., a, = a is also standard.

Definition 2.2.3. Given a real number a € R and a positive number € > 0,
the set
V@) ={z € R: |z —a| <€}

is called the e-neighborhood of a.

Definition 2.2.4 (Convergence of a Sequence: Topological Version). A se-
quence (a,,) converges to a if, given any e-neighborhood V,(a) of a, there exists
a point in the sequence after which all of the terms are in V.(a). In other
words, every e-neighborhood contains all but a finite number of the terms of

(an)

Ve(a)
aN
aq as as ... ‘
a—€ a a-+e€
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Real Analysis - The Limit of a Sequence

Example 2. Consider the sequence (a,), where a,, = 1/y/n. Prove that

lim (—) =0
()0
- L ‘
go\7 e 75 . Thn 0\\00=T5 = b n>\00 , ham a, € (~ (_(O—) Tld>
TE ¢-= §o Yron We, V\Ul& S’O)I’JL\JA \AOWWS Y [OMj as h>S50%= LS00 .
T \
3@/\(@ ) we LJUM+ ﬁ(i} L\/l/\((‘[/\ (S %\& Same AS n> E],‘;\
Lo addeoe, N st N>L - Leb 20, Then,
V\>§ =) {:<€ = |a,- O\<E,
Example 3. Show
) n+1
11m< )21-
n
We neel |0t |\<z
Since NV\J’}_[:/« s is 1 ‘L<2 ‘
~ ) i LSae o5 Ty o h> -

Led €90, Chooe NelN with M>%.
L(,\—v\e“\\ §mL'(s V\ZN.

V\ZN = > _‘fj

= \ﬂ*—l,\\<g

n
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Real Analysis - The Limit of a Sequence

Theorem 2.2.1 (Uniqueness of Limits). The limit of a sequence, when it
exists, must be unique.

Example 4. Prove Theorem 2.2.1.

LQ’\\O\.;?O\ O\h& O\.,\—?L SM 0 pose (‘AiL So [m—L|>O
Then for z-‘i“’—L" 3 NeN st 9 vx>M lon-al<g.

Sw\w7 3N1éﬁ\\ st w2l lan-bl <€

(/\/\oose, N = V"‘O‘X%t\)l)M'ﬂs T(AU,\ o VlZf\) 0(.,\‘0\\<2, ou/\& \qh'LlAE.
%\1 'HML \'{‘mh e w\qtzual{

\t‘/\ \o‘ [D\D\,\T%\ H q-ah\&|qy\_‘L\<Qi’—{q—El
Co wrradk c\"\o\/\ .

Example 5. Show that the sequence

] 11 11 11 11 11 11 1
9 2737 475’ 575’ 5’57 5’57 5757 57
does not converge to 0.
-\ \
I(F 2_9\3-\1/“/! ”\'Q'\'Qf N= ?’ —3) ;L>
S(Vk;‘o\r ’?o(' Z_:—

«\: &= IO)“H'\U’\ 'H\UQ_ (s ho UE[\J ‘QDT l/s&/\(l/\ UK(AGC (O) {o>
= a, 0.

\ ( 3
I'Q €= [O,M \O‘o\—?\(z QFOAU(QS (—(6)75>) S0 “/w.re s a(go no }\JQNJ
Ree WMide o\,,\—*)\g

Definition 2.2.5. A sequence that does not converge is said to diverge.
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Real Analysis - The Algebraic and Order Limit Theorems

2.3 The Algebraic and Order Limit Theorems

Definition 2.3.1. A sequence (z,,) is bounded if there exists a number M > 0
such that |z, | < M for all n € N.

Theorem 2.3.1. Every convergent sequence is bounded.

Proof. Assume (x,,) converges to a limit [. This means that given a particular
value of €, say € = 1, we know there must exist an N € N such that if n > N,
then z,, is in the interval (I — 1,14 1). Not knowing whether [ is positive or
negative, we can certainly conclude that

|z, < |I| 4+ 1
for alln > N.
Tn, n >N
To T T3 —_— Ts T4
0 -1 | I1+1 t
M

Because there are only a finite number of terms before the Nth term, we let
M = max{|xy|, |xa|, |23, .., |zNn_1], |l| + 1}.
It follows that |z,| < M for all n € N, as desired. O

Theorem 2.3.2 (Algebraic Limit Theorem). Let lima, = a, and limb, = b.
Then,

Proof. (i) Consider the case where ¢ # 0. First, we let ¢ be some arbitrary
positive number. Our goal is to find some point in the sequence (ca,,) after
which we have

|ca,, — ca| < e.

Now,
|ca, — cal = |c||a, — al.
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Real Analysis - The Algebraic and Order Limit Theorems

We are given that (a,) — a, we know we can make |a,, — a| as small we like.
In particular, we can choose an N such that

la, —a| < £
]

whenever n > N. To see that this /V indeed works, observe that, for allm > N,

|ca,, — ca| = |c||lan, —a| < |c]— =e.

€
]
The case ¢ = 0 reduces to showing that the constant sequence (0,0,0,...)

converges to 0, which is easily verified.
(ii) To prove this statement, we need to argue that the quantity

|(an, + bn) — (a+b)|

can be made less than an arbitrary e using the assumptions that |a, — a| and
|b, — b can be made as small as we like for large n. The first step is to use
the triangle inequality (Example 6) to say

|(@n +bn) = (a +b)| = |(an = a) + (bn = b)| < [an — a| + |bn = O],

Again, we let € > 0 be arbitrary. Using the hypothesis that (a,) — a, we know
there exists an N7 such that

€
la, —a| < 3 whenever n > Nj.

Likewise, the assumption that (b,) — b means that we can choose an Nj so
that .
b, — b < 3 whenever n > N,.

By choosing N = max{Nj, N2}, we ensure that if n > N, then n > N; and
n > N,. This allows us to conclude that
l(an 4+ b,) — (a+b)| < la, —al + |b, — b

<€+€_
9T~ ¢

for all n > N, as desired.
(iii) To show that (a,b,) — ab, we begin by observing that

|a,b, — ab| = |a,b, — ab, + ab, — ab|
< |apb, — ab,| + |ab, — ab|
= |bn||an — a| + |al|b, — b].
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Let € > 0 be arbitrary. For the piece on the right-hand side (|a||b, — b]), if
a # 0 we can choose N so that

. 1 e

n > N; implies |b, —b] < —=.

la] 2

(The case when a = 0 is handled in Example 1.) Using the fact that conver-
gence sequences are bounded, we know there exists a bound M > 0 satisfying
|b,| < M for all n € N. Now, we can choose N, so that

1 e
a, — al < ——= whenever n > Ns.

To finish the argument, pick N = max{N;, N»}, and observe that if n > N,
then

lanb, — abl < |ayb, — ab,| + |ab, — ab|
= |bnllan — al + [a[|b, — ]
< M|a,, — a| + |a||b, — ¥

<M(ﬁ)+ya| (@) —.

(iv) This final statement will follow from (iii) if we can prove that

1 1
whenever b # 0. We begin by observing that

i_l _ |b_bn|
b b [bl[bal

Consider the particular value ¢y = |b|/2. Because (b,) — b, there exists an N;
such that |b, — b| < |b|/2 for all n > N;. This implies |b,| > [b]/2.
Next, choose Ny so that n > Ny implies

[bl?

Finally, if we let N = max{Ny, Ny}, then n > N implies

1 1 el 1
— — —| = [b— b, < =
bn b' bllbal 2yl
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Real Analysis - The Algebraic and Order Limit Theorems

Example 1.

(a) Let (a,) be a bounded (not necessarily convergent) sequence, and assume
limb,, = 0. Show that lim(a,b,) = 0. Why are we not allowed to use the
Algebraic Limit Theorem to prove this?

(b) Can we conclude anything about the convergence of (a,b,) if we assume
that (b,) converges to some nonzero limit b?

(c) Use (a) to prove Theorem 2.3.2, part (iii), for the case when a = 0.

D (o) boudd > 3 K st o K.
Leh 250, We weed N st then V\?M) | otab - 0l < & .
L b =0 = ol b | £ K (b ]
L)=0=3 N st
|bu) <

—f;—
Wt Hs N ool €Kikl € K 28 0 ol wsh)
$>(Cw\\°v\>’”0-

\r\\u Cchv\o)Y Wi \/LQ A\bekpralc Li./».?'\' T'Aeovem \OE’.COMSQ, H’\QJF VEZMWU LJO{'& (Olo.) Mi (E»,)

he. Convergent .

Q NO> '\; (O\Db: C\)‘\)\)‘—l)u) %Uf\ (QMLJL‘> f,\/l” [/lo‘Jf Ce(/u/eﬁ{,.

C> CJDV\U(’IS‘M& Seme&S ove LJOLAM&ebﬂ so 1§ CD\QJ)O oull (b)>b ) then
(onb) >0 ‘07 Port ().

Theorem 2.3.3 (Order Limit Theorem). Assume lima, = a and limb,, = b.
(i) If a, >0 for alln € N, then a > 0.
(i) If ap < by for alln € N, then a <b.

(iii) If there exists ¢ € R for which ¢ < b, for alln € N, then ¢ < b. Similarly,
if a, < c for alln € N, then a < c.
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Proof. We will prove this by contradiction; thus, let’s assume a < 0. Consider
the particular value e = |a|. The definition of convergence guarantees that
we can find an N such that |a, — a| < |a| for all n > N. In particular, this
would mean that |ay — a| < |a|, which implies ay < 0. This contradicts our
hypothesis that ay > 0. We therefore conclude that a > 0.

an
¢ L. Q2 a1
a—e€ a O=a+e€

(ii) The Algebraic Limit Theorem ensures that the sequence (b, —a,,) converges
to b — a. Because b, — a, > 0, we can apply part (i) to get ¢ — a > 0.
(iii) Take a,, = ¢ (or b, = ¢) for all n € N, and apply (ii). O

Example 2. Let (x,) and (y,) be given, and define (z,) to be the “shuffled”
sequence (1, Y1, Lo, Y2, T3, Y3y - - -y Ty Yn, - - ). Prove that (z,) is convergent if
and only if (z,) and (y,) are both convergent with lim x,, = limy,,.

@7} LF 250w lof ()= L.
We heu& N S.+, V\Z[\\ =2 {a}m— Ll <.

(RO>L = AN sk uaN=|2-L]< 2.
Y= Zay = AN st N> l}h—l,\< s
The avDummk (o Similar e ().
(©) Lek €50 ad [eb (k)= oud 4L,
We ned N sd nxll = [2,.-L[<e
XO=>L = AN sk uaN=> [x-L]< s,
(}Q%L = A Nysh. v N= l&&.,\—l,\ 4.
[ N= ase § AN AN X .
Then nxl = [2,.-L|<2.
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Real Analysis - The Monotone Convergence Theorem and Infinite Series

2.4 The Monotone Convergence Theorem and
Infinite Series

Definition 2.4.1. A sequence (a,) is increasing if a,, < a,4q for all n € N
and decreasing if a, > a,,; for all n € N. A sequence is monotone if it is
either increasing or decreasing.

Theorem 2.4.1 (Monotone Convergence Theorem). If a sequence is mono-
tone and bounded, then it converges.

Proof. Let (a,) be monotone and bounded. Let’s assume the sequence is
increasing (the decreasing case is handled similarly), and consider the set of
points {a, : n € N}. By assumption, this set is bounded, so we can let

s = sup{a, : n € N}.

It seems reasonable to claim that lima,, = s.

aN g
a1 az as ... i |

9o 9o o o oooooen |

s—e SHe€

= sup{a, : n € N}

To prove this, let € > 0. Because s is the least upper bound for {a, : n €
N}, s — € is not an upper bound, so there exists a point in the sequence ay
such that s — ¢ < ay. Now, the fact that (a,) is increasing implies that if
n > N, then ay < a,. Hence,

s—e<ay <a, <s<Ss+e,
which implies |a,, — s| < ¢, as desired. O

Definition 2.4.2 (Convergence of a Series). Let (b,) be a sequence. An infi-
nite series is a formal expression of the form

D by=bytbyt by byt bs -
n=1

We define the corresponding sequence of partial sums (s,,) by

Sm:b1+b2+b3+"'—|—bm,

and say that the series >~ | b, converges to B if the sequence (s,,) converges
to B. In this case, we write Y~ b, = B.

33



Real Analysis - The Monotone Convergence Theorem and Infinite Series

Example 1. Show that

Ezi
'n:ln2
converges.
L [
Sz 1T 347 gt
LI I IR B
A Wi SR
R SN
\ LR Y N m(m-1)
_ SN (Lo AN AN \ l
_\+(l 1>+<l 3>+<Lf -g "’(Lw_‘)’-KB
- _ L
"\"‘\ m
LA

= A 1S an MQ\)W Eoum& '{;W (gw}
= (Sw\) COV\VWSQS .137 M NOMO'\'OV“’- Cd’We"’jU"(e T(’W“"

Example 2 (Harmonic Series). Show that the harmonic series

=1
n:ln
diverges.
U N S &
Sw= X3t 3+t
S R (R IR (S I
se=ledr (e tene(s v g)=2
(
S 7 A3
5 :\+—‘—+(—‘+l+ Tpet )kt | L
Q¢ U3 %) \s 3 251 2
\ el I A [ |
>\+3\+(%+({>+<%’< )t = +¥>
\ \ _ |
:\+—}‘+)\Lﬂ+w(g\>+ +9\\(_{K>
{
_|+§+-L+a+ +—;—\

:\+\<(9) i i uuAL;ouvuIlefiL
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Real Analysis - The Monotone Convergence Theorem and Infinite Series

Theorem 2.4.2 (Cauchy Condensation Test). Suppose (by,) is decreasing and
satisfies b, > 0 for alln € N. Then, the series Y - b, converges if and only
if the series

Zz”bgn = by + 2by + 4by + 8bg + 16b,6 + - - -

n=0
CONVETGES.

Proof. First, assume that )~ 2"bon converges. Theorem 2.3.1 guarantees
that the partial sums
tp = by + 20y + 4by + - - + 25bys

are bounded; that is, there exists an M > 0 such that ¢, < M for all £k € N.
We want to prove that Y > b, converges. Because b, > 0, we know that the
partial sums are increasing, so we only need to show that

Sm:bl+b2+b3+"‘+bm

is bounded.
Fix m and let k be large enough to ensure m < 28! — 1. Then, s,, < Sors1_4
and

Sok+1_1 = by 4 (bo 4 b3) + (by + b5 + bg + b7) + - - + (bor + - - - + bors1_)

< b+ (b +bg) 4+ (by + by + by +by)+ -+ (bor + -+ + bar)

= by + 2by + 4by + - - - + 26boy = .
Thus, s, < tp < M, and the sequence (s,,) is bounded. By the Monotone
Convergence Theorem, we can conclude that y >~ b, converges.
We will show that if > °  2"bs, diverges then > | b, diverges by again ex-
ploiting a relationship between the partial sums

S =by +by+ -+ by, and tg=Dby + 2by+ -+ 25Dy

Because )y~ , 2"bs,, diverges, its monotone sequence of partial sums (¢;) must
be unbounded. To show that (s,,) is unbounded it is enough to show that for
all k € N, there is a term s,, satisfying s,, > /2. This argument is similar
to the one for the forward direction, only to get the inequality to go the other
way we group the terms in s, so that the last (and hence smallest) term in
each group is of the form byx.

Given an arbitrary k, we focus our attention on syx and observe that

Sop = by + by + (bg 4+ by) + (bs + bg + by +bg) + -+ - + (bgr—141 + -+ + bor)
> by + by + (by + bs) + (bg + b + bg + bg) + -+ + (bor + -+ + bor)
= by + by + 204 + 4bg + - - - 4+ 25 1bys
1

:§@m+2@+4m+8%+~~+%@@
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Real Analysis - The Monotone Convergence Theorem and Infinite Series

Because () is unbounded, the sequence (s,,) must also be unbounded and
cannot converge. Therefore, Y > | b, diverges.c O]

Corollary 2.4.1. The series Y~ 1/nP converges if and only if p > 1.
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Real Analysis - Subsequences and the Bolzano—Weierstrass Theorem

2.5 Subsequences and the Bolzano—Weierstrass
Theorem

Definition 2.5.1. Let (a,) be a sequence of real numbers, and let n; < ny <
ng < ng < ng < ... be an increasing sequence of natural numbers. Then the
sequence

(an17 Qpy, anga Qpy ansy .o )

is called a subsequence of (a,) and is denoted by (a,, ), where k € N indexes
the subsequence.

Theorem 2.5.1. Subsequences of a convergent sequence converge to the same
limit as the original sequence.

Proof. Assume (a,) — a, and let (a,,) be a subsequence. Given € > 0, there
exists N such that |a, — a| < € whenever n > N. Because n; > k for all k,

the same N will suffice for the subsequence; that is, |a,, —a| < € whenever
k> N. m

Example 1. Show lim(b") = 0 if and only if —1 < b < 1.
& b=0, (b9=(0,0,9)-), 50 lek0¢bl.
b>bA>p*>b* > 50 = (L) i decreasiag i\ Laouu&e(i be ow
= (M>4 Sn’hS%ivb b>4 >0 L,7 McT
= ()2
b= b = (1292 4 4 -4

= L*=
=4=0

Nod leb -1¢6<0 ad [ef €50
Sk o= Ib]. Since (D\A—EO) We Can choose N 5.4, mzf\J=> [O\M-Ol <&
Thein \LW—O‘=Ibh‘=\Q"‘\<Z When wz N,
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Real Analysis - Subsequences and the Bolzano—Weierstrass Theorem

Example 2 (Divergence Criterion). Use Theorem 2.5.1 to show that the se-
quence
11111 11 11 11 11 1
) 2737 4757 575’ 5’5’ 5’57 5757 57
diverges.
LI O U T > )
(S)S)S)E>§)”' _17_5:

T\/\U& ore ‘\'uo SuLsemecej %u’% Col«x)ug& f\m &]’\’Qﬁrzv& llm'(\-;) So
‘HAL oria'\vm\ Seguence (Q(VUDQJ-

Theorem 2.5.2 (Bolzano—Weierstrass Theorem). Fvery bounded sequence
contains a convergent subsequence.

Proof. Let (a,) be a bounded sequence so that there exists M > 0 satisfying
la,| < M for all n € N. Bisect the closed interval [—M, M] into the two closed
intervals [—M, 0] and [0, M]. Now, it must be that at least one of these closed
intervals contains an infinite number of the terms in the sequence (a,,). Select
a half for which this is the case and label that interval as I;. Then, let a,, be
some term in the sequence (a,) satisfying a,, € I.

Any

L ‘
'

-M I 0 M

Qn, ]2

Next, we bisect I; into closed intervals of equal length, and let I, be a half that
again contains an infinite number of terms of the original sequence. Because
there are an infinite number of terms from (a,) to choose from, we can select
an a,, from the original sequence with ny > n; and a,, € . In general, we
construct the closed interval I, by taking a half of I,_; containing an infinite
number of terms of (a,) and then select ny > ng_q; > ---ny > ny so that
Qp, € 1.

We want to argue that (a,,) is a convergent subsequence, but we need a
candidate for the limit. The sets

L2, 213D ---
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Real Analysis - Subsequences and the Bolzano—Weierstrass Theorem

form a nested sequence of closed intervals, and by the Nested Interval Property
there exists at least one point x € R contained in every [I. This provides us
with the candidate we were looking for. It just remains to show that (a,, ) — =.
Let ¢ > 0. By construction, the length of I}, is M (1/2)%~! which converges
to zero. (This follows from Example 1 and the Algebraic Limit Theorem.)
Choose N so that £ > N implies that the length of I} is less than e. Because
x and a,, are both in I, it follows that |a,, — x| <e. O

Example 3. Assume the Nested Interval Property is true and use it to provide
a proof of the Axiom of Completeness. To prevent the argument from being
circular, assume also that (1/2") — 0. (Why precisely is this last assumption
needed to avoid circularity?)

Lk A be o bowded b onde by an Upper bouad on A
I b, EA)ﬂA% b, = SMPA.

It b\¢A))kaM % O\\EA 9”"/ Q|<b| et I\ = ):o\l)b|1.
TR B ralgie = 202 s ou ugper bound) [ T Lo b} = T )
Otheriise, ek Ta= (o, by =Tomi)b)
Coar\ivmc Mus QVOQQSS) So Yt .(‘R' m, = Q_“;_:h 15 on “pper \nwr,\DQ)
ek I,\,,,:):q“,)&.ﬂ}:[ah,w{(} ol otherwise |e¥ IV\*I:EQHI)EW*JzDMM)Lh]
T\/\ls \1'(2\&5 -Mgim“{“l&‘/ V"la(47 -Wl'{CfUu\S I, _D_If;} 1—.52 &J(‘H\ ij% ?m?br‘kob\&l o (\/;{)w.
%7 Yo NI?) QL#(f)) ) St e O/&“>%O fhere (s o S;né\o_ be ﬁL\.
Then b2a, ¥a= b is on upper loouvmm)
Bl beb, Vi = & ’—SMQA.

The. D\SSuw\Q’kov\ \%{\ (\/9\“)*@ O s hee&e& T QUDI& Msf":j He Artj&w\e&ea»\ ?ro?ar%‘y fo f‘?m& lv)
Swnce 1 wos ?r\m& \Aﬁnﬁ AoC.
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Real Analysis - The Cauchy Criterion

2.6 The Cauchy Criterion

Definition 2.6.1. A sequence (a,,) is called a Cauchy sequence if, for every
€ > 0, there exists an n € N such that whenever m,n > N it follows that
lan, — am| < e.

Theorem 2.6.1. Every convergent sequence is a Cauchy sequence.

Proof. Assume (z,,) converges to z, and let ¢ > 0 be arbitrary. Because
() — x, there exists N € N such that n,m > N implies |z, — 2| < ¢/2 and
Tm — x| < €/2. By the triangle inequality,

|Tp — | = |20 — 2 + 2 — T4y
< |wn — x| + |2m — 2|

_ e+e

2 2

— €.

Therefore, |z, — x,,| < € whenever n,m > N, and (z,) is a Cauchy sequence.
[

Lemma 2.6.1: Cauchy sequences are bounded.

Proof. Given € = 1, there exists an N such that |z, —z,| < 1 forallm,n > N.
Thus, we must have |z,| < |zy| + 1 for all n > N. It follows that

M = max{|x1]|, |2l |2z3], - .., |xn_1], |2N| + 1}
is a bound for the sequence (z,). O

Theorem 2.6.2 (Cauchy Criterion). A sequence converges if and only if it is
a Cauchy sequence.

Proof. (=) This direction is Theorem 2.6.1.

(«) For this direction, we start with a Cauchy sequence (z,). Lemma 2.6.1
guarantees that (z,) is bounded, so we may use the Bolzano-Weierstrass The-
orem to produce a convergent subsequence (z,, ). Set

r = limz,, .

Let € > 0. Because (z,) is Cauchy, there exists N such that

€
|z, — x| < 3

40



Real Analysis - The Cauchy Criterion

whenever m,n > N. Now, we also know that (z,,) — x, so choose a term in
this subsequence, call it z,, , with nxg > N and

€
|, — x| < 3"

To see that N has the desired property (for the original sequence (z,,)), observe
that if n > N, then

|Tn — 2| = [Tn — Ty + Ty — 7
< |5En _xnx| + |$nK —:l?|

€ €
<-+-=c 0
5T~ °¢

Example 1. If (x,,) and (y, ) are Cauchy sequences, then one easy way to prove
that (x, + y,) is Cauchy is to use the Cauchy Criterion. By Theorem 2.6.2,
(x,) and (y,) must be convergent, and the Algebraic Limit Theorem then
implies (x,, + y,) is convergent and hence Cauchy.

(a) Give a direct argument that (z, + y,) is a Cauchy sequence that does not
use the Cauchy Criterion or the Algebraic Limit Theorem.

(b) Do the same for the product (z,y,).
0) L@\' €>0, l/\Je_ v\eet& jxo &Emc\\ M S,+. V])WZT\) = l (Kk*‘a"\>’(x"‘1+j—“‘>\< €.

€
(v\ 2<(_'A CO\u\/\ _—/7{% M\ S.+, VI)MBN‘"—}}lXM—XW\<_5:
<) & (4e) Cauc / 3 Ny sk nmafly=> \“}w}wR £
gﬁ* N: Vy\o\XiM)Mg\}_

Then w,sz = l(va\aJ,)—(KMJ«?%)) Z \><h~xml+|}m—t3(m\ < % t == 3
D) Lev €20 We nedh do kind N sh 02l D [xgu-xigmlc e
[uigon = Xinhon] = Xty =X+ X "X o
¢ )xh;wxh;(m\ t| xm;}wwq,,}wl
= [0 Ym0 3600
KL st el L Tyl 2L Y i by Lo 26|
(o) & () Coucy = 93 N s = Dol < 5
3 Nash mmzla= Jq-gal< &

T 2N = bl 2 Il gl gl Dol <+ L5 =2
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2.7 Properties of Infinite Series

Theorem 2.7.1 (Algebraic Limit Theorem for Series). If Y ;- ay = A and
> re by = B, then

(1) Do car, =cA forallc e R and
(i) > opti(ax +br) = A+ B.

Proof. In order to show that y - cay = cA, we must argue that the sequence
of partial sums
ty = cay + cag + casz + - - - + can,

converges to cA. But we are given that » - aj converges to A, meaning that
the partial sums
Sm =01 +ax+ag+- -+ ap

converge to A. Because t,, = cs,,, applying the Algebraic Limit Theorem for
sequences (Theorem 2.3.2) yields (t,,) — cA, as desired.
The proof of part (ii) is analogous. O

Theorem 2.7.2 (Cauchy Criterion for Series). The series Y -, aj, converges if
and only if, given € > 0, there exists an N € N such that whenevern >m > N
it follows that

|Gmg1 + Amgo + -+ an| < e

Proof. Observe that
|Sn - Sm‘ = ’am-i-l + Am+2 + -+ an|
and apply the Cauchy Criterion for sequences. n

Theorem 2.7.3. If the series Y-, aj, converges, then (aj) — 0.

Proof. Consider the special case n = m + 1 in the Cauchy Criterion for Series.
O

Theorem 2.7.4 (Comparison Test). Assume (ax) and (by,) are sequences sat-
1sfying 0 < ap, < by for all k € N.

(1) If >"p2, bi converges, then Y . | ax converges.

(i) If > "=, ax diverges, then > .- by diverges.
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Real Analysis - Properties of Infinite Series

Proof. Both statements follow immediately from the Cauchy Criterion for Se-
ries and the observation that

|am+1+am+2+"'+an‘§’bm+1+bm+2+"'+bn|- O

Example 1 (Geometric Series). A series is called geometric if it is of the form

oo
E ar® =a+4ar +ar* +ar® +--- .
k=0

Determine the criteria for a geometric series to converge.
IQ r: | aw& M‘O) J{ha, Series A)(ue,jes.
TE off,
(FT) (\—% r+ra+r3—(— et r""'"> = |’Y‘IM
N
= S atar tard ot tar™! = —TTB

B7 EXOWVIQ\Q, 9\€|) r" =0 &S‘( Irl< |
=7miwk= 2k N
k=0

|-

Theorem 2.7.5 (Absolute Convergence Test). If the series Y - |a,| con-
verges, then > > a, converges as well.

Proof. This proof makes use of both the necessity (the “if” direction) and the
sufficiency (the “only if” direction) of the Cauchy Criterion for Series. Because
Yo, |a,| converges, we know that, given an e > 0, there exists an N € N
such that

@] + [amie| + -+ an] <€

for all n > m > N. By the triangle inequality,
‘aerl + a2+ + anl < ’am+1| + ‘am+2‘ ot ‘an‘>

so the sufficiency of the Cauchy Criterion guarantees that Y >, a,, also con-
verges. O

43



Real Analysis - Properties of Infinite Series

Theorem 2.7.6 (Alternating Series Test). Let (a,) be a sequence satisfying,

(i) a1 >ay>a3> - >a, > ape1 > -+ and
(ii) (a,) — 0.
Then, the alternating series > - (=1)""ta, converges.

Example 2. Proving the Alternating Series Test amounts to showing that the
sequence of partial sums

Sp=a1 —as+as—---Ea,

converges. Different characterizations of completeness lead to different proofs.

(a) Prove the Alternating Series Test by showing that (s,) is a Cauchy se-
quence.

(b) Supply another proof for this result using the Nested Interval Property
(Theorem 1.4.1).

(¢) Consider the subsequences (sa,) and (Sg,41), and show how the Monotone
Convergence Theorem leads to a third proof for the Alternating Series

Test.
(©) Lok £30. We need N b, n3m2 N = [semsm| < £
\Su\‘slml :\ Omt| = Appgqy t Qmgy = " t Ok.,,\

KW\) 15 &\QCVQQS;IAS w& A >0 V¢ = ‘o\vh-(-l T T Qg ~ 0 L 0\.,.\ £ Oluneg Y nom 197 ih&q(’{‘fbf/l
()>0=>3 N st m2N=>o0,<¢

180~ Sim | =] Qs = Ayt Ogg = =+ F 0l £ Qs < € Whem nomN,

b> - II‘:ED)SIX. et I&:{QMSJE {D)S;} :II ) Sthee (W\s s (‘chrEoSf”j.
COV&\V\Q‘!’g n H/\’\S 'K:us\/\‘lm,\ We obtain I'QIA")_IBQ
\?)7 e NIP)B at [east one. SeT. ¥ nell.
Lek €50, We nead N sk n2N = |s-S|< &

The fosgly o Lois fsu-go )=o) adl ()20 =3 sk nal =0, <c.
Then |5(«‘S|£Clo\ 42) Since S‘,\)SE-]__L,\_
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O Usa) s incresing ouh bouded abae. (e.by 0,)-
MCT = JSelR sk S=lim(sa).
Also, sinee (an)=>D0,
limn (Sagr) = litm (Saurt e )= S # lim (O ) = S+0 = S
Since (5) > and Qsa\n+|>';75) we have, (s)=>S b7 Exewple 2.3.2.

Definition 2.7.1. If >  |a,| converges, then we say that the original series
> o, an converges absolutely. If, on the other hand, the series ), a, con-
verges but the series of absolute values >~ | |a,| does not converge, then we
say that the original series >~ a, converges conditionally.

Example 3 (Summation-by-parts). Let (x,) and (y,) be sequences, let s,, =
1 + 29 + -+ + x, and set sy = 0. Use the observation that z; = s; — s;_; to
verify the formula

Z xjyj = Sn¥Yn+1 — Sm—1Ym + Z S] yj+1

Z X4 ’—'Z (s5-5 )- O}j Z Si¥%y~ Z 5)— &

J=Imt Y=l J=mél

Z S—(‘a.\) Z SJ(j_ﬂ Sl’hg.‘ﬂ.{-l Sh;}mﬂ-fz $) E}ﬁw

yzim( J=m
"
Z X La> = l SJ%J Slm:}m.ﬂ Slﬁ}m—( Z S};}5+|
J =it \_\ =M€ ': (28]
> 5ily;-
- Sh S ( 1M £
gt ™ SmYue 3_% &3 |>
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Example 4 (Abel’s Test). Abel’s Test for convergence states that if the series
> re, o converges, and if (yy) is a sequence satisfying

Y12Y22ys >+ 20,
then the series > ;- | @y, converges.
(a) Use Example 3 to show that

Zxkyk = SnYn+1t Z sk(Yk = Yrr1),

k=1 k=1
where s, = x1 + 22+ - + T,,.

(b) Use the Comparison Test to argue that > 7~ | s,(yx — yx+1) converges ab-
solutely, and show how this leads directly to a proof of Abel’s Test.

() Lok 5022 . Thow 3 L s, (s)>L
= = IM>0 sk [sal M Y wep

By Ex 3,V uell,
}\:,:l Kk = S»\‘}M‘ N g—_[ SKL}(“‘}\«D

@ i\\

K=t

Sk (‘(}K“&HD\ < ; X (gk"‘}ku}
= M (.ka.|—k3\h+|>
L‘g.wa) Comwvges > %SK (‘&K“&w} Comub'je,s D\LSD[%M7

n "
= %. XYy = Sb\‘}wﬂ + ZI SKL\&K"‘}M} Convenyes

Definition 2.7.2. Let Y .-, a; be a series. A series > ;- by is called a rear-
rangement of »"°  ay if there exists a one-to-one, onto function f : N — N
such that by = ay for all k € N.
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Theorem 2.7.7. If a series converges absolutely, then any rearrangement of
this series converges to the same limit.

Proof. Assume )% | a;, converges absolutely to A, and let > ;7| by be a rear-
rangement of > 7 aj. Let’s use

Snzzak:al+a2+"'an
k=1
for the partial sums of the original series and use
tm:Zbk:b1+b2—|—---+bm
k=1

for the partial sums of the rearranged series. Thus we want to show that
(tm) — A.
Let € > 0. By hypothesis, (s,) — A, so choose N; such that

€
W= Al <=
5n— Al < 5

for all n > N;. Because the convergence is absolute, we can choose Ny so that

n

>l <3

k=m-+1

for all n > m > Ny. Now, take N = max{Ny, No}. We know that the finite
set of terms {aq, as, as,...,ay} must all appear in the rearranged series, and
we want to move far enough out in the series > - | b, so that we have included
all of these terms. Thus, choose

M =max{f(k): 1<k <N}

It should now be evident that if m > M, then (¢,, — sy) consists of a finite
set of terms, the absolute values of which appear in the tail >~ . ; [ag|. Our
choice of N, earlier then guarantees |t,, — sy| < €/2, and so
|tm—A| = |tm—SN+SN—A|
< ’tm — SN’ + ’SN — a]

<6+€
— — =€
2 2

whenever m > M. O
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2.8 Double Summations and Products of Infi-
nite Series

Example 1. For m,n € N, set
m n
)
i=1 j=1

and consider the array {a;; : 7,5 € N}, where a;; = 1/277"if j > i, a;; = —1if
j=1land a; =0if j <.

BRI
01§ d
0o o0 -1 L1 1
o o o -1 1}
o 0 0 0 -1

Compute lim,,_,o Sn,. Compare this to summing down rows first, and then to
summing down columns first.

Syl
511:"%

513 = _qu;

S = =¥ Elﬁ
(su)—=> -2

Mg
(9
Mg

/\.
M3
£

<
n

o
-
[
n
~
It
C
1}

Mg
(\9
Mo
/\.
M8
L
<
n
™ SVI8

o~
-
[
n
C
1}
~
o
()
[
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Example 2. Show that if the iterated series
22 lai
i=1 j=1

converges (meaning that for each fixed i € N the series Y 7, |a;;| converges
to some real number b;, and the series Y °, b; converges as well), then the

iterated series
PIPILE

i=1 j=1
converges.

ix C N Z °\c)| Cohl/&’éej ’\"%P S, ZO‘U%Y\
J=I
Than o) 5 ATl

J-I

Z Z ﬁ o\cjl (pb\UCVBe_S = Z: V‘L\ (o'f\t/e/ﬁw L\7 m Cbm?w,sd,\ e;+

=1 | J=I

N
= Z X Convesrges
(": “ Q”l‘j

Theorem 2.8.1. Let {a;; : i,j € N} be a doubly indexed array of real numbers.
If

converges, then both 372, 3777 ai; and Y77, Y, ai; converge to the same
value. Moreover,

oo o0 oo 00
lim Snn — E E Q5 = E E Qjj,
n—00

i=1 j=1 j=1 i=1

where Spp, =Y, 2?21 -
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Proof. Define

m n

I

i=1 j=1

and let b; = 3272 |a;;| for all i € N. Our hypothesis tells us that there exists
L > 0 satisfying > .~ b; = L. Because we are adding all non-negative terms,
it follows that

m n m o0 m
tmn:ZZ’aiﬂ < ZZ\CMH < Zbi < L.
=1 j—1 i=1 j—1 i—1

Since (t,,) is an increasing sequence and is bounded, it converges by the
Monotone Convergence Theorem. Then since (t,,) is a Cauchy sequence,
given an € > 0, there exists NV € N such that

[t — tmm| < €

for all n > m > N. Now the expression S,, — Smm is really a sum over a finite
collection of a;; terms. If each a;; included in the sum is replaced with |a],
the sum only gets larger (this is just the triangle inequality), and the result is

that o I
|3nn_3mm| = Zzaij_zza’zj < |tnn_tmm| < €.

i=1 j=1 i=1 j=1

It follows that (s,,) is Cauchy and must converge, so we can now set

S = lim s,,.
n—oo

In order to prove the theorem, we must show that the two iterated sums
converge to this same limit. We will first show that

S:ZZCLU.

% oo
i=1 j=1
Because {t, : m,n € N} is bounded above, we can let
B = sup{t, : m,n € N}.

The fact that t,,, is a sum of non-negative terms implies that if m; > m and
ny > n then t,,,n, > tm,. So let Ny = max{mg,no}. Then it follows that

€
B_§<tmo,n0§tmn§B
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Real Analysis - Double Summations and Products of Infinite Series

for all m,n > N;.
Without loss of generality, let n > m > N. Then,

|3mn - S' = |Smn — Smm + Smm — S|
S |8mn - Smm| + lsmm - S|

m n

> >

i=1 j=m+1

+ |Smm — S|

We have already chosen N; such that

€
[tmn — tmm| < 5 whenever n > m > Nj.

Because (S,,) — S, we can pick N; so that
€
|Smm — S| < 3 whenever m > Ns.

Setting N = max{ Ny, Ny}, we can conclude that |s,,, — S| < €/2+¢€/2 = ¢ for
all n >m > N.
For the moment, consider m € N to be fixed and write s,,,, as

n n n
Smnzg alj+§ a2j+"'+§ (-
J=1 Jj=1 Jj=1

Our hypothesis guarantees that for each fixed row i, the series Z]Oil a;j con-
verges absolutely to some real number r;. The Algebraic Limit Theorem can
then be applied to the finite number of components of s,,,, to conclude that

lim s =11 +7r0+ -+ 1.
n—oo

If, in addition, we insist that m > N, then we must have that
—€ < S — S < €

is eventually true once n is larger than N. Applying the Order Limit Theorem
we find

—e<(ri+rot+--+r,) —95<e

for all m > N.

Though we have produced a “less than or equal to €’ result, this is not
a problem. Because € is arbitrary, we could just as easily have chosen to let
€ < € at the beginning and constructed our argument using € throughout the
proof.
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Real Analysis - Double Summations and Products of Infinite Series

The same argument can be used to prove Z;’il > o2, ai; converges to S
once we show that for each j € N the sum > .~ a;; converges to some real
number c;.

To show >".° | a;; converges for each j € N, it suffices to prove that the ab-
solute series %, |a;;| converges. Recall that b; = > 7%, |ay], so it is certainly
the case that b; > |a,;| for all i, j € N. But our hypothesis says that Y .-, b;
converges, and so by the Comparison Test, ».° a;; converges for all values of
J- O

Example 3. One final common way of computing a double summation is to
sum along diagonals where ¢ + 7 equals a constant. Given a doubly indexed
array {a;; 11,5 € N}, let

dy = a1, ds=aia+as, dy= a3+ an+ as,
and in general set
dyp = a1 -1+ ag -2+ -+ ar_11.

(a) Assuming the hypothesis—and hence the conclusion—of Theorem 2.8.1,
show that .-, dj, converges absolutely.

(b) Imitate the strategy in the proof of Theorem 2.8.1 to show that Y -, dy
converges to S = lim,, o0 Spn-

HLek o |+l 1l )= 2 1),

A

TL\QV\ Uv,:v\Z\&\(\ < ii\"\i\ﬂ\_‘{hn.

K=& =1 AR

Ucm) Covluanjes =2 U Cotveryes L>7 ’H?\e_ COWIPM‘;SOI« Tes4.

@Le\' £20. We need 1) st sz=>\§’_ o\K—S\< 3
k=2

(sam=>S = AN sd uxp, = lsh,ﬂ-s\<%

() Converyes => AN, ok n>me Ny = | £, Lol < ’3.
Seb N= MWCZM)%N{S._WM)QM n N
\SV\U\—%&K\ < (JO"“"—%'“&N:,\B < %) 0«/\& So

K=

V\Z&kss\ = \ :Z:;XK_SMJ‘SW'S\ 5\ éﬁx\(_sw\

| s8] < & +
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Real Analysis - Double Summations and Products of Infinite Series

Remark 1. One way to carry out the algebra on a product of series is to write

(Za) (Zb) (a1 +ag+az+---)(by+by+by+---)
i=1
= a1by + (a1by + asby) + (aszby + asby + a1b3) +

= Z dk7
k=2

where
dk = albk_l + a2bk_2 + -+ ak_lbl.

This particular form of the product is called the Cauchy product of two series.

Example 4. Assume that ) >°, a; converges absolutely to A, and Z;’il b;
converges absolutely to B.

(a) Show that the iterated sum >, 3% |a;b;| converges so that we may
apply Theorem 2.8.1.

(b) Let spp = > 0y Z?Zl a;b;, and prove that lim,_, S, = AB. Conclude

that
DTS WIS oS

i=1 j=1 7j=1 =1

where, as before, dy = aiby_1 + asby_o + - -+ ap_1by.
D Lt Zladl=L af, E'iu,-\sﬂ
For & «ex cel, z %b\ \%(z 3\ so
S 3 iqc\zm— laclM= M facl =ML

(=1 g=! Ca J= 1

b . :
> hl—‘nv: P ” h—l;l:ﬂczlg aL ll!/)noo (v \<Z bb - LL;WN(}_ u>t&[-;noo<z ‘o‘) N AB

quclo Zz%lo = Z& lim S = AR

(=1 g=1 J’L[ >0

93



Chapter 3

Basic Topology of R

3.1 Discussion: The Cantor Set
LQ}V Co:‘:o)‘l. 2 \'
. 0 ) ¥ |
Lk €= G\ (303)=[0,5)v (3, 1), —

- ({2 0 fy Y Vs Yo Yy
L s (o] u[2og])o([BE] o)), &2 —
LQ}Y Cv\ Cov\j'\g\' o% D,V\ c\osel ]M'\'Wm\s 6&’ ‘QMDH\ \/5"‘. T(/\L chv\‘\'or SQr\— is C: 8 C,[,\.

T‘/\(,”\emj\{:& C is \‘[%JrD\(%>+L¥<a‘3>+'“+lh“(;lz>+“]’—l’ B =1-1=0

-3

Fol‘ e,acJ/\ ce C) %erlm (o\.,\\) L,7 gQHEVj QI:D '& C 1S In "‘L\o_ le&*&- QarJ(o«(\' C, ow-\\ 0||:| 0.\J.
SQ}V al:O orl &q%&‘(vﬁ O JAQ:“/\Q/( Cis '\’LQ {Q&’—\ o V‘(-j‘/\‘\' e\xﬁ%o@ C,;L.

CM 'w\u'wb ‘W}s (,Jo\7) Mefy ce C Corv’@}pbl/\AS ‘{'b o 5&214%&, C&O 0“(’ O\s qu ]‘s} O«A

vice UMSm) So C 5 UV\CQMV\&‘QL[&- dim

x3 hew Gpies
. —> . — 4 —> o0 Poim 0 - | __50
Sqmw\’ l - 2=3'
DJ’% - Spere | 2| = | 9=
— - —9 CU[OQ/ 3 —> 9&:":33
[5) 3 C/ % - 2 :5><
0 [ oy 3 o4 .
A — e = dim (> 1792
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Real Analysis - Open and Closed Sets

3.2 Open and Closed Sets

Definition 3.2.1. A set O C R is open if for all points a € O there exists an
e-neighborhood V(a) C O.

Dek A
Example 1. (i) R and ) are both open sets.

(ii) Show that the open interval

(c,dy={zxreR:c<z<d}

is an open set. ( T

L&‘\' X € (C)f&>.
Take €= min I x-¢, &—x}

=\ (<) ¢ (¢,d)

Theorem 3.2.1. (i) The union of an arbitrary collection of open sets is
open.

(ii) The intersection of a finite collection of open sets is open.

Proof. To prove (i), we let {O, : A € A} be a collection of open sets and let
O = Uyep Or. Let a be an arbitrary element of O. In order to show that
O is open, Definition 3.2.1 insists that we produce an e-neighborhood of a
completely contained in O. But a € O implies that a is an element of at
least one particular O,,. Because we are assuming O, is open, we can use
Definition 3.2.1 to assert that there exists Vi(a) C Oy. The fact that Oy C O
allows us to conclude that V.(a) C O. This completes the proof of (i).

For (ii), let {O1,0s,...0Ox} be a finite collection of open sets. Now, if
a € ﬂ]kvzl Oy, then a is an element of each of the open sets. By the definition
of an open set, we know that, for each 1 < k < N, there exists V,, (a) C O.
Letting € = min{ey, €s,...,€ex}, it follows that V.(a) C V,, (a) for all k, and
hence V,(a) C N, Ok, as desired. O

Definition 3.2.2. A point x is a limit point of a set A if every e-neighborhood
Ve(x) of x intersects the set A at some point other than z.

Theorem 3.2.2. A point x is a limit point of a set A if and only if x = lima,,
for some sequence (a,) contained in A satisfying a,, # x for all n € N.

Proof. (=) Assume zx is a limit point of A. In order to produce a sequence
(a,) converging to x, we are going to consider the particular e-neighborhoods
obtained using € = 1/n. By Definition 3.2.2, every neighborhood of x intersects
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Real Analysis - Open and Closed Sets

A in some point other than x. This means that, for each n € N, we are justified
in picking a point
an € Vim (x)N A

with the stipulation that a, # x. Given an arbitrary ¢ > 0, choose N such
that 1/N < e. It follows that |a,, — x| < € for all n > N.

(<) For the reverse implication we assume lima, = x where a, € A
but a, # x, and let V.(x) be an arbitrary e-neighborhood. The definition of
convergence assures us that there exists a term ay in the sequence satisfying
ay € V.(z), and the proof is complete. O

Definition 3.2.3. A point a € A is an isolated point of A if it is not a limit
point of A.

Definition 3.2.4. A set F' C R is closed if it contains its limit points.

Theorem 3.2.3. A set ' C R is closed if and only if every Cauchy sequence
contained in F' has a limit that is also an element of F.

Example 2. Prove Theorem 3.2.3.
(=) Assame. FER s closed. = F coutains its limit (pofu\JB.
Lok (%\) be Cauchy. Then gx st x= [im o, .
B 0,3 X VV\) o x is a\\?w«'ff‘?o}n’("O‘PF,
IE an=x Xor Some Vl)’H/\U/\ (QV\)Q_F) so xef.
(&) Assume wrer COM\A7 Seuone v s o limit in E Lot x Le o limit Po}wi“ of E

Thaw X=lima, for some (Dw.) Stnce (C«Lb Convevges i is Comclr\7, so xef,
Example 3. (i) Consider
A= {l in e N} .
n

Show that each point of A is isolated.

Let '/méA aw& choose. &= i~ \/(V\-('I)_

Then \/2(\/w>/\A= ELV‘} = Y is net o lime (90?%1‘.
= Y i isolated

However, O is o limit point o€ A aud DEA= A tq wob closel .
AUCZO:% is C(ose_b\ (c(osurc ofrA>
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Real Analysis - Open and Closed Sets

(i) Prove that a closed interval
ed = {reR:c<z<d)
is a closed set using Definition 3.2.4.
TE xis a limit ?o'.n+ of [ Hen T (x)e[e,d] sk (X)—> .
Cexned = Cexed  (0der Limd Theorem)
= [0l s clogd.

(iii) Consider the set Q C R of rational numbers. Show that the set of limit
points of Q is all of R.

Lk y e Comsider Vely) = (y-£,y+e).
Theorem 143 = ceQ s, r#}“"‘& Pe\}z((;t\
:)g/ is o l-lwl(.«' ?DMT O'P (Q

Theorem 3.2.4 (Density of Q in R). For everyy € R, there exists a sequence
of rational numbers that converges to y.

Proof. Combine the preceding example with Theorem 3.2.2. m

Definition 3.2.5. Given a set A C R, let L be the set of all limit points of
A. The closure of A is defined to be A = AU L.

Example 4. Let A be nonempty and abounded above so that s = sup A
exists.

(a) Show that s € A.

(b) Can an open set contain its supremum?

% S:S"‘PA S 320 ad ach sk s-gca = ac\, ()
= \12(55 ."’\*LrSQC’kSA 0\* o\gniv\'\_bﬁ/\v “f(/thhs =S IS o [In'rf Fo;w+o’P74:>S C—IA:.

@ Sq\o{)m A i DQ‘W\) S:SU\QA u/& SQA'TL\UA Je S"L \)2(5>9A:> S'{'%QA.
Cortsradicion.
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Real Analysis - Open and Closed Sets

Example 5. Given A C R, let L be the set of all limit points of A.

(a) Show that the set L is closed.

(b) Argue that if z is a limit point of AU L, then z is a limit point of A.
C&) Ld’ X Ee, o [IWH' ?o’m’k_ 0& L— LL‘\' ngﬂ) B& Qrg}‘{’rar/-

Then VJX) }m’{'QOQC'{B L or o ?aiv& el s+ L#+x.

Cloose & 5t Ner(L) e\s () aud x ¢ Vg (L)

Rel = Lis o limit poidk of A. = Ver (L) "MMQCJB A.
:7\[160 iw}u’geckg A of & goiw\' other Yon x.
= x 15 olivd (VD[M TAD el

b} Ler V09 be arbitrary. Thew V3 (<) infersecls AQL. S%()[)osa, yLel wth £ e\ (),
Cloose £ 5, Ngr () €V (%) 0, x & Vg (L)
Rel =2 L is alimd ?o‘u/(\' GG A= \}g’(/o 'mﬁrsacJYS A
':?\jz_c() ll/\+€(§9c+§ A a+ N {ioiw\' O'H\bf ’\/Llow\ X.
= x 15 o livned pint of A.

Theorem 3.2.5. For any A C R, the closure A is a closed set and is the
smallest closed set containing A.

Proof. If L is the set of limit points of A, then it is immediately clear that A
contains the limit points of A. Then since limit points of A U L must be limit
points of A by the preceding example, this shows that A = AU L contains its
limits points and is thus closed.

Now, any closed set containing A must contain L as well. This shows that
A= AU L is the smallest closed set containing A. n

Theorem 3.2.6. A set O is open if and only if O° is closed. Likewise, a set
F is closed if and only if F€¢ is open.

Proof. Given an open set O C R, let’s first prove that O is a closed set. To
prove O¢ is closed, we need to show that it contains all of its limit points. If z
is a limit point of O¢, then every neighborhood of x contains some point of O°.
But that is enough to conclude that x cannot be in the open set O because
x € O would imply that there exists a neighborhood V,(z) C O. Thus, z € O¢,
as desired.

For the converse statement, we assume O° is closed and argue that O
is open. Thus, given an arbitrary point * € O, we must produce an e-
neighborhood V.(z) € O. Because O° is closed, we can be sure that x is
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not a limit point of O°. This implies there must be some neighborhood V,(x)
of x that does not intersect the set O°. But this means V.(z) C O, which is
precisely what we needed to show.

The second statement in the theorem follows quickly from the first using
the observation that (E°¢)¢ = E for any set £ C R. O

Theorem 3.2.7. (i) The union of a finite collection of closed sets is closed.
(ii) The intersection of an arbitrary collection of closed sets is closed.

Example 6 (De Morgan’s Laws). (a) Given a collection of sets {E) : A € A},
show that

(UEA)C:ﬂEj and (ﬂEA>C:UE§

A€A AEA AEA AEA

(b) Now, prove Theorem 3.2.7.

D Ler xe (U B, = x¢Ex Yn = xeEX VA= xe QBN = (U E

AEA AEA

Lt xe QEL 2 x¢EAYA=> x¢ V) Ex=xe (U,Ea) = NES < (U

(7\&/\ 9‘> = [\ E;:
Lok x e nE "> 3 AeA sk xdEy 7X€E7\'”>X%UE'A = ?\e/\ QCEU
Let xe | EA, 2 INEN sh xdEx2x¢ QErwxe (QE)= YEr (N E,)
<?\e/\ ?\> - kej/\E;\,
@ O Let Ea be o Tintke colleckin v(f closed ks . = ExX ove open.

Cc; f\EC’

7\6/\

= ?\Q\E% (N‘:A 'S OPQI/\_ = U EQ\ (s C[OSU&-
u,> Let Ex be an arL;r{’mry CO”UZ{WM\ C[OSQA wts. = Ex ore open

~ %QAEA (N‘cA 's open.. = B e dod.

ACA
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Real Analysis - Compact Sets

3.3 Compact Sets

Definition 3.3.1 (Compactness). A set K C R is compact if every sequence
in K has a subsequence that converges to a limit that is also in K.

Example 1. Show that a closed interval is a compact set.

Lek (o) €Tc,dd . Then 3 Convergedt (&MQ L7 He Bolzowe - Weierstoss Thesrnm .
EC,&} 15 CLoseS» 2 e livn[f“ o‘% (o\“b s n [C)b\/_\‘

Definition 3.3.2. A set A C R is bounded if there exists M > 0 such that
la| < M for all a € A.

Theorem 3.3.1 (Characterization of Compactness in R). 4 set K C R is
compact if and only if it is closed and bounded.

Proof. Let K be compact. We will first prove that K must be bounded, so
assume, for contradiction, that K is not a bounded set. Because K is not
bounded there must exist an element z; € K satisfying |z;| > 1. Likewise,
there must exist zo € K with |z5| > 2, and in general, given any n € N, we
can produce z,, € K such that |z,| > n.

Now, because K is assumed to be compact, (x,) should have a conver-
gent subsequence (x,,). But the elements of the subsequence must satisfy
|z, | > ng, and consequently (z,,) is unbounded. Because convergent se-
quences are bounded (Theorem 2.3.1), we have a contradiction. Thus, K
must at least be a bounded set.

Next, we will show that K is also closed. To see that K contains its limit
points, we let x = lim z,,, where (z,,) is contained in K and argue that z must
be in K as well. By Definition 3.3.1, the sequence (x,) has a convergent sub-
sequence (x,, ), and by Theorem 2.5.1, we know (z,,) converges to the same
limit z. Finally, Definition 3.3.1 requires that x € K. This proves that K is
closed.

For the converse, let K C R be closed and bounded. Since K is bounded,
the Bolzano—Weierstrass Theorem guarantees that for any sequence (a,) con-
tained in K, we can find a convergent subsequence (a,, ). Because the set is
closed, the limit of this subsequence is also in K. Hence K is compact. O

Example 2. Show that if K is compact and nonempty, then sup K and inf K
both exist and are elements of K.

K is CDVhQuc\‘ 0\M> homwe+ = K s C(osu\\ OMD\ bwu&e»\. 87 AOC>—1 X SJL, d:Squ-
= VJuneN 3 %,eK st o= <x, 200 = limx, =

(X\D.C:K ad. K is (j\o';o& = xeK. Sim,'lar{7) im{—‘ kek.
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Example 3. Decide which of the following sets are compact. For those that
are not compact, show how Definition 3.3.1 breaks down. In other words, give
an example of a sequence contained in the given set that does not possess a
subsequence converging to a limit in the set.

a) N.

(
(b) QN o, 1.

)
)
(¢) The Cantor set.
(d) {1+1/22+1/3*+---4+1/n?:n e N}
)

(e) {1,1/2,2/3,3/4,4/5,.. }.

&) Ner Comva&. Lt a, =1

D) N& cmgack: (e a, be o Sguancs, amnrgion o /3.

O Cowpod'. Tt loow\ow\ and c(oﬁ&)sa‘ncg His oo inbinide, tnhrsedtion o closed, sefs.

5> No Cofmqack Al o, Condere fo Tf&/é.
@Cowyo\c}f. Evu*y SQZ(AU/\CQ comuc»jes )f'b ‘) %o i"‘ 1% ckosetl\ O\J meM,

Example 4. Assume K is compact and F is closed. Decide if the following
sets are definitely compact, definitely closed, both, or neither.

)

(¢c) K\F={zxe€K:z¢F}

() KAF*

@Dt'gimi'\‘&kj CO(M()O\C'\’. K/\F &} Ckoseg\ 0(4& lobuw\&gg\) Since K (s L,ouw\&g_ql\.

% D&S(‘m;’}'ely 0\0323\' K bOWAAQ& = KC fs LAML;DMMA(A

C> %OHA : I‘% K:io)ll D\m& Fe :(O)\>) M/Lu,\ K\F=knFe= CO)|> B ho’}'c(ose&)
buk % F¢= (-2 Hen K\F = (o) is Covpact

&>DQX—W\{)®\7 COIMQO\C‘\', K %ouw\&e&\% KOEC is boudﬂb\-
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Theorem 3.3.2 (Nested Compact Set Property). If
KiD2Ky; DK3 2D K42 -+

is a nested sequence of nonempty compact sets, then the intersection (|, K,
18 not empty.

Proof. For each n € N, pick a point z,, € K,,. Because the compact sets are
nested, it follows that the sequence (x,,) is contained in K. By Definition 3.3.1,
(x,,) has a convergent subsequence (z,, ) whose limit x = lim z,,, is an element
of Kl.

In fact, = is an element of every K, for essentially the same reason. Given
a particular ny € N, the terms in the sequence (z,,) are contained in K, as
long as n > ng. Ignoring the finite number of terms for which ny < ng, the
same subsequence (z,, ) is then also contained in K,,. The conclusion is that
r = limz,, is an element of K, . Because ny was arbitrary, x € ﬂflo:l K, and
the proof is complete. O

Definition 3.3.3. Let A C R. An open cover for A is a (possibly infinite)
collection of open sets {O) : A € A} whose union contains the set A; that is,
A C [Jyen Ox. Given an open cover for A, a finite subcover is a finite subcol-
lection of open sets from the original open cover whose union still manages to
completely contain A.

Example 5. Find an open cover for the open interval (0, 1), but show that it
is impossible to find a finite subcover. On the other hand, find an open cover
for the closed interval [0, 1] that has a finite subcover.

For endn xe(O)l)) let Ox be {le o?y/\imhvvo\ (X/&, D

Then §0c: xe(0))F is am open cover fu (o)),

Given iOXqu&,--qoxmk) sef x/= W"\ix'}%;,u-)ﬁ}_—rkw l}eﬂz st 044 ix%\
Is ot in QOX{ = EE o Linite subcove L iOx}.

0x
/\/;__\
,—£ v . . )
o) _5 Xa _)SL Xl \
o~ 2
~ _/
OXQ\

NQK& Sé\‘ 001(_5:)2) 0\1«»\ Dl = U’f.ﬂ*&) '?ar' >0 . Then iDO)OI)OX : XG[O) |):§ (S 04
OQ% cover (;nf’ [ZO)G- Nou i ue choose. x! s, X//a\u) fhein 200) O/ O@ IS &
Statke subcorer Ser [0, 1] :
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Theorem 3.3.3 (Heine-Borel Theorem). Let K be a subset of R. All of the
following statements are equivalent in the sense that any one of them implies
the two others:

(i) K is compact.
(ii) K is closed and bounded.
(iii) Fwvery open cover for K has a finite subcover.

Proof. The equivalence of (i) and (ii) is the content of Theorem 3.3.1. What
remains is to show that (iii) is equivalent to (i) and (ii). Let’s first assume
(iii), and prove that it implies (ii) (and thus (i) as well).

To show that K is bounded, we construct an open cover for K by defining
O, to be an open interval of radius 1 around each point x € K. In the lan-
guage of neighborhoods, O, = Vj(x). The open cover {O,, : x € K} then must
have a finite subcover {O,,, O,,, ..., O, }. Because K is contained in a finite
union of bounded sets, K must itself be bounded.

The proof that K is closed is more delicate, and we argue it by contra-
diction. Let (y,) be a Cauchy sequence contained in K with limy = y. To
show that K is closed, we must demonstrate that y € K, so assume for con-
tradiction that this is not the case. If y ¢ K, then every z € K is some
positive distance away from y. We now construct an open cover by taking O,
to be an interval of radius |z — y|/2 around each point = in K. Because we
are assuming (iii), the resulting open cover {O, : = € K} must have a finite
subcover {O,,, O,,,...O,, }. The contradiction arises when we realize that, in
the spirit of the preceding example, this finite subcover cannot contain all of
the elements of the sequence (y,). To make this explicit, set

eo:min{|$i2_y| :1§z’§n}.

Because (y,) — y, we can certainly find a term yy satisfying |yn — y| < €o.
But such a yy must necessarily be excluded from each O,,, meaning that

=1

Thus our supposed subcover does not actually cover all of K. This contradic-
tion implies that y € K, and hence K is closed and bounded.

For the reverse implication, assume K satisfies (i) and (ii), and let {O, :
A € A} be an open cover for K. For contradiction, let’s assume that no finite
subcover exists. Let Iy be a closed interval containing K and bisect I into two
halves A; and B;. If AN K and B;N K both had finite subcovers consisting of
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sets from the collection {Oy : A € A}, then there would exist a finite subcover
for K. But we assumed that such a finite subcover did not exist for K. Hence
either Ay N K or B; N K (or both) has no finite subcover.

Let I; be a half of Iy whose intersection with K does not have a finite sub-
cover, so that I; N K cannot be finitely covered and I; C Iy. Then bisect I; into
two closed intervals, A, and By and again let I = A, if Ay N K does not have
a finite subcover. Otherwise, let Iy = By. Continuing this process of bisecting
the interval I,,, we get a nested sequence of closed intervals Iy D [ D [ D ---
with the property that, for each n, I, N K cannot be finitely covered and
lim|7,,| = 0. Because K is compact, K N I, is also compact for each n € N.
By Theorem 3.3.2, (), I, N K is nonempty, and there exists an x € K N1,
for all n.

Let x € K and let O,, be an open set that contains z. Because O,, is
open, there exists ¢y > 0 such that V,(z) C O,,. Now choose ng such that
|I,,] < €. Then I, is contained in the single open set O,, and thus it has a
finite subcover. This contradiction implies that K must have originally had a
finite subcover. O]

Example 6. Consider each of the sets listed in Example 3. For each one that
is not compact, find an open cover for which there is no finite subcover.

D Lk Op=(a1,x#1) Lo AEN). Dn has no Linike. subcover
) Lek o be au invotional nambe  in (0,1).

For nel) set 0,= (1) x~Y) U (wetf 2.

VO= (12U (2) 2 RATO,T. On hog 1o finike. subcovers
&5 For eaca S 112 g Vfop Uz i the SE\")

& On= (St (n402 50t e ).

Oun has no Linite Subcover
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3.4 Perfect Sets and Connected Sets

Definition 3.4.1. A set P C R is perfect if it is closed and contains no
isolated points.

Example 1 (Cantor Set). Show that the Cantor set is perfect.

P
C= VOOC,,\ LJL\uQ, eadn Ci s o Rk waion ol}c(ose& nferug s
= eadn G is closd. = C is closed.
Lok xe C. xe (= x (0,53 or xe i),
X 0exels ) ke %23 TR x =1, hake x,-0.
ey a/&éXQJ’\'RK& x=1. 1§ Xil)f\"\ka X=3f3. Tn o\v\7 case. xleC with IX—X,\ ey

For &&c&/\ V\GI}\I) 'H/\Q. [Q(I\S\{’\ ch‘ Rada '(vr{'ertm\ " Co\ s \/3"‘.

For eac 1) e K be. ow U«MO'\W\’ ot ‘HML inteol Aol covroins . Tf x t¢ on 20&4‘7050\'{_ ovF o C,
~“’\'\W‘7‘\) \e—'\_ K be Yhe oWa?\"l‘E, %&Qoiv{\_
2 Xt C uwith %, # X s %% €37 0d v 20> (%) —> X

= xe(C s ud an '\so\O\JN& ?ou,\Jr,

Theorem 3.4.1. A nonempty perfect set is uncountable.
Proof. 1f P is perfect and nonempty, then it must be infinite because otherwise

it would consist only of isolated points. Let’s assume, for contradiction, that
P is countable. Thus, we can write

P = {.271,5132,1‘3, . '}7

where every element of P appears on this list. The idea is to construct a
sequence of nested compact sets K,, all contained in P, with the property
that x1 ¢ Ky, 9 ¢ K3, x3 ¢ Ky, .... Some care must be taken to ensure that
each K, is nonempty, for then we can use Theorem 3.3.2 to produce an

o0
re (K. CP
n=1
that cannot be on the list {z1, 29, x3,...}.

Let I; be a closed interval that contains z; in its interior (i.e., x; is not
an endpoint of I1). Now, z; is not isolated, so there exists some other point
yo € P that is also in the interior of I;. Construct a closed interval I, centered
on ys, so that I C I but x; ¢ I. More explicitly, if I; = [a, b], let

e = min{y, — a,b — yo, |21 — yo| }
Then, the interval Iy = [y» — €/2,y2 + €/2] has the desired properties.
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I

—T
8
=5
—
Ned q
[\v)
L
1

This process can be continued. Because y, € P is not isolated, there must exist
another point y3 € P in the interior of I3, and we may insist that y3 # xs.
Now, construct I3 centered on y3 and small enough so that xo ¢ I3 and I3 C I5.
Observe that I3 N P # () because this intersection contains at least ys.

If we carry out this construction inductively, the result is a sequence of
closed intervals I, satisfying

<1> [n—i—l g [n;
(i) =, ¢ I,41, and
(iii) I, NP % 0.

To finish the proof, we let K,, = I, N P. For each n € N, we have that K, is
closed because it is the intersection of closed sets, and bounded because it is
contained in the bounded set I,,. Hence, K, is compact. By construction, K,
is not empty and K, ;1 C K,,. Thus, we can employ the Nested Compact Set
Property (Theorem 3.3.2) to conclude that the intersection

() Kn # 0.
n=1

But each K, is a subset of P, and the fact that =, ¢ I,.; leads to the
conclusion that (2, K, = (}, which is the sought-after contradiction. O]

Definition 3.4.2. Two nonempty sets A, B C R are separated if AN B and
AN B are both empty. A set £ C R is disconnected if it can be written as
E = AU B, where A and B are nonempty separated sets.

A set that is not disconnected is called a connected set.

Example 2. (i) Verify that £ = (1,2) U (2,5) is disconnected.

(i) Show that the set of rational numbers is disconnected.
(OTRORD=P ad ()N ¢ = U wd (29) ar SQ\Qam‘[’wL
L) L& A= QOE 293D ad 8= QO [HF, )

A€ (-00¥3) = ouy limt iet ot A is 1 (-0, 75] = A OB =)
Sm\arl7) ANE=9. = A and R we eaﬁo\ra@\-
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Theorem 3.4.2. A set EE C R is connected if and only if, for all nonempty
disjoint sets A and B satisfying E = AU B, there always exists a convergent
sequence (x,) — = with (x,) contained in one of A or B, and x an element of
the other.

Example 3. Prove Theorem 3.4.2.

(=) Lk € be comecked ad [of €= AUR Kur A disjoint) non-emphy.
= A w/&\ 2 aw l/\o‘\' Qc\)am‘{'e_&. = Either A NR :,E¢ or AOD :r/.¢_
WLOG, assume xe ANB. Thon xe® ond xe A but xEA.
= X is a limif pout of A= 3 () 1w A sh (x)=> x.

(&) Assume, ECR s §is<ome@fe&, >3 A% gg?am{ejk b E=ALR.
[«JLOG) Supfose (XV\>QA ewb\ (XQJ’X.
= xeA or x is o limt poidt of A = xel.

AU & =Sb = X R . The result 'Qo“ObJS L>7 (om'fm?os'l‘\ivc;-

Theorem 3.4.3. A set E C R is connected if and only if whenever a < ¢ <b
with a,b € E, it follows that c € E as well.

Proof. Assume E is connected, and let a,b € E and a < ¢ < b. Set
A= (-o0,c)NE and B=(c,00)NE.

Because a € A and b € B, neither set is empty and, just as in Example 2 (ii),
neither set contains a limit point of the other. If £ = AU B, then we would
have that F is disconnected, which it is not. It must then be that A U B is
missing some element of F, and c is the only possibility. Thus, ¢ € E.

Conversely, assume that E is an interval in the sense that whenever a,b € F
satisfy a < ¢ < b for some ¢, then ¢ € E. Our intent is to use the characteriza-
tion of connected sets in Theorem 3.4.2, so let E = AU B, where A and B are
nonempty and disjoint. We need to show that one of these sets contains a limit
point of the other. Pick ag € A and by € B, and, for the sake of the argument,
assume ag < by. Because F is itself an interval, the interval Iy = [ag, bo] is
contained in /. Now, bisect I, into two equal halves. The midpoint of I, must
either be in A or B, and so choose I} = [ay, b1] to be the half that allows us to
have a; € A and b; € B. Continuing this process yields a sequence of nested
intervals I,, = [ay, b,], where a,, € A, b, € B, and the length (b, — a,) — 0.
By the Nested Interval Property, there exists an

(o]
T € ﬂ 1,
n=0
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and it is straightforward to show that the sequences of endpoints each satisfy
lima, = x and limb,, = x. But now x € E must belong to either A or B, thus
making it a limit point of the other. This completes the argument. O]

Example 4. A set FE is totally disconnected if, given any two distinct points
x,y € F, there exist separated sets A and Bwithx € A,y € B, and F = AUB.

(a) Show that Q is totally disconnected.

(b) Is the set of irrational numbers totally disconnected?

S Lek XJ‘}e R - Becayse T is dwnse in R we com choor 2e T 54 Xszey.
Lef @=AUR e As QN (0,2),8=Q0(2,).
}'\0«\»» Q) o sel(arajrc& '07 Ex, D\(CCB Qm& X&A) ?\e B

@ L £ %1[7 chscohmec&mD\ ‘oemuse, (@\ii CQMQQ/ " IR) SO e Can a()P\‘/f 'H«&.
o\rguww\\‘ in (o) 57 \e%‘m\j X)%el[ and dm%[@ ze Q.
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3.5 Baire’s Theorem

Definition 3.5.1. A set A C R is called an F, set if it can be written as the
countable union of closed sets. A set B C R is called a Gj set if it can be
written as the countable intersection of open sets.

Example 1. Argue that a set A is a Gy set if and only if its complement is
an F, set.

(=7> Lk A L;e, (N Gg sek . =7A: 8.0“ LJAML Ow s on,
= A= Q‘Ov\c LJ\I\VL OMC (s cLosaQ.

= A% is o oo sek,

K:) L{‘\' @ be G \:a— W'\':v B= Qlﬁ\ w\/\w’, ﬂ‘—o\ s clom;\.

8= 00 whe RS s open.
=R is o Of sek,

Example 2. Replace each with the word finite or countable,
depending on which is more appropriate.

(a) The Countuble,  union of F, sets is an F, set.

(b) The Linite intersection of F, sets is an F), set.
(c) The Linite union of Gjs sets is a G5 set.

(d) The Countable,  intersection of G sets is a Gj set.

Example 3. (a) Show that a closed interval [a, b] is a G set.
(b) Show that the half-open interval (a,b] is both a G5 and an F, set.

(c) Show that Q is an F, set, and the set of irrationals I forms a Gj set.
@) Lol = ) (ot 1)
©) =8 (aeth) § 6463 = O Lo, i]
€0 e combble = Q=613 thore {03 s closellys0 {63 is open.
Q.= ;C)zlirh} = Qis o
1-Q¢-= ﬁlim}m =1 is G
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Theorem 3.5.1. If {G1,Gy,Gs, ...} is a countable collection of dense, open
sets, then the intersection (., Gy is not empty.

Proof. Pick a point 1 € G;. Since GG is open, there exists an ¢; > 0 such
that V., (z1) € G;. Now take €] < €1, and let
L = Vefl (1)

The significant point to make here is that I; is a closed interval but we still
have the containment I; C V, (z;) C Gy.

Because G is dense, there exists an @3 € Vi (z1) € G1. Now Go N Vg (x1)
is open, so there exists an e; > 0 such that V,,(z2) € GoN Ve (z1). If we again
choose a smaller €, < e, then as before the closed interval

I, = ‘/;’2(332)

satisfies Iy C G5 as well as I, C I;. We may continue this process to create a
nested sequence of closed intervals I} O I, O I3 O --- satisfying I, C G, for

all n € N.
By the Nested Interval Property, there exists an = € () _, I,. Because
I, C G, it follows that z € (G,, for all n. Hence ﬂzozl G, is not empty. O

Example 4. Show that it is impossible to write

R=|]JF,.
n=1
where for each n € N, F}, is a closed set containing no nonempty open intervals.
[ ek F be N c\ose& Sedr (ow\‘a{v\im‘j no V\omum(ybz oPu\ anm(Q = FC o\)u/\.
et X}«}E\R st K<},WUA (;XJ‘&> i F

=3 2eF¢ sk, x<%<}
= ¢ is denwe.

ASSWMU lR: Vgl F.,\ "‘M e/"‘D[’\ E\ is 'N C(OSE& SQS\’ (ow\‘aiv\ivb no V\OV[Q.WL(?"? oPu,\ an%(g.
= 0
= ¢ = Q[F.,\C W‘/\U/‘Q (’.0\(.‘/\ (r—(,\c 15 o o\ul\sq_)o?u,l SQ,JV’

Cowsvm&{c*(ow,
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Example 5. Show how the previous example implies that the set I of irra-
tionals cannot be an F), set, and Q cannot be a Gy set.

ASSWMQ/ Iis \'_o—. Then I- V\Z}( Fh) \JAU@ eoda Cu is c[ose&, el

= F‘,\ Cour\'oms no spen }Mtwm\g_

o0
(D\:‘}:)lr(\,\ (J'\U/P_ Vi is c(ose& QMD\ COU\‘\'GNS no a?u/\ 'lw\'f.r\mks.

= [R Can 'oe, W(“Hun nS o commstm(ole_ U0l o c(ox& sg’\'s (om*['m'm(uﬁ ho OFQ{A ivfivrt/a(s- Cp"\{‘mol[c,‘hah.
1'? @ Wos Gg) 5([/\%\ I[ (,Jou\& \ot (:

Definition 3.5.2. A set F is nowhere-dense if £ contains no nonempty open
intervals.

o,

Example 6. Show that a set £ is nowhere-dense in R if and only if the
complement of F is dense in R.

@ Assume € is nonhwe-dense in i@,
= Gi\/{y\ X;?.QIR WI{'L\ ><<3_) (X}kg_) i E. = 32¢ EC s, Xé%éy_
= EC is &U«Se/.

&) Assume T i deuse. Them \}X;}} elR will, ’“9—3 %eECS’{" X<y

=15 Calmnol Conboin oy Momum(;L/ open intervals:

Example 7. Decide whether the following sets are dense in R, nowhere-dense
in R, or somewhere in between.

(a) A=QnN[0,5]. Somedere in befreen.
(b) B={1/n:n € N} Nowhere denso .
(¢) the set of irrationals. Dewse |

(d) the Cantor set. Nowhere dense.,

Theorem 3.5.2 (Baire’s Theorem). The set of real numbers R cannot be
written as the countable union of nowhere-dense sets.

Proof. For contradiction, assume that Ey, Fy, Fs, ... are each nowhere-dense
and satisfy R = (J°~, E,. Then certainly R = |J°2, E,. By De Morgan’s
Law this implies that § = (2, E, . Because E, is nowhere dense, B, is
dense. We also know that E,, is open. Then this is a contradiction, since by
Theorem 3.5.1 the countable intersection of dense, open sets is not empty. [
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Chapter 4

Functional Limits and
Continuity

4.1 Discussion: Examples of Dirichlet and Thomae

pet (XQ [£3 m\(bw\\) v\\;w;g(ﬁb:l ) W&rﬁ ()(h) s iWa{‘iom(,&;nﬂg(N«):O
for oy el ve can fd (XY e @ all (}Q T sd, lim xhzlivn;.ﬁ%,

buk \imgtﬁ):r"g(‘a.ubpo 9 8 VIO\AAAUE‘Con‘Zmuoa_c g
20 O : i§ xe®@ .
Hatkid Dl ks L={ F X2

;o\r ou/\7 C490 we can Q(V\& (X.,b cR (m& (3_‘,\)9_][ sl'{'. lim X, = IiV"l‘}n:C
o lim \/\[Kn)= C b\m& lim\/\(}Q:O,So g is ndt covctinupus of every C$0
50 We Wauf >l<‘l9WCl, W) =L %o im9(7 h(2n)>| ¥ (z)>c

N , 1 W& x=0
TI/\OIMQQ.S %WACS“OI/\ ’()(X>" \/L1 & )(:-(M/v\ [ Q\%O} \S fin ‘ot—J@S"' ’\_QI’V"IS LJ('K,\ WSO % o .

0 ifxdR

______

Linnes
afmanas

t t
| 2 Y

For ¢ e Qywe can T (4) i L cif: (40> ¢ but \im'ﬁ(;h}= 0+, 50 f(x)-a‘\g Lo’\‘ C;J“'MMS 410:, ce®

For CeTl) we cau Kind (%) i @ s, (R)->¢ ol s [mt(;.Q =0= (:(03) 50 1(x) is couitiauous for c € T
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SN

4.2 Functional Limits \‘[;6’

Definition 4.2.1 (Functional Limit). Let f : A — R, and let ¢ be a limit
point of the domain A. We say that lim,_,. f(z) = L provided that, for all
€ > 0, there exists a ¢ > 0 such that whenever 0 < |z —¢| < 0 (and z € A) it
follows that |f(z) — L| < e.

Definition 4.2.1B (Functional Limit: Topological Version). Let ¢ be a limit
point of the domain of f: A — R. We say lim,_,. f(z) = L provided that, for
every e-neighborhood V(L) of L, there exists a d-neighborhood Vj(c) around ¢
with the property that for all z € Vj(c) different from ¢ (with x € A) it follows
that f(x) € V.(L).

Example 1. (i) Prove that if f(z) = 3z + 1, then

}31_)1% flz)=T1.
(ii) Show that if g(z) = 2%, then

lim g(z) = 4.

T—2

(&) Lek €50 We ned §50 st 1% 0<lx-21<¥ Han 186)-Fl <2

1809 -FH = 1Bx+) - = [3x-6] = 3[x-73]

Choose. 8= &f3. Thun 0<1x-2(<§ implies [£09-3| < 3(efs) =

(L) Lek 50, We weed 550 st i€ 01x-21¢5 Mg lg0) -t < e

1309~ 1] = x| = [xtallx=a]

TR 3=, e [x#2) 21342125 ¥ xe Vgl

Chosse. 7= min § 1,¢/c].

Then 0 ¢ 12T iumplies | x*-tt] = | x#3)[x-2] < (S) £ = €
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Theorem 4.2.1 (Sequential Criterion for Functional Limits). Given a func-
tion f : A — R and a limit point ¢ of A, the following two statements are
equivalent:

(i) lim f(x) = L.
Tr—cC

(ii) For all sequences (x,) C A satisfying x, # ¢ and (z,) — ¢, it follows
that f(z,) — L.

Proof. (=) Let’s first assume that lim,_,. f(xz) = L. To prove (ii), we consider
an arbitrary sequence (z,), which converges to ¢ and satisfies z,, # ¢. Our
goal is to show that the image sequence f(x,) converges to L. This is most
easily seen using the topological formulation of the definition.

Let € > 0. Because we are assuming (i), Definition 4.2.1B implies that
there exists Vs(c) with the property that all z € Vs(c) different from c satisfy
f(z) € Vo(L). All we need to do then is argue that our particular sequence
(x,,) is eventually in Vs(c). But we are assuming that (z,) — ¢. This implies
that there exists a point xy after which x, € Vs(c). It follows that n > N
implies f(x,) € V.(L), as desired.

(<) For this implication we give a contrapositive proof, which is essentially
a proof by contradiction. Thus, we assume that statement (ii) is true, and
carefully negate statement (i). To say that

lim f(z) # L
Tr—rcC
means that there exists at least one particular ¢g > 0 for which no ¢ is a

suitable response. In other words, no matter what 6 > 0 we try, there will
always be at least one point

x € Vs(e) with x#c for which f(x) ¢ V,,(L).

Now consider §,, = 1/n. From the preceding discussion, it follows that for each
n € N we may pick an z,, € Vs, (c) with z,, # ¢ and f(x,) ¢ V,,(L). But now
notice that the result of this is a sequence (x,) — ¢ with x,, # ¢, where the
image sequence f(x,) certainly does not converge to L.

Because this contradicts (ii), which we are assuming is true for this argu-
ment, we may conclude that (i) must also hold. O

Corollary 4.2.1 (Algebraic Limit Theorem for Functional Limits). Let f and
g be functions defined on a domain A C R, and assume lim,_,. f(z) = L and
lim, . g(z) = M for some limit point ¢ of A. Then,

(i) limkf(z) = kL for all k € R,

Tr—C
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(i) im[f(x) +g(x)] =L+ M,

Tr—cC

(iii) lim[f(x)g(x)] = LM,

r—c

(iv) glﬁgrrif(:v)/g(x) = L/M, provided M # 0.
Example 2. Prove Corollary 4.2.1.
(0) ) =L whon (o)
= KR > KL ¥ RER whon (1) = € by fe Aloebrsic Limit Theartn £
= \m;\(‘?(x)z\(l, JkelR
(LC) r?()(.,\) =L omd gb@‘? M when (%) > C
= S%K\C,,b-L 3(3@1) - L+ M (J'\U« (X»b% C [77 Jf{to_ A(Dek)r'uic, L}m?"[" Tlao,ovzm %or SQ_ZMMCQS
= lim [+ 9] = L+ M
(L(.C) Q(Xu) =L and g(ﬁb‘? M wha () c
= X gl) > LM chew (€)= ¢ by fhe Aloelsic. Limit Thoorwn B
= >|<I-?<. B(K)SCR)] = LM
(C\I) «?()(.,\) =L ond g(ﬁb‘? M tha (%) > C
= S%&’("b /3 (XV‘) - L/M ‘J'\U'\ (vaé) C 19‘7 'K\Q- Abe‘or‘oio LZW\Z'[" ﬂ/\%wy\ '?o
= )EQCB(A/SCN)] = L/M

rS ezuwces

rS Q.ZMQMCQS

rS e_zuwcgs

Corollary 4.2.2 (Divergence Criterion for Functional Limits). Let f be a
function defined on A, and let ¢ be a limit point of A. If there exist two
sequences (r,) and (y,) in A with x, # ¢ and y, # ¢ and

limx, =limy, =c¢  but lim f(x,) # lim f(y,),

then we can conclude that the functional limit lim, . f(z) does not exist.
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Example 3. Assuming the familiar properties of the sine function, show that
lim, o sin(1/z) does not exist.

Ik X, = ‘/&y\'ﬂ aud \3,‘,\= \/(anTT +TT/&>} o lim (%a) = lim [.a_,,\) =0
Bodr S‘V\(‘/va:O \J ne N while sin (‘/‘a.v\):’l

= lim sin (\/Xv)#' lim Sin (\/‘3—“) 1 ﬂ 4}1
o A0MA NN N
= limsin(1/5) DNE v UUUM?WUU N

Example 4 (Infinite Limits). Definition: lim,_,. f(x) = co means that for all
M > 0 we can find a § > 0 such that whenever 0 < |z — ¢| < 9, it follows that
flx) > M.

(a) Show lim, .o 1/2? = oo in the sense described in the previous definition.

(b) Now, construct a definition for the statement lim, . f(z) = L. Show
lim, o, 1/ = 0.

(¢) What would a rigorous definition for lim, ., f(z) = oo look like? Given
an example of such a limit.

) Lek M50, Clioe. S =7 Then 0<1x1<E=1F = x3< g5 = LM
(©) Tim §)=L 0 R, wry £30 flart exists k>0 et when x> K it &llows

x=>00
Har 1569)-L] <%
Let £20. Choose K=1/s T x5K = e, flen \/x <&,
© J;v&%)wo & for every M0 Hare exists K20 st then s> K it follous Yoot §0>M.

An examgle 1§ R)=1x. Lek M0, Cloose. K=M> T ><>K:M&)ﬂw\ Tx>M.

Example 5 (Squeeze Theorem). Let f, g, and h satisfy f(z) < g(z) < h(z)
for all  in some common domain A. If lim,_,. f(z) = L and lim,_,. h(x) = L
at some limit point ¢ of A, show lim,_,. g(z) = L as well.

Lex €50 lim K6)=L = 3§50 s, 0¢lx-el<) implies L-e <hl)< L+s.

X=2C

Choose. 8=mim§_5‘,8\ﬂ§_'ﬂaw L—z<@(x§£3(}<}~’:\/\(x}<l,+i e 0¢[x-c|<§
= \3(><)—L\<E,_
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4.3 Continuous Functions

Definition 4.3.1 (Continuity). A function f : A — R is continuous at a point
c € Aif, for all € > 0, there exists a § > 0 such that whenever |x —¢| < (and
x € A) it follows that |f(x) — f(c)| < e.

If f is continuous at every point in the domain A, then we say that f is
continuous on A.

Theorem 4.3.1 (Characterizations of Continuity). Let f : A — R, and let
c € A. The function f is continuous at ¢ if and only if any one of the following
three conditions is met:

(i) For all € > 0, there exists a § > 0 such that |x —c¢| < 6 (and x € A)
implics |£(z) — £(c)] < &

(ii) For allV(f(c)), there exists a Vs(c) with the property that x € Vs(c) (and
x € A) implies f(x) € V.(f(c));
(iii) If (zn) — ¢ (with x, € A), then f(z,) — f(c).

If ¢ is a limit point of A, then the above conditions are equivalent to

(i) lim (@) = f(c).

Proof. Statement (i) is just Definition 4.3.1, and statement (ii) is the standard
rewording of (i) using topological neighborhoods in place of the absolute value
notation. Statement (iii) is equivalent to (i) via an argument nearly identical to
that of Theorem 4.2.1, with some slight modifications for when z,, = ¢. Finally,
statement (iv) is seen to be equivalent to (i) by considering Definition 4.2.1 and
observing that the case x = ¢ (which is excluded in the definition of functional
limits) leads to the requirement f(c) € V.(f(c)), which is trivially true. O

Corollary 4.3.1 (Criterion for Discontinuity). Let f : A — R, and let c € A
be a limit point of A. If there exists a sequence (x,) C A where (x,) — ¢
but such that f(x,) does not converge to f(c), we may conclude that f is not
continuous at c.

Theorem 4.3.2 (Algebraic Continuity Theorem). Assume f : A — R and
g : A — R are continuous at a point c € A. Then,

(i) kf(x) is continuous at ¢ for all k € R;
(i) f(z

) )+ g(x) is continuous at ¢;
(iii) f(z)g(x) is continuous at ¢; and
) f(x)

/g(x) is continuous at ¢, provided the quotient is defined.
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Proof. All of these statements can be quickly derived from Corollary 4.2.1 and
Theorem 4.3.1. [l

Example 1. Show that polynomials are continuous on R and that rational

functions (i.e., quotients of polynomials) are continuous wherever they are
defined.

Lek 400 =X, Becawe, |90<) ~gl)| = [x=c| ue can cloose §=5 fir o givew £50.
= 5 15 cgvf\'imuous on (R

$L><> :K [ a\Qo Cov\‘\{mmouu L)7 |Q IVB %\=\ f?w 0\«/\7 €50.

= ?(@ =0, tq, X+ q}xad& oo q,,\X"‘ s Comtinuous be_caus '1+ Cows'ls'% o‘% S mwk
’Pro&MCSVS ok conbfinuows Sunctiune

S.\W\‘\[av‘\p ZUQS‘-EW\'S 0¥ ?ol7l/nbvvn§0\s oave COM’\'\‘V\MDMS r,\}\,\zh )Yfm_ JQ“DW:V\B\’&‘M S mDJF O

Example 2. Investigate the continuity of

_Jasin(l/xz) ifx#0
g(x)_{o if = 0.

1909 ~g0)] = Ixsin(A<) - 0}  [x)

Given €50, st 8=¢.

= Lhen |x-01= <8 it Bollows e |50~ 0] < £
?—55 1S Cov\&imuous o e Or(jifn

Example 3. Investigate the continuity of the greatest integer function h(z) =
[[z]] which for each = € R returns the largest integer n € Z satisfying n < x.

Given meZ, Deline. (%0) by X2 M=/ = () —>m

But W)= (m-D#Fw=h(m) = | is ust codinnous ok meZ

Let £>0. We hove, Kor axg ceRyCdZ, nacint| forsome nez.
Take &= minfc-n () -c Then hi)=h(c) ¥ xeVs().

= () € Vg (1(0)) themeer xe s
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Example 4. Consider f(z) = y/x defined on A = {x € R : = > 0}. Prove
that f is continuous on A.

Lo} €50.
I8 ¢=0 ,then |80 - (D) =2T% <& Wl x< 2,50 choose 3¢
Then 1x=0\¢3 implies [£(x) ~0|<¢.
Lek ceA st 30, Then
x+TC \_ |x-c| , Ix=¢|
Vel o2 (e - g <
C,L\opsg_ F= 2'\)_6_‘14(7,14 \x—c\(? f:/n?{(QS

Theorem 4.3.3 (Composition of Continuous Functions). Given f : A — R
and g : B — R, assume that the range f(A) = {f(x): x € A} is contained in
the domain B so that the composition g o f(x) = g(f(z) is defined on A.

If f is continuous at ¢ € A, and if g is continuous at f(c) € B, then go f
18 continuous at c.

Example 5. Prove Theorem 4.3.3.

Lff £>0. 6 s Cow&imu(w; ot «C(c_\e(g

= 3ivw\ £50,3 «>0 s, \3(})-3(“6»\%_ Vhen }so&is%o \BL— )l et
£i¢ continuous ot CC—_A

= e Can 2&4& TS0 s, (x-c|<& imelreg ]QQX}«@(Q\(S

= for £50 3850 54, Ix-cl< & implies loy(£0x) - g(Rh| < &
= ao% (s Continuous o C .

Assume. ()= ¢ (with ceA).
£ ig Confinuous of ¢ = T &)
8 15 Con’\‘inubqs o «Q(QS > S(Hm\))—}? 3(%\(‘:»

= aorv (s Cowtinuous 0(\" C.
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4.4 Continuous Functions on Compact Sets

Theorem 4.4.1 (Preservation of Compact Sets). Let f : A — R be continuous
on A. If K C A is compact, then f(K) is compact as well.

Proof. Let (y,) be an arbitrary sequence contained in the range set f(K). To
assert that (y,) € f(K) means that, for each n € N, we can find (at least
one) x, € K with f(x,) = y,. This yields a sequence (z,) C K. Because K is
compact, there exists a convergent subsequence (z,, ) whose limit z = lim x,,, is
also in K. Finally, we make use of the fact that f is assumed to be continuous
on A and so is continuous at x in particular. Given that (z,,) — z, we
conclude that (y,,) — f(z). Because z € K, we have that f(z) € f(K), and
hence f(K) is compact. O

Theorem 4.4.2 (Extreme Value Theorem). If f : K — R is continuous on a
compact set K C R, then f attains a maximum and minimum value. In other
words, there exist xo,x1 € K such that f(xo) < f(x) < f(z1) for allz € K.

Proof. Because f(K) is compact, we can set o = sup f(K) and know « €
f(K). It follows that there exist z; € K with a = f(x;). The argument for
the minimum value is similar. [

Example 1. (i) Show directly that f(z) = 3z + 1 is continuous on R.

(ii) Show directly that g(z) = z? is continuous on R.
(O) Le¥ a>o.\Q(x)—@(c)\:I(?:xﬂ)-(’:cﬂ)\iSlX—C\ Ror ceR
Choose 8= £/3. Thea IX’C,\<8'HM?,(Q.5
[R0d-Rlal=3Ix-cl<3(£)=¢
() Given celR, l30@‘3(9\:|><“‘~c&\=|><‘0“x’“°\
It X-«l) fhon Ixtelelxl+1el e (ler+) tlel =alcel £
LeX £>0 owQ choose, = Mim{i)a/a\\c\ﬂ},
Then |x-cl< & iwplits

1§69- 8= beeelixeel< (5757 ) (el D=,

No&\‘t \(Qo(\' I/\Lre, E O\WQA&\S on C.
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ST
o e . . . . . \I.& (C,\ \IA‘ (_c )
Definition 4.4.1 (Uniform Continuity). A function f : A — R is uniformly -2

continuous on A if for every € > 0 there exists a > 0 such that for all x,y € A,
|z —y| < ¢ implies [f(z) — f(y)| <e.

Theorem 4.4.3 (Sequential Criterion for Absence of Uniform Continuity). A
function f : A — R fails to be uniformly continuous on A if and only if there
exists a particular €g > 0 and two sequences (x,) and (y,) in A satisfying

|xn - ynl —0 but |f($n) - f(yn>| Z €0-

Proof. The negation of Definition 4.4.1 states that f is not uniformly contin-
uous on A if and only if there exists ¢y > 0 such that for all § > 0 we can find
two points x and y satisfying |z — y| < § but with |f(z) — f(y)| > €. Thus,
if we set 0; = 1, then there exist two points x; and y; where |21 — y;| < 1 but
|f(z1) = f(y1)] = o

In a similar way, if we set d,, = 1/n where z € N it follows that there
exist points x,, and y, with |z, — y,| < 1/n but where |f(z1) — f(v1)| > €o.
The resulting sequences (z,) and (y,) satisfy the requirements described in
the theorem.
Conversely, if €, (z,,) and (y,) exist as described, it is straightforward to see
that no 0 > 0 is a suitable response for €. O

Example 2. Show that h(z) = sin(1/x) is not uniformly continuous on (0, 1).

\ |
Take €,=2 OMB\ sef ><h=_vm “‘A ‘a&\: 3o 4 all

Thes KM‘QOJ gu\_})o = ]XL\FEIA\—S)O
Buk \h(@-l«(?«)\:a Y weN.

Example 3. Show that f(z) = 1/z?% is uniformly continuous on the set [1, 00)
but not on the set (0, 1].

RORNIEE e
TE %5921 Hham Ytx |

I l

el

Xa;_& X EL’A\
X&}D\_ X"’l; +T}9~

So gk €50, dwese. §= £/a Qh&ﬂam\‘%(x)-qt(g)\ <(¢/Dr=e e \x-;,_\qf

= L \M/l‘lxb‘(llh[7 continuous oin D)oo>

Du (0,1, s&7 %=Vl el o= ST . Thes ]xh#h\—’)O

buk 1800~ Ky = In~(nei| =)
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Theorem 4.4.4 (Uniform Continuity on Compact Sets). A function that is
continuous on a compact set K is uniformly continuous on K.

Proof. Assume f : K — R is continuous at every point of a compact set K C
R. To prove that f is uniformly continuous on K we argue by contradiction.

By the criterion in Theorem 4.4.3, if f is not uniformly continuous on K,
then there exist two sequences (z,,) and (y,) in K such that

lim|z, —y,| =0 while |f(z,)— f(yn)| > €0

for some particular g > 0. Because K is compact, the sequence (x,) has a
convergent subsequence (z,,) with = limz,, also in K.

Next consider the subsequence (y,, ) consisting of those terms in (y,,) that
correspond to the terms in the convergent subsequence (z,, ). By the Algebraic
Limit Theorem,

The conclusion is that both (z,,) and (y,,) converge to x € K. Because f is
assumed to be continuous at z, we have lim f(z,,) = f(z) and lim f(y,,) =
f(z), which implies

Hm(f (zn,) = f(yn,)) =0

A contradiction arises when we recall that (x,,) and (y,,) were chosen to satisfy

|f(2n) = f(yn)] = €0

for all n € N. We conclude, then, that f is indeed uniformly continuous on
K. m
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Example 4. Prove that f(xz) = /2 is uniformly continuous on [0, c0).

Own [‘)00} We ‘/lal/ﬁ X’?EI
= \'\TX’_’U\\: __y"_/x— C | x- ._L
\& \\BE ﬂl‘j_\”‘ y'] X

So g €50, choose T=XE aud \HA-H&)K(’&E}%\”—Z when l><’%\<&_
=y X— 1S Wt o\rlm[\/ (Oh‘\'l'VlMDLtj on E\)oo>
EO,[} I3 (‘olm?a& = % (£ um}%w«l7 cOb\—knuwS on [O,l]

= L i ULv\l*gbrlm[«Z Confinuous Ou EO)DO>
Example 5 (Lipschitz Functions). A function f : A — R is called Lipschitz
if there exists a bound M > 0 such that

‘f(x)—f(y)'<M
T -y

for all x # y € A. Geometrically speaking, a function f is Lipschitz if there is
a uniform bound on the magnitude of the slopes of lines drawn through any
two points on the graph of f.

(a) Show that if f : A — R is Lipschitz, then it is uniformly continuous on A.

(b) Is the converse statement true? Are all uniformly continuous functions
necessarily Lipschitz?

o & Lipschitz = \Q(x)‘#(}ﬁ\ cMIx-9 ¥ x9eA
Given £>0 cloose §= & /M. Then (><—31<s 'WMPlits
1860-Hyd <M = ¢
= —Q is \Am‘(fgbrlm\\/ Cov\'\imuous on A
b COV\SE&@F HXBZR} U\/\id" [ umikbﬂml7 Com*fmucu_g on [O)B'
1& (}:O (M.& X>D) ‘HAU/\
R
X-y X

= ﬁ )[*)l"icl’\ S Vb‘\’ Ewu\&e& Neav O

So  no.
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4.5 The Intermediate Value Theorem

Theorem 4.5.1 (Intermediate Value Theorem). Let f : [a,b] — R be contin-
wous. If L is a real number satisfying f(a) < L < f(b) or f(a) > L > f(b),
then there ezists a point ¢ € (a,b) where f(c) = L.

Theorem 4.5.2 (Preservation of Connected Sets). Let f : G — R be contin-
uwous. If E C G is connected, then f(E) is connected as well.

Proof. Let f(E) = AU B where A and B are disjoint and nonempty and let
C={ze€eE:f(x)e A} and D={rekFE: f(x)e B}

The sets C' and D are called the preimages of A and B, respectively. Using
the properties of A and B, it is straightforward to check that C' and D are
nonempty and disjoint and satisfy £ = C' U D. Now, we are assuming F is
a connected set, so by Theorem 3.4.2, there exists a sequence (z,) contained
in one of C' or D with « = limz, contained in the other. Finally, because
f is continuous at z, we get f(x) = lim f(x,). Thus, it follows that f(x,) is
a convergent sequence contained in either A or B while the limit f(x) is an
element of the other. Applying Theorem 3.4.2 again, the proof is complete. [

Proof of Theorem 4.5.1. 1. (First approach using AoC.) Consider the special
case where f is a continuous function satisfying f(a) < 0 < f(b) and show
that f(c) = 0 for some ¢ € (a,b). First let

K ={x€a,b]: f(x) <0}

— NN
f
K

w| ST

c=sup K

Notice that K is bounded above by b, and a € K so K is not empty. Thus we
may appeal to the Axiom of Completeness to assert that ¢ = sup K exists.
There are three cases to consider:

fle) >0, f(c) <0, and f(c) =0.

Assume, for contradiction, that f(c¢) > 0. If we set ¢¢ = f(c), then the
continuity of f implies that there exists a o > 0 with the property that
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x € Vs, (c) implies f(z) € V., (f(c)). But this implies that f(z) > 0 and thus
x ¢ K for all x € Vj,(c). What this means is that if ¢ is an upper bound on K,
then ¢ — ¢y is a smaller upper bound, violating the definition of the supremum.
We conclude that f(z) > 0 is not allowed.

Now assume that f(c¢) < 0. This time, the continuity of f allows us to
produce a neighborhood Vs, (¢) where x € Vs (c) implies f(z) < 0. But this
implies that a point such as ¢+ d;/2 is an element of K, violating the fact that
¢ is an upper bound for K. It follows that f(c) < 0 is also impossible, and we
conclude that f(c) =0 as desired.

This proves the theorem for the special case where L = 0. To prove the
more general version, we consider the auxiliary function h(x) = f(z) — L
which is certainly continuous. From the special case just considered we know
h(c) = 0 for some point ¢ € (a,b) from which it follows that f(c) = L.

I1. (Second approach using NIP.) Again, consider the special case where
L=0and f(a) <0< f(b). Let Iy = [a,b], and consider the midpoint

z=(a+b)/2.

If f(z) > 0, then set a3 = a and by = z. If f(2) < 0, then set a; = 2z and
by = b. In either case, the interval Iy = [ay,b] has the property that f is
negative at the left endpoint and nonnegative at the right.

f(z)>0
L NN %
a z b
} Iy
— I
— I

By repeating this construction, we get a nested sequence of intervals I,, =
[an, b,] where f(a,) < 0 and f(b,) > 0 for all n € N. By the Nested Interval
Property, there exists a point ¢ € ()~ I,. The fact that the lengths of the
intervals are tending to zero means that the two sequences (a,) and (b,) each
converge to c.

Because f is continuous at ¢, we get f(c) = lim f(a,) where f(a,) < 0 for
all n. Then the Order Limit Theorem implies f(c) < 0. Because we also have
f(c) = lim f(b,) with f(b,) > 0, it must be that f(c) > 0. We conclude that
f(c) =0. O
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Example 1. Show how the Intermediate Value Theorem follows as a corollary
to Theorem 4.5.2.

[a)bl s Col/]l/led\(f’b\
= S%U:Q)B'D is Cowmec‘kw&
fye £(8) aud S0y e §(Coe)

= LQ";G:O‘;B:D
=3 C,G(q,b} sx L= Q(C)

Definition 4.5.1. A function f has the intermediate value property on an
interval [a, ] if for all < y in [a,b] and all L between f(x) and f(y), it is
always possible to find a point ¢ € (z,y) where f(c) = L.

Example 2. A function f is increasing on A if f(z) < f(y) for all x < y in
A. Show that if f is increasing on [a,b] and satisfies the intermediate value
property, then f is continuous on [a, b].

Fix celeyh) aud [ ¢50.

§is '\V]cveqsiv@ >, ﬁob = -Q(C) T Ly - 3/& < IV\(O% e Se+x,=q.

Tk fey) £ Foy - 2/9\, Hren LJ/ TP 3 %,<C where £6)= £ - t/a.
Eithe- wayy € (%, = §O-a=tx,) 2 $09) £ £

S'wnzlar% 3 x,>C s KO 28x) ¢ 805) = f) + ¢7 Lan xe ¢, %)
Sed = Mingc-x,)x.;c}_

Thon 8- 2 2 8 2 H)He/a vhan Ix~cled

The Case bhwre ¢ 15 av w&i)dv& s Similar.
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4.6 Sets of Discontinuity

Remark 1. Given a function f : R — R, define Dy C R to be the set of
points where the function f fails to be continuous. Dirichlet’s function g(z)
has D, = R. The modification h(x) of Dirichlet’s function has D;, = R\ {0},
zero being the only point of continuity. Finally, for Thomae’s function t(x),
D;=Q.

Example 1. Using modifications of these functions, construct a function f :
R — R so that

(a) Dy =Z°.

(b) Dy ={z:0<z<1}.

Lek 9 be fle Dirichlet funckion.

0) k)= 5x) ST s Gutinuous ad eacly nkeser e isconkinuus UWW else,

[CDFO\/‘ XQ{O)I__X s J%(K>'—X5()<> ou,\g\ M=O Oﬂ\uwisaz

Example 2. Given a countable set A = {ay,as,as,...}, define f(a,) = 1/n
and f(z) =0 for all z ¢ A. Find Dy.

T+ XGA)J«/\UA Simce A s Coum\mL\e, A\c 1S no_e,.ngQ,) S0 %\r Cm7 §>o We Coan Q?m& \8,6: \J&'(x>
S 3,¢A)E,.JL, '\1%020 = \r‘}(ﬁ)*ﬁ(@\—— 7 98>0 L s nd wutinuss b xeA.

I‘(’ X¢A)M U/QA/\/ Sezuu«co. (XI/D‘%X \/tO\S 'P&X.,)\b@:'@(ﬁ>) S Ce Vh_;o ‘{\1‘(‘
X\,\C‘-A Ow'&\ X‘,\é:A e mll 0 -—:>e\1 is Lowkt'humuts o 7Q4=A

= 'DR_:A ngm\i%‘\'i% DS('TLLovnqe\s S\NMC}Y(DM) Se A = @)
Definition 4.6.1. A function f : A — R is increasing on A if f(z) < f(y)

whenever z < y and decreasing if f(x) > f(y) whenever x < y in A. A
monotone function is one that is either increasing or decreasing.

Definition 4.6.2. Given a limit point ¢ of a set A and a function f: A — R,
we write

lim f(z) =1L

z—ct
if for all € > 0 there exists a § > 0 such that |f(z) — L| < e whenever
0<z—c<hd.
Equivalently, in terms of sequences, lim, ..+ f(z) = L if lim f(z,) = L for
all sequences (z,,) satisfying xy > ¢ and lim(z,,) = c.
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Example 3. State a similar definition for the left-hand limit

lim f(x)=L.

Tr—Cc—

)}:ﬂ:_%ﬂ:[, it B all €90 Hhoe exishe a 90 sk [F)-Ll<s wWhemever 0< x-c<S.

Theorem 4.6.1. Given f: A — R and a limit point ¢ of A, lim,_,. f(x) =L
if and only if
lim f(z) =L and lim f(z) = L.

T—Cc Tr—C

Example 4. Prove Theorem 4.6.1.
(=) lim K== gven £5p,38>0 s [80)-L<e vhaen 021x-cl< &
X>C

Yo same 3 shows lim §09 =L and i £)=1

X=2C" xSt

(&) Given £€50,3 5>0 s [R)-L]¢e when 0<>(—c<§| and. 3 y;?O s,
\X’b‘b’"(—-\ L€ 1hen D(C‘Xégg\.SQf\' F‘—vv\'(h{é\”ga\} 0«!«3\ fheun \Pbc)»[_k £
Lor all 0lx-cl<y = lim £69)= L

Remark 2. Generally speaking, discontinuities can be divided into three cate-
gories:

(i) If lim,_,. f(x) exists but has a value different from f(c), the discontinuity
at c is called removable.

(ii) If lim, .+ f(z) # lim, . f(z), then f has a jump discontinuity at c.

(iii) If lim,_,. f(x) does not exist for some other reason, then the discontinuity
at c is called an essential discontinuity.

Example 5. Prove that the only type of discontinuity a monotone function
can have is a jump discontinuity.

First consider © ncressing ool st A= LRBD X <eF R some. celP. Thew A i boonded L>7 L0
%7 AoC,y e can seb L= SMVA,L& £50. Then L is om “pper [aovlw&) S0 Ax,<C St

L~ < Sk &1 Since £ is incveqs{uﬁ)cl,\om}mj 5= (=%, implies -2 ¢ Rlw) £ R6) £ |
Whin 04 C~ XY = )I(\':z_ Fod)= . §Imq}|ou{7) J;mgf(x) =1 e U= imQ{Q(x): x>(_}.
= LMoLl

TR L) flen §is oinnoas ot ¢ T8 L4L7 Hhon & has o Juamp OQ;SCM(,'M;W ac.

The CaSP Whue &g &&Lvms{ms is S(w.f'[ar,
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Example 6. Construct a bijection between the set of jump discontinuities of
a monotone function f and a subset of Q. Conclude that Dy for a monotone
function f must either be finite or countable, but not uncountable.

et § be imcvewiMj Al C be Qo"w\*' ok o\(sm#r(mi{] Set lim —P(x)=1,£ o\m\ livm fx\(x)"[,c/.
x>0 x2C
Then L&l Qisdose i 23 e@ st Lo< <Ly
A\so) Ci<G = 0 <y, %0 )= s |- = Dg is Binife. o coundrallle .
Definition 4.6.3. A set that can be written as the countable union of closed
sets is in the class F}.

Example 7. (a) Show that in Dirichlet’s function, the modified Dirichlet
function, and Thomae’s function we get an F, set as the set where the
function is discontinuous.

(b) Show that the two sets of discontinuity in Example 1 are F,, sets.
09 For Divich|et's quclrioh) Rois closed For the modiiell. "D]r\c[q(lg‘ i-\umc‘h'am) set
Au= 20y Y UL /ny00) ihich s closed. Thew R\$6} = UA, s b
For Thowmae's —qu\cjf(om) Q s Yoo contable wnion ot S?male,"'uh sefs )LJ[A('C['\ ave. closed.
D) Lek mel Sa\Jr(sJ%Z 123 ondl et 267, Dekine Wlnp2) =24 64, G- (Vu)]
Thor Ul =%gz(m %) is closed and 2¢= QSU\U\).
For the second emwlz Write (O)G"VQ.Q/"‘JB-

Definition 4.6.4. Let f be defined on R, and let o > 0. The function f is a-

continuous at © € R if there exists a 0 > 0 such that for all y, z € (z — 0,2+ )
it follows that |f(y) — f(2)] < a.

Remark 3. Given a function f on R, define D} to be the set of points where
the function f fails to be a-continuous. In other words,

D} ={z € R: f is not a-continuous at z}.

Example 8. Prove that, for a fixed a > 0, the set D} is closed.
Let ¢ be a limid ?oiv& of Di aad lr 050 = J x’eDy st. x"¢€ \/&?/1((‘>
= 3 4 é\]g/gK (x) st | R -HBD) 2 o
Vafa (x) € Vgl > 80 3y, €Ny () sk 1R -F@)l2 o > ceDy
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Theorem 4.6.2. Let f: R — R be an arbitrary function. Then Dy is an F,
set.

Proof. If a < o and ¢ € DY, then given § > 0, there exist y,z € Vj(c)
satisfying
1fy) = f(2)] > >

Thus ¢ € D} as well, ie., D;’c‘/ C Df.
Now suppose f is continuous at x. Then given fixed o > 0, we know there
exists a 0 > 0 such that

o .
[f(y) = f(2)] < 5 provided y € Vs(z).
Thus, if y, z € Vs(x) we then get

[f(y) = fE < 1fy) = F@)] +1f(2) = f(2)]
a a
< 7 + 5 = Q,
and we conclude that f is a-continuous at x. The contrapositive of this con-
clusion is that if f is a-continuous at x, then it certainly cannot be continuous
at x. That is, D;’f C Dy.

Now assume f is not continuous at x. Negating the e-¢ definition of con-
tinuity we get that there exists an ¢y > 0 with the property that for all 6 > 0
there exists a point y € Vs(z) where |f(y) — f(z)| > €. Noting simply that
both x,y € Vs(x), we conclude that f is not a-continuous for oo = ¢ (or any-
thing smaller.)

To prove Dy = J,, Djl/ " we argue for inclusion each way. If z € Dy,
then we have just shown that x € D;O for some ¢y > 0. Choosing ny € N
small enough so that 1/ny < €, it follows that = € DJI/ "0 This proves
Df c Uff:l Djlf/n'

For the reverse inclusion we observe that we already showed D;‘f’ C D
when a < o/, so DJI/" C Dy for all n € N. Because each D}/n is closed, the
result follows. O
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The Derivative

5.1 Discussion: Are Derivatives Continuous?

= j(x)"j(c> 8'(c,>: \iw) w
T x-c xX>C X—C
=3l 3“(*)2{2M5ih(\/x) A
S SOKK) is nof C(ov;{‘l'muoug ot x=0, but 3,(7() i$
/ = liVVI 'X - ;w, |
41(0) Jim 3_X =l s n(1A) DNE
HOE “Z‘o xsin(1/%<)=0
AL = cos (1/%) + xsinl1/x) ik xt0 : _ ,
a9 {0 dxeo oA i 93070 DNE 50 9 is waf corrbinaaus

Sk’ has o CSSOA'\ic\\ 0[1560»1*“(4547

Does Yare exich a deivotive ui'ﬂ,\o\'\\wae tD\iSCob{hmu(‘,';Z
L.Q-) DQUlS *&ue Qxfs’\’ |4 SnL ) = '& xzO
=y 2
I iF x>0

91



Real Analysis - Derivatives and the Intermediate Value Property

5.2 Derivatives and the Intermediate Value Prop-
erty

Definition 5.2.1 (Differentiability). Let g : A — R be a function defined on
an interval A. Given ¢ € A, the derivative of G at c is defined by

g/(c) — lim g(ZL‘) — 9(0)7
r—C Tr — C
provided this limit exists. In this case we say g is differentiable at c¢. If ¢
exists for all points ¢ € A, we say that ¢ is differentiable on A.

Example 1. (i) Calculate the derivative of f(z) = 2™ where n € N at an
arbitrary point ¢ in R.

(ii) Show that g(x) = |z| is not differentiable at zero.

((:) X"\—C’V\ = (x.. C> (XV\—'-Q CXV\-Q_(_ CG\XVI‘3+ ...+C’V\—|>

= §/(0) = lim X22C°

X=2C X-C
- ‘IVV] ,X_V\-l_" XV\-A_(_ A Vl‘3+.”+CJV\-I
X%C( ¢ C X >
-1 -1

=M+ V=N

) i M R
N =l ol lim oo = gll0)= im = DNE

Theorem 5.2.1. If g : A — R is differentiable at a point ¢ € A, then g is
continuous at ¢ as well.

Proof. We are assuming that

#(6) = lim g9(x) —g(c)

r—rC xr —C

exists, and we want to prove that lim,_.g(x) = g(c). But notice that the
Algebraic Limit Theorem for functional limits allows us to write

(g(x) —9(0)

lim(g(z) — g(c)) = lim pr—

Tr—C Tr—cC

)(:L'—c):g'(c)-O:O.

It follows that lim, . g(z) = g(c). O
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Theorem 5.2.2 (Algebraic Differentiability Theorem). Let f and G be func-
tions defined on an interval A, and assume both are differentiable at some
point ¢ € A. Then,

(1) (f+9)(c) = f(e) +g'(c),
(ii) (kf)(c)=kf'(c), for all k € R,

) (
) (kf)

(iif) (f9)'(c) = f'(c)g(c) + f(e)g'(c), and
) (

(iv) (f/g)(c) = %, provided that g(c) # 0.

Proof. Statements (i) and (ii) are left as exercises. To prove (iii), we rewrite
the difference quotient as

(f9)(x) = (fg)(c) _ flx)g(x) — fx)g(c) + f(x)g(c) — f(e)g(c)

r—cC r—=cC

- (o) [0 |y [ L1160,

r —C — C

Because f is differentiable at ¢, it is continuous there and thus lim,_,. f(z) =
f(c). This fact, together with the functional-limit version of the Algebraic
Limit Theorem (Corollary 4.2.1), justifies the conclusion

i 9 @) = (f9)(c)

r—C T —cC

= f(c)g'(c) + ['(c)g(c).

A similar proof of (iv) is possible, or we can use an argument based on the
next result. O

Theorem 5.2.3 (Chain Rule). Let f : A — R and g : B — R satisfy
f(A) € B so that the composition g o f is defined. If f is differentiable at
c € A and if g is differentiable at f(c) € B, then g o f is differentiable at c

with (g o f)'(c) = ¢'(f(e)) - f'(c).

Proof. Because g is differentiable at ¢, we know that

, — i YW —9(f(€))
g(Jle) = ny(c) y—fle)

Another way to assert this same fact is to let d(y) be the difference quotient

9(y) — g(f(c))
y—fle)

and observe that lim,_, ) d(y) = ¢'(f(c)). At the moment, d(y) is not defined
when y = f(c), but it should seem natural to declare that d(f(c)) = ¢'(f(c)),

d(y) = (1)
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so that d is continuous at f(c).
Equation (1) can be rewritten as

9(y) — g(f(c)) = d(y)(y — f(c)). (2)

Observe that this equation holds for all y € B including y = f(c). Thus, we
are free to substitute y = f(t) for any arbitrary t € A. If t # ¢, we can divide
equation (2) by (¢ — ¢) to get

g(f(t) —g(f(c) _

t—c

for all ¢ # c¢. Finally, taking the limit as ¢ — ¢ and applying the Algebraic
Limit Theorem together with Theorem 4.3.3 yields the desired formula. [

Example 2. (a) Use Definition 5.2.1 to produce the proper formula for the
derivative of h(x) = 1/x.

(b) Combine the result in part (a) with the Chain Rule (Theorem 5.2.3) to
supply a proof for part (iv) of Theorem 5.2.2.

(c) Supply a direct proof of Theorem 5.2.2 by algebraically manipulating the
difference quotient for (f/g) in a style similar to the proof of Theorem 5.2.2

(iii).
C® ch C.=FO L\(c)" lim /i_/_ [iin CC—X)/XC:I;W, .

a
xX=C X —C X3¢0 YX—C x>c XC c

( -9'(x)
) (SDQ)) (he 35 (x)= [yl ;](a

(3 (x)t&(x)(l,\o:j)(xﬂ/: ;'(K)U,log)(x) N '\:(ﬂ>(h°3>/()()
M) _ £ _ 9l E ) - £69)9Ce)

= DI(X) Y—g(x)]& - [S[K)]‘;* 5&)%—‘0
© Rl -Fa)e) (m ~ s;(c)>: L (m 3(c) - £le) 3(@)
x-c CoXCN9e) 9lg) XTC 36 9(0)
- ( £ 9(c) = £(Og(c) + £le) () - ) 3@9)
x-C 3()()3&)
\ %0 M & 90~ 9@

= i ' - \ ¢ [ — /
(3o e 9O FOTHs ©)
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Example 3. Given a differentiable function f : A — R, let’s say that f is
uniformly differentiable on A if, given € > 0 there exists a 6 > 0 such that

f(@) = fy)
T -y

— f'(y)| < e whenever 0 < |z —y| <.

(a) Is f(x) = 2? uniformly differentiable on R? How about g(z) = 237

(b) Show that if a function is uniformly differentiable on an interval A, then
the derivative must be continuous on A.

(c) Is there a theorem analogous to Theorem 4.4.4 for differentiation? Are
functions that are differentiable on a closed interval [a, b] necessarily uni-
formly differentiable?

%ﬁ‘% (:%f@-a}\:lx-%

Givem €50, choose, §=¢ . Theun | x ?_\<X £ imglies \__3_ &3’

= 5;\*) X+ is uw%ﬁrw\v ditkecessbiable, on ..

b (Khx}\bﬂ TR
o

S _&-\-Xa :L|_~gl
Le >0m&|e‘<x 38')(3'——4,8'

Thun [x- ;LI-—<S but _\_Z}_ 3}

= ) =x> is wet wm%arw\7 a\%m%qu& on ..

®) L $50 Le s %@ fy) _ L )
X4

L cel ook Ix-cl<S Then

()

= | x- gl< e

= Xy = D\y}] = [R4ag] x-y]

ay] Ix- at8? j“_ﬁ)-
lessgl byl 8 (2157, 487

LJ/\la/\ oélx—y_\d‘.

< —i—\ OM'D\
i R@-Rx)  fd-He)
“@‘”TT*_Zf‘Q“ﬂ

9\

‘?(XW"(:(C)_ /
e S

= 0% - §(9)|=

'?(CW HX) Q X)

C— X

= £'(><> [ com‘\’fmuouj- D\& QEA—

FGd- ?(C) Q C)

XC

-"(-,-:E,
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Real Analysis - Derivatives and the Intermediate Value Property

(©) Lex Sxtxf{fgh(\/x) A0 sk €= () anl %020

Then %=t =0 hile

\ 3&0(:2 d.(‘)f\&h) - 3;%»\ = 1tusin(fen) + cos (1 £) = Acbisin 1/ 60)|

= \COSL‘/-(:»)—-E,,\Gi,,lU/ﬁ,D‘:( \dlx\é/{\J
= 33\(20 is lnojr \Av\i‘\\‘o(‘w,\7 A;F%ww&;quq_) S0 No.

Theorem 5.2.4 (Interior Extremum Theorem). Let f be differentiable on an
open interval (a,b). If f attains a mazimum value at some point ¢ € (a,b)
(i.e., f(c) > f(x) for all x € (a,b)), then f'(c¢) = 0. The same is true if f(c)
s a minimum value.

Proof. Because ¢ is in the open interval (a, b), we can construct two sequences
(x,) and (y,), which converge to ¢ and satisfy x,, < ¢ < y, for all n € N. The
fact that f(c) is a maximum implies that f(y,) — f(¢) > 0 for all n, and thus

f/(C> — lim f(yn) — f(C)

n—oo yn — C

<0

by the Order Limit Theorem (Theorem 2.3.3). In a similar way,

T, —C

>0

for each z,, because both numerator and denominator are negative. This im-

plies that
f/(C) — lim f(mn) B f(C) > 07
n—00 Ty —C
and therefore f'(c) = 0, as desired. O
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Real Analysis - Derivatives and the Intermediate Value Property

Theorem 5.2.5 (Darboux’s Theorem). If f is differentiable on an interval
la,b], and if « satisfies f'(a) < a < f'(b) (or f'(a) > o > f'(b)), then there

ezists a point ¢ € (a,b) where f'(c) = a.

Proof. We first simplify matters by defining a new function g(z) = f(z) — ax
on [a,b]. Notice that ¢ is differentiable on [a,b] with ¢'(z) = f'(z) — a. In
terms of g, our hypothesis states that ¢’(a) < 0 < ¢’(b), and we hope to show
that ¢'(c) = 0 for some ¢ € (a,b).
We start by proving that there exists € (a,b) where g(x) < g(a). Let
(x,) be a sequence in (a,b) satisfying (x,) — a. Then we have
g/(a) — lim g(xn) — g(a) < 0.

n—oo Tn — Qa

The denominator is always positive. If the numerator were always positive
then the Order Limit Theorem would imply ¢’(a) > 0. Because we know this
is not the case, we may conclude that the numerator is eventually negative
and thus g(z) < g(a) for some x near a. The proof that there exists y € (a,b)
where g(y) < g(b) is similar.

We must now show that ¢'(¢c) = 0 for some ¢ € (a,b). Because g is
differentiable on the compact set [a,b] it must also be continuous here, and
so by the Extreme Value Theorem (Theorem 4.4.2), g attains a minimum at
a point ¢ € [a,b]. From our work in (a) we know that the minimum of g is
neither g(a) nor g(b), and therefore ¢ € (a,b). Finally, the Interior Extremum
Theorem (Theorem 5.2.4) allows us to conclude ¢'(c) = 0.

To prove the general result stated in the theorem we just observe that
¢'(¢) = 0 is equivalent to the conclusion f’(c) = a. O
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5.3 The Mean Value Theorems

Theorem 5.3.1 (Rolle’s Theorem). Let f : [a,b] — R be continuous on |a, b
and differentiable on (a,b). If f(a) = f(b), then there exists a point ¢ € (a,b)
where f'(c) = 0.

Proof. Because f is continuous on a compact set, f attains a maximum and a
minimum. If both the maximum and minimum occur at the endpoints, then f
is necessarily a constant function and f'(x) = 0 on all of (a, b). In this case, we
can choose ¢ to be any point we like. On the other hand, if either the maximum
or minimum occurs at some point ¢ in the interior (a,b), then it follows from
the Interior Extremum Theorem (Theorem 5.2.4) that f’(c) = 0. O

Theorem 5.3.2 (Mean Value Theorem). If f : [a,b] — R is continuous on
la,b] and differentiable on (a,b), then there exists a point ¢ € (a,b) where

f(b) ~ fla)

fle) = Ho

Proof. Notice that the Mean Value Theorem reduces to Rolle’s Theorem in
the case where f(a) = f(b). The strategy of the proof is to reduce the more
general statement to this special case.

The equation of the line through (a, f(a)) and (b, f(b)) is

v= (1= -+ s,

] ]
T

a T b

We want to consider the difference between this line and the function f(z).
To this end, let

i) =1 - | (9= -0+ 11w
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and observe that d is continuous on [a, b], differentiable on (a, b), and satisfies
d(a) = 0 = d(b). Thus, by Rolle’s Theorem, there exists a point ¢ € (a,b)
where d'(c) = 0. Because

b) —
dl(x):f/(x)_f(l))_i(a’)’
we get o @
o J(b) — fla
0 — f (C> - b —a )
which completes the proof. O

Example 1. Let h be a differentiable function defined on the interval [0, 3],
and assume that h(0) =1, A(1) = 2, and h(3) = 2.
(

a) Argue that there exists a point d € [0, 3] where h(d) = d.
(b)

Argue that at some point ¢ we have h'(c) = 1/3.

(c) Argue that h/(z) = 1/4 at some point in the domain.

(o) Setr Sbc)—-xm&). o(1)=-1 and 9(3)=1 =3 de 10,3 where 3(3)=0 by TVT.
S hQ) =4
D)8y MUT 3 ce (o) sh |y WOho) |

- =

[
-0 3 3
© %7 Rolle's Theorem D a’e (113) whee W!(a)=0. %7 (b)) 3 ¢ s hilc)= —;—

1

0 < Lr<_|?§ = [,\'(,Q;‘/HL &Y Some. (;o(n\’ befueen ¢ ol N 107 Varbousx's Theortum

Example 2. A fixed point of a function f is a value = where f(r) = x. Show
that if f is differentiable on an interval with f’(z) # 1, then f can have at
most one fixed point.

Assume. & las Deld \soihjr; X, ol o Wit x4, .
Thew $06)= X, andl $0) =3, 50 by MUT 3 s
;l(&: Hx)) - Hixa - XTXy
X

|—Xa X)—X;\ - ‘) (o COVI*MA(C“(’NI\.
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Corollary 5.3.1. If g : A — R is differentiable on an interval A and satisfies
g (x) =0 for all x € A, then g(x) = k for some constant k € R.

Proof. Take x,y € A and assume x < y. Applying the Mean Value Theorem
to g on the interval [z, y], we see that

(y) — g(x)

oy g
g'(c) = -

for some ¢ € A. Now, ¢'(c) = 0, so we conclude that g(y) = g(z). Set k equal
to this common value. Because x and y are arbitrary, it follows that g(z) = k
for all x € A. m

Corollary 5.3.2. If f and g are differentiable functions on an interval A and
satisfy f'(x) = ¢'(z) for all x € A, then f(x) = g(z) + k for some constant
ke R.

Proof. Let h(z) = f(z) — g(z0 and apply Corollary 5.3.1 to the differentiable
function h. O

Theorem 5.3.3 (Generalized Mean Value Theorem). If f and g are contin-
uous on the closed interval [a,b] and differentiable on the open interval (a,b),
then there ezists a point ¢ € (a,b) where

[£(b) = f(a)lg'(c) = [g(b) — g(a)]f ().
If ¢' is never zero on (a,b), then the conclusion can be stated as

f'(e) _ f(b) = f(a)

g(c) ~ gb) —gla)’
Example 3. Prove Theorem 5.3.3.
Ler 1<) =[£6) - £ 90<) - Lo by - 9o} §).
Theu his cottinmous o [‘\)Q M& «L5'{'\’Fum+ialole. o (°~)L=>~ A\SO, \/\(o\>: ‘\’)b\) HL») - 'Q(h)s(%-
= 3 ce (o) e WIO)=0 by Rolle's Theorm.-
So Whe) = [£6) - $6)] 0=) - Tl - ()] §x)

= [56) - #)5(0) - Lol - 9] Ho) = O

Theorem 5.3.4 (L’Hospital’s Rule: 0/0 case). Let f and g be continuous on
an interval containing a, and assume f and g are differentiable on this interval
with the possible exception of the point a. If f(a) = g(a) = 0 and ¢'(z) # 0
for all x # a, then

f(z)

!/
lim f/(x) =L implies lim ——= = L.
z—a g'(1) z—a g(x)
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Example 4. Prove Theorem 5.3.4.

= |im = %[
Let €50. L ;|@ /g = 550 st \ i

PiC\’\ NE\)SL"Q w\ﬂ/\ &L X (%2/ Cafe, X4 1S S;M}(oer

(57 GMUT 2 ce(ox) sk, R'(0) | fFW)-80) £
30 (<)~ gm 909

£ (e
Q(\C o\\<8 >\‘bb<§ L_\ \%(3 L_\<i l,J/\Q/A O(IK—(A[(S.

< ‘J,Q,Aoélto\ S,

9'(c)

Definition 5.3.1. Given ¢ : A — R and a limit points ¢ of A, we say that
lim, . g(z) = oo if, for every M > 0, there exists a § > 0 such that whenever
0 < |z —¢| < ¢ it follows that g(x) > M.

We can define lim,_,. g(z) = —oo in a similar way.

Theorem 5.3.5 (L'Hospital’s Rule: oco/oo case). Assume f and g are differ-
entiable on (a,b) and that ¢'(x) # 0 for all x € (a,b). If lim,_,, g(z) = oo (or

—0), then
!/
lim () =L implies lim M = L.

e g () e ()

Proof. Let € > 0. Because lim,_,, % = L, there exists a d; > 0 such that

f'(@)
9'(x)
for all @ < x < a + ;. For convenience of notation, let t = a + d; and note
that t is fixed for the remainder of the argument.

Our functions are not defined at a, but for any = € (a,t) we can apply the
Generalized Mean Value Theorem on the interval [z, t] to get

f@) = 1) _ f(0)
g(@) —9() ~ g(0)

for some ¢ € (z,t). Our choice of ¢ then implies

~1]<

DN ™

¢ _[flz) =) €
L— - << L+ = 1
2 gl g~ W
for all z in (a,t).
In an effort to isolate the fractlon , the strategy is to multiply inequality
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(1) by (g(z) — g(t))/g(x). We need to be sure, however, that this quantity is
positive, which amounts to insisting that 1 > g¢(t)/g(x). Because t is fixed
and lim,,, g(z) = oo, we can choose J, > 0 so that g(z) > g¢(t) for all
a < x < a+ dy. Carrying out the desired multiplication results in

(- (0-2) L <) (- 2)

which after some algebraic manipulations yields

L€, ~Le+ 50+ 1O _f@) _ e, —Lol) — 59(t) + F)

2 9(x) 9(x) 2 9(x)
Again, let’s remind ourselves that ¢ is fixed and that lim,_,, g(z) = co. Thus,

we can choose a d3 such that a < z < a + d3 implies that g(z) is large enough
to ensure that both

—Lg(t) + 59(t) + f(t) and —Lg(t) — 59(t) + f(2)
g() g9(z)

are less than €/2 in absolute value. Putting this all together and choosing
d = min{dy, b2, 03} guarantees that

E—L‘ <€
g9(z)
foralla <z <a-+96. O]

Example 5. Let f(z) = zsin(1/z%)e /%" and g(z) = e /**. Using the
familiar properties of these functions, compute the limit as x approaches zero

of f(z), g(z), f(x)/g(x), and f'(z)/g'(z).
o1 ) =0, lim 9®) 20, lim £3) [g()= D

o B9 Tin(et) - e cos (1] €7 xsin(1/%9) 7% (/%)
x>0 _3_’(;)_ - x\:\o e—l/xa\ (A/X3)

= [ 5 ein () = 4 (Ve Cog (1/x) ] 4 i (1/8) 7
%Mljgo 1%* € (Vo) = % (/) Cos (1/x)]

:-aggo(\/x>Cos(l/X“) DNE

So He cuvese of L'Hespital does ndk Lald
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5.4 A Continuous Nowhere-Differentiable Func-
tion

Remark 1. Define
h(x) = ||

on the interval [—1, 1] and extend the definition of h to all of R by requiring
that h(x 4+ 2) = h(z). The result is a periodic “sawtooth” function.

]
T

f T

-2 -1 1 2 3

Example 1. Sketch a graph of (1/2)h(2z) on [—2,3]. Give a qualitative
description of the functions

as n gets larger.

- —.'i
for eadn n e max hesglet 5 far oud e gw‘o& s Vav
The ffoVes o the line SQD"V\QM\? ae | Yn.
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Example 2. Fix x € R. Argue that the series

=1
)= 52"

n=0
converges absolutely and thus g(x) is properly defined.
b\h(x) 2 l Yun

70é—h(1 )<

2’;? COMUU/?ES) e 3&) CoU\UU’atS l>7 'HAQ_ Co(m?o\r('so'/\ TQS+;
All Ferms ae Qosier) 50 5() converyes mLso[uM7,

Example 3. Taking the continuity of h(x) as given, reference the proper
theorems from Chapter 4 that imply that the finite sum

1
Pt
is continuous on R.
For cack A Lx)=2" is continuous
= \/\(&MX) is confinuous L;\/ fhe COW(}DS;'HOM oje Cob\'l‘fmuou; R.,.Jf‘ow T—L\QOVC&/\

= I‘[; h(ahx) is Continuous ‘07 flo Alcae - Coﬁ+ihwi‘{7 Theoreim
= Sh(x)" \/\()Q> 1 %\‘/\L’)—K) A %\"\(&MK> 05 Continuous 57 ‘k/\g_ Samg H,.gpyew.
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Example 4. Consider the sequence z,,, = 1/2", where m = 0,1,2,.... Show
that 0
oan) =g0) _
Ty — 0

and use this to prove that ¢’(0) does not exist.

Fix meN. Then q (<) = i Fh@™). TH wow e W(@™)=0.

=0

Thnem fon Wpd=x; 50 T(@™)= L gm= L
= o) Z* > g(mysto): 2\/a il
V“O le 0 ‘/9\'”‘ h=0

_73(0)—|H~1 M_I'MG"‘"’B DME ‘Qor X, =

m= 00 X~ O

=97 not &\%’Q&cm’\‘ia\olb at 0.

A" OLWD\ O(vo -0

Example 5. (a) Modify the previous argument to show that ¢’(1) does not
exist. Show that ¢’(1/2) does not exist.

Lek xi= 1fam J So Fhat g () = i %L\(Q\"‘(H VAE :‘Z;o 5\]7 W(X+277),
TE wom, fhon Lm),\(a\“u“‘"“):o

T8 120 £W, Yyen —1«(;1 +Q77) = nh(l'”“) ml“' =%

T u=0, then ?L\ (X277 = W (1 ) = W - = g ) -
gI+x) " gl) ot (2™~ 40) {%‘/a“} (400 Ya) = 9

Yo \/Q\M - \/aw‘ =7
= 9 W ot &.\%U\'\iﬂblb of |
Noy lef X = "5\ auk nore Hdr ‘3(%} ;"\L‘_&\* %\\/\(0
Thon gloxa) g 2 R (5am)-5l)
Ko ) \fam
ﬁ;a/ ]+h(—+ ) rh(i+2)- (%) \ ]M(Q Ja  20) - ;)
- \/;L"'" \/&M

= 9% not difkkeenhiable ot .
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Real Analysis - A Continuous Nowhere-Differentiable Function

(b) Show that ¢’(z) does not exist for any rational number of the form z = p/2*

WherepEZandkENU{O}

LA x= — o\v\& coms\cxe/r 3[)(* X.M> Z - \/\(D\ (x+ ‘/9\““>\) i bl?\

n=o0

Becmase ve will +u|<a M->00, assume m>K,
|
If womy then ;hb@““ﬂg‘“‘“):g
| hetm —m
L Kenem, fhan EGL\(QA“‘K+2“_W>> i;'n(l )= %AD\ =

T ¢ ,_I_ n- w-wm w= noim
T Oél/\,K) Hen ;mhkyl k+;{ >;§~D‘(?1 )+ ]—3\:

glenn)50d 2, whlgd e 904

Kin " o
A
- o

= (m-k-1) + i ]2 m-2k-|

Whw=0

= 9 % ot &'\%Vc\iablc ot qw7 &70AIC r«'\‘iov\m\ Qo;n*-
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Real Analysis - A Continuous Nowhere-Differentiable Function

Example 6. (a) First prove the following general lemma: Let f be defined
on an open interval J and assume f is differentiable at a € J. If (a,) and
(b,) are sequences satisfying a, < a < b, and lim a,, = lim b, = a, show

(@) = lim f(bn) — f(an).

n—o0 b, — a,

(b) Now use this lemma to show that ¢’'(x) does not exist.

D e Ho)-E) [ H)-Fo) sem—s;(%)}

h300 L)]ANQV\ h300 LJ]/\‘\QI/\ B\,\RQI/\

nse L l)"\NQ by\_ Qa N~o, by\_ An

LGRS (&,ijr Ha)- o) ( Whﬂ

W00 I bn.~a b O o~ o, bi- A

| S0~ §a) <\_ °\—°~ﬂ5+ %(oo—mom)( whﬂ

nee bu~a A=, bu~ o by\_ An

ML) -ta) H)-bo) gy ) ace

because J':‘OO C o — b %) 2| VYu.

“') For Qim& me NU{O}) X &lls MM&V\ o\c\;\acw‘\ 3\7«&1( ’)?D—IV\‘\'S E'M_ x4 Cunt|
So sey X,z Do 2™ I\ yn= (pu 1)/ 2 P\ 2
I'\v.(xm>=lnh(\(}m)=0 Y nswm.
™ Gy, () = 4(5) ol 9o () = 9 ()

Y 15 ’H/LL line Sejvwwt\’ (‘mnecsn'mj <x'”')36<’“)> q%& (}h)ﬁ[}w%

S g 2T

P g T

Also, 1§ )= 4l (91 [ 0] ke, e ()= 21

= 31“"()(5 B hd‘% Cquc‘/\ o\(,\& &QPS W* (onyerqe
= lim 8(9.(4..)"‘3(th :
T s o0 W_ DME.

) 9 s ot &:-Werew‘iqug ak x L,\/ (&>_

o | BB R) (@( 2)-%o) s;m—s:(m)j( whﬂ Y
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Chapter 6

Sequences and Series of
Functions

6.1 Discussion: The Power of Power Series

2 ] 4 4] ( | 2, 3 =

Lopstebily< o X |><l<\ = 0%t 3x™ By X<
gm tgt ot L 4 | =X X x4 X (1=x* At
_ |- — _- ) = - -
l+><'*_\ X % F- x4 X Bor [xl<] = arcon (x) = % ST o

. V=D o ele-D0r-2)
(14x) = |tk == % x4
. T RO > 3 3_ 35 4. ...
P52 Vx = [+ =X ——M'X t3ar < R“HX £

3 ] | |
(\|]+><> = <l+—;—\x—%xa+--~>(\+éx-%xa+-~->= \+<3+ E)XJv(-?*?—%) X2 g 24X +0x%210x3+

3 S 7 . a Y 6
_><_ X _X o, Simx XD XX

Sinx = X T T T X arta T w Y

- X
\)(X) \‘\' O\X+\ox9~+o< (\ —X_SL - ( j}br ruo{'5 ()Y‘l)(‘.5~

Y )

e e A R e

= ...,L__I__.‘__... A _L l > 4 .
H( ™ YT am )X *<w+ﬁ4+' o



Real Analysis - Uniform Convergence of a Sequence of Functions

6.2 Uniform Convergence of a Sequence of Func-
tions

Definition 6.2.1. For each n € N, let f, be a function defined on a set
A C R. The sequence (f,) of functions converges pointwise on A to a function
fif, for all x € A, the sequence of real numbers f,(z) converges to f(z). In
this case, we write f,, — f, lim f,, = f, or lim,,_, fu(z) = f(2).

Example 1. (i) Consider

ful2) = (2* +nx)/n
on all of R. Find lim,,_, fn(x).

(ii) Let g,(z) = 2™ on the set [0, 1], and consider what happens as n tends

to infinity.
(iii) Consider h,(z) = 2" %7 on the set [—1, 1]. Find limy,_0 f ().
a
)hw\‘(: —||w\——~——il\z<— )(MX+X X
N> n wIoo N

€0) TR 0£x<l Haw x">0.
Tt XZ\)M X"
= 9,9 Qoiﬁ\'uim o 10,1 where

O 4 Lx<
?ﬁ)— for 0&x¢|

)t b for x=
(ﬁ((j For fixed XE{“\,Q We. have
_an

|
L;V;’o\"h( ) x [,;wwxe\v\ r_ LWXH BT _ g 3 BT _ i, (Xa>an | \m: ™

w00 w00
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Real Analysis - Uniform Convergence of a Sequence of Functions

Definition 6.2.2 (Uniform Convergence). Let (f,) be a sequence of functions
defined on a set A C R. Then, (f,) converges uniformly on A to a limit
function f defined on A if, for every € > 0, there exists an N € N such that
|fu(z) — f(z)| < € whenever n > N and = € A.

Definition 6.2.1B. Let f,, be a sequence of functions defined on a set A C R.
Then, (f,) converges pointwise on A to a limit f defined on A if, for every
e >0 and x € A, there exists an N € N (perhaps dependent on z such that
|fu(z) — f(x)| < € whenever n > N.

Example 2. (i) Let
1

gu(T) = w27

Does g, converge uniformly on R?

(ii) Does f,(z) = (z? + nz)/n converge uniformly on R?

(©) For -\\'me&\ X € lR | 3HKX>-O

Hlx”‘“ ¥ xelk = [g,)-g06dl=

1
n

Thus given £>0, we can cloose N> Ys so fut
nx N '\wglies \SMLX) ’S(X)\ <& VY xelR
= 9,—20 uml%r\m\\/ on [P..

(&) By Ex |, fa>kd=x goinise ou R
8,09 §09] = [P0 - ] < X2

O\ﬁ

"
so Yor 1509-8|< & e need To choose N> X?%
o Value o’R’ N w(” uorlﬁ J%or‘ oll values of X
= L. does uot Convere \M‘Fom’:\y on [P
B on 16,6 we \/lave,——i

n n

So S]VM €50, Ve com C(AOOSQJ [A) .bgi

= %ﬁf? (/Lw'%oth\/ on EE)L—I
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Real Analysis - Uniform Convergence of a Sequence of Functions

Theorem 6.2.1 (Cauchy Criterion for Uniform Convergence). A sequence of
functions (f,) defined on a set A C R converges uniformly on A if and only if
for every € > 0 there exists an N € N such that |fn(x) — fm(x)| < € whenever
m,n >N and x € A.

Example 3. Prove Theorem 6.2.1.
=) LC\— e>0. ";\,\%'Q' U\V\i‘%rmv = '\:(ﬁ) :l‘_"";la’gv\ (x>

3N sk 18054 G ¥ axN aud xeA

Theu givean wym 2N, |8, () - LGl = 180 ()= £00) + £ = R )]
218,09~ 86| + | £ 60~ £ b))

<%+£=6 ¥ xeA

x
(&) For enchr e A CAHRE CouclAy.
= (£409) Condermes

= _Qbo :l!ll::vloo’cv\ (X'> ) (..Q-) ’E,\ (x)—ﬂ\-(x) ‘)bfn"‘lﬁigﬁ on A

Lk £>0. Thew AN ot ‘f—<¥v\(><)’\:w\(f§< ¢V m,MEM and KeA,
= liw ('QM(K)-'?W(X))=-QM[K)"Q(K) 'Cor cach xeA_

mS00

= - 28,06)-H)es 8 uxN ond xeA-
= L.>% w‘\%mky on A.
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Real Analysis - Uniform Convergence of a Sequence of Functions

Theorem 6.2.2 (Continuous Limit Theorem). Let (f,) be a sequence of func-
tions defined on A C R that converges uniformly on A to a function f. If each
fn is continuous at c € A, then f is continuous at c.

Proof. Fix ¢ € A and let € > 0. Choose N so that

€

(o) — £l < §
for all x € A. Because fy is continuous, there exists a 6 > 0 for which
fv(@) = fu() < 3
is true whenever |z — ¢| < §. But this implies

[f(@) = f()] = |f(2) = fn () + fn(x) = fa(e) + fale) = flo)]
< [f(@) = In(@) + () = I ()l + | (e) = f(o)]

<e+e+e
- +t-+-=c¢
3 3 3

Thus, f is continuous at ¢ € A. m

Example 4. Recall that the Bolzano—Weierstrass Theorem (Theorem 2.5.2)
states that every bounded sequence of real numbers has a convergent sub-
sequence. An analogous statement for bounded sequences of functions is not
true in general, but under stronger hypotheses several different conclusions are
possible. One avenue is to assume the common domain for all of the functions
in the sequence is countable. (Another is explored in the next two examples.)

Let A = {xy,29,23,...} be a countable set. For each n € N, let f, be
defined on A and assume there exists an M > 0 such that |f,(x)| < M for all
n € N and z € A. Follow these steps to show that there exists a subsequence
of (f,) that converges pointwise on A.

(a) Why does the sequence of real numbers f,(x;) necessarily contain a con-
vergent subsequence (f,,,)? To indicate that the subsequence of functions
(fn,) is generated by considering the values of the functions at z;, we will
use the notation f,, = fi.

(b) Now, explain why the sequence f ;(x2) contains a convergent subsequence.

(c) Carefully construct a nested family of subsequences (f,, 1), and show how
this can be used to produce a single subsequence of (f,,) that converges at
every point of A.
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R £ (%)) ts L)OW/IAQ& 107 M=3 a Cuuuu,am’*“ SMLS&ZM%«- h7 Bo|zauno ~ Weierstvass

D Sk 0<3) s C""““”j""‘JT s“‘LS%“U"C"- J;:L\K (xa) L>7 Bo|zumo ~ Weiersthass

65 L w/sm He (_Qw)k> is o 9mfo$e?uwce ot (Je.,b,)@‘
L‘{;\/ 'Cl'\k = ‘Qk,;(: H’m J'c;\:\ ) £§\5 ) 5
Thew ('QK‘K) 15 o SMESCZWUA(Q of x.)[( Oth& Haes Q\QK(Y:) Couverges -
A%S““ m 4 ertmg ‘FK,K s o SuLk?,uu/-co, o ‘Cvn\K.
= Sy () Conveaps Kor X,. e A
= VQK\K CoV\L/brjcs Qoivﬂ'uis& on A

Example 5. A sequence of functions (f,) defined on a set £ C R is called
equicontinuous if for every € > 0 there exists a § > 0 such that | f,(z)— f.(y)| <
eforalln € Nand |z —y| < din E.

(a) What is the difference between saying that a sequence of functions (f,) is
equicontinuous and just asserting that each f,, in the sequence is individ-
ually uniformly continuous?

(b) Give a qualitative explanation for why the sequence g,(z) = 2™ is not
equicontinuous on [0, 1]. Is each g,, uniformly continuous on [0, 1]7

0 TE eachh S;u\ (s ‘wl-l"“odml7 Covifinmous & will wet &q?w& on X but does &iew& oM “L\h-

9 For eada W) G 1S Confmous on 10,11 = I, s Mm}\tom(7 confinuous.
Toke £=VYa andl \F\. ‘Ezu:can&imu?r] requires 50 <,
\X"‘l\<-‘5\ Y nelN ad Ix-1[<$§
Buk ¥ caund be iv\&myw&w& ok n, since there will o\luw; be n s
|Xh—|\ > ‘/9\) no Imafter how close. x is $o |

Example 6 (Arzela—Ascoli Theorem). For each n € N, let f,, be a function
defined on [0, 1]. If (f,,) is bounded on [0, 1]—that is, there exists an M > 0
such that |f,(x)] < M for all n € N and x € [0,1]—and if the collection of
functions (f,) is equicontinuous, follow these steps to show that (f,) contains
a uniformly convergent subsequence.
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Real Analysis - Uniform Convergence of a Sequence of Functions

(a) Use Example 4 to produce a subsequence (f,,) that converges at every
rational point in [0, 1]. To simplify the notation, set gr = f,,. It remains
to show that (gx) converges uniformly on all of [0, 1].

(b) Let € > 0. By equicontinuity, there exists a § > 0 such that

90(x) = ()| <

for all |x —y| < § and k € N. Using this ¢, let ry,7q,..., 7, be a finite
collection of rational points with the property that the union of the neigh-
borhoods Vj(r;) contains [0, 1].

Explain why there must exist an NV € N such that

9:(rs) = 9u(r)] < 3

for all s, > N and r; in the finite subset of [0, 1] just described. Why
does having the set {ry,r,...,7,} be finite matter?

(¢) Finish the argument by showing that, for an arbitrary = € [0, 1],

|95(z) — ge(x)| <€
for all s,¢ > N.
o) Lo, 16 Couvr\'muo,) 50 (3"3 exists 197 Ex. 4,
@ Let ¢ be Kixedl. (3\2) Comvernes Vokvd‘uise af‘re//w/ rafiona| = ij (r55> is Gmcby
= AINC sk el = g (e <5 Vst 2N
le N:VVIOXS_N\)MK)"')NW'S.
T4 {ﬁ)ﬁ,-u)‘(\w} were jukinife Han N would be Y max ot an nfinifeset.
O For xelo,) 3 ¢« si. lre— x| §
= \‘35(x3‘3s(‘ff)\ < % v se N
- \3&0— f)J:(x)\ = \Ss(x)- Ss(q) + 35(@\ - St(n) + %(rg) - 5€(X)|
2109~ 950l #1950~ 9 ()] 4| gl - 44 ()

¢ ¢ 2
< = < < -~
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Real Analysis - Uniform Convergence and Differentiation

6.3 Uniform Convergence and Differentiation

Theorem 6.3.1 (Differentiable Limit Theorem). Let f,, — f pointwise on the
closed interval [a, b], and assume that each f, is differentiable. If (f!) converges
uniformly on [a,b] to a function g, then the function f is differentiable and

"=y
Proof. Fix ¢ € [a,b] and let ¢ > 0. We want to argue that f’(c) exists and
equals g(c). Because f’ is defined by the limit
T—ve xr—c
our task is to produce a 6 > 0 so that

’ f(z) = f(o)

Tr—cC

—g(c)‘ <€

whenever 0 < |z — ¢| < 0.
To motivate the strategy of the proof, observe that for all x # ¢ and all
n € N, the triangle inequality implies

‘f 1o 'f x_CC)_fn(fC)—fn(C)

r —cC

NACEIAC

T —cC

= falo)] +1fale) = g(c)]-

Our intent is to first find an f,, that forces the first and third terms on the
right-hand side to be less than €/3. Once we establish which f, we want, we
can then use the differentiability of f,, to produce a ¢ that makes the middle
term less than €/3 for all x satisfying 0 < |z — ¢| < 9.

Let’s start by choosing an /Ny such that

Fle) = g(0)] < 5 1)

for all m > N;. We now invoke the uniform convergence of (f}) to assert (via
Theorem 6.2.1) that there exists an Ny such that m,n > Ny implies

m

|fl () — fl(x)] < % for all x € [a, b].

Set N = maX{Nl, NQ}
The function fy is differentiable at ¢, and so there exists a 6 > 0 for which

P =Dl o) < & 2
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whenever 0 < |z — ¢| < 4. This is our sought after d, but it takes some effort
to show that it has the desired property.

Fix an z satisfying 0 < |x — ¢| < J, let m > N, and apply the Mean Value
Theorem to f,, — fx on the interval [c, z], (If x < ¢ the argument is the same.)
By MVT, there exists an « € (¢, x) such that

f/n(a) o f]/\f<05> _ (fm(x) B fN(‘T)) B (fm(c) B fN(C))

r —cC

Recall that our choice of N implies

€
) = frle)] < £,
and so it follows that

fn() = fmlc) _ fn(x) = fn(e)

T —cC Tr—cC

€
< —

Because f,, — f we can take the limit as m — oo, and the Order Limit
Theorem (Theorem 2.3.3) asserts that

@)= £(0)  fu(@) = fu(o)

r—cC Tr —cC

< 3 (3)

Finally, the inequalities in (1), (1), and (1) together imply that for x satisfying
0<|z—r¢l <,

flz) = f(o) _g(c)’ < ’f(x) — [l fn(@)— fnlo)

Tr—cC r—cC Tr —cC

fn(x) — fn(e)

Tr —cC

+

—m@%xm@—mw.

<e+e+e
- +t-+-=c¢
3 3 3

]

Theorem 6.3.2. Let (f,,) be a sequence of differentiable functions defined on
the closed interval [a,b], and assume (f!) converges uniformly on |a,b]. If
there ezists a point xo € [a,b] where f,(xy) is convergent, then (f,) converges
uniformly on [a,b].
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Example 1. Prove Theorem 6.3.2.
et xe (o) and assume WLOG Kot x> Xo-
%‘] MUT Qo s (o (9 8 6)) = (i (x0) - £ (Ko>> = (R0 - &) (oi)\ (b-a)
Lek €>0. (§&) Converyes umi¥orm|7 =3IN, st

|54 () - & (0] <g(—i_7) Y nm2N and cefabl
(£,6) Converges = 3 N, i

| £ 060) = Fu(x0)) < —§: v vm 2N,
Lek N= wrove {0, NaY Then 1§ wym= N it Sollows Huk

160 09 = £ 09l £ (8,60 £, 1090) - (£ ()~ S Oi) 4+ 10 [0) - Bun )|

= | (R0~ £7(0) (oma) | 4 [£,009) - i ()

¢ _ £
Moay ("0 S =€

<

M 1&023'4\’\' &Q.QQM& W\ K) So @h} Covu/evjes U\V\]Ir\onm\y on ]:Q,Iol

Theorem 6.3.3. Let (f,,) be a sequence of differentiable functions defined on
the closed interval [a,b], and assume (f!) converges uniformly to a function
g on [a,b]. If there exists a point xo € [a,b] for which f,(xy) is convergent,
then (f,) converges uniformly. Moreover, the limit function f = lim f, is
differentiable and satisfies f' = g.
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Example 2. Let

nx + 2
gn(a:) = 277/ ?

and set g(x) = lim g, (z). Show that ¢ is differentiable in two ways:

(a) Compute g(x) by algebraically taking the limit as n — oo and then find
g'(z).

(b) Compute ¢/, (x) for each n € N and show that the sequence of derivatives
(g),) converges uniformly on every interval [—M, M]. Use Theorem 6.3.3
to conclude ¢'(x) = lim ¢/ (z).

(c) Repeat parts (a) and (b) for the sequence f,(z) = (nz? +1)/(2n + z).
a o
) b0 Jim gale)= i B X2 X o g3
D 4/ tt R -1
For er—M,M]) |90~ 41 = | 2|« &

Given £>0, choose, N> M/e. Thew 2N in?litS lf)v\/(ﬂ‘“{iki
= f‘)vn/”” ' Mmi‘FOVle on [’N)H] = 9'(x) =

C) . B x4 Y :
§0x)= Yo £a09 = lim T = 2 )= X

Az
EN

N ) Yndx +3nx>+|
Ynd+ Ynx+x2

= lim D./() = Iim 4x+3x3n+ /02 _

n>e " G4 Ex/in 4 X3
For ‘X|<H)WQ, ‘/\o\VQJ
I ot -sce |, uMte M l
W () - ><| m m—ﬂo wWhen n>M.

= L (0~ x mi%oﬂmkt/ on =M, M]
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6.4 Series of Functions

Definition 6.4.1. For each n € N, let f,, be functions defined on a set A C R.
The infinite series

3" fulz) = fil@) + falx) + falz) + -

converges pointwise on A to f(x) if the sequence si(z) of partial sums defined
by

sp(z) = fi(z) + folx) +- - + fr(x)

converges pointwise to f(z). The series converges uniformly on A to f is the
sequence si(z) converges uniformly on A to f(x).

In either case, we write f = ", f, or f(x) =Y ", fu(x), always being
explicit about the type of convergence involved.

Theorem 6.4.1 (Term-by-term Continuity Theorem). Let f, be continuous
functions defined on set A C R, and assume Y~ | fn converges uniformly on
A to a function f. Then, f is continuous on A.

Proof. Apply the Continuous Limit Theorem (Theorem 6.2.2 to the partial
sums s, = f1 + fo+ -+ fr. O

Theorem 6.4.2 (Term-by-term Differentiability Theorem). Let f,, be differ-
entiable functions defined on an interval A, and assume Y >, fr(x) converges
uniformly to a limit g(x) on A. If there exists a point xo € [a,b] where
Yoo fu(zo) converges, then the series Y -, converges uniformly to a dif-
ferentiable function f(x) satisfying f'(x) = g(x) on A. In other words,

f@)=> fulx) and f(x)=)_ filz).

Proof. Apply the stronger form of the Differentiable Limit Theorem (Theo-
rem 6.3.3) to the partial sums s, = f; + fo + -+ + fr. Observe that Theo-
rem 5.2.2 implies that s, = f{ + f5 +---+ f. ]

Theorem 6.4.3 (Cauchy Criterion for Uniform Convergence of Series). A
series y | fn converges uniformly on A C R if and only if for every e > 0
there exists an n € N such that

[ frns1(2) + frns2(2) + frnas(x) + -+ ful2)] <€

whenever n >m > N and x € A.
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Corollary 6.4.1 (Weierstrass M-Test). For each n € N, let f,, be a function
defined on a set A C R, and let M,, > 0 be a real number satisfying

|[fn(2)] < My,

for all x € A. If Y7 | M, converges, then Yy ", f, converges uniformly on
A.

Example 1. Prove Corollary 6.4.1.
Let £50.

é”»\ converges =3 N st nom 2N mplies
HV”\+I+MM+3\+“. ""Hh <<
Tl/\UA \'Qvnﬂ(x)""Qm-ra(x)—l-.“—(-'Qn(x)' £ HM-H * MM-{'Q\—‘- ot HV\

:‘7%*?\,\ Covnua»raej U\v{\‘%emly L)7 “\Q, Cquc[f\7 criferion

Example 2. (a) Show that
B f: cos(2"x)
= —
n=0
is continuous on all of R.

(b) The function g is an example of a continuous nowhere differentiable func-
tion. What happens if we try to use Theorem 6.4.2 to explore whether g
is differentiable?

Cos (A" 00
i \’Tﬁ fp ok 3o coens

= mz cosg‘\ 9 € onverges uw‘rFofw(y L’7 the Weierstrags M-Test
=9 15 Gk by T L1
D Terw by burm Affeetiokion gues 5 -sia (¥ ><>
We cm use Mo Weicrfuss M-Test without 55 2 (M s doot g0 o Zor0 i genenl)
= Z Sin(3) does sk conveme. widorn| .
= We comuet “VW Theorum 6.4,
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Example 3. (a) Prove that

00
n .’1,’2 IS 4

T
h(x)— F—x—i-z—i-g—i—l—"i‘"'

is continuous on [—1,1].

(b) The series
f(x) imn N
xT) = —_— = _— e —_— .o
~n 2 3 4
converges for every x in the half-open interval [—1, 1) but does not converge
when x = 1. For a fixed zg € (—1,1), explain how we can still use the
Weierstrass M-Test to prove that f is continuous at x.

® \:or X&EI)]}) we |/1me %:\ Z [/ll_g* D\Vl&\ Z#\ Co'/lVQVﬁ(;S
00 N
= é% ¢ onversyes uw‘%rwl7 L’7 the Weierstrass M-Test

@L‘ i$ Continuous L\7 Theorewm C.4l
9 Fix Xo€ (;I)I> amg\c\msa C st IX.lec< |

On EC)C], We have X1 < %ﬁ oAk 3‘; %:" Converges.
Q " "=
= ‘;EVT ¢ onvuges “""'Je"”"ly on [-¢,] L)y the Weierstrass M-Test

i>lq s Coh+fhubq5 0(\’ XOGE‘C)C_:( \07 TI’\U)VUM GL{-‘
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Real Analysis - Power Series

6.5 Power Series

Theorem 6.5.1. If a power series Y -, a,x™ converges at some point xy € R,
then it converges absolutely for any x satisfying |x| < |zo].

Proof. It Y>> a,x{ converges, then the sequence of terms (a,zj) is bounded.
(In fact, it converges to 0.) Let M > 0 satisty |a,z)| < M for all n € N. If
x € R satisfies |z| < |zo|, then

n

<M

n
T

i
"] = fan]| =

Zo

But notice that

> ul 2|

n=0

x
Lo
is a geometric series with ratio |z/zg| < 1 and so converges. By the Comparison

Test, >~ , a,z™ converges absolutely. O

Theorem 6.5.2. If a power series Y -, a,x" converges absolutely at a point
xg, then it converges uniformly on the closed interval [—c, c|, where ¢ = |xg|.

Example 1. Prove Theorem 6.5.2.
o0
Selr Mv\:“‘\“xohl.ﬂw/\ :LZOWX“ (onyernes o&oSo(Mr\-zl;f ot X,

= g o, Xohl 22 M. ConveroRs.
T xe 200 fun lanx?] 2 Jaux] = M
= 2 X" Converpes VW'&D”""!7 on [‘C)Cl by e Weiershass M- Test.

n=9o

Lemma 6.5.1 (Abel’s Lemma): Let b, satisfy by > by > b > --- > 0, and let

> > | an be a series for which the partial sums are bounded. In other words,

assume there exists A > 0 such that
lar +as +---+a,| <A
for all n € N. Then, for all n € N,

|a1b1 + a262 + CL3b3 +-F anbn| < Abl
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Proof. Let s, = ay + as + --- + a,. Using the summation-by-parts formula
derived in Example 3 of Section 7.2, we can write

n
E arby,
k=1

Subni1+ > su(be — brra)
h=1

< Abpyr + ) A(bk — brga)

k=1

— Abpiy + (Aby — Abyyy) = Aby. O

Theorem 6.5.3 (Abel’s Theorem). Let g(z) = >~ a,z" be a power series
that converges at the point x = R > 0. Then the series converges uniformly on
the interval [0, R]. A similar result holds if the series converges at x = —R.

Proof. To set the stage for an application of Lemma 6.5.1, we first write

g(x) = im@" = i(anR") (}%)n

Let € > 0. By the Cauchy Criterion for Uniform Convergence of Series (The-
orem 6.2.1), we will be done if we can produce an N such that n > m > N
implies

Xz

(e ™) (5

DV (aa ) (2) (1)

R
+(a,R") (%)n‘ <e.

Because we are assuming that >~ a, R" converges, the Cauchy criterion for
convergent series of real numbers guarantees that there exists an N such that
€

|am+1Rm+1 + am+2Rm+2 ‘l’ R aan| < 2

whenever n > m > N. But now, for any fixed m € N, we can apply Abel’s
Lemma 6.5.1 to the sequences obtained by omitting the first m terms. Using
€/2 as a bound on the partial sums of Z;; am+;R™ and observing that

(x/R)™" is monotone decreasing, an application of Abel’s Lemma to equation
(1) yields

(e B ()" 4 (i) (£) 4
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Theorem 6.5.4. If a power series converges pointwise on the set A C R, then
it converges uniformly on any compact set K C A.

Proof. A compact set contains both a maximum z; and a minimum x,, which
by hypothesis must be in A. Abel’s Theorem implies the series converges
uniformly on the interval [z, z1] and thus also on K. O

Theorem 6.5.5. If > 7 ja,z™ converges for all x € (—R, R), then the differ-
entiated series Y oo na,x™"! converges at each x € (—R, R) as well. Conse-
quently, the convergence is uniform on compact sets contained in (—R, R).

Example 2. (a) If s satisfies 0 < s < 1, show ns" ! is bounded for all n > 1.

(b) Given an arbitrary € (—R, R), pick ¢ to satisfy |z| < ¢t < R. Use this
start to construct a proof for Theorem 6.5.5.

@Sd' Y ns" TE w T_§; ) then \3;:' : §£%‘)< | = (R},A) S evey\qul(y J(CMS;,,,:]
=>(“a-"') IS looqm&c&

DLk xe (-0, be arbrary ol pick £ sk Ix|<€ <@,

i [nowx™"] = ?:_ %(w I-ﬂw—'> Jont?|

XV\

—_—

{%\4‘ 230 ¢t w _l_<|_ Y welN

= glmamx““',=i\€(\/\l%|w'> Jont"| £ % i\q“y\)

Whida converyes becouse £ € - eR)

= > nox"
h=|

Converges ab 5o lquL7

Theorem 6.5.6. Assume -

fa) =3 ana

n=0
converges on an interval A C R. The function f is continuous on A and
differentiable on any open interval (—R, R) C A. The derivative is given by

f(x) = f: na,z" .
n=1

Moreover, f is infinitely differentiable on (—R, R), and the successive derivati-
wes can be obtained via term-by-term differentiation of the appropriate series.

124



Real Analysis - Power Series

Proof. The details for why f is continuous have been discussed. Theorem 6.5.5
justifies the application of the Term-by-term Differentiability Theorem (The-
orem 6.4.2), which verifies the formula for f’.

A differentiated power series is a power series in its own right, and Theo-
rem 6.5.5 implies that, although the series may no longer converge at a partic-
ular endpoint, the radius of convergence does not change. By induction, then,
power series are differentiable an infinite number of times. O

Example 3. If both }_ a, and > b, converge conditionally to A and B re-
spectively, then it is possible for the Cauchy product,

Z d, where d, = apb, + aib,_1+ -+ a,by,

to diverge. However, if Y d,, does converge, then it must converge to AB. To
prove this, set

f(z) = Zan:v", g(x) = an:ﬁ”, and h(x) = Zdnx”.

Use Abel’s Theorem and the result in Example 4 of section 2.8 to establish
this result.

2o, ZL».) and A, Comverne = 'Q\‘qu‘“& h converne, on (0, 1]
= {l)j) an h are continuous on Lo, 1}
Fix xe[OJ l).
Cowerjwcg af | = Q\B,%&\ W converne, Q‘OSO\M&Q\7 57 Thesrum 6.5
= W (9= Zdw<"= £6)900) by Ex. 234
This ic fue W xeT0,1) and @,yawﬁ W ave continuous on [0;1]
= L) = {0

S Z du= (e ) (Tl
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Example 4. A series Y~ a, is said to be Abel-summable to L if the power

series
o0
flz) = Z apx"
n=>0

converges for all x € [0,1) and L = lim, ;- f(z).

(a) Show that any series that converges to a limit L is also Abel-summable to
L.

(b) Show that >~ % (—1)" is Abel-summable and find the sum.

D Assume. o Converges o L.
Thes ‘R@"— > ou,x" Converyes M(n'(r{}onm(7 on L0, ﬂ
=L 15 (outinupus on (0,0}
S lim f9=R=L
x>

D

N
> )= - x +x3 - 3+ x*-

n=o l

T\-x)

-t

= X Lor Ixl<]|
o 52 = 3= 5 (" 55 Abel-summable 4o
X—N" X Py — S e Mool ° 3.
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6.6 Taylor Series

Example 1. Find series representations for 1/(1 — z)? and arctan(z).

—,L' 4%+ x2 ¢ wtexFe - Lor Ixic|

> (l_lxa):I+Ax+3xa+%>d+5xq+-~ Sor Ix]<1
l 1y S ¢

|+><1:HC S SR SEI WS PN P

70krc*uo\(\<5 X——X ‘fgxs"?x T '\lo" [x|<

K09=Cot €y 0x-0) £ 0, e g, )« Cul-a)Fe .

= f=(,

PR Ci+ )Cﬂf—o)‘r?}c}(x' w\)l-%‘f(‘,%(x—a)rh .

Theorem 6.6.1 (Taylor’s Formula). Let = ()=,

3 H(Xﬁ rg\c}\_*_ ’3\ Btg(x 0) % L%Cq.(x“(l) -+
f(z) = ag + a17 + asx® + azx® + a4xx w(l—) 53'? + -

be defined on some nontrivial interval centersd it weror Thény (<) 306 (e (x-a) %
= Q)= Ny =g,

F(0)
= R 43 nCazulc
Co £ (o)
Example 2. Prove Theorem 6.6.1. nt
£ = ag+ QX + Oy X3 0 X+ 0 X F qs><5+ xR 2 £(0)=a,

'Qr(x.): Q,T'&Q&X+3o\3x9‘+ ‘+%f><3+go\5>(++-~ xR = 'QI(O) -
£0)= Qg t 30X+ 3 oy X2+ 4 Sagxe [x|eR = £(o) = Aeg

£"0= 2300t A3 ag X345 ag Xt <1< =480) = A3a5=31a,

[x-al<R

[ x-al <R

|e-al<@

| x-a] <R

’;(“)(03: XYY ‘na, = \/\l_Ou,1

_ £90)

nl

127



Real Analysis - Taylor Series

Theorem 6.6.2 (Lagrange’s Remainder Theorem). Let f be differentiable
N + 1 times on (—R, R), define a,, = f™(0)/n! forn =0,1,..., N, and let

Sy(x) = ag + a1z + aga® + - + ayz?.

Given x # 0 in (=R, R), there ezists a point ¢ satisfying |c| < |x| where the
error function Ex(x) = f(x) — Sy(z) satisfies

FE() ni

Ev@) =31

Example 3. Show that the Taylor series for sin(x) converges uniformly to
sin(z) on every interval of the form [—R, R] for an arbitrary constant R.

%,=5n(0) =0 4= Cog (0) = [ o, = =5 (0) [21= 0, &y = = Cos (o) [3) =13t

-~ v _ X3 x5 )c:} )
‘J€(N+’>CC)1 c|
‘\:('\HD((,) xNH! |

= EN(’Q:

N+
(VD) ‘o N Rer xe[RR]

:>EN(7<)~—§O wdx‘oﬁml7 ol ER)R]
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Proof of Lagrange’s Remainder Theorem. The Taylor coefficients are chosen
so that the function f and the polynomial Sy have the same derivatives at
zero, at least up through the Nth derivative, after which Sy becomes the zero
function. In other words, f™(0) = 51(\7)(0) for all 0 < n < N, which implies
the error function Ey(z) = f(z) — Sy(z) satisfies

EP(0)=0 foralln=0,1,2,...,N.

To simplify notation, let’s assume z > 0 and apply the Generalized Mean Value
Theorem (Theorem 5.3.3) to the functions Ey(x) and z¥*! on the interval
[0, z]. Thus, there exists a point x; € (0, ) such that

Ey(z)  Ey(2)
N+ (N + 1)z

Now apply the Generalized Mean Value Theorem to the functions F (z) and
(N + 1)z on the interval [0, 7] to get that there exists a point x5 € (0,z1)

where ) .
En(7) By (71) B (72)

Nt (N + 1)z (N 4+ DNz Y

Continuing in this manner we find

Ex(z) _ B V(ani)

N (N1 1)

where xy41 € (0,2y) C-+- C (0,z). Now set ¢ = xy41. Because S](VN+1)(I') =
0, we have B\ V() = ™+ () and it follows that

f(N+1)(C) N+1
(N +1)!

as desired. O

EN(ZE) =

Example 4 (Cauchy’s Remainder Theorem). Let f be differentiable N + 1
times on (—R, R). For each a € (—R, R), let Sy(x,a) be the partial sum of
the Taylor series for f centered at a; in other words, define

N
n f(a)
Sy(z,a) = %cn(x —a) and ¢, = o

Let En(z,a) = f(x) — Sn(z,a). Now fix x # 0 in (—R, R) and consider
En(z,a) as a function of a.

(a) Find En(z,z).
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(b) Explain why En(z,a) is differentiable with respect to a, and show

_ (N (g
EN(z,a) = fTN(x —a)™.
(¢) Show (
N+1)
En(x) = En(2,0) = / N'< )(a:—c)Nx

for some ¢ between 0 and z. This is Cauchy’s form of the remainder for
Taylor series centered at the origin.

D £ lox) = £0A- Sy xx)= § 69 - &) = 0

9 Sy (9= ‘?(m%”% f(—:,@ C<2)" s differedtiable
= EM (%) is A‘\‘Q'Qerw'k(a\g\qd
E g (9= (869 = Sylmya))”

=- SU/ (X)O\)N “ L)
=~ Ll - Z £ (”\)m(x—a)“-l(' )+ _\__(EL) (x-a)”

n!

w%(mz““ O (e A7) (e

=1 ( - m[
. (u+)
== £'(a)+ <’Q'(°~)~ $ N!(O\) (x-o\)“>

_ ’F(Nﬂ)(o\) X
N (x-a)

C) Aﬁwkylw‘j MUT +0 EM(KID\) ol [O)x] jiV(S

Enlx %) ~Ey (x90)
_ET(D__L_ BN o) for some ce (0,x)

e (R+1)
gtp[x);gu(x,(»___ £ UN](Q (X—c)“x \07 U?)
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6.7 The Weierstrass Approximation Theorem

Theorem 6.7.1 (Weierstrass Approximation Theorem). Let f : [a,b] — R be
continuous. Given € > 0, there exists a polynomial p(x) satisfying

[f(z) = p(x)| <e
for all x € [a,b).

Example 1. Assuming the Weierstrass Approximation Theorem (WAT), show
that if f is continuous on [a, b], then there exists a sequence (p,,) of polynomials
such that p, — f uniformly on [a, b].

AQFV LJAT V\L?Q_o\}(e&ky W\'H/\ ZV\'—\/V\ ’\‘o 3&—\_ CPA 9'{5
190~ §69) < 75
Then QM—BQ um}'?orwty.

Definition 6.7.1. A continuous function ¢ : [a,b] — R is polygonal if there
is a partition
Aa=Tg< T <Xy < ---<x,=b

of [a,b] such that ¢ is linear on each subinterval [x; i, z;], where i = 1,... n.

Theorem 6.7.2. Let [ : [a,b] — R be continuous. Given € > 0, there exists
a polygonal function ¢ satisfying

f(z) — ¢(z)] < e
for all = € [a,b)].
Example 2. Prove Theorem 6.7.2.
£ s conbinuous on La,b) ol ()63 is (ompmd'% & s um‘r{:orm(y couiinuous
= Given 250 3 050 st W xuelaely le'éL\<5 plies |¥(x}—i}(3)\<%
,\)O\W’\'{*iolx\ \:Ol)lo] Lo umi%orm Segwmt's ot l%{tl less "’(mvx »
Dekine ¢(x) ot-flo ?Ja&goivd‘s ot e.ocln Se?wuﬁ‘ b be Y aa) l;wmrl}, ;.\Molq{l Letweoes, EMQFOiw"t&

For X€ (R;Q) Id' 9 be Yo lqvgcﬁ 04& (oin"" less TL@(/\ X audl r be fo, viext wz,o?ofn+-
Then [x- 12572 180~ <& aud \0g)- el < & .

Since $0x) lies beturern 4)(1} ay\k 4}((\))
|G- 90| £ 1569 = 0] +[6()- 919 £ [40) - $()] +{0(9) - dl)| < 5« £ = ¢
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Example 3. (a) Find the second degree polynomial p(x) = qo + @17 + qo2?
that interpolates the three points (—1, 1), (0,0) and (1,1) on the graph of
g(x) = |z|. Sketch g(z) and p(z) over [—1,1] on the same set of axes.

(b) Find the fourth degree polynomial that interpolates g(z) = |z| at the
points z = —1,—1/2,0,1/2, and 1. Add a sketch of this polynomial to the

graph from (a).
D pl0)=0 = 9,20
PLDN=1 = —9 49,7 l} 9,20 L= plx)=x?

o= = giegp=1 37 95

D 99=0 a de golynorial b is e -
D hx)= ax*¢bx*
=5 gt gh=t] a- % bl
W= > a+b=| %k‘-f% P s

N

Example 4. Show that f(z) = /1 — z has Taylor series coefficients a,, where

ap =1 and
_ —1-3-5---(2n—3)

Ayp =

2-4-6---2n
for n > 1.
_an-l
¥‘“3(X>=-."3'5“‘M(&“”3> (1-x) 2
X
ool 135 @) 2135w
" Vll_ 1‘" V\'_ ac_\_gg\v\
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Example 5. Use Example 4 of Section 6.6 to prove that
Vi—z= i anx"
n=0
for all x € (—1,1).
Fix xe (1)) By fle caucuy formala,
10 700 0 2 ) e[ 2 e

‘T:C \ is \omaes‘\V bJ\Au\ (=0 = \)T—-:%\é._ [x]|

(&

= |ggle 5 Ix" m —0 ws N>oo
Example 6. (a) Let

2
for n > 1. Show ¢, < WorEsh

(b) Use (a) to show that >~ a, converges (absolutely, in fact) where a,, is
the sequence of Taylor coefficients generated in Example 4.

(c) Carefully explain how this verifies that

V1—x= ianx”
n=0

for all x € [—1,1].

\ 2y
09 n=l 0=t

l
Assume Yrue Ror 1=K They 5

e ¢ ‘iﬁ; & BKBADK414K3 < §KI+R0KR LK e ED k>4

2kt | Ay
SO C’K‘H Ck 'A\K{-g\ ,\‘-——‘;\;— D‘KK‘:,B '\’_— )O,V\&\ ‘\’(&l NSM_{— 'QB“OWJ 57 ‘V&UC‘{-IOV]

> \O\h\ = '}\V\ 0 —(ﬁﬁ? (- D’>/a QV\& Z /3/;’k COI/\VUSCS = 3 a, CthQrats ‘07 CDVV?OW‘SOW

C> W (’_olAU(rjP_S 0\\050 u"'ely 0\+ l L\] ('0) S \IT—; COV\UUT)QS \A(A(&w/[/lr\l7 [ El 1
DVT=x s corinuons on (=1,1)
A\so Vi-x :z 0, X" &r xe Gy b7 Ex L{'J ow& thus is oAso Gordinuoas

l ,_h
Thusxl;g‘d(\? ""ZQ X" = 1-x = Zoqu"‘ ¥ xel-1,1]
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Example 7. (a) Use the fact that |a| = v/ a? to prove that, given € > 0, there
exists a polynomial g(x) satisfying

||z — q(x)] < e
for all z € [-1,1].

(b) Generalize this conclusion to an arbitrary interval [a, b].

) Let a>o_m=§%xv‘ ¥ oxel-1,1]

N
=24 a SM(X): %oalu.)(m g,{~, \\W‘SM(‘}S\<Z Y 3_& [‘I)G
Lot W =% Than xXe(-,3=> k{}eY_O)ﬂ.

Since. Ix]= X3 = \) I-Q=x = I’y.) we have \lXI’SMU"X_&M <& Vo xe E")B
Take g (x)= NG
@Le‘c Cs= V/\w((i\o\\)lb% ad ek 50 Then L77 (o) 2w Qoh/nowﬁa\ p(x) s .

|12]-0(2)
= [Ixl-cp(E)|<t ¥ xeTe,d
Since [ayEl e ~¢,c] fuke ?(K)=C"?(%>

£
<= 9 xel-¢ ]

Example 8. (a) Fix a € [—1,1] and sketch 0)
ha(2) = 5(lz —al + (z = a))

T
over [—1,1]. Note that h, is polygonal and satisfies h,(z) = 0 for all
x € [—1,a].
(b) Explain why we know h,(z) can be uniformly approximated with a poly-

nomial on [—1, 1].

(c) Let ¢ be a polygonal function that is linear on each subinterval of the
partition
—l=ag<ay<a<---<a, =1
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Show there exist constants by, b1, ..., b,_1 so that

¢(£) = ¢(_1> + bOhao(x) + blhal (:E) +oot bn—lhan—l(w)
for all x € [—1,1].

(d) Complete the proof of WAT for the interval [—1, 1], and then generalize
to an arbitrary interval [a, b].
JX o\| ?(x o\

b) %7 Ex )?)(vel/\ ¢ 3o ?o(7mma( x) S+
lx o\l ?(x o\>

FU/\UA\,.A(X) ((xq>( )
$ (o) - 4>°t> ]D ~¢&"‘“3 q)e\,,,) et or hx |

SN Ae['““*

&) =

<2 ¥ xe G\,

Take (Z(K)‘?(x—i> (
O Sk b, = —— .

& Fix €>0. X continuous on C1,iJ=> 3 ?0[7 oval $00) st. [£069- 40 E ¥xe -1,
We also have |4()- {L(K)R J xe 01,0 S%our Soime. ?u(7womm( Z(;<>
= [§09- 909 £ [£0)- 9091+ [¢6) -9 09 < L+£-¢ Ixe BLI
Let /Q(ﬂ Vn><+@ be e linear Qumc\'wh Yoot s [I 1 Yo ﬂq)(,]
(-2) wm= T and @= b‘f"\ & continuous on Toyb] = ML) is (ontinuows ow C1,1]
53\ ) sd. ‘5[/@00 pMl<e ¥ xe Byl
Ser 4 =209: Thou |K()-ple7 (3NN <E ¥ yeTars] vher oL () i o polyuomial

Example 9. (a) Find a counterexample which shows that WAT is not true
if we replace the closed interval [a, b] with the open interval (a,b).

(b) What happens if we replace [a,b] with the closed set [a,00)? Does the
theorem still hold?

@ Led §Gx)= ‘/x on (01 |>. £ i umbouw&c& = o ?0\7‘/10"4(:1{ Can uw‘f@om(y o\Ffmxfm{a £.
9 LQéY 3(><> = LK) LJ,\('C\A ijw_S '{'bo ‘?015*' +o be uw‘“@ovw[y o\P?rofohazltﬂ\ 107 auy fo(ymuw&al,

Or Cows(&er s(mx) whidh is L,oumheh as X300, wulike auy ?0(7M°lmiq(,
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F, set, 69
G set, 69
a-continuous, 89

Abel-summable, 126
absolute value function, 5
antichain, 23

bounded, 28, 60
bounded above, 8
bounded below, 8

Cantor set, 65
cardinality, 15

Cauchy product, 53
Cauchy sequence, 40
closed set, 56

closure, 57

compact set, 60
complement, 4
connected, 66
continuous, 77
convergence, 25
converges, 33

converges absolutely, 45
converges conditionally, 45
countable, 16

decreasing, 33, 87
derivative, 92
differentiable, 92
disconnected, 66
diverge, 27
domain, 5

elements, 3
equicontinuous, 113

essential discontinuity, 88

finite subcover, 62
fixed point, 99
function, 5
functional limit, 73

geometric series, 43
greatest lower bound, 8

harmonic series, 34

inclusion, 3

increasing, 33, 86, 87
induction, 6

infimum, 8

infinite series, 33

integers, 2

intermediate value property, 86
intersection, 3

isolated point, 56

jump discontinuity, 88

least upper bound, 8
limit point, 55
Lipschitz function, 83
lower bound, 8

maximum, 8
minimum, 8
monotone, 33, 87

natural numbers, 2
neighborhood, 25
nowhere-dense, 71

one-to-one, 15
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onto, 15
open cover, 62
open set, 55

perfect set, 65

pointwise convergence, 109, 110, 119
polygonal function, 131

power set, 22

preimages, 84

range, o

rational numbers, 2

real numbers, 2
rearrangement, 46
removable discontinuity, 88

separated, 66

sequence, 25

sequence of partial sums, 33
set, 3

subsequence, 37

subset, 3

supremum, 8

totally disconnected, 68

uncountable, 16

uniform convergence, 110, 119
uniformly continuous, 81
uniformly differentiable, 95
union, 3

upper bound, 8
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