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Chapter 1

The Real Numbers

1.1 Discussion: The Irrationality of
→
2

Theorem 1.1.1. There is no rational number whose square is 2.

Proof. A rational number is any number that can be expressed in the form
p/q, where p and q are integers. Assume, for contradiction, that there exist
integers p and q satisfying (

p

q

)2

= 2. (1)

We may also assume that p and q have no common factor, because, if they had
one, we could simply cancel it out and rewrite the fraction in lowest terms.
Equation (1) implies

p
2 = 2q2. (2)

From this, we can see that p2 is even, and hence p must be even as well, which
allows us to write p = 2r where r is also an integer. Substituting 2r for p in
equation (2) yields

(2r)2 = 2q2

2r2 = q
2
,

implying that q
2 is even. However, this also implies that q is even, which

contradicts the assumption that p and q have no common factor.
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Real Analysis - Discussion: The Irrationality of
→
2

Example 1. (a) Prove that
→
3 is irrational. Does a similar argument work

to show
→
6 is irrational?

(b) Where does the proof of Theorem 1.1.1 break down if we try to use it to
prove

→
4 is irrational?

Remark 1. We call the natural numbers

N = {1, 2, 3, 4, 5, . . .}.

The natural numbers extend to the integers

Z = {. . . ,↑3,↑2,↑1, 0, 1, 2, 3, . . .},

which we extend again to the rational numbers

Q =

{
all fractions

p

q
where p and q are integers with q ↓= 0

}
.

By filling the gaps in Q, we obtain the real numbers R.
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Real Analysis - Some Preliminaries

1.2 Some Preliminaries

Remark 1. Intuitively speaking, a set is any collection of objects. These objects
are referred to as the elements of the set.
Given a set A, we write x ↔ A if x is an element of A. If x is not an element of
A, then we write x /↔ A. Given two sets A and B, the union is written A ↗B

and is defined by asserting that

x ↔ A ↗B provided x ↔ A or x ↔ B.

The intersection A ↘B is the set defined by the rule

x ↔ A ↘B provided x ↔ A and B.

Example 1. (i) There are many acceptable ways to assert the contents of
a set. In the previous section, the set of natural numbers was defined by
listing the elements: N = {1, 2, 3, . . .}.

(ii) Sets can also be described in words. For instance, we can define the set
E to be the collection of even natural numbers.

(iii) Sometimes it is more e”cient to provide a kind of rule or algorithm for
determining the elements of a set. As an example, let

S = {r ↔ Q : r2 < 2}.

Read aloud, the definition of S says, “Let S be the set of all rational
numbers whose squares are less than 2.” It follows that 1 ↔ S, 4/3 ↔ S,
but 3/2 /↔ S because 9/4 ≃ 2.

Example 2. Find N ↗ E, N ↘ E, N ↘ S, and E ↘ S.

Remark 2. The inclusion relationship A ⇐ B or B ⇒ A is used to indicate
that every element of A is also an element of B. In this case, we say A is a
subset of B or B contains A. To assert that A = B means that A ⇐ B and
B ⇐ A.

Example 3. Let

A1 = N = {1, 2, 3, . . .},
A2 = {2, 3, 4, . . .},
A3 = {3, 4, 5, . . .},

3
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Real Analysis - Some Preliminaries

and, in general, for each n ↔ N, define the set

An = {n, n+ 1, n+ 2, . . .}.

The result is a nested chain of sets

A1 ⇒ A2 ⇒ A3 ⇒ A4 ⇒ · · · ,

where each successive set is a subset of all the previous ones. Notationally,

→⋃

n=1

An,

⋃

n↑N

An, or A1 ↗ A2 ↗ A3 ↗ · · ·

are all equivalent ways to indicate the set whose elements consist of any element
that appears in at least one particular An. The notion of intersection has the
same kind of natural extension to infinite collections of sets. What are

→⋃

n=1

An and
→⋂

n=1

An

in this case?

Remark 3. Given A ⇐ R, the complement of A, written A
c, refers to the set

of all elements of R not in A. Thus, for A ⇐ R,

A
c = {x ↔ R : x /↔ A}.

Example 4 (De Morgan’s Laws). Let A and B be subsets of R.

(a) If x ↔ (A ↘ B)c, explain why x ↔ A
c ↗ B

c. This shows that (A ↘ B)c ⇐
A

c ↗B
c.

(b) Prove the reverse inclusion (A ↘ B)c ⇒ A
c ↗ B

c, and conclude that (A ↘
B)c = A

c ↗B
c.

(c) Show (A ↗B)c = A
c ↘B

c by demonstrating inclusion both ways.

4
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Real Analysis - Some Preliminaries

Definition 1.2.1. Given two sets A and B, a function from A to B is a rule
or mapping that takes each element x ↔ A and associates with it a single
element of B. In this case, we write f : A ⇑ B. Given an element x ↔ A, the
expression f(x) is used to represent the element of B associated with x by f .
The set A is called the domain of f . The range of f is not necessarily equal to
B but refers to the subset of B given by {y ↔ B : y = f(x) for some x ↔ A}.

Example 5. In 1829, Dirichlet proposed the unruly function

g(x) =

{
1 if x ↔ Q

0 if x /↔ Q.

What are the domain and range of g?

Example 6 (Triangle Inequality). The absolute value function is so important
that it merits the special notation |x| in place of the usual f(x) or g(x). It is
defined for every real number via the piecewise definition

|x| =
{
x if x ≃ 0

↑x if x < 0.

With respect to multiplication and division, the absolute value function satis-
fies

5
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Real Analysis - Some Preliminaries

(i) |ab| = |a||b| and

(ii) |a+ b| ⇓ |a|+ |b|

for all choices of a and b. Verify these properties.

Theorem 1.2.1. Two real numbers a and b are equal if and only if for every
real number ω > 0 it follows that |a↑ b| < ω.

Proof. If a = b, then |a ↑ b| = 0, and so |a ↑ b| < ω no matter what ω > 0 is
chosen.
Conversely, if |a↑ b| < ω for every ω > 0, assume towards a contradiction that
a ↓= b. Then |a↑ b| > 0, and so we can let

ω0 = |a↑ b|.

However, then |a↑ b| < ω0 cannot be true, a contradiction.

Remark 4. Induction arguments are used in conjunction with the natural num-
bersN (or sometimes with the set N↗{0}). The fundamental principle behind
induction is that if S is some subset of N with the property that

(i) S contains 1 and

(ii) whenever S contains a natural number n, it also contains n+ 1,

then it must be that S = N.

6
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Real Analysis - Some Preliminaries

Example 7. Let x1 = 1, and for each n ↔ N define

xn+1 = (1/2)xn + 1.

Using this rule, we can compute x2 = (1/2)(1) + 1 = 3/2, x3 = 7/4, and it is
immediately apparent how this leads to a definition of xn for all n ↔ N. The
sequence just defined appears at the outset to be increasing. Use induction to
prove this trend continues; that is, show

xn ⇓ xn+1

for all values of n ↔ N.

7
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Real Analysis - The Axiom of Completeness

1.3 The Axiom of Completeness

Axiom of Completeness. Every nonempty set of real numbers that is
bounded above has a least upper bound.

Definition 1.3.1. A set A ⇐ R is bounded above if there exists a number
b ↔ R such that a ⇓ b for all a ↔ A. The number b is called an upper bound
for A.
Similarly, the set A is bounded below if there exists a lower bound l ↔ R

satisfying l ⇓ a for every a ↔ A.

Definition 1.3.2. A real number s is the least upper bound for a set A ⇐ R

if it meets the following two criteria:

(i) s is an upper bound for A;

(ii) if b is any upper bound for A, then s ⇓ b.

The least upper bound is also frequently called the supremum of the set A.
Although the notation s = lubA is sometimes used, we will always write
s = supA for the least upper bound.
The greatest lower bound or infimum for A is defined in a similar way and is
denote by inf A.

Example 1. Let

A =

{
1

n
: n ↔ N

}
=

{
1,

1

2
,
1

3
, . . .

}
.

Find supA and inf A.

Definition 1.3.3. A real number a0 is a maximum of the set A if a0 is an
element of A and a0 ≃ A for all a ↔ A. Similarly, a number a1 is a minimum
of A if a1 ↔ A and a1 ⇓ a for every a ↔ A.

8
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Real Analysis - The Axiom of Completeness

Example 2. Consider the open interval

(0, 2) = {x ↔ R : 0 < x < 2},

and the closed interval

[0, 2] = {x ↔ R : 0 ⇓ x ⇓ 2}.

Find the maximum, minimum, supremum, and infimum of the two intervals.

Example 3. Consider again the set

S = {r ↔ Q : r2 < 2},

Is there a least upper bound in the rational numbers? What about in the real
numbers?

Example 4. Let A ⇐ R be nonempty and bounded above, and let c ↔ R.
Define the set c+ A by

c+ A = {c+ a : a ↔ A}.

Find sup(c+ A).

Lemma 1.3.1: Assume s ↔ R is an upper bound for a set A ⇐ R. Then,
s = supA if and only if, for every choice of ω > 0, there exists an element
a ↔ A satisfying s↑ ω < a.

9
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Real Analysis - The Axiom of Completeness

Proof. For the forward direction, we assume s = supA and consider s ↑ ω,
where ω > 0 has been arbitrarily chosen. Because s ↑ ω < s, part (ii) of
Definition 1.3.2 implies that s↑ ω is not an upper bound for A. If this is the
case, then there must be some element a ↔ A for which s ↑ ω < a (because
otherwise s↑ ω would be an upper bound).
Conversely, assume s is an upper bound with the property that no matter how
ω > 0 is chosen, s↑ ω is no longer an upper bound for A. Notice that what this
implies is that if b is any number less than s, then b is not an upper bound.
(Just let ω = s ↑ b.) To prove that s = supA, we must verify part (ii) of
Definition 1.3.2. Because we have just argued that any number smaller than s

cannot be an upper bound, it follows that if b is some other upper bound for
A, then s ⇓ b.

10
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1.4 Consequences of Completeness

Theorem 1.4.1 (Nested Interval Property). For each n ↔ N, assume we are
given a closed interval In = [an, bn] = {x ↔ R : an ⇓ x ⇓ bn}. Assume
also that each In contains In+1. Then, the resulting nested sequence of closed
intervals

I1 ⇒ I2 ⇒ I3 ⇒ I4 ⇒ · · ·
has a nonempty intersection; that is

⋂→
n=1 In ↓= ⇔.

Proof. In order to show that
⋂→

n=1 In is not empty, we are going to use the
Axiom of Completeness (AoC) to produce a single real number x satisfying
x ↔ In for every n ↔ N. Now, AoC is a statement about bounded sets, and
the one we want to consider is the set

A = {an : n ↔ N}

of left-hand endpoints of the intervals.

a1 a2 a3 an bn b3 b2 b1

[ [ [ [ ] ] ] ]

A = {an : n ↔ N}

· · · · · · · · · · · ·

Because the intervals are nested, we see that every bn serves as an upper bound
for A. Thus, we are justified in setting

x = supA.

Now, consider a particular In = [an, bn]. Because x is an upper bound for A,
we have an ⇓ x. The fact that each bn is an upper bound for A and that x is
the least upper bound implies x ⇓ bn.
Altogether then, we have an ⇓ x ⇓ bn, which means x ↔ In for every choice of
n ↔ N. Hence, x ↔

⋂→
n=1 In, and the intersection is not empty.

Example 1. Recall that I stands for the set of irrational numbers.

(a) Show that if a, b ↔ Q, then ab and a+ b are elements of Q as well.

(b) Show that if a ↔ Q and t ↔ I, then a+ t ↔ I and at ↔ I as long as a ↓= 0.

(c) Part (a) can be summarized by saying that Q is closed under addition and
multiplication. Is I closed under addition and multiplication? Given two
irrational numbers s and t, what can we say about s+ t and st?

11
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Theorem 1.4.2 (Archimedean Property). (i) Given any number x → R,
there exists an n → N satisfying n > x.

(ii) Given any real number y > 0, there exists an n → N satisfying 1/n < y.

Proof. Assume, for contradiction, that N is bounded above. By the Axiom of
Completeness (AoC), N should then have a least upper bound, and we can set
ω = supN. If we consider ω↑ 1, then we no longer have an upper bound (see
Lemma 1.3.1), and therefore there exists an n → N satisfying ω↑ 1 < n. But
this is equivalent to ω < n + 1. Because n + 1 → N, we have a contradiction
to the fact that ω is supposed to be an upper bound for N.
Part (ii) follows from (i) by letting x = 1/y.

Theorem 1.4.3 (Density of Q in R). For every two real numbers a and b

with a < b, there exists a rational number r satisfying a < r < b.

Proof. A rational number is a quotient of integers, so we must produce m → Z

and n → N so that
a <

m

n
< b. (1)

The first step is to choose the denominator n large enough so that consecutive
increments of size 1/n are too close together to “step over” the interval (a, b).

• •
0 a b

1
n

2
n

3
n · · · m→1

n
m
n
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Using the Archimedean Property (Theorem 1.4.2), we may pick n → N large
enough so that

1

n
< b↑ a. (2)

Inequality (1) is equivalent to na < m < nb. With n already chosen, the idea
now is to choose m to be the smallest integer greater than na. In other words,
pick m → Z so that

m↑ 1
(3)

↓ na
(4)
< m.

Now, inequality (4) immediately yields a < m/n. Keeping in mind that in-
equality (2) is equivalent to a < b↑ 1/n, we can use (3) to write

m ↓ na+ 1

< n

(
b↑ 1

n

)
+ 1

= nb.

Because m < nb implies m/n < b, we have a < m/n < b, as desired.

Corollary 1.4.1. Given any two real numbers a < b, there exists an irrational
number t satisfying a < t < b.

Example 2. Prove Corollary 1.4.1.

Theorem 1.4.4. There exists a real number ω → R satisfying ω
2 = 2.

Proof. Consider the set
T = {t → R : t2 < 2}

and set ω = supT . We are going to prove ω2 = 2 by ruling out the possibilities
ω
2
< 2 and ω

2
> 2.

13
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Real Analysis - Consequences of Completeness

Let’s first assume ω
2
< 2. In search of an element of T that is larger than ω,

write
(
ω +

1

n

)2

= ω
2 +

2ω

n
+

1

n2

< ω
2 +

2ω

n
+

1

n

= ω
2 +

2ω + 1

n
.

But now assuming ω
2
< 2 gives us a little space in which to fit the (2ω+1)/n

term and keep the total less than 2. Specifically, choose n0 → N large enough
so that

1

n0
<

2↑ ω
2

2ω + 1
.

This implies (2ω + 1)/n0 < 2↑ ω
2, and consequently that

(
ω +

1

n0

)2

< ω
2 + (2↑ ω

2) = 2.

Thus, ω + 1/n0 → T , contradicting the fact that ω is an upper bound for T .
We conclude that ω2

< 2 cannot happen.
Now consider the case ω

2
> 2. This time, write

(
ω↑ 1

n

)2

= ω
2 ↑ 2ω

n
+

1

n2

> ω
2 ↑ 2ω

n
.

Now we need to pick n0 large enough so that

1

n0
<

ω
2 ↑ 2

2ω
or

2ω

n0
< ω

2 ↑ 2.

With this choice of n0, we have

(ω↑ 1/n0)
2
> ω

2 ↑ 2ω/n0 = ω
2 ↑ (ω2 ↑ 2) = 2.

This means (ω ↑ 1/n0) is an upper bound for T . But (ω ↑ 1/n0) < ω and
ω = supT is supposed to be the least upper bound. This contradiction means
that the case ω

2
> 2 can be ruled out. Because we have already ruled out

ω
2
< 2, we are left with ω

2 = 2 which implies ω =
↔
2 exists in R.

14
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1.5 Cardinality

Definition 1.5.1. A function f : A ⇑ B is one-to-one (1–1) if a1 ↓= a2 in A

implies f(a1) ↓= f(a2) in B. The function f is onto if, given any b ↔ B, it is
possible to find an element a ↔ A for which f(a) = b.

Definition 1.5.2. The set A has the same cardinality as B if there exists
f : A ⇑ B that is 1-1 and onto. In this case, we write A ↖ B.

Example 1. (i) Let E = {2, 4, 6, . . .} be the set of even natural numbers.
Show N ↖ E.

(ii) Show N ↖ Z.

15
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Example 2. (i) Show that (↑1, 1) ↖ R.

(ii) Show that (a, b) ↖ R for any interval (a, b).

Definition 1.5.3. A set A is countable if N ↖ A. An infinite set that is not
countable is called an uncountable set.

Theorem 1.5.1. (i) The set Q is countable.

(ii) The set R is uncountable.

Proof. (i) Set A1 = {0} and for each n ≃ 2, let An be the set given by

An =

{
±p

q
: where p, q ↔ N are in lowest terms with p+ q = n

}
.

The first few of these sets look like

A1 = {0}, A2 =

{
1

1
,
↑1

1

}
, A3 =

{
1

2
,
↑1

2
,
2

1
,
↑2

1

}
,

A4 =

{
1

3
,
↑1

3
,
3

1
,
↑3

1

}
, and A5 =

{
1

4
,
↑1

4
,
2

3
,
↑2

3
,
3

2
,
↑3

2
,
4

1
,
↑4

1

}
.

The crucial observation is that each An is finite and every rational num-
ber appears in exactly one of these sets. Our 1–1 correspondence with
N is then achieved by consecutively listing the elements in each An.

16
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N : 1 2 3 4 5 6 7 8 9 10 11 12 · · ·

↙ ↙ ↙ ↙ ↙ ↙ ↙ ↙ ↙ ↙ ↙ ↙

Q : 0 1
1 ↑1

1
1
2 ↑1

2
2
1 ↑2

1
1
3 ↑1

3
3
1 ↑3

1
1
4

· · ·

A1 A2 A3 A4

We now see why every rational number appears in the correspondence
exactly once. Given, say, 22/7, we have that 22/7 ↔ A29. Because
the set of elements in A1, . . . , A28 is finite, we can be confidence that
22/7 eventually gets included in the sequence. The fact that this line
of reasoning applies to any rational number p/q is our proof that the
correspondence is onto. To verify that it is 1–1, we observe that the sets
An were constructed to be disjoint so that no rational number appears
twice. This completes the proof of (i).

(ii) This proof is done by contradiction. Assume that there does exist a 1–1,
onto function f : N ⇑ R. If we let x1 = f(1), x2 = f(2), and so on,
then our assumption that f is onto means that we can write

R = {x1, x2, x3, x4, . . .} (1)

and be confident that every real number appears somewhere on the list.
We will now use the Nested Interval Property (Theorem 1.4.1) to produce
a real number that is not there.
Let I1 be a closed interval that does not contain x1. Next, let I2 be a
closed interval, contained in I1, which does not contain x2. The existence
of such an I2 is easy to verify. Certainly I1 contains two smaller disjoint
closed intervals, and x2 can only be in one of these. In general, given an
interval In, construct In+1 to satisfy

(i) In+1 ⇐ In and

(ii) xn+1 /↔ In+1.

[ [ ] ]• •

In

In+1

xn+1 xn

We now consider the intersection
⋂→

n=1 In. If xn0 is some real number
from the list in (1), then we have xn0 /↔ In0 , and it follows that

xn0 /↔
→⋂

n=1

In.

17
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Now, we are assuming that the list in (1) contains every real number,
and this leads to the conclusion that

→⋂

n=1

In = ⇔.

However, the Nested Interval Property (NIP) asserts that
⋂→

n=1 In ↓= ⇔.
By NIP, there is at least one x ↔

⋂→
n=1 In that, consequently, cannot be

on the list in (1). This contradiction means that such an enumeration of
R is impossible, and we conclude that R is an uncountable set.

Theorem 1.5.2. If A ⇐ B and B is countable, then A is either countable or
finite.

Example 3. Prove Theorem 1.5.2.
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Theorem 1.5.3. (i) If A1, A2, . . . , Am are each countable sets, then the union
A1 ↗ A2 ↗ · · · ↗ Am is countable.

(ii) If An is a countable set for each n ↔ N, then
⋃→

n=1 An is countable.

Example 4. Prove Theorem 1.5.3.
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Real Analysis - Cantor’s Theorem

1.6 Cantor’s Theorem

Theorem 1.6.1. The open interval (0, 1) = {x ↔ R : 0 < x < 1} is uncount-
able.

Proof. As with Theorem 1.5.1, we proceed by contradiction and assume that
there does exist a function f : N ⇑ (0, 1) that is 1–1 and onto. For each
m ↔ N, f(m) is a real number between 0 and 1, and we represent it using the
decimal notation

f(m) = .am1am2am3am4am5 . . .

What is meant here is that for each m,n ↔ N is the digit from the set
{0, 1, 2, . . . , 9} that represents the nth digit in the decimal expansion of f(m).
The 1–1 correspondence between N and (0, 1) can be summarized in the dou-
bly indexed array

N (0, 1)

1 ∝⇑ f(1) = .a11 a12 a13 a14 a15 a16 · · ·

2 ∝⇑ f(2) = .a21 a22 a23 a24 a25 a26 · · ·

3 ∝⇑ f(3) = .a31 a32 a33 a34 a35 a36 · · ·

4 ∝⇑ f(4) = .a41 a42 a43 a44 a45 a46 · · ·

5 ∝⇑ f(5) = .a51 a52 a53 a54 a55 a56 · · ·

6 ∝⇑ f(6) = .a61 a62 a63 a64 a65 a66 · · ·
...

...
...

...
...

...
...

...
. . .

The key assumption about this correspondence is that every real number in
(0, 1) is assumed to appear somewhere on the list.
Now define a real number x ↔ (0, 1) with the decimal expansion x = .b1b2b3b4 . . .

using the rule

bn =

{
2 if ann ↓= 2

3 if ann = 2.

To compute the digit b1, we look at the digit a11 in the upper left-hand corner
of the array. If a11 = 2, then we choose b1 = 3; otherwise, we set b1 = 2.
Since a11 and b1 are di!erent, x cannot be f(1). We do the same thing when
computing b2, so that a22 and b2 are di!erent, and thus x cannot be f(2) either.
Continuing in this fashion, the nth digit of x and f(n) will always be di!erent,
so x ↓= f(n) for any n ↔ N. But this contradicts our assumption that every
real number in (0, 1) appears somewhere on the list.

20
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Example 1. Let S be the set consisting of all 0’s and 1’s. Observe that S is
not a particular sequence, but rather a large set whose elements are sequences;
namely,

S = {(a1, a2, a3, . . .) : an = 0 or 1}.

As an example, the sequence (1, 0, 1, 0, 1, 0, 1, 0, . . .) is an element of S, as is
the sequence (1, 1, 1, 1, 1, 1, . . .).

Give a rigorous argument showing that S is uncountable.
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Given a set A, the power set P (A) refers to the collection of all subsets of A.

Example 2. (a) Let A = {a, b, c}. List the eight elements of P (A). (Do not
forget that → is considered to be a subset of every set.)

(b) If A is finite with n elements, show that P (A) has 2n elements.

Example 3. (a) Using the particular set A = {a, b, c}, exhibit two di!erent
1–1 mappings from A into P (A).

(b) Letting C = {1, 2, 3, 4}, produce an example of a 1–1 map g : C ↑ P (C).

(c) Explain why, in parts (a) and (b), it is impossible to construct mappings
that are onto.

Theorem 1.6.2 (Cantor’s Theorem). Given any set A, there does not exist a
function f : A ↑ P (A) that is onto.

Proof. Assume, for contradiction, that f : A ↑ P (A) is onto. Unlike the usual
situation in which we have sets of numbers for the domain and range, f is a
correspondence between a set and its power set. For each element a ↓ A, f(a)
is a particular subset of A. The assumption that f is onto means that every
subset of A appears as f(a) for some a ↓ A. To arrive at a contradiction, we
will produce a subset B ↔ A that is not equal to f(a) for any a ↓ A.
Construct B using the following rule. For each element a ↓ A, consider the
subset f(a). This subset of A may contain the element a or it may not. This

22
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depends on the function f . If f(a) does not contain a, then we include a in
our set B. More precisely, let

B = {a ↓ A : a /↓ f(a)}.

Because we have assumed that our function f : A ↑ P (A) is onto, it must be
that B = f(a→) for some a

→ ↓ A. The contradiction arises when we consider
whether or not a→ is an element of B. If a→ ↓ B, then a

→ ↓ f(a→) since B = f(a→).
However, by the definition of B, we have a

→
/↓ f(a→), a contradiction. On the

other hand, if a→ /↓ B, then a
→
/↓ f(a→), and again we have a contradiction by

the definition of B because this implies that a→ ↓ B.

Example 4. Answer each of the following by establishing a 1–1 correspon-
dence with a set of known cardinality.

(a) Is the set of all functions from {0, 1} to N countable or uncountable?

(b) Is the set of all functions from N to {0, 1} countable or uncountable?

(c) Given a set B, a subset A of P (B) is called an antichain if no element of A
is a subset of any other element of A. Does P (N) contain an uncountable
antichain?
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Chapter 2

Sequences and Series

2.1 Discussion: Rearrangements of Infinite Se-

ries
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Real Analysis - The Limit of a Sequence

2.2 The Limit of a Sequence

Definition 2.2.1. A sequence is a function whose domain is N.

Example 1. Each of the following are common ways to describe a sequence.

(i) (1, 12 ,
1
3 ,

1
4 , · · · ),

(ii) (1+n
n )↑n=1 = (21 ,

3
2 ,

4
3 , · · · ),

(iii) (an), where an = 2n for each n ↓ N,

(iv) (xn), where x1 = 2 and xn+1 =
xn+1

2 .

Definition 2.2.2 (Convergence of a Sequence). A sequence (an) converges to
a real number a if, for every positive number ω, there exists an N ↓ N such
that whenever n ↗ N it follows that |an ↘ a| < ω.

Remark 1. To indicate that (an) converges to a, we usually write either lim an =
a or (an) ↑ a. The notation limn↓↑ an = a is also standard.

Definition 2.2.3. Given a real number a ↓ R and a positive number ω > 0,
the set

Vω(a) = {x ↓ R : |x↘ a| < ω}

is called the ω-neighborhood of a.

Definition 2.2.4 (Convergence of a Sequence: Topological Version). A se-
quence (an) converges to a if, given any ω-neighborhood Vω(a) of a, there exists
a point in the sequence after which all of the terms are in Vω(a). In other
words, every ω-neighborhood contains all but a finite number of the terms of
(an).

• • • • • • ( • • •••••• • )
a↘ ω a a+ ω

a1 a2 a3 · · ·
aN

Vω(a)

25
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Example 2. Consider the sequence (an), where an = 1/
≃
n. Prove that

lim

(
1≃
n

)
= 0.

Example 3. Show

lim

(
n+ 1

n

)
= 1.
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Theorem 2.2.1 (Uniqueness of Limits). The limit of a sequence, when it
exists, must be unique.

Example 4. Prove Theorem 2.2.1.

Example 5. Show that the sequence
(
1,↘1

2
,
1

3
,↘1

4
,
1

5
,↘1

5
,
1

5
,↘1

5
,
1

5
,↘1

5
,
1

5
,↘1

5
,
1

5
,↘1

5
, · · ·

)

does not converge to 0.

Definition 2.2.5. A sequence that does not converge is said to diverge.
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Real Analysis - The Algebraic and Order Limit Theorems

2.3 The Algebraic and Order Limit Theorems

Definition 2.3.1. A sequence (xn) is bounded if there exists a number M > 0
such that |xn| ⇐ M for all n ↓ N.

Theorem 2.3.1. Every convergent sequence is bounded.

Proof. Assume (xn) converges to a limit l. This means that given a particular
value of ω, say ω = 1, we know there must exist an N ↓ N such that if n ↗ N ,
then xn is in the interval (l ↘ 1, l + 1). Not knowing whether l is positive or
negative, we can certainly conclude that

|xn| < |l|+ 1

for all n ↗ N .

• • • ( • •••••• • ) • •
0 l ↘ 1 l l + 1

M

x2 x1 x3

xn, n ↗ N
x5 x4

Because there are only a finite number of terms before the Nth term, we let

M = max{|x1|, |x2|, |x3|, . . . , |xN↔1|, |l|+ 1}.

It follows that |xn| ⇐ M for all n ↓ N, as desired.

Theorem 2.3.2 (Algebraic Limit Theorem). Let lim an = a, and lim bn = b.
Then,

(i) lim(can) = ca, for all c ↓ R;

(ii) lim(an + bn) = a+ b;

(iii) lim(anbn) = ab;

(iv) lim(an/bn) = a/b, provided b ⇒= 0.

Proof. (i) Consider the case where c ⇒= 0. First, we let ω be some arbitrary
positive number. Our goal is to find some point in the sequence (can) after
which we have

|can ↘ ca| < ω.

Now,
|can ↘ ca| = |c||an ↘ a|.
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We are given that (an) ↑ a, we know we can make |an ↘ a| as small we like.
In particular, we can choose an N such that

|an ↘ a| < ω

|c|

whenever n ↗ N . To see that this N indeed works, observe that, for all n ↗ N ,

|can ↘ ca| = |c||an ↘ a| < |c| ω|c| = ω.

The case c = 0 reduces to showing that the constant sequence (0, 0, 0, . . .)
converges to 0, which is easily verified.
(ii) To prove this statement, we need to argue that the quantity

|(an + bn)↘ (a+ b)|

can be made less than an arbitrary ω using the assumptions that |an ↘ a| and
|bn ↘ b| can be made as small as we like for large n. The first step is to use
the triangle inequality (Example 6) to say

|(an + bn)↘ (a+ b)| = |(an ↘ a) + (bn ↘ b)| ⇐ |an ↘ a|+ |bn ↘ b|.

Again, we let ω > 0 be arbitrary. Using the hypothesis that (an) ↑ a, we know
there exists an N1 such that

|an ↘ a| < ω

2
whenever n ↗ N1.

Likewise, the assumption that (bn) ↑ b means that we can choose an N2 so
that

|bn ↘ b| < ω

2
whenever n ↗ N2.

By choosing N = max{N1, N2}, we ensure that if n ↗ N , then n ↗ N1 and
n ↗ N2. This allows us to conclude that

|(an + bn)↘ (a+ b)| ⇐ |an ↘ a|+ |bn ↘ b|

<
ω

2
+

ω

2
= ω

for all n ↗ N , as desired.
(iii) To show that (anbn) ↑ ab, we begin by observing that

|anbn ↘ ab| = |anbn ↘ abn + abn ↘ ab|
⇐ |anbn ↘ abn|+ |abn ↘ ab|
= |bn||an ↘ a|+ |a||bn ↘ b|.
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Let ω > 0 be arbitrary. For the piece on the right-hand side (|a||bn ↘ b|), if
a ⇒= 0 we can choose N1 so that

n ↗ N1 implies |bn ↘ b| < 1

|a|
ω

2
.

(The case when a = 0 is handled in Example 1.) Using the fact that conver-
gence sequences are bounded, we know there exists a bound M > 0 satisfying
|bn| ⇐ M for all n ↓ N. Now, we can choose N2 so that

|an ↘ a| < 1

M

ω

2
whenever n ↗ N2.

To finish the argument, pick N = max{N1, N2}, and observe that if n ↗ N ,
then

|anbn ↘ ab| ⇐ |anbn ↘ abn|+ |abn ↘ ab|
= |bn||an ↘ a|+ |a||bn ↘ b|
⇐ M |an ↘ a|+ |a||bn ↘ b|

< M

(
ω

M2

)
+ |a|

(
ω

|a|2

)
= ω.

(iv) This final statement will follow from (iii) if we can prove that

(bn) ↑ b implies

(
1

bn

)
↑ 1

b

whenever b ⇒= 0. We begin by observing that
∣∣∣∣
1

bn
↘ 1

b

∣∣∣∣ =
|b↘ bn|
|b||bn|

.

Consider the particular value ω0 = |b|/2. Because (bn) ↑ b, there exists an N1

such that |bn ↘ b| < |b|/2 for all n ↗ N1. This implies |bn| > |b|/2.
Next, choose N2 so that n ↗ N2 implies

|bn ↘ b| < ω|b|2

2
.

Finally, if we let N = max{N1, N2}, then n ↗ N implies

∣∣∣∣
1

bn
↘ 1

b

∣∣∣∣ = |b↘ bn|
1

|b||bn|
<

ω|b|2

2

1

|b| |b|2
= ω.
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Example 1.

(a) Let (an) be a bounded (not necessarily convergent) sequence, and assume
lim bn = 0. Show that lim(anbn) = 0. Why are we not allowed to use the
Algebraic Limit Theorem to prove this?

(b) Can we conclude anything about the convergence of (anbn) if we assume
that (bn) converges to some nonzero limit b?

(c) Use (a) to prove Theorem 2.3.2, part (iii), for the case when a = 0.

Theorem 2.3.3 (Order Limit Theorem). Assume lim an = a and lim bn = b.

(i) If an ↗ 0 for all n ↓ N, then a ↗ 0.

(ii) If an ⇐ bn for all n ↓ N, then a ⇐ b.

(iii) If there exists c ↓ R for which c ⇐ bn for all n ↓ N, then c ⇐ b. Similarly,
if an ⇐ c for all n ↓ N, then a ⇐ c.
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Proof. We will prove this by contradiction; thus, let’s assume a < 0. Consider
the particular value ω = |a|. The definition of convergence guarantees that
we can find an N such that |an → a| < |a| for all n ↑ N . In particular, this
would mean that |aN → a| < |a|, which implies aN < 0. This contradicts our
hypothesis that aN ↑ 0. We therefore conclude that a ↑ 0.

( ••• • • ) • • • • •
a→ ω a 0 = a+ ω

aN
· · · a2 a1

(ii) The Algebraic Limit Theorem ensures that the sequence (bn→an) converges
to b→ a. Because bn → an ↑ 0, we can apply part (i) to get g → a ↑ 0.
(iii) Take an = c (or bn = c) for all n ↓ N, and apply (ii).

Example 2. Let (xn) and (yn) be given, and define (zn) to be the “shu!ed”
sequence (x1, y1, x2, y2, x3, y3, . . . , xn, yn, . . .). Prove that (zn) is convergent if
and only if (xn) and (yn) are both convergent with lim xn = lim yn.
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Real Analysis - The Monotone Convergence Theorem and Infinite Series

2.4 The Monotone Convergence Theorem and

Infinite Series

Definition 2.4.1. A sequence (an) is increasing if an ⇐ an+1 for all n ↓ N

and decreasing if an ↗ an+1 for all n ↓ N. A sequence is monotone if it is
either increasing or decreasing.

Theorem 2.4.1 (Monotone Convergence Theorem). If a sequence is mono-
tone and bounded, then it converges.

Proof. Let (an) be monotone and bounded. Let’s assume the sequence is
increasing (the decreasing case is handled similarly), and consider the set of
points {an : n ↓ N}. By assumption, this set is bounded, so we can let

s = sup{an : n ↓ N}.

It seems reasonable to claim that lim an = s.

• • • • • • • •(••••• )
s↘ ω s+ ω

a1 a2 a3 · · ·
aN s = sup{an : n ↓ N}

To prove this, let ω > 0. Because s is the least upper bound for {an : n ↓
N}, s ↘ ω is not an upper bound, so there exists a point in the sequence aN

such that s ↘ ω < aN . Now, the fact that (an) is increasing implies that if
n ↗ N , then aN ⇐ an. Hence,

s↘ ω < aN ⇐ an ⇐ s < s+ ω,

which implies |an ↘ s| < ω, as desired.

Definition 2.4.2 (Convergence of a Series). Let (bn) be a sequence. An infi-
nite series is a formal expression of the form

↑∑

n=1

bn = b1 + b2 + b3 + b4 + b5 + · · · .

We define the corresponding sequence of partial sums (sm) by

sm = b1 + b2 + b3 + · · ·+ bm,

and say that the series
∑↑

n=1 bn converges to B if the sequence (sm) converges
to B. In this case, we write

∑↑
n=1 bn = B.
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Example 1. Show that
↑∑

n=1

1

n2
.

converges.

Example 2 (Harmonic Series). Show that the harmonic series

↑∑

n=1

1

n

diverges.
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Theorem 2.4.2 (Cauchy Condensation Test). Suppose (bn) is decreasing and
satisfies bn ↗ 0 for all n ↓ N. Then, the series

∑↑
n=1 bn converges if and only

if the series
↑∑

n=0

2nb2n = b1 + 2b2 + 4b4 + 8b8 + 16b16 + · · ·

converges.

Proof. First, assume that
∑↑

n=0 2
n
b2n converges. Theorem 2.3.1 guarantees

that the partial sums

tk = b1 + 2b2 + 4b4 + · · ·+ 2kb2k

are bounded; that is, there exists an M > 0 such that tk ⇐ M for all k ↓ N.
We want to prove that

∑↑
n=1 bn converges. Because bn ↗ 0, we know that the

partial sums are increasing, so we only need to show that

sm = b1 + b2 + b3 + · · ·+ bm

is bounded.
Fix m and let k be large enough to ensure m ⇐ 2k+1 ↘ 1. Then, sm ⇐ s2k+1↔1

and

s2k+1↔1 = b1 + (b2 + b3) + (b4 + b5 + b6 + b7) + · · ·+ (b2k + · · ·+ b2k+1↔1)

⇐ b1 + (b2 + b2) + (b4 + b4 + b4 + b4) + · · ·+ (b2k + · · ·+ b2k)

= b1 + 2b2 + 4b4 + · · ·+ 2kb2k = tk.

Thus, sm ⇐ tk ⇐ M , and the sequence (sm) is bounded. By the Monotone
Convergence Theorem, we can conclude that

∑↑
n=1 bn converges.

We will show that if
∑↑

n=0 2
n
b2n diverges then

∑↑
n=1 bn diverges by again ex-

ploiting a relationship between the partial sums

sm = b1 + b2 + · · ·+ bm, and tk = b1 + 2b2 + · · ·+ 2kb2k .

Because
∑↑

n=0 2
n
b2n diverges, its monotone sequence of partial sums (tk) must

be unbounded. To show that (sm) is unbounded it is enough to show that for
all k ↓ N, there is a term sm satisfying sm ↗ tk/2. This argument is similar
to the one for the forward direction, only to get the inequality to go the other
way we group the terms in sm so that the last (and hence smallest) term in
each group is of the form b2k .
Given an arbitrary k, we focus our attention on s2k and observe that

s2k = b1 + b2 + (b3 + b4) + (b5 + b6 + b7 + b8) + · · ·+ (b2k→1+1 + · · ·+ b2k)

↗ b1 + b2 + (b4 + b4) + (b8 + b8 + b8 + b8) + · · ·+ (b2k + · · ·+ b2k)

= b1 + b2 + 2b4 + 4b8 + · · ·+ 2k↔1
b2k

=
1

2
(2b1 + 2b2 + 4b4 + 8b8 + · · ·+ 2kb2k)

= b1/2 + tk/2.
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Because (tk) is unbounded, the sequence (sm) must also be unbounded and
cannot converge. Therefore,

∑↑
n=1 bn diverges.c

Corollary 2.4.1. The series
∑↑

n=1 1/n
p converges if and only if p > 1.
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2.5 Subsequences and the Bolzano–Weierstrass

Theorem

Definition 2.5.1. Let (an) be a sequence of real numbers, and let n1 < n2 <

n3 < n4 < n5 < . . . be an increasing sequence of natural numbers. Then the
sequence

(an1 , an2 , an3 , an4 , an5 , . . .)

is called a subsequence of (an) and is denoted by (ank
), where k ↓ N indexes

the subsequence.

Theorem 2.5.1. Subsequences of a convergent sequence converge to the same
limit as the original sequence.

Proof. Assume (an) ↑ a, and let (ank
) be a subsequence. Given ω > 0, there

exists N such that |an ↘ a| < ω whenever n ↗ N . Because nk ↗ k for all k,
the same N will su”ce for the subsequence; that is, |ank

↘ a| < ω whenever
k ↗ N .

Example 1. Show lim(bn) = 0 if and only if ↘1 < b < 1.
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Example 2 (Divergence Criterion). Use Theorem 2.5.1 to show that the se-
quence

(
1,↘1

2
,
1

3
,↘1

4
,
1

5
,↘1

5
,
1

5
,↘1

5
,
1

5
,↘1

5
,
1

5
,↘1

5
,
1

5
,↘1

5
, · · ·

)

diverges.

Theorem 2.5.2 (Bolzano–Weierstrass Theorem). Every bounded sequence
contains a convergent subsequence.

Proof. Let (an) be a bounded sequence so that there exists M > 0 satisfying
|an| ⇐ M for all n ↓ N. Bisect the closed interval [↘M,M ] into the two closed
intervals [↘M, 0] and [0,M ]. Now, it must be that at least one of these closed
intervals contains an infinite number of the terms in the sequence (an). Select
a half for which this is the case and label that interval as I1. Then, let an1 be
some term in the sequence (an) satisfying an1 ↓ I1.

• • • • • • •••••••• • • • • • •
↘M

I2

0 M

an1

I1
an2

Next, we bisect I1 into closed intervals of equal length, and let I2 be a half that
again contains an infinite number of terms of the original sequence. Because
there are an infinite number of terms from (an) to choose from, we can select
an an2 from the original sequence with n2 > n1 and an2 ↓ I2. In general, we
construct the closed interval Ik by taking a half of Ik↔1 containing an infinite
number of terms of (an) and then select nk > nk↔1 > · · ·n2 > n1 so that
ank

↓ Ik.
We want to argue that (ank

) is a convergent subsequence, but we need a
candidate for the limit. The sets

I1 ⇑ I2 ⇑ I3 ⇑ · · ·
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form a nested sequence of closed intervals, and by the Nested Interval Property
there exists at least one point x ↓ R contained in every Ik. This provides us
with the candidate we were looking for. It just remains to show that (ank

) ↑ x.
Let ω > 0. By construction, the length of Ik is M(1/2)k↔1 which converges
to zero. (This follows from Example 1 and the Algebraic Limit Theorem.)
Choose N so that k ↗ N implies that the length of Ik is less than ω. Because
x and ank

are both in Ik, it follows that |anK ↘ x| < ω.

Example 3. Assume the Nested Interval Property is true and use it to provide
a proof of the Axiom of Completeness. To prevent the argument from being
circular, assume also that (1/2n) ↑ 0. (Why precisely is this last assumption
needed to avoid circularity?)
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2.6 The Cauchy Criterion

Definition 2.6.1. A sequence (an) is called a Cauchy sequence if, for every
ω > 0, there exists an n ↓ N such that whenever m,n ↗ N it follows that
|an ↘ am| < ω.

Theorem 2.6.1. Every convergent sequence is a Cauchy sequence.

Proof. Assume (xn) converges to x, and let ω > 0 be arbitrary. Because
(xn) ↑ x, there exists N ↓ N such that n,m ↗ N implies |xn ↘ x| < ω/2 and
xm ↘ x| < ω/2. By the triangle inequality,

|xn ↘ xm| = |xn ↘ x+ x↘ xm|
⇐ |xn ↘ x|+ |xm ↘ x|

<
ω

2
+

ω

2
= ω.

Therefore, |xn ↘ xm| < ω whenever n,m ↗ N , and (xn) is a Cauchy sequence.

Lemma 2.6.1: Cauchy sequences are bounded.

Proof. Given ω = 1, there exists an N such that |xm↘xn| < 1 for all m,n ↗ N .
Thus, we must have |xn| < |xN |+ 1 for all n ↗ N . It follows that

M = max{|x1|, |x2|, |x3|, . . . , |xN↔1|, |xN |+ 1}

is a bound for the sequence (xn).

Theorem 2.6.2 (Cauchy Criterion). A sequence converges if and only if it is
a Cauchy sequence.

Proof. (⇓) This direction is Theorem 2.6.1.
(⇔) For this direction, we start with a Cauchy sequence (xn). Lemma 2.6.1
guarantees that (xn) is bounded, so we may use the Bolzano-Weierstrass The-
orem to produce a convergent subsequence (xnk

). Set

x = lim xnk
.

Let ω > 0. Because (xn) is Cauchy, there exists N such that

|xn ↘ xm| <
ω

2
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whenever m,n ↗ N . Now, we also know that (xnk
) ↑ x, so choose a term in

this subsequence, call it xnK , with nK ↗ N and

|xnK ↘ x| < ω

2
.

To see that N has the desired property (for the original sequence (xn)), observe
that if n ↗ N , then

|xn ↘ x| = |xn ↘ xnK + xxK ↘ x|
⇐ |xn ↘ xnK |+ |xnK ↘ x|

<
ω

2
+

ω

2
= ω.

Example 1. If (xn) and (yn) are Cauchy sequences, then one easy way to prove
that (xn + yn) is Cauchy is to use the Cauchy Criterion. By Theorem 2.6.2,
(xn) and (yn) must be convergent, and the Algebraic Limit Theorem then
implies (xn + yn) is convergent and hence Cauchy.

(a) Give a direct argument that (xn + yn) is a Cauchy sequence that does not
use the Cauchy Criterion or the Algebraic Limit Theorem.

(b) Do the same for the product (xnyn).
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2.7 Properties of Infinite Series

Theorem 2.7.1 (Algebraic Limit Theorem for Series). If
∑↑

k=1 ak = A and∑↑
k=1 bk = B, then

(i)
∑↑

k=1 cak = cA for all c ↓ R and

(ii)
∑↑

k=1(ak + bk) = A+B.

Proof. In order to show that
∑↑

k=1 cak = cA, we must argue that the sequence
of partial sums

tm = ca1 + ca2 + ca3 + · · ·+ cam

converges to cA. But we are given that
∑↑

k=1 ak converges to A, meaning that
the partial sums

sm = a1 + a2 + a3 + · · ·+ am

converge to A. Because tm = csm, applying the Algebraic Limit Theorem for
sequences (Theorem 2.3.2) yields (tm) ↑ cA, as desired.
The proof of part (ii) is analogous.

Theorem 2.7.2 (Cauchy Criterion for Series). The series
∑↑

k=1 ak converges if
and only if, given ω > 0, there exists an N ↓ N such that whenever n > m ↗ N

it follows that
|am+1 + am+2 + · · ·+ an| < ω.

Proof. Observe that

|sn ↘ sm| = |am+1 + am+2 + · · ·+ an|

and apply the Cauchy Criterion for sequences.

Theorem 2.7.3. If the series
∑↑

k=1 ak converges, then (ak) ↑ 0.

Proof. Consider the special case n = m+1 in the Cauchy Criterion for Series.

Theorem 2.7.4 (Comparison Test). Assume (ak) and (bk) are sequences sat-
isfying 0 ⇐ ak ⇐ bk for all k ↓ N.

(i) If
∑↑

k=1 bk converges, then
∑↑

k=1 ak converges.

(ii) If
∑↑

k=1 ak diverges, then
∑↑

k=1 bk diverges.
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Proof. Both statements follow immediately from the Cauchy Criterion for Se-
ries and the observation that

|am+1 + am+2 + · · ·+ an| ⇐ |bm+1 + bm+2 + · · ·+ bn|.

Example 1 (Geometric Series). A series is called geometric if it is of the form

↑∑

k=0

ar
k = a+ ar + ar

2 + ar
3 + · · · .

Determine the criteria for a geometric series to converge.

Theorem 2.7.5 (Absolute Convergence Test). If the series
∑↑

n=1 |an| con-
verges, then

∑↑
n=1 an converges as well.

Proof. This proof makes use of both the necessity (the “if” direction) and the
su”ciency (the “only if” direction) of the Cauchy Criterion for Series. Because∑↑

n=1 |an| converges, we know that, given an ω > 0, there exists an N ↓ N

such that
|am+1|+ |am+2|+ · · ·+ |an| < ω

for all n > m ↗ N . By the triangle inequality,

|am+1 + am+2 + · · ·+ an| ⇐ |am+1|+ |am+2|+ · · ·+ |an|,

so the su”ciency of the Cauchy Criterion guarantees that
∑↑

n=1 an also con-
verges.
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Theorem 2.7.6 (Alternating Series Test). Let (an) be a sequence satisfying,

(i) a1 ↗ a2 ↗ a3 ↗ · · · ↗ an ↗ an+1 ↗ · · · and

(ii) (an) ↑ 0.

Then, the alternating series
∑↑

n=1(↘1)n+1
an converges.

Example 2. Proving the Alternating Series Test amounts to showing that the
sequence of partial sums

sn = a1 ↘ a2 + a3 ↘ · · · ± an

converges. Di!erent characterizations of completeness lead to di!erent proofs.

(a) Prove the Alternating Series Test by showing that (sn) is a Cauchy se-
quence.

(b) Supply another proof for this result using the Nested Interval Property
(Theorem 1.4.1).

(c) Consider the subsequences (s2n) and (s2n+1), and show how the Monotone
Convergence Theorem leads to a third proof for the Alternating Series
Test.
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Definition 2.7.1. If
∑↑

n=1 |an| converges, then we say that the original series∑↑
n=1 an converges absolutely. If, on the other hand, the series

∑↑
n=1 an con-

verges but the series of absolute values
∑↑

n=1 |an| does not converge, then we
say that the original series

∑↑
n=1 an converges conditionally.

Example 3 (Summation-by-parts). Let (xn) and (yn) be sequences, let sn =
x1 + x2 + · · ·+ xn and set s0 = 0. Use the observation that xj = sj ↘ sj↔1 to
verify the formula

n∑

j=m

xjyj = snyn+1 ↘ sm↔1ym +
n∑

j=m

sj(yj ↘ yj+1).
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Example 4 (Abel’s Test). Abel’s Test for convergence states that if the series∑↑
k=1 xk converges, and if (yk) is a sequence satisfying

y1 ↗ y2 ↗ y3 ↗ · · · ↗ 0,

then the series
∑↑

k=1 xkyk converges.

(a) Use Example 3 to show that

n∑

k=1

xkyk = snyn+1 +
n∑

k=1

sk(yk ↘ yk+1),

where sn = x1 + x2 + · · ·+ xn.

(b) Use the Comparison Test to argue that
∑↑

k=1 sk(yk ↘ yk+1) converges ab-
solutely, and show how this leads directly to a proof of Abel’s Test.

Definition 2.7.2. Let
∑↑

k=1 ak be a series. A series
∑↑

k=1 bk is called a rear-
rangement of

∑↑
k=1 ak if there exists a one-to-one, onto function f : N ↑ N

such that bf(k) = ak for all k ↓ N.
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Theorem 2.7.7. If a series converges absolutely, then any rearrangement of
this series converges to the same limit.

Proof. Assume
∑↑

k=1 ak converges absolutely to A, and let
∑↑

k=1 bk be a rear-
rangement of

∑↑
k=1 ak. Let’s use

sn =
n∑

k=1

ak = a1 + a2 + · · · an

for the partial sums of the original series and use

tm =
m∑

k=1

bk = b1 + b2 + · · ·+ bm

for the partial sums of the rearranged series. Thus we want to show that
(tm) ↑ A.
Let ω > 0. By hypothesis, (sn) ↑ A, so choose N1 such that

|sn ↘ A| < ω

2

for all n ↗ N1. Because the convergence is absolute, we can choose N2 so that

n∑

k=m+1

|ak| <
ω

2

for all n > m ↗ N2. Now, take N = max{N1, N2}. We know that the finite
set of terms {a1, a2, a3, . . . , aN} must all appear in the rearranged series, and
we want to move far enough out in the series

∑↑
n=1 bn so that we have included

all of these terms. Thus, choose

M = max{f(k) : 1 ⇐ k ⇐ N}.

It should now be evident that if m ↗ M , then (tm ↘ sN) consists of a finite
set of terms, the absolute values of which appear in the tail

∑↑
k=N+1 |ak|. Our

choice of N2 earlier then guarantees |tm ↘ sN | < ω/2, and so

|tm ↘ A| = |tm ↘ sN + sN ↘ A|
⇐ |tm ↘ sN |+ |sN ↘ a|

<
ω

2
+

ω

2
= ω

whenever m ↗ M .
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2.8 Double Summations and Products of Infi-

nite Series

Example 1. For m,n ↓ N, set

smn =
m∑

i=1

n∑

j=1

aij

and consider the array {aij : i, j ↓ N}, where aij = 1/2j↔i if j > i, aij = ↘1 if
j = 1 and aij = 0 if j < i.





↘1 1
2

1
4

1
8

1
16 · · ·

0 ↘1 1
2

1
4

1
8 · · ·

0 0 ↘1 1
2

1
4 · · ·

0 0 0 ↘1 1
2 · · ·

0 0 0 0 ↘1 · · ·
...

...
...

...
...

. . .





Compute limn↓↑ snn. Compare this to summing down rows first, and then to
summing down columns first.
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Example 2. Show that if the iterated series

↑∑

i=1

↑∑

j=1

|aij|

converges (meaning that for each fixed i ↓ N the series
∑↑

j=1 |aij| converges
to some real number bi, and the series

∑↑
i=1 bi converges as well), then the

iterated series
↑∑

i=1

↑∑

j=1

aij

converges.

Theorem 2.8.1. Let {aij : i, j ↓ N} be a doubly indexed array of real numbers.
If

↑∑

i=1

↑∑

j=1

|aij|

converges, then both
∑↑

i=1

∑↑
j=1 aij and

∑↑
j=1

∑↑
i=1 aij converge to the same

value. Moreover,

lim
n↓↑

snn =
↑∑

i=1

↑∑

j=1

aij =
↑∑

j=1

↑∑

i=1

aij,

where snn =
∑n

i=1

∑n
j=1 aij.
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Proof. Define

tmn =
m∑

i=1

n∑

j=1

|aij|

and let bi =
∑↑

j=1 |aij| for all i ↓ N. Our hypothesis tells us that there exists
L ↗ 0 satisfying

∑↑
i=1 bi = L. Because we are adding all non-negative terms,

it follows that

tmn =
m∑

i=1

n∑

j=1

|aij| ⇐
m∑

i=1

↑∑

j=1

|aij| ⇐
m∑

i=1

bi ⇐ L.

Since (tnn) is an increasing sequence and is bounded, it converges by the
Monotone Convergence Theorem. Then since (tnn) is a Cauchy sequence,
given an ω > 0, there exists N ↓ N such that

|tnn ↘ tmm| < ω

for all n > m ↗ N . Now the expression snn ↘ smm is really a sum over a finite
collection of aij terms. If each aij included in the sum is replaced with |aij|,
the sum only gets larger (this is just the triangle inequality), and the result is
that

|snn ↘ smm| =

∣∣∣∣∣

n∑

i=1

n∑

j=1

aij ↘
m∑

i=1

m∑

j=1

aij

∣∣∣∣∣ ⇐ |tnn ↘ tmm| < ω.

It follows that (snn) is Cauchy and must converge, so we can now set

S = lim
n↓↑

snn.

In order to prove the theorem, we must show that the two iterated sums
converge to this same limit. We will first show that

S =
↑∑

i=1

↑∑

j=1

aij.

Because {tmn : m,n ↓ N} is bounded above, we can let

B = sup{tmn : m,n ↓ N}.

The fact that tmn is a sum of non-negative terms implies that if m1 ↗ m and
n1 ↗ n then tm1n1 ↗ tmn. So let N1 = max{m0, n0}. Then it follows that

B ↘ ω

2
< tm0,n0 ⇐ tmn ⇐ B
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for all m,n ↗ N1.
Without loss of generality, let n > m ↗ N . Then,

|smn ↘ S| = |smn ↘ smm + smm ↘ S|
⇐ |smn ↘ smm|+ |smm ↘ S|

=

∣∣∣∣∣

m∑

i=1

n∑

j=m+1

aij

∣∣∣∣∣+ |smm ↘ S|

⇐ |tmn ↘ tmm|+ |smm ↘ S|.

We have already chosen N1 such that

|tmn ↘ tmm| <
ω

2
whenever n > m ↗ N1.

Because (snn) ↑ S, we can pick N2 so that

|smm ↘ S| < ω

2
whenever m ↗ N2.

Setting N = max{N1, N2}, we can conclude that |smn↘S| < ω/2+ ω/2 = ω for
all n > m ↗ N .

For the moment, consider m ↓ N to be fixed and write smn as

smn =
n∑

j=1

a1j +
n∑

j=1

a2j + · · ·+
n∑

j=1

amj.

Our hypothesis guarantees that for each fixed row i, the series
∑↑

j=1 aij con-
verges absolutely to some real number ri. The Algebraic Limit Theorem can
then be applied to the finite number of components of smn to conclude that

lim
n↓↑

smn = r1 + r2 + · · ·+ rm.

If, in addition, we insist that m ↗ N , then we must have that

↘ω < smn ↘ S < ω

is eventually true once n is larger than N . Applying the Order Limit Theorem
we find

↘ω ⇐ (r1 + r2 + · · ·+ rm)↘ S ⇐ ω

for all m ↗ N .
Though we have produced a “less than or equal to ω” result, this is not

a problem. Because ω is arbitrary, we could just as easily have chosen to let
ω
→
< ω at the beginning and constructed our argument using ω

→ throughout the
proof.
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The same argument can be used to prove
∑↑

j=1

∑↑
i=1 aij converges to S

once we show that for each j ↓ N the sum
∑↑

i=1 aij converges to some real
number cj.

To show
∑↑

i=1 aij converges for each j ↓ N, it su”ces to prove that the ab-
solute series

∑↑
i=1 |aij| converges. Recall that bi =

∑↑
j=1 |aij|, so it is certainly

the case that bi ↗ |aij| for all i, j ↓ N. But our hypothesis says that
∑↑

i=1 bi

converges, and so by the Comparison Test,
∑↑

i=1 aij converges for all values of
j.

Example 3. One final common way of computing a double summation is to
sum along diagonals where i + j equals a constant. Given a doubly indexed
array {aij : i, j ↓ N}, let

d2 = a11, d3 = a12 + a21, d4 = a13 + a22 + a31,

and in general set

dk = a1,k↔1 + a2,k↔2 + · · ·+ ak↔1,1.

(a) Assuming the hypothesis—and hence the conclusion—of Theorem 2.8.1,
show that

∑↑
k=2 dk converges absolutely.

(b) Imitate the strategy in the proof of Theorem 2.8.1 to show that
∑↑

k=2 dk

converges to S = limn↓↑ snn.
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Remark 1. One way to carry out the algebra on a product of series is to write
( ↑∑

i=1

ai

)( ↑∑

j=1

bj

)
= (a1 + a2 + a3 + · · · )(b1 + b2 + b3 + · · · )

= a1b1 + (a1b2 + a2b1) + (a3b1 + a2b2 + a1b3) + · · ·

=
↑∑

k=2

dk,

where
dk = a1bk↔1 + a2bk↔2 + · · ·+ ak↔1b1.

This particular form of the product is called the Cauchy product of two series.

Example 4. Assume that
∑↑

i=1 ai converges absolutely to A, and
∑↑

j=1 bj

converges absolutely to B.

(a) Show that the iterated sum
∑↑

i=1

∑↑
j=1 |aibj| converges so that we may

apply Theorem 2.8.1.

(b) Let snn =
∑n

i=1

∑n
j=1 aibj, and prove that limn↓↑ snn = AB. Conclude

that
↑∑

i=1

↑∑

j=1

aibj =
↑∑

j=1

↑∑

i=1

aibj =
↑∑

k=2

dk = AB,

where, as before, dk = a1bk↔1 + a2bk↔2 + · · ·+ ak↔1b1.
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Basic Topology of R

3.1 Discussion: The Cantor Set
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3.2 Open and Closed Sets

Definition 3.2.1. A set O → R is open if for all points a ↑ O there exists an
ω-neighborhood Vω(a) → O.

Example 1. (i) R and ↓ are both open sets.

(ii) Show that the open interval

(c, d) = {x ↑ R : c < x < d}

is an open set.

Theorem 3.2.1. (i) The union of an arbitrary collection of open sets is
open.

(ii) The intersection of a finite collection of open sets is open.

Proof. To prove (i), we let {Oε : ε ↑ !} be a collection of open sets and let
O =

⋃
ε→! Oε. Let a be an arbitrary element of O. In order to show that

O is open, Definition 3.2.1 insists that we produce an ω-neighborhood of a
completely contained in O. But a ↑ O implies that a is an element of at
least one particular Oε→ . Because we are assuming Oε→ is open, we can use
Definition 3.2.1 to assert that there exists Vω(a) → Oε→ . The fact that Oε→ → O

allows us to conclude that Vω(a) → O. This completes the proof of (i).
For (ii), let {O1, O2, . . . ON} be a finite collection of open sets. Now, if

a ↑
⋂N

k=1Ok, then a is an element of each of the open sets. By the definition
of an open set, we know that, for each 1 ↔ k ↔ N , there exists Vωk(a) → Ok.
Letting ω = min{ω1, ω2, . . . , ωN}, it follows that Vω(a) → Vωk(a) for all k, and
hence Vω(a) →

⋂N
k=1Ok, as desired.

Definition 3.2.2. A point x is a limit point of a set A if every ω-neighborhood
Vω(x) of x intersects the set A at some point other than x.

Theorem 3.2.2. A point x is a limit point of a set A if and only if x = lim an

for some sequence (an) contained in A satisfying an ↗= x for all n ↑ N.

Proof. (↘) Assume x is a limit point of A. In order to produce a sequence
(an) converging to x, we are going to consider the particular ω-neighborhoods
obtained using ω = 1/n. By Definition 3.2.2, every neighborhood of x intersects
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A in some point other than x. This means that, for each n ↑ N, we are justified
in picking a point

an ↑ V1/n(x) ≃ A

with the stipulation that an ↗= x. Given an arbitrary ω > 0, choose N such
that 1/N < ω. It follows that |an ⇐ x| < ω for all n ⇒ N .

(⇑) For the reverse implication we assume lim an = x where an ↑ A

but an ↗= x, and let Vω(x) be an arbitrary ω-neighborhood. The definition of
convergence assures us that there exists a term aN in the sequence satisfying
aN ↑ Vω(x), and the proof is complete.

Definition 3.2.3. A point a ↑ A is an isolated point of A if it is not a limit
point of A.

Definition 3.2.4. A set F → R is closed if it contains its limit points.

Theorem 3.2.3. A set F → R is closed if and only if every Cauchy sequence
contained in F has a limit that is also an element of F .

Example 2. Prove Theorem 3.2.3.

Example 3. (i) Consider

A =

{
1

n
: n ↑ N

}
.

Show that each point of A is isolated.
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(ii) Prove that a closed interval

[c, d] = {x ↑ R : c ↔ x ↔ d}

is a closed set using Definition 3.2.4.

(iii) Consider the set Q → R of rational numbers. Show that the set of limit
points of Q is all of R.

Theorem 3.2.4 (Density of Q in R). For every y ↑ R, there exists a sequence
of rational numbers that converges to y.

Proof. Combine the preceding example with Theorem 3.2.2.

Definition 3.2.5. Given a set A → R, let L be the set of all limit points of
A. The closure of A is defined to be A = A ⇓ L.

Example 4. Let A be nonempty and abounded above so that s = supA
exists.

(a) Show that s ↑ A.

(b) Can an open set contain its supremum?
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Example 5. Given A → R, let L be the set of all limit points of A.

(a) Show that the set L is closed.

(b) Argue that if x is a limit point of A ↑ L, then x is a limit point of A.

Theorem 3.2.5. For any A → R, the closure A is a closed set and is the
smallest closed set containing A.

Proof. If L is the set of limit points of A, then it is immediately clear that A
contains the limit points of A. Then since limit points of A↑L must be limit
points of A by the preceding example, this shows that A = A ↑ L contains its
limits points and is thus closed.

Now, any closed set containing A must contain L as well. This shows that
A = A ↑ L is the smallest closed set containing A.

Theorem 3.2.6. A set O is open if and only if Oc is closed. Likewise, a set
F is closed if and only if F c is open.

Proof. Given an open set O → R, let’s first prove that Oc is a closed set. To
prove Oc is closed, we need to show that it contains all of its limit points. If x
is a limit point of Oc, then every neighborhood of x contains some point of Oc.
But that is enough to conclude that x cannot be in the open set O because
x ↓ O would imply that there exists a neighborhood Vω(x) → O. Thus, x ↓ O

c,
as desired.

For the converse statement, we assume O
c is closed and argue that O

is open. Thus, given an arbitrary point x ↓ O, we must produce an ω-
neighborhood Vω(x) → O. Because O

c is closed, we can be sure that x is
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not a limit point of Oc. This implies there must be some neighborhood Vω(x)
of x that does not intersect the set O

c. But this means Vω(x) → O, which is
precisely what we needed to show.

The second statement in the theorem follows quickly from the first using
the observation that (Ec)c = E for any set E → R.

Theorem 3.2.7. (i) The union of a finite collection of closed sets is closed.

(ii) The intersection of an arbitrary collection of closed sets is closed.

Example 6 (De Morgan’s Laws). (a) Given a collection of sets {Eε : ε ↓ !},
show that

(
⋃

ε→!

Eε

)c

=
⋂

ε→!

E
c
ε and

(
⋂

ε→!

Eε

)c

=
⋃

ε→!

E
c
ε

(b) Now, prove Theorem 3.2.7.
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3.3 Compact Sets

Definition 3.3.1 (Compactness). A set K ↔ R is compact if every sequence
in K has a subsequence that converges to a limit that is also in K.

Example 1. Show that a closed interval is a compact set.

Definition 3.3.2. A set A ↔ R is bounded if there exists M > 0 such that
|a| ⇐ M for all a ↓ A.

Theorem 3.3.1 (Characterization of Compactness in R). A set K ↔ R is
compact if and only if it is closed and bounded.

Proof. Let K be compact. We will first prove that K must be bounded, so
assume, for contradiction, that K is not a bounded set. Because K is not
bounded there must exist an element x1 ↓ K satisfying |x1| > 1. Likewise,
there must exist x2 ↓ K with |x2| > 2, and in general, given any n ↓ N, we
can produce xn ↓ K such that |xn| > n.

Now, because K is assumed to be compact, (xn) should have a conver-
gent subsequence (xnk

). But the elements of the subsequence must satisfy
|xnk

| > nk, and consequently (xnk
) is unbounded. Because convergent se-

quences are bounded (Theorem 2.3.1), we have a contradiction. Thus, K

must at least be a bounded set.
Next, we will show that K is also closed. To see that K contains its limit

points, we let x = lim xn, where (xn) is contained in K and argue that x must
be in K as well. By Definition 3.3.1, the sequence (xn) has a convergent sub-
sequence (xnk

), and by Theorem 2.5.1, we know (xnk
) converges to the same

limit x. Finally, Definition 3.3.1 requires that x ↓ K. This proves that K is
closed.

For the converse, let K ↔ R be closed and bounded. Since K is bounded,
the Bolzano–Weierstrass Theorem guarantees that for any sequence (an) con-
tained in K, we can find a convergent subsequence (ank

). Because the set is
closed, the limit of this subsequence is also in K. Hence K is compact.

Example 2. Show that if K is compact and nonempty, then supK and infK
both exist and are elements of K.
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Example 3. Decide which of the following sets are compact. For those that
are not compact, show how Definition 3.3.1 breaks down. In other words, give
an example of a sequence contained in the given set that does not possess a
subsequence converging to a limit in the set.

(a) N.

(b) Q ↖ [0, 1].

(c) The Cantor set.

(d) {1 + 1/22 + 1/32 + · · ·+ 1/n2 : n ↓ N}.

(e) {1, 1/2, 2/3, 3/4, 4/5, . . .}.

Example 4. Assume K is compact and F is closed. Decide if the following
sets are definitely compact, definitely closed, both, or neither.

(a) K ↖ F

(b) F c ↙Kc

(c) K \ F = {x ↓ K : x /↓ F}

(d) K ↖ F c
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Theorem 3.3.2 (Nested Compact Set Property). If

K1 ⇑ K2 ⇑ K3 ⇑ K4 ⇑ · · ·

is a nested sequence of nonempty compact sets, then the intersection
↑

n=1 Kn

is not empty.

Proof. For each n ↓ N, pick a point xn ↓ Kn. Because the compact sets are
nested, it follows that the sequence (xn) is contained inK1. By Definition 3.3.1,
(xn) has a convergent subsequence (xnk

) whose limit x = lim xnk
is an element

of K1.
In fact, x is an element of every Kn for essentially the same reason. Given

a particular n0 ↓ N, the terms in the sequence (xn) are contained in Kn0 as
long as n ↗ n0. Ignoring the finite number of terms for which nk < n0, the
same subsequence (xnk

) is then also contained in Kn0 . The conclusion is that
x = lim xnk

is an element of Kn0 . Because n0 was arbitrary, x ↓
↑

n=1 Kn and
the proof is complete.

Definition 3.3.3. Let A ↔ R. An open cover for A is a (possibly infinite)
collection of open sets {Oε : ε ↓ #} whose union contains the set A; that is,
A ↔


ε↗! Oε. Given an open cover for A, a finite subcover is a finite subcol-

lection of open sets from the original open cover whose union still manages to
completely contain A.

Example 5. Find an open cover for the open interval (0, 1), but show that it
is impossible to find a finite subcover. On the other hand, find an open cover
for the closed interval [0, 1] that has a finite subcover.
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Theorem 3.3.3 (Heine–Borel Theorem). Let K be a subset of R. All of the
following statements are equivalent in the sense that any one of them implies
the two others:

(i) K is compact.

(ii) K is closed and bounded.

(iii) Every open cover for K has a finite subcover.

Proof. The equivalence of (i) and (ii) is the content of Theorem 3.3.1. What
remains is to show that (iii) is equivalent to (i) and (ii). Let’s first assume
(iii), and prove that it implies (ii) (and thus (i) as well).

To show that K is bounded, we construct an open cover for K by defining
Ox to be an open interval of radius 1 around each point x ↓ K. In the lan-
guage of neighborhoods, Ox = V1(x). The open cover {Ox : x ↓ K} then must
have a finite subcover {Ox1 , Ox2 , . . . , Oxn}. Because K is contained in a finite
union of bounded sets, K must itself be bounded.

The proof that K is closed is more delicate, and we argue it by contra-
diction. Let (yn) be a Cauchy sequence contained in K with lim y = y. To
show that K is closed, we must demonstrate that y ↓ K, so assume for con-
tradiction that this is not the case. If y /↓ K, then every x ↓ K is some
positive distance away from y. We now construct an open cover by taking Ox

to be an interval of radius |x ↘ y|/2 around each point x in K. Because we
are assuming (iii), the resulting open cover {Ox : x ↓ K} must have a finite
subcover {Ox1 , Ox2 , . . . Oxn}. The contradiction arises when we realize that, in
the spirit of the preceding example, this finite subcover cannot contain all of
the elements of the sequence (yn). To make this explicit, set

ω0 = min


|xi ↘ y|

2
: 1 ⇐ i ⇐ n


.

Because (yn) ↑ y, we can certainly find a term yN satisfying |yN ↘ y| < ω0.
But such a yN must necessarily be excluded from each Oxi , meaning that

yN /↓
n

i=1

Oxi .

Thus our supposed subcover does not actually cover all of K. This contradic-
tion implies that y ↓ K, and hence K is closed and bounded.

For the reverse implication, assume K satisfies (i) and (ii), and let {Oε :
ε ↓ #} be an open cover for K. For contradiction, let’s assume that no finite
subcover exists. Let I0 be a closed interval containing K and bisect I0 into two
halves A1 and B1. If A1↖K and B1↖K both had finite subcovers consisting of
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sets from the collection {Oω : ω → !}, then there would exist a finite subcover
for K. But we assumed that such a finite subcover did not exist for K. Hence
either A1 ↑K or B1 ↑K (or both) has no finite subcover.

Let I1 be a half of I0 whose intersection with K does not have a finite sub-
cover, so that I1↑K cannot be finitely covered and I1 ↓ I0. Then bisect I1 into
two closed intervals, A2 and B2 and again let I2 = A2 if A2 ↑K does not have
a finite subcover. Otherwise, let I2 = B2. Continuing this process of bisecting
the interval In, we get a nested sequence of closed intervals I0 ↔ I1 ↔ I2 ↔ · · ·
with the property that, for each n, In ↑ K cannot be finitely covered and
lim |In| = 0. Because K is compact, K ↑ In is also compact for each n → N.
By Theorem 3.3.2,

⋂→
n=1 In ↑K is nonempty, and there exists an x → K ↑ In

for all n.
Let x → K and let Oω0 be an open set that contains x. Because Oω0 is

open, there exists ε0 > 0 such that Vε0(x) ↓ Oω0 . Now choose n0 such that
|In0 | < ε0. Then In0 is contained in the single open set Oω0 and thus it has a
finite subcover. This contradiction implies that K must have originally had a
finite subcover.

Example 6. Consider each of the sets listed in Example 3. For each one that
is not compact, find an open cover for which there is no finite subcover.
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3.4 Perfect Sets and Connected Sets

Definition 3.4.1. A set P → R is perfect if it is closed and contains no
isolated points.

Example 1 (Cantor Set). Show that the Cantor set is perfect.

Theorem 3.4.1. A nonempty perfect set is uncountable.

Proof. If P is perfect and nonempty, then it must be infinite because otherwise
it would consist only of isolated points. Let’s assume, for contradiction, that
P is countable. Thus, we can write

P = {x1, x2, x3, . . .},

where every element of P appears on this list. The idea is to construct a
sequence of nested compact sets Kn, all contained in P , with the property
that x1 /↑ K2, x2 /↑ K3, x3 /↑ K4, . . . . Some care must be taken to ensure that
each Kn is nonempty, for then we can use Theorem 3.3.2 to produce an

x ↑
→⋂

n=1

Kn → P

that cannot be on the list {x1, x2, x3, . . .}.
Let I1 be a closed interval that contains x1 in its interior (i.e., x1 is not

an endpoint of I1). Now, x1 is not isolated, so there exists some other point
y2 ↑ P that is also in the interior of I1. Construct a closed interval I2, centered
on y2, so that I2 → I1 but x1 /↑ I2. More explicitly, if I1 = [a, b], let

ω = min{y2 ↓ a, b↓ y2, |x1 ↓ y2|}.

Then, the interval I2 = [y2 ↓ ω/2, y2 + ω/2] has the desired properties.
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• •
[

[ ]
]

I2

x1 y2

I1

This process can be continued. Because y2 ↑ P is not isolated, there must exist
another point y3 ↑ P in the interior of I2, and we may insist that y3 ↔= x2.
Now, construct I3 centered on y3 and small enough so that x2 /↑ I3 and I3 → I2.
Observe that I3 ↗ P ↔= ↘ because this intersection contains at least y3.

If we carry out this construction inductively, the result is a sequence of
closed intervals In satisfying

(i) In+1 → In,

(ii) xn /↑ In+1, and

(iii) In ↗ P ↔= ↘.

To finish the proof, we let Kn = In ↗ P . For each n ↑ N, we have that Kn is
closed because it is the intersection of closed sets, and bounded because it is
contained in the bounded set In. Hence, Kn is compact. By construction, Kn

is not empty and Kn+1 → Kn. Thus, we can employ the Nested Compact Set
Property (Theorem 3.3.2) to conclude that the intersection

→⋂

n=1

Kn ↔= ↘.

But each Kn is a subset of P , and the fact that xn /↑ In+1 leads to the
conclusion that

⋂→
n=1 Kn = ↘, which is the sought-after contradiction.

Definition 3.4.2. Two nonempty sets A,B → R are separated if A ↗ B and
A ↗ B are both empty. A set E → R is disconnected if it can be written as
E = A ≃ B, where A and B are nonempty separated sets.

A set that is not disconnected is called a connected set.

Example 2. (i) Verify that E = (1, 2) ≃ (2, 5) is disconnected.

(ii) Show that the set of rational numbers is disconnected.
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Theorem 3.4.2. A set E → R is connected if and only if, for all nonempty
disjoint sets A and B satisfying E = A ≃ B, there always exists a convergent
sequence (xn) ⇐ x with (xn) contained in one of A or B, and x an element of
the other.

Example 3. Prove Theorem 3.4.2.

Theorem 3.4.3. A set E → R is connected if and only if whenever a < c < b

with a, b ↑ E, it follows that c ↑ E as well.

Proof. Assume E is connected, and let a, b ↑ E and a < c < b. Set

A = (↓⇒, c) ↗ E and B = (c,⇒) ↗ E.

Because a ↑ A and b ↑ B, neither set is empty and, just as in Example 2 (ii),
neither set contains a limit point of the other. If E = A ≃ B, then we would
have that E is disconnected, which it is not. It must then be that A ≃ B is
missing some element of E, and c is the only possibility. Thus, c ↑ E.

Conversely, assume that E is an interval in the sense that whenever a, b ↑ E

satisfy a < c < b for some c, then c ↑ E. Our intent is to use the characteriza-
tion of connected sets in Theorem 3.4.2, so let E = A≃B, where A and B are
nonempty and disjoint. We need to show that one of these sets contains a limit
point of the other. Pick a0 ↑ A and b0 ↑ B, and, for the sake of the argument,
assume a0 < b0. Because E is itself an interval, the interval I0 = [a0, b0] is
contained in E. Now, bisect I0 into two equal halves. The midpoint of I0 must
either be in A or B, and so choose I1 = [a1, b1] to be the half that allows us to
have a1 ↑ A and b1 ↑ B. Continuing this process yields a sequence of nested
intervals In = [an, bn], where an ↑ A, bn ↑ B, and the length (bn ↓ an) ⇐ 0.
By the Nested Interval Property, there exists an

x ↑
→⋂

n=0

In,
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and it is straightforward to show that the sequences of endpoints each satisfy
lim an = x and lim bn = x. But now x ↑ E must belong to either A or B, thus
making it a limit point of the other. This completes the argument.

Example 4. A set E is totally disconnected if, given any two distinct points
x, y ↑ E, there exist separated sets A and B with x ↑ A, y ↑ B, and E = A≃B.

(a) Show that Q is totally disconnected.

(b) Is the set of irrational numbers totally disconnected?

68



Real Analysis - Baire’s Theorem

3.5 Baire’s Theorem

Definition 3.5.1. A set A ↔ R is called an Fϑ set if it can be written as the
countable union of closed sets. A set B ↔ R is called a Gϖ set if it can be
written as the countable intersection of open sets.

Example 1. Argue that a set A is a Gϖ set if and only if its complement is
an Fϑ set.

Example 2. Replace each with the word finite or countable,
depending on which is more appropriate.

(a) The union of Fϑ sets is an Fϑ set.

(b) The intersection of Fϑ sets is an Fϑ set.

(c) The union of Gϖ sets is a Gϖ set.

(d) The intersection of Gϖ sets is a Gϖ set.

Example 3. (a) Show that a closed interval [a, b] is a Gϖ set.

(b) Show that the half-open interval (a, b] is both a Gϖ and an Fϑ set.

(c) Show that Q is an Fϑ set, and the set of irrationals I forms a Gϖ set.
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Theorem 3.5.1. If {G1, G2, G3, . . .} is a countable collection of dense, open
sets, then the intersection

↑
n=1 Gn is not empty.

Proof. Pick a point x1 ↓ G1. Since G1 is open, there exists an ω1 > 0 such
that Vω1(x1) ↔ G1. Now take ω

→
1 < ω1, and let

I1 = Vω↑1
(x1).

The significant point to make here is that I1 is a closed interval but we still
have the containment I1 ↔ Vω1(x1) ↔ G1.

Because G2 is dense, there exists an x2 ↓ Vω↑1
(x1) ↔ G1. Now G2 ↖ Vω↑1

(x1)
is open, so there exists an ω2 > 0 such that Vω2(x2) ↔ G2 ↖Vω↑1

(x1). If we again
choose a smaller ω→2 < ω2, then as before the closed interval

I2 = Vω↑2
(x2)

satisfies I2 ↔ G2 as well as I2 ↔ I1. We may continue this process to create a
nested sequence of closed intervals I1 ⇑ I2 ⇑ I3 ⇑ · · · satisfying In ↔ Gn for
all n ↓ N.

By the Nested Interval Property, there exists an x ↓
↑

n=1 In. Because
In ↔ Gn it follows that x ↓ Gn for all n. Hence

↑
n=1 Gn is not empty.

Example 4. Show that it is impossible to write

R =
↑

n=1

Fn,

where for each n ↓ N, Fn is a closed set containing no nonempty open intervals.
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Example 5. Show how the previous example implies that the set I of irra-
tionals cannot be an Fϑ set, and Q cannot be a Gϖ set.

Definition 3.5.2. A set E is nowhere-dense if E contains no nonempty open
intervals.

Example 6. Show that a set E is nowhere-dense in R if and only if the
complement of E is dense in R.

Example 7. Decide whether the following sets are dense in R, nowhere-dense
in R, or somewhere in between.

(a) A = Q ↖ [0, 5].

(b) B = {1/n : n ↓ N}.

(c) the set of irrationals.

(d) the Cantor set.

Theorem 3.5.2 (Baire’s Theorem). The set of real numbers R cannot be
written as the countable union of nowhere-dense sets.

Proof. For contradiction, assume that E1, E2, E3, . . . are each nowhere-dense
and satisfy R =

↑
n=1 En. Then certainly R =

↑
n=1 En. By De Morgan’s

Law this implies that → =
↑

n=1 En
c
. Because En is nowhere dense, En

c
is

dense. We also know that En
c
is open. Then this is a contradiction, since by

Theorem 3.5.1 the countable intersection of dense, open sets is not empty.
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Chapter 4

Functional Limits and

Continuity

4.1 Discussion: Examples of Dirichlet and Thomae
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4.2 Functional Limits

Definition 4.2.1 (Functional Limit). Let f : A ↑ R, and let c be a limit
point of the domain A. We say that limx↓c f(x) = L provided that, for all
ω > 0, there exists a ϑ > 0 such that whenever 0 < |x↘ c| < ϑ (and x ↓ A) it
follows that |f(x)↘ L| < ω.

Definition 4.2.1B (Functional Limit: Topological Version). Let c be a limit
point of the domain of f : A ↑ R. We say limx↓c f(x) = L provided that, for
every ω-neighborhood Vω(L) of L, there exists a ϑ-neighborhood Vϖ(c) around c

with the property that for all x ↓ Vϖ(c) di!erent from c (with x ↓ A) it follows
that f(x) ↓ Vω(L).

Example 1. (i) Prove that if f(x) = 3x+ 1, then

lim
x↓2

f(x) = 7.

(ii) Show that if g(x) = x
2, then

lim
x↓2

g(x) = 4.
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Real Analysis - Functional Limits

Theorem 4.2.1 (Sequential Criterion for Functional Limits). Given a func-
tion f : A ↑ R and a limit point c of A, the following two statements are
equivalent:

(i) lim
x↓c

f(x) = L.

(ii) For all sequences (xn) ↔ A satisfying xn ⇒= c and (xn) ↑ c, it follows
that f(xn) ↑ L.

Proof. (⇓) Let’s first assume that limx↓c f(x) = L. To prove (ii), we consider
an arbitrary sequence (xn), which converges to c and satisfies xn ⇒= c. Our
goal is to show that the image sequence f(xn) converges to L. This is most
easily seen using the topological formulation of the definition.

Let ω > 0. Because we are assuming (i), Definition 4.2.1B implies that
there exists Vϖ(c) with the property that all x ↓ Vϖ(c) di!erent from c satisfy
f(x) ↓ Vω(L). All we need to do then is argue that our particular sequence
(xn) is eventually in Vϖ(c). But we are assuming that (xn) ↑ c. This implies
that there exists a point xN after which xn ↓ Vϖ(c). It follows that n ↗ N

implies f(xn) ↓ Vω(L), as desired.
(⇔) For this implication we give a contrapositive proof, which is essentially

a proof by contradiction. Thus, we assume that statement (ii) is true, and
carefully negate statement (i). To say that

lim
x↓c

f(x) ⇒= L

means that there exists at least one particular ω0 > 0 for which no ϑ is a
suitable response. In other words, no matter what ϑ > 0 we try, there will
always be at least one point

x ↓ Vϖ(c) with x ⇒= c for which f(x) /↓ Vω0(L).

Now consider ϑn = 1/n. From the preceding discussion, it follows that for each
n ↓ N we may pick an xn ↓ Vϖn(c) with xn ⇒= c and f(xn) /↓ Vω0(L). But now
notice that the result of this is a sequence (xn) ↑ c with xn ⇒= c, where the
image sequence f(xn) certainly does not converge to L.

Because this contradicts (ii), which we are assuming is true for this argu-
ment, we may conclude that (i) must also hold.

Corollary 4.2.1 (Algebraic Limit Theorem for Functional Limits). Let f and
g be functions defined on a domain A ↔ R, and assume limx↓c f(x) = L and
limx↓c g(x) = M for some limit point c of A. Then,

(i) lim
x↓c

kf(x) = kL for all k ↓ R,

74



Real Analysis - Functional Limits

(ii) lim
x↓c

[f(x) + g(x)] = L+M ,

(iii) lim
x↓c

[f(x)g(x)] = LM ,

(iv) lim
x↓c

f(x)/g(x) = L/M , provided M ⇒= 0.

Example 2. Prove Corollary 4.2.1.

Corollary 4.2.2 (Divergence Criterion for Functional Limits). Let f be a
function defined on A, and let c be a limit point of A. If there exist two
sequences (xn) and (yn) in A with xn ⇒= c and yn ⇒= c and

lim xn = lim yn = c but lim f(xn) ⇒= lim f(yn),

then we can conclude that the functional limit limx↓c f(x) does not exist.
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Example 3. Assuming the familiar properties of the sine function, show that
limx↓0 sin(1/x) does not exist.

Example 4 (Infinite Limits). Definition: limx↓c f(x) = ∝ means that for all
M > 0 we can find a ϑ > 0 such that whenever 0 < |x↘ c| < ϑ, it follows that
f(x) > M .

(a) Show limx↓0 1/x2 = ∝ in the sense described in the previous definition.

(b) Now, construct a definition for the statement limx↓↑ f(x) = L. Show
limx↓↑ 1/x = 0.

(c) What would a rigorous definition for limx↓↑ f(x) = ∝ look like? Given
an example of such a limit.

Example 5 (Squeeze Theorem). Let f , g, and h satisfy f(x) ⇐ g(x) ⇐ h(x)
for all x in some common domain A. If limx↓c f(x) = L and limx↓c h(x) = L

at some limit point c of A, show limx↓c g(x) = L as well.

76



Real Analysis - Continuous Functions

4.3 Continuous Functions

Definition 4.3.1 (Continuity). A function f : A ↑ R is continuous at a point
c ↓ A if, for all ω > 0, there exists a ϑ > 0 such that whenever |x↘ c| < ϑ (and
x ↓ A) it follows that |f(x)↘ f(c)| < ω.

If f is continuous at every point in the domain A, then we say that f is
continuous on A.

Theorem 4.3.1 (Characterizations of Continuity). Let f : A ↑ R, and let
c ↓ A. The function f is continuous at c if and only if any one of the following
three conditions is met:

(i) For all ω > 0, there exists a ϑ > 0 such that |x ↘ c| < ϑ (and x ↓ A)
implies |f(x)↘ f(c)| < ω;

(ii) For all Vω(f(c)), there exists a Vϖ(c) with the property that x ↓ Vϖ(c) (and
x ↓ A) implies f(x) ↓ Vω(f(c));

(iii) If (xn) ↑ c (with xn ↓ A), then f(xn) ↑ f(c).

If c is a limit point of A, then the above conditions are equivalent to

(iv) lim
x↓c

f(x) = f(c).

Proof. Statement (i) is just Definition 4.3.1, and statement (ii) is the standard
rewording of (i) using topological neighborhoods in place of the absolute value
notation. Statement (iii) is equivalent to (i) via an argument nearly identical to
that of Theorem 4.2.1, with some slight modifications for when xn = c. Finally,
statement (iv) is seen to be equivalent to (i) by considering Definition 4.2.1 and
observing that the case x = c (which is excluded in the definition of functional
limits) leads to the requirement f(c) ↓ Vω(f(c)), which is trivially true.

Corollary 4.3.1 (Criterion for Discontinuity). Let f : A ↑ R, and let c ↓ A

be a limit point of A. If there exists a sequence (xn) ↔ A where (xn) ↑ c

but such that f(xn) does not converge to f(c), we may conclude that f is not
continuous at c.

Theorem 4.3.2 (Algebraic Continuity Theorem). Assume f : A ↑ R and
g : A ↑ R are continuous at a point c ↓ A. Then,

(i) kf(x) is continuous at c for all k ↓ R;

(ii) f(x) + g(x) is continuous at c;

(iii) f(x)g(x) is continuous at c; and

(iv) f(x)/g(x) is continuous at c, provided the quotient is defined.
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Proof. All of these statements can be quickly derived from Corollary 4.2.1 and
Theorem 4.3.1.

Example 1. Show that polynomials are continuous on R and that rational
functions (i.e., quotients of polynomials) are continuous wherever they are
defined.

Example 2. Investigate the continuity of

g(x) =


x sin(1/x) if x ⇒= 0

0 if x = 0.

Example 3. Investigate the continuity of the greatest integer function h(x) =
[[x]] which for each x ↓ R returns the largest integer n ↓ Z satisfying n ⇐ x.
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Example 4. Consider f(x) =
≃
x defined on A = {x ↓ R : x ↗ 0}. Prove

that f is continuous on A.

Theorem 4.3.3 (Composition of Continuous Functions). Given f : A ↑ R

and g : B ↑ R, assume that the range f(A) = {f(x) : x ↓ A} is contained in
the domain B so that the composition g ′ f(x) = g(f(x) is defined on A.

If f is continuous at c ↓ A, and if g is continuous at f(c) ↓ B, then g ′ f
is continuous at c.

Example 5. Prove Theorem 4.3.3.
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4.4 Continuous Functions on Compact Sets

Theorem 4.4.1 (Preservation of Compact Sets). Let f : A ↑ R be continuous
on A. If K ↔ A is compact, then f(K) is compact as well.

Proof. Let (yn) be an arbitrary sequence contained in the range set f(K). To
assert that (yn) ↔ f(K) means that, for each n ↓ N, we can find (at least
one) xn ↓ K with f(xn) = yn. This yields a sequence (xn) ↔ K. Because K is
compact, there exists a convergent subsequence (xnk

) whose limit x = lim xnk
is

also in K. Finally, we make use of the fact that f is assumed to be continuous
on A and so is continuous at x in particular. Given that (xnk

) ↑ x, we
conclude that (ynk

) ↑ f(x). Because x ↓ K, we have that f(x) ↓ f(K), and
hence f(K) is compact.

Theorem 4.4.2 (Extreme Value Theorem). If f : K ↑ R is continuous on a
compact set K ↔ R, then f attains a maximum and minimum value. In other
words, there exist x0, x1 ↓ K such that f(x0) ⇐ f(x) ⇐ f(x1) for all x ↓ K.

Proof. Because f(K) is compact, we can set ϖ = sup f(K) and know ϖ ↓
f(K). It follows that there exist x1 ↓ K with ϖ = f(x1). The argument for
the minimum value is similar.

Example 1. (i) Show directly that f(x) = 3x+ 1 is continuous on R.

(ii) Show directly that g(x) = x
2 is continuous on R.
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Definition 4.4.1 (Uniform Continuity). A function f : A → R is uniformly
continuous on A if for every ω > 0 there exists a ε > 0 such that for all x, y ↑ A,
|x↓ y| < ε implies |f(x)↓ f(y)| < ω.

Theorem 4.4.3 (Sequential Criterion for Absence of Uniform Continuity). A
function f : A → R fails to be uniformly continuous on A if and only if there
exists a particular ω0 > 0 and two sequences (xn) and (yn) in A satisfying

|xn ↓ yn| → 0 but |f(xn)↓ f(yn)| ↔ ω0.

Proof. The negation of Definition 4.4.1 states that f is not uniformly contin-
uous on A if and only if there exists ω0 > 0 such that for all ε > 0 we can find
two points x and y satisfying |x ↓ y| < ε but with |f(x) ↓ f(y)| ↔ ω0. Thus,
if we set ε1 = 1, then there exist two points x1 and y1 where |x1 ↓ y1| < 1 but
|f(x1)↓ f(y1)| ↔ ω0.

In a similar way, if we set εn = 1/n where x ↑ N, it follows that there
exist points xn and yn with |xn ↓ yn| < 1/n but where |f(x1) ↓ f(y1)| ↔ ω0.
The resulting sequences (xn) and (yn) satisfy the requirements described in
the theorem.
Conversely, if ω0, (xn) and (yn) exist as described, it is straightforward to see
that no ε > 0 is a suitable response for ω0.

Example 2. Show that h(x) = sin(1/x) is not uniformly continuous on (0, 1).

Example 3. Show that f(x) = 1/x2 is uniformly continuous on the set [1,↗)
but not on the set (0, 1].
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Theorem 4.4.4 (Uniform Continuity on Compact Sets). A function that is
continuous on a compact set K is uniformly continuous on K.

Proof. Assume f : K ↑ R is continuous at every point of a compact set K ↔
R. To prove that f is uniformly continuous on K we argue by contradiction.

By the criterion in Theorem 4.4.3, if f is not uniformly continuous on K,
then there exist two sequences (xn) and (yn) in K such that

lim |xn ↘ yn| = 0 while |f(xn)↘ f(yn)| ↗ ω0

for some particular ω0 > 0. Because K is compact, the sequence (xn) has a
convergent subsequence (xnk

) with x = lim xnk
also in K.

Next consider the subsequence (ynk
) consisting of those terms in (yn) that

correspond to the terms in the convergent subsequence (xnk
). By the Algebraic

Limit Theorem,

lim(ynk
) = lim((ynk

↘ xnk
) + xnk

) = 0 + x.

The conclusion is that both (xnk
) and (ynk

) converge to x ↓ K. Because f is
assumed to be continuous at x, we have lim f(xnk

) = f(x) and lim f(ynk
) =

f(x), which implies
lim(f(xnk

)↘ f(ynk
)) = 0.

A contradiction arises when we recall that (xn) and (yn) were chosen to satisfy

|f(xn)↘ f(yn)| ↗ ω0

for all n ↓ N. We conclude, then, that f is indeed uniformly continuous on
K.
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Example 4. Prove that f(x) =
→
x is uniformly continuous on [0,↑).

Example 5 (Lipschitz Functions). A function f : A ↓ R is called Lipschitz
if there exists a bound M > 0 such that

∣∣∣∣
f(x)↔ f(y)

x↔ y

∣∣∣∣ ↗ M

for all x ↘= y ≃ A. Geometrically speaking, a function f is Lipschitz if there is
a uniform bound on the magnitude of the slopes of lines drawn through any
two points on the graph of f .

(a) Show that if f : A ↓ R is Lipschitz, then it is uniformly continuous on A.

(b) Is the converse statement true? Are all uniformly continuous functions
necessarily Lipschitz?
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4.5 The Intermediate Value Theorem

Theorem 4.5.1 (Intermediate Value Theorem). Let f : [a, b] ↑ R be contin-
uous. If L is a real number satisfying f(a) < L < f(b) or f(a) > L > f(b),
then there exists a point c ↓ (a, b) where f(c) = L.

Theorem 4.5.2 (Preservation of Connected Sets). Let f : G ↑ R be contin-
uous. If E ↔ G is connected, then f(E) is connected as well.

Proof. Let f(E) = A ↙B where A and B are disjoint and nonempty and let

C = {x ↓ E : f(x) ↓ A} and D = {x ↓ E : f(x) ↓ B}.

The sets C and D are called the preimages of A and B, respectively. Using
the properties of A and B, it is straightforward to check that C and D are
nonempty and disjoint and satisfy E = C ↙ D. Now, we are assuming E is
a connected set, so by Theorem 3.4.2, there exists a sequence (xn) contained
in one of C or D with x = lim xn contained in the other. Finally, because
f is continuous at x, we get f(x) = lim f(xn). Thus, it follows that f(xn) is
a convergent sequence contained in either A or B while the limit f(x) is an
element of the other. Applying Theorem 3.4.2 again, the proof is complete.

Proof of Theorem 4.5.1. I. (First approach using AoC.) Consider the special
case where f is a continuous function satisfying f(a) < 0 < f(b) and show
that f(c) = 0 for some c ↓ (a, b). First let

K = {x ↓ [a, b] : f(x) ⇐ 0}.

•

f(b)

f(a)

a b

K
c = supK

Notice that K is bounded above by b, and a ↓ K so K is not empty. Thus we
may appeal to the Axiom of Completeness to assert that c = supK exists.

There are three cases to consider:

f(c) > 0, f(c) < 0, and f(c) = 0.

Assume, for contradiction, that f(c) > 0. If we set ω0 = f(c), then the
continuity of f implies that there exists a ϑ0 > 0 with the property that
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x ↓ Vϖ0(c) implies f(x) ↓ Vω0(f(c)). But this implies that f(x) > 0 and thus
x /↓ K for all x ↓ Vϖ0(c). What this means is that if c is an upper bound on K,
then c↘ϑ0 is a smaller upper bound, violating the definition of the supremum.
We conclude that f(x) > 0 is not allowed.

Now assume that f(c) < 0. This time, the continuity of f allows us to
produce a neighborhood Vϖ1(c) where x ↓ Vϖ1(c) implies f(x) < 0. But this
implies that a point such as c+ϑ1/2 is an element of K, violating the fact that
c is an upper bound for K. It follows that f(c) < 0 is also impossible, and we
conclude that f(c) = 0 as desired.

This proves the theorem for the special case where L = 0. To prove the
more general version, we consider the auxiliary function h(x) = f(x) ↘ L

which is certainly continuous. From the special case just considered we know
h(c) = 0 for some point c ↓ (a, b) from which it follows that f(c) = L.

II. (Second approach using NIP.) Again, consider the special case where
L = 0 and f(a) < 0 < f(b). Let I0 = [a, b], and consider the midpoint

z = (a+ b)/2.

If f(z) ↗ 0, then set a1 = a and b1 = z. If f(z) < 0, then set a1 = z and
b1 = b. In either case, the interval I1 = [a1, b1] has the property that f is
negative at the left endpoint and nonnegative at the right.

•

a z b

f(z) > 0

I0
I1
I2

By repeating this construction, we get a nested sequence of intervals In =
[an, bn] where f(an) < 0 and f(bn) ↗ 0 for all n ↓ N. By the Nested Interval
Property, there exists a point c ↓

↑
n=1 In. The fact that the lengths of the

intervals are tending to zero means that the two sequences (an) and (bn) each
converge to c.

Because f is continuous at c, we get f(c) = lim f(an) where f(an) < 0 for
all n. Then the Order Limit Theorem implies f(c) ⇐ 0. Because we also have
f(c) = lim f(bn) with f(bn) ↗ 0, it must be that f(c) ↗ 0. We conclude that
f(c) = 0.
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Example 1. Show how the Intermediate Value Theorem follows as a corollary
to Theorem 4.5.2.

Definition 4.5.1. A function f has the intermediate value property on an
interval [a, b] if for all x < y in [a, b] and all L between f(x) and f(y), it is
always possible to find a point c ↓ (x, y) where f(c) = L.

Example 2. A function f is increasing on A if f(x) ⇐ f(y) for all x < y in
A. Show that if f is increasing on [a, b] and satisfies the intermediate value
property, then f is continuous on [a, b].

86



Real Analysis - Sets of Discontinuity

4.6 Sets of Discontinuity

Remark 1. Given a function f : R ↑ R, define Df ↔ R to be the set of
points where the function f fails to be continuous. Dirichlet’s function g(x)
has Dg = R. The modification h(x) of Dirichlet’s function has Dh = R \ {0},
zero being the only point of continuity. Finally, for Thomae’s function t(x),
Dt = Q.

Example 1. Using modifications of these functions, construct a function f :
R ↑ R so that

(a) Df = Z
c.

(b) Df = {x : 0 < x ⇐ 1}.

Example 2. Given a countable set A = {a1, a2, a3, . . .}, define f(an) = 1/n
and f(x) = 0 for all x /↓ A. Find Df .

Definition 4.6.1. A function f : A ↑ R is increasing on A if f(x) ⇐ f(y)
whenever x < y and decreasing if f(x) ↗ f(y) whenever x < y in A. A
monotone function is one that is either increasing or decreasing.

Definition 4.6.2. Given a limit point c of a set A and a function f : A ↑ R,
we write

lim
x↓c+

f(x) = L

if for all ω > 0 there exists a ϑ > 0 such that |f(x) ↘ L| < ω whenever
0 < x↘ c < ϑ.

Equivalently, in terms of sequences, limx↓c+ f(x) = L if lim f(xn) = L for
all sequences (xn) satisfying xN > c and lim(xn) = c.
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Example 3. State a similar definition for the left-hand limit

lim
x→c→

f(x) = L.

Theorem 4.6.1. Given f : A → R and a limit point c of A, limx→c f(x) = L

if and only if
lim
x→c→

f(x) = L and lim
x→c+

f(x) = L.

Example 4. Prove Theorem 4.6.1.

Remark 2. Generally speaking, discontinuities can be divided into three cate-
gories:

(i) If limx→c f(x) exists but has a value di!erent from f(c), the discontinuity
at c is called removable.

(ii) If limx→c+ f(x) ↑= limx→c→ f(x), then f has a jump discontinuity at c.

(iii) If limx→c f(x) does not exist for some other reason, then the discontinuity
at c is called an essential discontinuity.

Example 5. Prove that the only type of discontinuity a monotone function
can have is a jump discontinuity.
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Example 6. Construct a bijection between the set of jump discontinuities of
a monotone function f and a subset of Q. Conclude that Df for a monotone
function f must either be finite or countable, but not uncountable.

Definition 4.6.3. A set that can be written as the countable union of closed
sets is in the class Fω.

Example 7. (a) Show that in Dirichlet’s function, the modified Dirichlet
function, and Thomae’s function we get an Fω set as the set where the
function is discontinuous.

(b) Show that the two sets of discontinuity in Example 1 are Fω sets.

Definition 4.6.4. Let f be defined on R, and let ω > 0. The function f is ω-
continuous at x → R if there exists a ε > 0 such that for all y, z → (x↑ε, x+ε)
it follows that |f(y)↑ f(z)| < ω.

Remark 3. Given a function f on R, define D
ε
f to be the set of points where

the function f fails to be ω-continuous. In other words,

D
ε
f = {x → R : f is not ω-continuous at x}.

Example 8. Prove that, for a fixed ω > 0, the set Dε
f is closed.
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Theorem 4.6.2. Let f : R ↑ R be an arbitrary function. Then Df is an Fϑ

set.

Proof. If ϖ < ϖ
→ and c ↓ D

ϱ↑
f , then given ϑ > 0, there exist y, z ↓ Vϖ(c)

satisfying
|f(y)↘ f(z)| ↗ ϖ

→
> ϖ.

Thus c ↓ D
ϱ
f as well, i.e., Dϱ↑

f ↔ D
ϱ
f .

Now suppose f is continuous at x. Then given fixed ϖ > 0, we know there
exists a ϑ > 0 such that

|f(y)↘ f(x)| < ϖ

2
provided y ↓ Vϖ(x).

Thus, if y, z ↓ Vϖ(x) we then get

|f(y)↘ f(z)| ⇐ |f(y)↘ f(x)|+ |f(x)↘ f(z)|

<
ϖ

2
+

ϖ

2
= ϖ,

and we conclude that f is ϖ-continuous at x. The contrapositive of this con-
clusion is that if f is ϖ-continuous at x, then it certainly cannot be continuous
at x. That is, Dϱ

f ↔ Df .
Now assume f is not continuous at x. Negating the ω-ϑ definition of con-

tinuity we get that there exists an ω0 > 0 with the property that for all ϑ > 0
there exists a point y ↓ Vϖ(x) where |f(y) ↘ f(x)| ↗ ω0. Noting simply that
both x, y ↓ Vϖ(x), we conclude that f is not ϖ-continuous for ϖ = ω0 (or any-
thing smaller.)

To prove Df =
↑

n=1 D
1/n
f we argue for inclusion each way. If x ↓ Df ,

then we have just shown that x ↓ D
ω0
f for some ω0 > 0. Choosing n0 ↓ N

small enough so that 1/n0 ⇐ ω0, it follows that x ↓ D
1/n0

f . This proves

Df ↔
↑

n=1 D
1/n
f .

For the reverse inclusion we observe that we already showed D
ϱ↑
f ↔ D

ϱ
f

when ϖ < ϖ
→, so D

1/n
f ↔ Df for all n ↓ N. Because each D

1/n
f is closed, the

result follows.
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The Derivative

5.1 Discussion: Are Derivatives Continuous?
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5.2 Derivatives and the Intermediate Value Prop-

erty

Definition 5.2.1 (Di!erentiability). Let g : A → R be a function defined on
an interval A. Given c ↑ A, the derivative of G at c is defined by

g
→(c) = lim

x↑c

g(x)↓ g(c)

x↓ c
,

provided this limit exists. In this case we say g is differentiable at c. If g→

exists for all points c ↑ A, we say that g is differentiable on A.

Example 1. (i) Calculate the derivative of f(x) = x
n where n ↑ N at an

arbitrary point c in R.

(ii) Show that g(x) = |x| is not di!erentiable at zero.

Theorem 5.2.1. If g : A → R is di!erentiable at a point c ↑ A, then g is
continuous at c as well.

Proof. We are assuming that

g
→(c) = lim

x↑c

g(x)↓ g(c)

x↓ c

exists, and we want to prove that limx↑c g(x) = g(c). But notice that the
Algebraic Limit Theorem for functional limits allows us to write

lim
x↑c

(g(x)↓ g(c)) = lim
x↑c

(
g(x)↓ g(c)

x↓ c

)
(x↓ c) = g

→(c) · 0 = 0.

It follows that limx↑c g(x) = g(c).
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Theorem 5.2.2 (Algebraic Di!erentiability Theorem). Let f and G be func-
tions defined on an interval A, and assume both are di!erentiable at some
point c ↓ A. Then,

(i) (f + g)→(c) = f
→(c) + g

→(c),

(ii) (kf)→(c) = kf
→(c), for all k ↓ R,

(iii) (fg)→(c) = f
→(c)g(c) + f(c)g→(c), and

(iv) (f/g)→(c) = g(c)f ↑(c)↔f(c)g↑(c)
[g(c)]2 , provided that g(c) ⇒= 0.

Proof. Statements (i) and (ii) are left as exercises. To prove (iii), we rewrite
the di!erence quotient as

(fg)(x)↘ (fg)(c)

x↘ c
=

f(x)g(x)↘ f(x)g(c) + f(x)g(c)↘ f(c)g(c)

x↘ c

= f(x)


g(x)↘ g(c)

x↘ c


+ g(c)


f(x)↘ f(c)

x↘ c


.

Because f is di!erentiable at c, it is continuous there and thus limx↓c f(x) =
f(c). This fact, together with the functional-limit version of the Algebraic
Limit Theorem (Corollary 4.2.1), justifies the conclusion

lim
x↓c

(fg)(x)↘ (fg)(c)

x↘ c
= f(c)g→(c) + f

→(c)g(c).

A similar proof of (iv) is possible, or we can use an argument based on the
next result.

Theorem 5.2.3 (Chain Rule). Let f : A ↑ R and g : B ↑ R satisfy
f(A) ↔ B so that the composition g ′ f is defined. If f is di!erentiable at
c ↓ A and if g is di!erentiable at f(c) ↓ B, then g ′ f is di!erentiable at c
with (g ′ f)→(c) = g

→(f(c)) · f →(c).

Proof. Because g is di!erentiable at c, we know that

g
→(f(c)) = lim

y↓f(c)

g(y)↘ g(f(c))

y ↘ f(c)
.

Another way to assert this same fact is to let d(y) be the di!erence quotient

d(y) =
g(y)↘ g(f(c))

y ↘ f(c)
, (1)

and observe that limy↓f(c) d(y) = g
→(f(c)). At the moment, d(y) is not defined

when y = f(c), but it should seem natural to declare that d(f(c)) = g
→(f(c)),
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so that d is continuous at f(c).
Equation (1) can be rewritten as

g(y)↘ g(f(c)) = d(y)(y ↘ f(c)). (2)

Observe that this equation holds for all y ↓ B including y = f(c). Thus, we
are free to substitute y = f(t) for any arbitrary t ↓ A. If t ⇒= c, we can divide
equation (2) by (t↘ c) to get

g(f(t))↘ g(f(c))

t↘ c
= d(f(t))

(f(t)↘ f(c))

t↘ c

for all t ⇒= c. Finally, taking the limit as t ↑ c and applying the Algebraic
Limit Theorem together with Theorem 4.3.3 yields the desired formula.

Example 2. (a) Use Definition 5.2.1 to produce the proper formula for the
derivative of h(x) = 1/x.

(b) Combine the result in part (a) with the Chain Rule (Theorem 5.2.3) to
supply a proof for part (iv) of Theorem 5.2.2.

(c) Supply a direct proof of Theorem 5.2.2 by algebraically manipulating the
di!erence quotient for (f/g) in a style similar to the proof of Theorem 5.2.2
(iii).
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Example 3. Given a di!erentiable function f : A → R, let’s say that f is
uniformly differentiable on A if, given ω > 0 there exists a ε > 0 such that

∣∣∣∣
f(x)↑ f(y)

x↑ y
↑ f

→(y)

∣∣∣∣ < ω whenever 0 < |x↑ y| < ε.

(a) Is f(x) = x
2 uniformly di!erentiable on R? How about g(x) = x

3?

(b) Show that if a function is uniformly di!erentiable on an interval A, then
the derivative must be continuous on A.

(c) Is there a theorem analogous to Theorem 4.4.4 for di!erentiation? Are
functions that are di!erentiable on a closed interval [a, b] necessarily uni-
formly di!erentiable?
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Theorem 5.2.4 (Interior Extremum Theorem). Let f be di!erentiable on an
open interval (a, b). If f attains a maximum value at some point c ↓ (a, b)
(i.e., f(c) ↔ f(x) for all x ↓ (a, b)), then f

→(c) = 0. The same is true if f(c)
is a minimum value.

Proof. Because c is in the open interval (a, b), we can construct two sequences
(xn) and (yn), which converge to c and satisfy xn < c < yn for all n ↓ N. The
fact that f(c) is a maximum implies that f(yn)↑ f(c) ↔ 0 for all n, and thus

f
→(c) = lim

n↑↓

f(yn)↑ f(c)

yn ↑ c
↗ 0

by the Order Limit Theorem (Theorem 2.3.3). In a similar way,

f(xn)↑ f(c)

xn ↑ c
↔ 0

for each xn because both numerator and denominator are negative. This im-
plies that

f
→(c) = lim

n↑↓

f(xn)↑ f(c)

xn ↑ c
↔ 0,

and therefore f
→(c) = 0, as desired.
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Theorem 5.2.5 (Darboux’s Theorem). If f is di!erentiable on an interval
[a, b], and if ϑ satisfies f

→(a) < ϑ < f
→(b) (or f

→(a) > ϑ > f
→(b)), then there

exists a point c ↓ (a, b) where f
→(c) = ϑ.

Proof. We first simplify matters by defining a new function g(x) = f(x)↑ ϑx

on [a, b]. Notice that g is di!erentiable on [a, b] with g
→(x) = f

→(x) ↑ ϑ. In
terms of g, our hypothesis states that g→(a) < 0 < g

→(b), and we hope to show
that g→(c) = 0 for some c ↓ (a, b).

We start by proving that there exists x ↓ (a, b) where g(x) < g(a). Let
(xn) be a sequence in (a, b) satisfying (xn) → a. Then we have

g
→(a) = lim

n↑↓

g(xn)↑ g(a)

xn ↑ a
< 0.

The denominator is always positive. If the numerator were always positive
then the Order Limit Theorem would imply g

→(a) ↔ 0. Because we know this
is not the case, we may conclude that the numerator is eventually negative
and thus g(x) < g(a) for some x near a. The proof that there exists y ↓ (a, b)
where g(y) < g(b) is similar.

We must now show that g
→(c) = 0 for some c ↓ (a, b). Because g is

di!erentiable on the compact set [a, b] it must also be continuous here, and
so by the Extreme Value Theorem (Theorem 4.4.2), g attains a minimum at
a point c ↓ [a, b]. From our work in (a) we know that the minimum of g is
neither g(a) nor g(b), and therefore c ↓ (a, b). Finally, the Interior Extremum
Theorem (Theorem 5.2.4) allows us to conclude g

→(c) = 0.
To prove the general result stated in the theorem we just observe that

g
→(c) = 0 is equivalent to the conclusion f

→(c) = ϑ.
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5.3 The Mean Value Theorems

Theorem 5.3.1 (Rolle’s Theorem). Let f : [a, b] → R be continuous on [a, b]
and di!erentiable on (a, b). If f(a) = f(b), then there exists a point c ↓ (a, b)
where f

→(c) = 0.

Proof. Because f is continuous on a compact set, f attains a maximum and a
minimum. If both the maximum and minimum occur at the endpoints, then f

is necessarily a constant function and f
→(x) = 0 on all of (a, b). In this case, we

can choose c to be any point we like. On the other hand, if either the maximum
or minimum occurs at some point c in the interior (a, b), then it follows from
the Interior Extremum Theorem (Theorem 5.2.4) that f →(c) = 0.

Theorem 5.3.2 (Mean Value Theorem). If f : [a, b] → R is continuous on
[a, b] and di!erentiable on (a, b), then there exists a point c ↓ (a, b) where

f
→(c) =

f(b)↑ f(a)

b↑ a
.

Proof. Notice that the Mean Value Theorem reduces to Rolle’s Theorem in
the case where f(a) = f(b). The strategy of the proof is to reduce the more
general statement to this special case.

The equation of the line through (a, f(a)) and (b, f(b)) is

y =

(
f(b)↑ f(a)

b↑ a

)
(x↑ a) + f(a).

•

•

a x b

(a, f(a))

(b, f(b))d(x)

We want to consider the di!erence between this line and the function f(x).
To this end, let

d(x) = f(x)↑
[(

f(b)↑ f(a)

b↑ a

)
(x↑ a) + f(a)

]
,
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and observe that d is continuous on [a, b], di!erentiable on (a, b), and satisfies
d(a) = 0 = d(b). Thus, by Rolle’s Theorem, there exists a point c ↓ (a, b)
where d

→(c) = 0. Because

d
→(x) = f

→(x)↑ f(b)↑ f(a)

b↑ a
,

we get

0 = f
→(c)↑ f(b)↑ f(a)

b↑ a
,

which completes the proof.

Example 1. Let h be a di!erentiable function defined on the interval [0, 3],
and assume that h(0) = 1, h(1) = 2, and h(3) = 2.

(a) Argue that there exists a point d ↓ [0, 3] where h(d) = d.

(b) Argue that at some point c we have h
→(c) = 1/3.

(c) Argue that h→(x) = 1/4 at some point in the domain.

Example 2. A fixed point of a function f is a value x where f(x) = x. Show
that if f is di!erentiable on an interval with f

→(x) ↘= 1, then f can have at
most one fixed point.
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Corollary 5.3.1. If g : A → R is di!erentiable on an interval A and satisfies
g
→(x) = 0 for all x ↓ A, then g(x) = k for some constant k ↓ R.

Proof. Take x, y ↓ A and assume x < y. Applying the Mean Value Theorem
to g on the interval [x, y], we see that

g
→(c) =

g(y)↑ g(x)

y ↑ x

for some c ↓ A. Now, g→(c) = 0, so we conclude that g(y) = g(x). Set k equal
to this common value. Because x and y are arbitrary, it follows that g(x) = k

for all x ↓ A.

Corollary 5.3.2. If f and g are di!erentiable functions on an interval A and
satisfy f

→(x) = g
→(x) for all x ↓ A, then f(x) = g(x) + k for some constant

k ↓ R.

Proof. Let h(x) = f(x)↑ g(x0 and apply Corollary 5.3.1 to the di!erentiable
function h.

Theorem 5.3.3 (Generalized Mean Value Theorem). If f and g are contin-
uous on the closed interval [a, b] and di!erentiable on the open interval (a, b),
then there exists a point c ↓ (a, b) where

[f(b)↑ f(a)]g→(c) = [g(b)↑ g(a)]f →(c).

If g→ is never zero on (a, b), then the conclusion can be stated as

f
→(c)

g→(c)
=

f(b)↑ f(a)

g(b)↑ g(a)
.

Example 3. Prove Theorem 5.3.3.

Theorem 5.3.4 (L’Hospital’s Rule: 0/0 case). Let f and g be continuous on
an interval containing a, and assume f and g are di!erentiable on this interval
with the possible exception of the point a. If f(a) = g(a) = 0 and g

→(x) ↘= 0
for all x ↘= a, then

lim
x↑a

f
→(x)

g→(x)
= L implies lim

x↑a

f(x)

g(x)
= L.

100



Real Analysis - The Mean Value Theorems

Example 4. Prove Theorem 5.3.4.

Definition 5.3.1. Given g : A → R and a limit points c of A, we say that
limx↑c g(x) = ≃ if, for every M > 0, there exists a ε > 0 such that whenever
0 < |x↑ c| < ε it follows that g(x) ↔ M .

We can define limx↑c g(x) = ↑≃ in a similar way.

Theorem 5.3.5 (L’Hospital’s Rule: ≃/≃ case). Assume f and g are di!er-
entiable on (a, b) and that g→(x) ↘= 0 for all x ↓ (a, b). If limx↑a g(x) = ≃ (or
↑≃), then

lim
x↑a

f
→(x)

g→(x)
= L implies lim

x↑a

f(x)

g(x)
= L.

Proof. Let ω > 0. Because limx↑a
f →(x)
g→(x) = L, there exists a ε1 > 0 such that

∣∣∣∣
f
→(x)

g→(x)
↑ L

∣∣∣∣ <
ω

2

for all a < x < a + ε1. For convenience of notation, let t = a + ε1 and note
that t is fixed for the remainder of the argument.

Our functions are not defined at a, but for any x ↓ (a, t) we can apply the
Generalized Mean Value Theorem on the interval [x, t] to get

f(x)↑ f(t)

g(x)↑ g(t)
=

f
→(c)

g→(c)

for some c ↓ (x, t). Our choice of t then implies

L↑ ω

2
<

f(x)↑ f(t)

g(x)↑ g(t)
< L+

ω

2
(1)

for all x in (a, t).
In an e!ort to isolate the fraction f(x)

g(x) , the strategy is to multiply inequality
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(1) by (g(x) → g(t))/g(x). We need to be sure, however, that this quantity is
positive, which amounts to insisting that 1 ↑ g(t)/g(x). Because t is fixed
and limx→a g(x) = ↓, we can choose ω2 > 0 so that g(x) ↑ g(t) for all
a < x < a+ ω2. Carrying out the desired multiplication results in

(
L→ ε

2

)(
1→ g(t)

g(x)

)
<

f(x)→ f(t)

g(x)
<

(
L+

ε

2

)(
1→ g(t)

g(x)

)
,

which after some algebraic manipulations yields

L→ ε

2
+

→Lg(t) + ω
2g(t) + f(t)

g(x)
<

f(x)

g(x)
< L+

ε

2
+

→Lg(t)→ ω
2g(t) + f(t)

g(x)
.

Again, let’s remind ourselves that t is fixed and that limx→a g(x) = ↓. Thus,
we can choose a ω3 such that a < x < a+ ω3 implies that g(x) is large enough
to ensure that both

→Lg(t) + ω
2g(t) + f(t)

g(x)
and

→Lg(t)→ ω
2g(t) + f(t)

g(x)

are less than ε/2 in absolute value. Putting this all together and choosing
ω = min{ω1, ω2, ω3} guarantees that

∣∣∣∣
f(x)

g(x)
→ L

∣∣∣∣ < ε

for all a < x < a+ ω.

Example 5. Let f(x) = x sin(1/x4)e↑1/x2
and g(x) = e

↑1/x2
. Using the

familiar properties of these functions, compute the limit as x approaches zero
of f(x), g(x), f(x)/g(x), and f

↓(x)/g↓(x).
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5.4 A Continuous Nowhere-Di!erentiable Func-

tion

Remark 1. Define
h(x) = |x|

on the interval [↑1, 1] and extend the definition of h to all of R by requiring
that h(x+ 2) = h(x). The result is a periodic “sawtooth” function.

↑2 ↑1 1 2 3

1

Example 1. Sketch a graph of (1/2)h(2x) on [↑2, 3]. Give a qualitative
description of the functions

hn(x) =
1

2n
h(2nx)

as n gets larger.
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Example 2. Fix x → R. Argue that the series

g(x) =
→∑

n=0

1

2n
h(2nx)

converges absolutely and thus g(x) is properly defined.

Example 3. Taking the continuity of h(x) as given, reference the proper
theorems from Chapter 4 that imply that the finite sum

gm(x) =
m∑

n=0

1

2n
h(2nx)

is continuous on R.
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Example 4. Consider the sequence xm = 1/2m, where m = 0, 1, 2, . . . . Show
that

g(xm)↑ g(0)

xm ↑ 0
= m+ 1,

and use this to prove that g→(0) does not exist.

Example 5. (a) Modify the previous argument to show that g
→(1) does not

exist. Show that g→(1/2) does not exist.
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(b) Show that g→(x) does not exist for any rational number of the form x = p/2k

where p ↓ Z and k ↓ N ⇐ {0}.
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Example 6. (a) First prove the following general lemma: Let f be defined
on an open interval J and assume f is di!erentiable at a ↓ J . If (an) and
(bn) are sequences satisfying an < a < bn and lim an = lim bn = a, show

f
→(a) = lim

n↑↓

f(bn)↑ f(an)

bn ↑ an
.

(b) Now use this lemma to show that g→(x) does not exist.
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Chapter 6

Sequences and Series of

Functions

6.1 Discussion: The Power of Power Series
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6.2 Uniform Convergence of a Sequence of Func-

tions

Definition 6.2.1. For each n ↓ N, let fn be a function defined on a set
A ⇒ R. The sequence (fn) of functions converges pointwise on A to a function
f if, for all x ↓ A, the sequence of real numbers fn(x) converges to f(x). In
this case, we write fn → f , lim fn = f , or limn↑↓ fn(x) = f(x).

Example 1. (i) Consider

fn(x) = (x2 + nx)/n

on all of R. Find limn↑↓ fn(x).

(ii) Let gn(x) = x
n on the set [0, 1], and consider what happens as n tends

to infinity.

(iii) Consider hn(x) = x
1+ 1

2n↑1 on the set [↑1, 1]. Find limn↑↓ hn(x).
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Definition 6.2.2 (Uniform Convergence). Let (fn) be a sequence of functions
defined on a set A ⇒ R. Then, (fn) converges uniformly on A to a limit
function f defined on A if, for every ω > 0, there exists an N ↓ N such that
|fn(x)↑ f(x)| < ω whenever n ↔ N and x ↓ A.

Definition 6.2.1B. Let fn be a sequence of functions defined on a set A ⇒ R.
Then, (fn) converges pointwise on A to a limit f defined on A if, for every
ω > 0 and x ↓ A, there exists an N ↓ N (perhaps dependent on x such that
|fn(x)↑ f(x)| < ω whenever n ↔ N .

Example 2. (i) Let

gn(x) =
1

n(1 + x2)
.

Does gn converge uniformly on R?

(ii) Does fn(x) = (x2 + nx)/n converge uniformly on R?
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Theorem 6.2.1 (Cauchy Criterion for Uniform Convergence). A sequence of
functions (fn) defined on a set A ⇒ R converges uniformly on A if and only if
for every ω > 0 there exists an N ↓ N such that |fn(x)↑ fm(x)| < ω whenever
m,n ↔ N and x ↓ A.

Example 3. Prove Theorem 6.2.1.
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Theorem 6.2.2 (Continuous Limit Theorem). Let (fn) be a sequence of func-
tions defined on A → R that converges uniformly on A to a function f . If each
fn is continuous at c ↑ A, then f is continuous at c.

Proof. Fix c ↑ A and let ω > 0. Choose N so that

|fN(x)↓ f(x)| < ω

3

for all x ↑ A. Because fN is continuous, there exists a ε > 0 for which

|fN(x)↓ fN(c)| <
ω

3

is true whenever |x↓ c| < ε. But this implies

|f(x)↓ f(c)| = |f(x)↓ fN(x) + fN(x)↓ fN(c) + fN(c)↓ f(c)|
↔ |f(x)↓ fN(x)|+ |fN(x)↓ fN(c)|+ |fN(c)↓ f(c)|

<
ω

3
+

ω

3
+

ω

3
= ω.

Thus, f is continuous at c ↑ A.

Example 4. Recall that the Bolzano–Weierstrass Theorem (Theorem 2.5.2)
states that every bounded sequence of real numbers has a convergent sub-
sequence. An analogous statement for bounded sequences of functions is not
true in general, but under stronger hypotheses several di!erent conclusions are
possible. One avenue is to assume the common domain for all of the functions
in the sequence is countable. (Another is explored in the next two examples.)

Let A = {x1, x2, x3, . . .} be a countable set. For each n ↑ N, let fn be
defined on A and assume there exists an M > 0 such that |fn(x)| ↔ M for all
n ↑ N and x ↑ A. Follow these steps to show that there exists a subsequence
of (fn) that converges pointwise on A.

(a) Why does the sequence of real numbers fn(x1) necessarily contain a con-
vergent subsequence (fnk

)? To indicate that the subsequence of functions
(fnk

) is generated by considering the values of the functions at x1, we will
use the notation fnk

= f1,k.

(b) Now, explain why the sequence f1,k(x2) contains a convergent subsequence.

(c) Carefully construct a nested family of subsequences (fm,k), and show how
this can be used to produce a single subsequence of (fn) that converges at
every point of A.
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Example 5. A sequence of functions (fn) defined on a set E ⇒ R is called
equicontinuous if for every ω > 0 there exists a ε > 0 such that |fn(x)↑fn(y)| <
ω for all n ↓ N and |x↑ y| < ε in E.

(a) What is the di!erence between saying that a sequence of functions (fn) is
equicontinuous and just asserting that each fn in the sequence is individ-
ually uniformly continuous?

(b) Give a qualitative explanation for why the sequence gn(x) = x
n is not

equicontinuous on [0, 1]. Is each gn uniformly continuous on [0, 1]?

Example 6 (Arzela–Ascoli Theorem). For each n ↓ N, let fn be a function
defined on [0, 1]. If (fn) is bounded on [0, 1]—that is, there exists an M > 0
such that |fn(x)| ↗ M for all n ↓ N and x ↓ [0, 1]—and if the collection of
functions (fn) is equicontinuous, follow these steps to show that (fn) contains
a uniformly convergent subsequence.
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(a) Use Example 4 to produce a subsequence (fnk
) that converges at every

rational point in [0, 1]. To simplify the notation, set gk = fnk
. It remains

to show that (gk) converges uniformly on all of [0, 1].

(b) Let ω > 0. By equicontinuity, there exists a ε > 0 such that

|gk(x)↑ gk(y)| <
ω

3

for all |x ↑ y| < ε and k ↓ N. Using this ε, let r1, r2, . . . , rm be a finite
collection of rational points with the property that the union of the neigh-
borhoods Vω(ri) contains [0, 1].
Explain why there must exist an N ↓ N such that

|gs(ri)↑ gt(ri)| <
ω

3

for all s, t ↔ N and ri in the finite subset of [0, 1] just described. Why
does having the set {r1, r2, . . . , rm} be finite matter?

(c) Finish the argument by showing that, for an arbitrary x ↓ [0, 1],

|gs(x)↑ gt(x)| < ω

for all s, t ↔ N .
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6.3 Uniform Convergence and Di!erentiation

Theorem 6.3.1 (Di!erentiable Limit Theorem). Let fn → f pointwise on the
closed interval [a, b], and assume that each fn is di!erentiable. If (f →

n) converges
uniformly on [a, b] to a function g, then the function f is di!erentiable and
f
→ = g.

Proof. Fix c ↓ [a, b] and let ω > 0. We want to argue that f
→(c) exists and

equals g(c). Because f
→ is defined by the limit

f
→(c) = lim

x↑c

f(x)↑ f(c)

x↑ c

our task is to produce a ε > 0 so that
∣∣∣∣
f(x)↑ f(c)

x↑ c
↑ g(c)

∣∣∣∣ < ω

whenever 0 < |x↑ c| < ε.
To motivate the strategy of the proof, observe that for all x ↘= c and all

n ↓ N, the triangle inequality implies
∣∣∣∣
f(x)↑ f(c)

x↑ c

∣∣∣∣ ↗
∣∣∣∣
f(x)↑ f(c)

x↑ c
↑ fn(x)↑ fn(c)

x↑ c

∣∣∣∣

+

∣∣∣∣
fn(x)↑ fn(c)

x↑ c
↑ f

→
n(c)

∣∣∣∣+ |f →
n(c)↑ g(c)|.

Our intent is to first find an fn that forces the first and third terms on the
right-hand side to be less than ω/3. Once we establish which fn we want, we
can then use the di!erentiability of fn to produce a ε that makes the middle
term less than ω/3 for all x satisfying 0 < |x↑ c| < ε.

Let’s start by choosing an N1 such that

|f →
m(c)↑ g(c)| < ω

3
(1)

for all m ↔ N1. We now invoke the uniform convergence of (f →
n) to assert (via

Theorem 6.2.1) that there exists an N2 such that m,n ↔ N2 implies

|f →
m(x)↑ f

→
n(x)| <

ω

3
for all x ↓ [a, b].

Set N = max{N1, N2}.
The function fN is di!erentiable at c, and so there exists a ε > 0 for which

∣∣∣∣
fN(x)↑ fN(c)

x↑ c
↑ f

→
N(c)

∣∣∣∣ <
ω

3
(2)
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Real Analysis - Uniform Convergence and Di!erentiation

whenever 0 < |x↑ c| < ε. This is our sought after ε, but it takes some e!ort
to show that it has the desired property.

Fix an x satisfying 0 < |x↑ c| < ε, let m ↔ N , and apply the Mean Value
Theorem to fm↑fN on the interval [c, x], (If x < c the argument is the same.)
By MVT, there exists an ϑ ↓ (c, x) such that

f
→
m(ϑ)↑ f

→
N(ϑ) =

(fm(x)↑ fN(x))↑ (fm(c)↑ fN(c))

x↑ c
.

Recall that our choice of N implies

|f →
m(ϑ)↑ f

→
N(ϑ)| <

ω

3
,

and so it follows that
∣∣∣∣
fm(x)↑ fm(c)

x↑ c
↑ fN(x)↑ fN(c)

x↑ c

∣∣∣∣ <
ω

3
.

Because fm → f we can take the limit as m → ≃, and the Order Limit
Theorem (Theorem 2.3.3) asserts that

∣∣∣∣
f(x)↑ f(c)

x↑ c
↑ fN(x)↑ fN(c)

x↑ c

∣∣∣∣ ↗
ω

3
. (3)

Finally, the inequalities in (1), (1), and (1) together imply that for x satisfying
0 < |x↑ c| < ε,

∣∣∣∣
f(x)↑ f(c)

x↑ c
↑ g(c)

∣∣∣∣ ↗
∣∣∣∣
f(x)↑ f(c)

x↑ c
↑ fN(x)↑ fN(c)

x↑ c

∣∣∣∣

+

∣∣∣∣
fN(x)↑ fN(c)

x↑ c
↑ f

→
N(c)

∣∣∣∣+ |f →
N(c)↑ g(c)|.

<
ω

3
+

ω

3
+

ω

3
= ω.

Theorem 6.3.2. Let (fn) be a sequence of di!erentiable functions defined on
the closed interval [a, b], and assume (f →

n) converges uniformly on [a, b]. If
there exists a point x0 ↓ [a, b] where fn(x0) is convergent, then (fn) converges
uniformly on [a, b].
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Real Analysis - Uniform Convergence and Di!erentiation

Example 1. Prove Theorem 6.3.2.

Theorem 6.3.3. Let (fn) be a sequence of di!erentiable functions defined on
the closed interval [a, b], and assume (f →

n) converges uniformly to a function
g on [a, b]. If there exists a point x0 ↓ [a, b] for which fn(x0) is convergent,
then (fn) converges uniformly. Moreover, the limit function f = lim fn is
di!erentiable and satisfies f → = g.
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Real Analysis - Uniform Convergence and Di!erentiation

Example 2. Let

gn(x) =
nx+ x

2

2n
,

and set g(x) = lim gn(x). Show that g is di!erentiable in two ways:

(a) Compute g(x) by algebraically taking the limit as n → ≃ and then find
g
→(x).

(b) Compute g
→
n(x) for each n ↓ N and show that the sequence of derivatives

(g→n) converges uniformly on every interval [↑M,M ]. Use Theorem 6.3.3
to conclude g

→(x) = lim g
→
n(x).

(c) Repeat parts (a) and (b) for the sequence fn(x) = (nx2 + 1)/(2n+ x).
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Real Analysis - Series of Functions

6.4 Series of Functions

Definition 6.4.1. For each n ↓ N, let fn be functions defined on a set A ⇒ R.
The infinite series

↓∑

n=1

fn(x) = f1(x) + f2(x) + f3(x) + · · ·

converges pointwise on A to f(x) if the sequence sk(x) of partial sums defined
by

sk(x) = f1(x) + f2(x) + · · ·+ fk(x)

converges pointwise to f(x). The series converges uniformly on A to f is the
sequence sk(x) converges uniformly on A to f(x).

In either case, we write f =
∑↓

n=1 fn or f(x) =
∑↓

n=1 fn(x), always being
explicit about the type of convergence involved.

Theorem 6.4.1 (Term-by-term Continuity Theorem). Let fn be continuous
functions defined on set A ⇒ R, and assume

∑↓
n=1 fn converges uniformly on

A to a function f . Then, f is continuous on A.

Proof. Apply the Continuous Limit Theorem (Theorem 6.2.2 to the partial
sums sk = f1 + f2 + · · ·+ fk.

Theorem 6.4.2 (Term-by-term Di!erentiability Theorem). Let fn be di!er-
entiable functions defined on an interval A, and assume

∑↓
n=1 f

→
n(x) converges

uniformly to a limit g(x) on A. If there exists a point x0 ↓ [a, b] where∑↓
n=1 fn(x0) converges, then the series

∑↓
n=1 converges uniformly to a dif-

ferentiable function f(x) satisfying f
→(x) = g(x) on A. In other words,

f(x) =
↓∑

n=1

fn(x) and f
→(x) =

↓∑

n=1

f
→
n(x).

Proof. Apply the stronger form of the Di!erentiable Limit Theorem (Theo-
rem 6.3.3) to the partial sums sk = f1 + f2 + · · · + fk. Observe that Theo-
rem 5.2.2 implies that s→k = f

→
1 + f

→
2 + · · ·+ f

→
k.

Theorem 6.4.3 (Cauchy Criterion for Uniform Convergence of Series). A
series

∑↓
n=1 fn converges uniformly on A ⇒ R if and only if for every ω > 0

there exists an n ↓ N such that

|fm+1(x) + fm+2(x) + fm+3(x) + · · ·+ fn(x)| < ω

whenever n > m ↔ N and x ↓ A.
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Real Analysis - Series of Functions

Corollary 6.4.1 (Weierstrass M-Test). For each n ↓ N, let fn be a function
defined on a set A ⇒ R, and let Mn > 0 be a real number satisfying

|fn(x)| ↗ Mn

for all x ↓ A. If
∑↓

n=1 Mn converges, then
∑↓

n=1 fn converges uniformly on
A.

Example 1. Prove Corollary 6.4.1.

Example 2. (a) Show that

g(x) =
↓∑

n=0

cos(2nx)

2n

is continuous on all of R.

(b) The function g is an example of a continuous nowhere di!erentiable func-
tion. What happens if we try to use Theorem 6.4.2 to explore whether g
is di!erentiable?
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Real Analysis - Series of Functions

Example 3. (a) Prove that

h(x) =
↓∑

n=1

x
n

n2
= x+

x
2

4
+

x
3

9
+

x
4

16
+ · · ·

is continuous on [↑1, 1].

(b) The series

f(x) =
↓∑

n=1

x
n

n
= x+

x
2

2
+

x
3

3
+

x
4

4
+ · · ·

converges for every x in the half-open interval [↑1, 1) but does not converge
when x = 1. For a fixed x0 ↓ (↑1, 1), explain how we can still use the
Weierstrass M-Test to prove that f is continuous at x0.

121



Real Analysis - Power Series

6.5 Power Series

Theorem 6.5.1. If a power series
∑↓

n=0 anx
n converges at some point x0 ↓ R,

then it converges absolutely for any x satisfying |x| < |x0|.

Proof. If
∑↓

n=0 anx
n
0 converges, then the sequence of terms (anxn

0 ) is bounded.
(In fact, it converges to 0.) Let M > 0 satisfy |anxn

0 | ↗ M for all n ↓ N. If
x ↓ R satisfies |x| < |x0|, then

|anxn| = |anxn
0 |
∣∣∣∣
x

x0

∣∣∣∣
n

↗ M

∣∣∣∣
x

x0

∣∣∣∣
n

.

But notice that
↓∑

n=0

M

∣∣∣∣
x

x0

∣∣∣∣
n

is a geometric series with ratio |x/x0| < 1 and so converges. By the Comparison
Test,

∑↓
n=0 anx

n converges absolutely.

Theorem 6.5.2. If a power series
∑↓

n=0 anx
n converges absolutely at a point

x0, then it converges uniformly on the closed interval [↑c, c], where c = |x0|.

Example 1. Prove Theorem 6.5.2.

Lemma 6.5.1 (Abel’s Lemma): Let bn satisfy b1 ↔ b2 ↔ b3 ↔ · · · ↔ 0, and let∑↓
n=1 an be a series for which the partial sums are bounded. In other words,

assume there exists A > 0 such that

|a1 + a2 + · · ·+ an| ↗ A

for all n ↓ N. Then, for all n ↓ N,

|a1b1 + a2b2 + a3b3 + · · ·+ anbn| ↗ Ab1.
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Real Analysis - Power Series

Proof. Let sn = a1 + a2 + · · · + an. Using the summation-by-parts formula
derived in Example 3 of Section 7.2, we can write

∣∣∣∣∣

n∑

k=1

akbk

∣∣∣∣∣ =

∣∣∣∣∣snbn+1 +
n∑

k=1

sk(bk ↑ bk+1)

∣∣∣∣∣

↗ Abn+1 +
n∑

k=1

A(bk ↑ bk+1)

= Abn+1 + (Ab1 ↑ Abn+1) = Ab1.

Theorem 6.5.3 (Abel’s Theorem). Let g(x) =
∑↓

n=0 anx
n be a power series

that converges at the point x = R > 0. Then the series converges uniformly on
the interval [0, R]. A similar result holds if the series converges at x = ↑R.

Proof. To set the stage for an application of Lemma 6.5.1, we first write

g(x) =
↓∑

n=0

anx
n =

↓∑

n=0

(anR
n)

(
x

R

)n

.

Let ω > 0. By the Cauchy Criterion for Uniform Convergence of Series (The-
orem 6.2.1), we will be done if we can produce an N such that n > m ↔ N

implies
∣∣∣∣(am+1R

m+1)
(
x

R

)m+1

+ (am+2R
m+2)

(
x

R

)m+2

+ · · · (1)

+(anR
n)

(
x

R

)n∣∣∣ < ω.

Because we are assuming that
∑↓

n=0 anR
n converges, the Cauchy criterion for

convergent series of real numbers guarantees that there exists an N such that

|am+1R
m+1 + am+2R

m+2 + · · ·+ anR
n| < ω

2

whenever n > m ↔ N . But now, for any fixed m ↓ N, we can apply Abel’s
Lemma 6.5.1 to the sequences obtained by omitting the first m terms. Using
ω/2 as a bound on the partial sums of

∑↓
j=1 am+jR

m+j and observing that
(x/R)m+j is monotone decreasing, an application of Abel’s Lemma to equation
(1) yields

∣∣∣∣(am+1R
m+1)

(
x

R

)m+1

+ (am+2R
m+2)

(
x

R

)m+2

+ · · ·

+(anR
n)

(
x

R

)n∣∣∣ ↗
ω

2

(
x

R

)m+1

< ω.
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Theorem 6.5.4. If a power series converges pointwise on the set A ⇒ R, then
it converges uniformly on any compact set K ⇒ A.

Proof. A compact set contains both a maximum x1 and a minimum x0, which
by hypothesis must be in A. Abel’s Theorem implies the series converges
uniformly on the interval [x0, x1] and thus also on K.

Theorem 6.5.5. If
∑↓

n=0 anx
n converges for all x ↓ (↑R,R), then the di!er-

entiated series
∑↓

n=1 nanx
n↔1 converges at each x ↓ (↑R,R) as well. Conse-

quently, the convergence is uniform on compact sets contained in (↑R,R).

Example 2. (a) If s satisfies 0 < s < 1, show ns
n↔1 is bounded for all n ↔ 1.

(b) Given an arbitrary x ↓ (↑R,R), pick t to satisfy |x| < t < R. Use this
start to construct a proof for Theorem 6.5.5.

Theorem 6.5.6. Assume

f(x) =
↓∑

n=0

anx
n

converges on an interval A ⇒ R. The function f is continuous on A and
di!erentiable on any open interval (↑R,R) ⇒ A. The derivative is given by

f
→(x) =

↓∑

n=1

nanx
n↔1

.

Moreover, f is infinitely di!erentiable on (↑R,R), and the successive derivati-
ives can be obtained via term-by-term di!erentiation of the appropriate series.
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Proof. The details for why f is continuous have been discussed. Theorem 6.5.5
justifies the application of the Term-by-term Di!erentiability Theorem (The-
orem 6.4.2), which verifies the formula for f →.

A di!erentiated power series is a power series in its own right, and Theo-
rem 6.5.5 implies that, although the series may no longer converge at a partic-
ular endpoint, the radius of convergence does not change. By induction, then,
power series are di!erentiable an infinite number of times.

Example 3. If both
∑

an and
∑

bn converge conditionally to A and B re-
spectively, then it is possible for the Cauchy product,

∑
dn where dn = a0bn + a1bn↔1 + · · ·+ anb0,

to diverge. However, if
∑

dn does converge, then it must converge to AB. To
prove this, set

f(x) =
∑

anx
n
, g(x) =

∑
bnx

n
, and h(x) =

∑
dnx

n
.

Use Abel’s Theorem and the result in Example 4 of section 2.8 to establish
this result.
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Example 4. A series
∑→

n=0 an is said to be Abel-summable to L if the power
series

f(x) =
→∑

n=0

anx
n

converges for all x → [0, 1) and L = limx↑1→ f(x).

(a) Show that any series that converges to a limit L is also Abel-summable to
L.

(b) Show that
∑→

n=0(↑1)n is Abel-summable and find the sum.
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Real Analysis - Taylor Series

6.6 Taylor Series

Example 1. Find series representations for 1/(1→ x)2 and arctan(x).

Theorem 6.6.1 (Taylor’s Formula). Let

f(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + · · ·

be defined on some nontrivial interval centered at zero. Then,

an =
f
(n)(0)

n!
.

Example 2. Prove Theorem 6.6.1.
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Theorem 6.6.2 (Lagrange’s Remainder Theorem). Let f be di!erentiable
N + 1 times on (↑R,R), define an = f

(n)(0)/n! for n = 0, 1, . . . , N , and let

SN(x) = a0 + a1x+ a2x
2 + · · ·+ aNx

N
.

Given x ↘= 0 in (↑R,R), there exists a point c satisfying |c| < |x| where the
error function EN(x) = f(x)↑ SN(x) satisfies

EN(x) =
f
(N+1)(c)

(N + 1)!
x
N+1

.

Example 3. Show that the Taylor series for sin(x) converges uniformly to
sin(x) on every interval of the form [↑R,R] for an arbitrary constant R.
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Proof of Lagrange’s Remainder Theorem. The Taylor coe”cients are chosen
so that the function f and the polynomial SN have the same derivatives at
zero, at least up through the Nth derivative, after which SN becomes the zero
function. In other words, f (n)(0) = S

(n)
N (0) for all 0 ↗ n ↗ N , which implies

the error function EN(x) = f(x)↑ SN(x) satisfies

E
(n)
N (0) = 0 for all n = 0, 1, 2, . . . , N.

To simplify notation, let’s assume x > 0 and apply the Generalized Mean Value
Theorem (Theorem 5.3.3) to the functions EN(x) and x

N+1 on the interval
[0, x]. Thus, there exists a point x1 ↓ (0, x) such that

EN(x)

xN+1
=

E
→
N(x1)

(N + 1)xN
1

.

Now apply the Generalized Mean Value Theorem to the functions E →
N(x) and

(N + 1)xN on the interval [0, x1] to get that there exists a point x2 ↓ (0, x1)
where

EN(x)

xN+1
=

E
→
N(x1)

(N + 1)xN
1

=
E

→→
N(x2)

(N + 1)Nx
N↔1
2

.

Continuing in this manner we find

EN(x)

xN+1
=

E
(N+1)
N (xN+1)

(N + 1)!

where xN+1 ↓ (0, xN) ⇒ · · · ⇒ (0, x). Now set c = xN+1. Because S
(N+1)
N (x) =

0, we have E
(N+1)
N (x) = f

(N+1)(x) and it follows that

EN(x) =
f
(N+1)(c)

(N + 1)!
x
N+1

as desired.

Example 4 (Cauchy’s Remainder Theorem). Let f be di!erentiable N + 1
times on (↑R,R). For each a ↓ (↑R,R), let SN(x, a) be the partial sum of
the Taylor series for f centered at a; in other words, define

SN(x, a) =
N∑

n=0

cn(x↑ a)n and cn =
f
(n)(a)

n!
.

Let EN(x, a) = f(x) ↑ SN(x, a). Now fix x ↘= 0 in (↑R,R) and consider
EN(x, a) as a function of a.

(a) Find EN(x, x).
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(b) Explain why EN(x, a) is di!erentiable with respect to a, and show

E
→
N(x, a) =

↑f
(N+1)(a)

N !
(x↑ a)N .

(c) Show

EN(x) = EN(x, 0) =
f
(N+1)(c)

N !
(x↑ c)Nx

for some c between 0 and x. This is Cauchy’s form of the remainder for
Taylor series centered at the origin.
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Real Analysis - The Weierstrass Approximation Theorem

6.7 The Weierstrass Approximation Theorem

Theorem 6.7.1 (Weierstrass Approximation Theorem). Let f : [a, b] → R be
continuous. Given ω > 0, there exists a polynomial p(x) satisfying

|f(x)↑ p(x)| < ω

for all x ↓ [a, b].

Example 1. Assuming the Weierstrass Approximation Theorem (WAT), show
that if f is continuous on [a, b], then there exists a sequence (pn) of polynomials
such that pn → f uniformly on [a, b].

Definition 6.7.1. A continuous function ε : [a, b] → R is polygonal if there
is a partition

a = x0 < x1 < x2 < · · · < xn = b

of [a, b] such that ε is linear on each subinterval [xi→1, xi], where i = 1, . . . , n.

Theorem 6.7.2. Let f : [a, b] → R be continuous. Given ω > 0, there exists
a polygonal function ε satisfying

|f(x)↑ ε(x)| < ω

for all x ↓ [a, b].

Example 2. Prove Theorem 6.7.2.
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Real Analysis - The Weierstrass Approximation Theorem

Example 3. (a) Find the second degree polynomial p(x) = q0 + q1x + q2x
2

that interpolates the three points (↑1, 1), (0, 0) and (1, 1) on the graph of
g(x) = |x|. Sketch g(x) and p(x) over [↑1, 1] on the same set of axes.

(b) Find the fourth degree polynomial that interpolates g(x) = |x| at the
points x = ↑1,↑1/2, 0, 1/2, and 1. Add a sketch of this polynomial to the
graph from (a).

Example 4. Show that f(x) =
⇑
1↑ x has Taylor series coe”cients an where

a0 = 1 and

an =
↑1 · 3 · 5 · · · (2n↑ 3)

2 · 4 · 6 · · · 2n
for n ↔ 1.
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Real Analysis - The Weierstrass Approximation Theorem

Example 5. Use Example 4 of Section 6.6 to prove that

→
1↑ x =

→∑

n=0

anx
n

for all x ↓ (↑1, 1).

Example 6. (a) Let

cn =
1 · 3 · 5 · · · (2n↑ 1)

2 · 4 · 6 · · · 2n
for n ↔ 1. Show cn <

2↑
2n+1

.

(b) Use (a) to show that
∑→

n=0 an converges (absolutely, in fact) where an is
the sequence of Taylor coe!cients generated in Example 4.

(c) Carefully explain how this verifies that

→
1↑ x =

→∑

n=0

anx
n

for all x ↓ [↑1, 1].
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Real Analysis - The Weierstrass Approximation Theorem

Example 7. (a) Use the fact that |a| =
⇑
a2 to prove that, given ω > 0, there

exists a polynomial q(x) satisfying

||x|↑ q(x)| < ω

for all x ↓ [↑1, 1].

(b) Generalize this conclusion to an arbitrary interval [a, b].

Example 8. (a) Fix a ↓ [↑1, 1] and sketch

ha(x) =
1

2
(|x↑ a|+ (x↑ a))

over [↑1, 1]. Note that ha is polygonal and satisfies ha(x) = 0 for all
x ↓ [↑1, a].

(b) Explain why we know ha(x) can be uniformly approximated with a poly-
nomial on [↑1, 1].

(c) Let ϖ be a polygonal function that is linear on each subinterval of the
partition

↑1 = a0 < a1 < a2 < · · · < an = 1.
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Real Analysis - The Weierstrass Approximation Theorem

Show there exist constants b0, b1, . . . , bn↔1 so that

ϖ(x) = ϖ(↑1) + b0ha0(x) + b1ha1(x) + · · ·+ bn↔1han↑1(x)

for all x ↓ [↑1, 1].

(d) Complete the proof of WAT for the interval [↑1, 1], and then generalize
to an arbitrary interval [a, b].

Example 9. (a) Find a counterexample which shows that WAT is not true
if we replace the closed interval [a, b] with the open interval (a, b).

(b) What happens if we replace [a, b] with the closed set [a,≃)? Does the
theorem still hold?
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domain, 5
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equicontinuous, 113
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fixed point, 99
function, 5
functional limit, 73

geometric series, 43
greatest lower bound, 8

harmonic series, 34

inclusion, 3
increasing, 33, 86, 87
induction, 6
infimum, 8
infinite series, 33
integers, 2
intermediate value property, 86
intersection, 3
isolated point, 56

jump discontinuity, 88

least upper bound, 8
limit point, 55
Lipschitz function, 83
lower bound, 8

maximum, 8
minimum, 8
monotone, 33, 87

natural numbers, 2
neighborhood, 25
nowhere-dense, 71

one-to-one, 15
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onto, 15
open cover, 62
open set, 55

perfect set, 65
pointwise convergence, 109, 110, 119
polygonal function, 131
power set, 22
preimages, 84

range, 5
rational numbers, 2
real numbers, 2
rearrangement, 46
removable discontinuity, 88

separated, 66
sequence, 25
sequence of partial sums, 33
set, 3
subsequence, 37
subset, 3
supremum, 8

totally disconnected, 68

uncountable, 16
uniform convergence, 110, 119
uniformly continuous, 81
uniformly di!erentiable, 95
union, 3
upper bound, 8
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