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Chapter 1

Functions and Models

1.1 Four Ways to Represent a Function

Definition 1.1.1. A function f is a rule that assigns to each element x in a
set D exactly one element, called f(x), in a set E. The set D is called the
domain of the function. The number f(x) is the value of f at x. The set of all
possible values of f(x) as x varies throughout the domain is called the range.
A symbol that represents a number in the domain of a function f is called an
independent variable. A symbol that represents a number in the range of f is
called a dependent variable.

Definition 1.1.2. If f is a function with domain D, then its graph is the set
of ordered pairs

{(x, f(x)) | x ∈ D}.

 SECTION 1.1  Four Ways to Represent a Function 11

It’s helpful to think of a function as a machine (see Figure 2). If x is in the domain of 
the function f, then when x enters the machine, it’s accepted as an input and the machine 
produces an output f sxd according to the rule of the function. Thus we can think of the 
domain as the set of all possible inputs and the range as the set of all possible outputs.

The preprogrammed functions in a calculator are good examples of a function as a 
machine. For example, the square root key on your calculator computes such a function. 
You press the key labeled s   (or sx ) and enter the input x. If x , 0, then x is not in the 
domain of this function; that is, x is not an acceptable input, and the calculator will indi-
cate an error. If x > 0, then an approximation to sx  will appear in the display. Thus the 
sx  key on your calculator is not quite the same as the exact mathematical function f  
de!ned by f sxd − sx .

Another way to picture a function is by an arrow diagram as in Figure 3. Each arrow 
connects an element of D to an element of E. The arrow indicates that f sxd is associated 
with x, f sad is associated with a, and so on.

The most common method for visualizing a function is its graph. If f  is a function 
with domain D, then its graph is the set of ordered pairs

hsx, f sxdd | x [ Dj

(Notice that these are input-output pairs.) In other words, the graph of f  consists of all 
points sx, yd in the coordinate plane such that y − f sxd and x is in the domain of f.

The graph of a function f  gives us a useful picture of the behavior or “life history” 
of a function. Since the y-coordinate of any point sx, yd on the graph is y − f sxd, we can 
read the value of f sxd from the graph as being the height of the graph above the point x 
(see Figure 4). The graph of f  also allows us to picture the domain of f  on the x-axis and 
its range on the y-axis as in Figure 5.

0

y ! ƒ(x)

domain

range

{x, ƒ}

ƒ

f(1)
f(2)

0 1 2 x xx

y y

EXAMPLE 1 The graph of a function f  is shown in Figure 6.
(a) Find the values of f s1d and f s5d.
(b) What are the domain and range of f ?

SOLUTION
(a) We see from Figure 6 that the point s1, 3d lies on the graph of f, so the value of f  
at 1 is f s1d − 3. (In other words, the point on the graph that lies above x − 1 is 3 units 
above the x-axis.)

When x − 5, the graph lies about 0.7 units below the x-axis, so we estimate that 
f s5d < 20.7.

(b) We see that f sxd is de!ned when 0 < x < 7, so the domain of f  is the closed inter-
val f0, 7g. Notice that f  takes on all values from 22 to 4, so the range of f  is

 hy | 22 < y < 4j − f22, 4g Q

x
(input)

ƒ
(output)

f

FIGURE 2
Machine diagram for a function f  

fD E

ƒ

f(a)a

x

FIGURE 3
Arrow diagram for f  

FIGURE 4 FIGURE 5

x

y

0

1

1

FIGURE 6

The notation for intervals is given in 
Appendix A.
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Example 1. The graph of a function f is shown in the figure.

(a) Find the values of f(1) and f(5).

(b) What are the domain and range of f?

1



Calculus - 1.1 Four Ways to Represent a Function

Example 2. Sketch the graph and find the domain and range of each function.

(a) f(x) = 2x− 1

(b) g(x) = x2

Example 3. If f(x) = 2x2 − 5x+ 1 and h ̸= 0, evaluate
f(a+ h)− f(a)

h
.

2
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Example 4. When you turn on a hot-water faucet, the temperature T of the
water depends on how long the water has been running. Draw a rough graph
of T as a function of the time t that has elapsed since the faucet was turned
on.

Example 5. A rectangular storage container with an open top has a volume
of 10 m3. The length of its base is twice its width. Material for the base costs
$10 per square meter; material for the sides costs $6 per square meter. Express
the cost of materials as a function of the width of the base.

3
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Example 6. Find the domain of each function.

(a) f(x) =
√
x+ 2

(b) g(x) =
1

x2 − x

Theorem 1.1.1 (Vertical Line Test). A curve in the xy-plane is the graph of
a function of x if and only if no vertical line intersects the curve more than
once.

Definition 1.1.3. Piecewise defined functions are defined by different formu-
las in different parts of their domains.

Example 7. A function f is defined by

f(x) =

{
1− x if x ≤ −1,

x2 if x > −1.

Evaluate f(−2), f(−1), and f(0) and sketch the graph.

4



Calculus - 1.1 Four Ways to Represent a Function

Definition 1.1.4. The absolute value of a number a, denoted by |a|, is the
distance from a to 0 on the real number line.

|a| =

{
a if a ≥ 0,

−a if a < 0.

Example 8. Sketch the graph of the absolute value function f(x) = |x|.

 SECTION 1.1  Four Ways to Represent a Function  17

Point-slope form of the equation of 
a line:

y 2 y1 − msx 2 x1 d
See Appendix B.

EXAMPLE 9 Find a formula for the function f  graphed in Figure 17.

SOLUTION The line through s0, 0d and s1, 1d has slope m − 1 and y-intercept b − 0, 
so its equation is y − x. Thus, for the part of the graph of f  that joins s0, 0d to s1, 1d, 
we have

f sxd − x    if  0 < x < 1

The line through s1, 1d and s2, 0d has slope m − 21, so its point-slope form is

y 2 0 − s21dsx 2 2d    or    y − 2 2 x

So we have  f sxd − 2 2 x    if  1 , x < 2

We also see that the graph of f  coincides with the x-axis for x . 2. Putting this infor-
mation together, we have the following three-piece formula for f :

f sxd − Hx
2 2 x
0

if  0 < x < 1
if  1 , x < 2
if  x . 2 Q

EXAMPLE 10 In Example C at the beginning of this section we considered the cost 
Cswd of mailing a large envelope with weight w. In effect, this is a piecewise de!ned 
function because, from the table of values on page 13, we have

Cswd −    

0.98
1.19
1.40
1.61

if  0 , w < 1
if  1 , w < 2
if  2 , w < 3
if  3 , w < 4

 ∙
 ∙
 ∙

 The graph is shown in Figure 18. You can see why functions similar to this one are 
called step functions—they jump from one value to the next. Such functions will be 
studied in Chapter 2. Q

Symmetry
If a function f  satis!es f s2xd − f sxd for every number x in its domain, then f  is called 
an even function. For instance, the function f sxd − x 2 is even because

f s2xd − s2xd2 − x 2 − f sxd

The geometric signi!cance of an even function is that its graph is symmetric with respect 
to the y-axis (see Figure 19). This means that if we have plotted the graph of f  for x > 0, 
we obtain the entire graph simply by re#ecting this portion about the y-axis.

If f  satis!es f s2xd − 2f sxd for every number x in its domain, then f  is called an odd 
function. For example, the function f sxd − x 3 is odd because

f s2xd − s2xd3 − 2x 3 − 2f sxd

x

y

0 1

1

FIGURE 17

FIGURE 19  
An even function

0 x_x
f(_x) ƒ

x

y

C

0.50

1.00

1.50

0 1 2 3 54 w

FIGURE 18
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Example 9. Find a formula for the function f graphed in the
figure.

5
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 SECTION 1.1  Four Ways to Represent a Function  17

Point-slope form of the equation of 
a line:

y 2 y1 − msx 2 x1 d
See Appendix B.

EXAMPLE 9 Find a formula for the function f  graphed in Figure 17.

SOLUTION The line through s0, 0d and s1, 1d has slope m − 1 and y-intercept b − 0, 
so its equation is y − x. Thus, for the part of the graph of f  that joins s0, 0d to s1, 1d, 
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The line through s1, 1d and s2, 0d has slope m − 21, so its point-slope form is

y 2 0 − s21dsx 2 2d    or    y − 2 2 x

So we have  f sxd − 2 2 x    if  1 , x < 2

We also see that the graph of f  coincides with the x-axis for x . 2. Putting this infor-
mation together, we have the following three-piece formula for f :

f sxd − Hx
2 2 x
0

if  0 < x < 1
if  1 , x < 2
if  x . 2 Q

EXAMPLE 10 In Example C at the beginning of this section we considered the cost 
Cswd of mailing a large envelope with weight w. In effect, this is a piecewise de!ned 
function because, from the table of values on page 13, we have

Cswd −    

0.98
1.19
1.40
1.61

if  0 , w < 1
if  1 , w < 2
if  2 , w < 3
if  3 , w < 4

 ∙
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 The graph is shown in Figure 18. You can see why functions similar to this one are 
called step functions—they jump from one value to the next. Such functions will be 
studied in Chapter 2. Q

Symmetry
If a function f  satis!es f s2xd − f sxd for every number x in its domain, then f  is called 
an even function. For instance, the function f sxd − x 2 is even because

f s2xd − s2xd2 − x 2 − f sxd

The geometric signi!cance of an even function is that its graph is symmetric with respect 
to the y-axis (see Figure 19). This means that if we have plotted the graph of f  for x > 0, 
we obtain the entire graph simply by re#ecting this portion about the y-axis.

If f  satis!es f s2xd − 2f sxd for every number x in its domain, then f  is called an odd 
function. For example, the function f sxd − x 3 is odd because

f s2xd − s2xd3 − 2x 3 − 2f sxd
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Example 10. The cost C(w) of mailing a large envelope with
weight w is a piecewise defined function because, from the table
of values representing the function,

w (ounces) C(w) (dollars)
0 < w ≤ 1 0.98
1 < w ≤ 2 1.19
2 < w ≤ 3 1.40
3 < w ≤ 4 1.61

...
...

we have

C(w) =



0.98 if 0 < w ≤ 1,

1.19 if 1 < w ≤ 2,

1.40 if 2 < w ≤ 3,

1.61 if 3 < w ≤ 4,
...

The graph is shown in the figure.

Remark 1. Functions similar to the one in the previous example
are called step functions.

Definition 1.1.5. If a function f satisfies f(−x) = f(x) for every number x
in its domain, then f is called an even function.

Remark 2. The function f(x) = x2 is even because

f(−x) = (−x)2 = x2 = f(x).

Definition 1.1.6. If a function f satisfies f(−x) = −f(x) for every number
x in its domain, then f is called an odd function.

Remark 3. The function f(x) = x3 is odd because

f(−x) = (−x)3 = −x3 = −f(x).

6
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Example 11. Determine whether each of the following functions is even, odd,
or neither even nor odd.

(a) f(x) = x5 + x

(b) g(x) = 1− x4

(c) h(x) = 2x− x2

Definition 1.1.7. A function f is called increasing on an interval I if

f(x1) < f(x2) whenever x1 < x2 in I.

It is called decreasing on I if

f(x1) > f(x2) whenever x1 < x2 in I.

7



Calculus - 1.2 Mathematical Models

1.2 Mathematical Models

Definition 1.2.1. We say y is a linear function of x if the graph of the function
is a line. The slope-intercept form of the equation of a line can be used to
write a formula for the function as

y = f(x) = mx+ b

where m is the slope of the line and b is the y-intercept.

Example 1. (a) As dry air moves upward, it expands and cools. If the ground
temperature is 20◦C and the temperature at a height of 1 km is 10◦C,
express the temperature T (in ◦C) as a function of the height h (in kilo-
meters), assuming that a linear model is appropriate.

(b) Draw the graph of the function in part (a). What does the slope represent?

(c) What is the temperature at a height of 2.5 km?

8



Calculus - 1.2 Mathematical Models

Definition 1.2.2. An empirical model is a model based entirely on collected
data.

Year
CO2 level
(in ppm)

Year
CO2 level
(in ppm)

1980 338.7 1998 366.5
1982 341.2 2000 369.4
1984 344.4 2002 373.2
1986 347.2 2004 377.5
1988 351.5 2006 381.9
1990 354.2 2008 385.6
1992 356.3 2010 389.9
1994 358.6 2012 393.8
1996 362.4

Example 2. The table lists the average carbon dioxide
level in the atmosphere, measured in parts per million
at Mauna Loa Observatory from 1980 to 2012. Use the
data in the table to find a model for the carbon dioxide
level.

9



Calculus - 1.2 Mathematical Models

Example 3. Use the linear model from the previous example to estimate the
average CO2 level for 1987 and to predict the level for the year 2020. According
to this model, when will the CO2 level exceed 420 parts per million?

Definition 1.2.3. A function P is called a polynomial if

P (x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0

where n is a nonnegative integer and the numbers a0, a1, a2, . . . , an are con-
stants called the coefficients of the polynomial. If the leading coefficient an ̸= 0,
then the degree of the polynomial is n.

Remark 1. The function

P (x) = 2x6 − x4 +
2

5
x3 +

√
2

is a polynomial of degree 6.

Remark 2. A polynomial of degree 1 is of the form P (x) = mx+ b and so it is
a linear function. A polynomial of degree 2 is of the form P (x) = ax2 + bx+ c
and is called a quadratic function. A polynomial of degree 3 is of the form
P (x) = ax3 + bx2 + cx+ d and is called a cubic function.

10



Calculus - 1.2 Mathematical Models

Time
(seconds)

Height
(meters)

0 450
1 445
2 431
3 408
4 375
5 332
6 279
7 216
8 143
9 61

Example 4. A ball is dropped from the upper observation deck
of the CN Tower, 450 m above the ground, and its height h above
the ground is recorded at 1-second intervals in the table. Find a
model to fit the data and use the model to predict the time at
which the ball hits the ground.
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parabola x − y 2. [See Figure 13(a).] For other even values of n, the graph of y − sn x  is 
similar to that of y − sx . For n − 3 we have the cube root function f sxd − s3 x  whose 
domain is R (recall that every real number has a cube root) and whose graph is shown 
in Figure 13(b). The graph of y − sn x  for n odd sn . 3d is similar to that of y − s3 x .
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(iii) a − 21
The graph of the reciprocal function f sxd − x21 − 1yx is shown in Figure 14. Its 
graph has the equation y − 1yx, or xy − 1, and is a hyperbola with the coordinate axes 
as its asymptotes. This function arises in physics and chemistry in connection with 
Boyle’s Law, which says that, when the temperature is constant, the volume V  of a gas 
is inversely proportional to the pressure P:

V −
C
P

where C is a constant. Thus the graph of V  as a function of P (see Figure 15) has the 
same general shape as the right half of Figure 14.

Power functions are also used to model species-area relationships (Exercises 30–31), 
illumination as a function of distance from a light source (Exercise 29), and the period 
of revolution of a planet as a function of its distance from the sun (Exercise 32).

Rational Functions
A rational function f  is a ratio of two polynomials:

f sxd −
Psxd
Qsxd

where P and Q are polynomials. The domain consists of all values of x such that Qsxd ± 0. 
A simple example of a rational function is the function f sxd − 1yx, whose domain is 
hx | x ± 0j; this is the reciprocal function graphed in Figure 14. The function

f sxd −
2x 4 2 x 2 1 1

x 2 2 4

is a rational function with domain hx | x ± 62j. Its graph is shown in Figure 16.

Algebraic Functions
A function f  is called an algebraic function if it can be constructed using algebraic 
operations (such as addition, subtraction, multiplication, division, and taking roots) start-
ing with polynomials. Any rational function is automatically an algebraic function. Here 
are two more examples:

f sxd − sx 2 1 1      tsxd −
x 4 2 16x 2

x 1 sx 1 sx 2 2ds3 x 1 1 
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Definition 1.2.4. A function of the form f(x) = xa, where a
is a constant, is called a power function. If a = n, where n is a
positive integer, f(x) = xn is a polynomial. If a = 1/n, where
n is a positive integer, f(x) = x1/n = n

√
x is a root function. If

a = −1, f(x) = x−1 = 1/x is a reciprocal function, as shown in
the figure.

Definition 1.2.5. A rational function f is a ratio of two polynomials:

f(x) =
P (x)

Q(x)

where P and Q are polynomials.
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Remark 3. The function

f(x) =
2x4 − x2 + 1

x2 − 4

is a rational function with domain {x | x ̸= ±2} and is graphed
in the figure.
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Calculus - 1.2 Mathematical Models

Definition 1.2.6. A function f is called an algebraic function if it can be
constructed using algebraic operations (such as addition, subtraction, multi-
plication, division, and taking roots) starting with polynomials.

Remark 4. The functions

f(x) =
√
x2 + 1 g(x) =

x4 − 16x2

x+
√
x

+ (x− 2) 3
√
x+ 1

are algebraic.

Definition 1.2.7. Trigonometric functions are functions of an angle that re-
late the angles of a triangle to the lengths of its sides.

Remark 5. The sine, cosine, and tangent functions are the most familiar
trigonometric functions. The convention in calculus is that radian measure
is always used, unless otherwise indicated.

Remark 6. For all values of x, we have

−1 ≤ sin x ≤ 1 − 1 ≤ cosx ≤ 1,

or equivalently,
| sinx| ≤ 1 | cosx| ≤ 1.

Also, the periodic nature of these functions implies that

sin(x+ 2π) = sinx cos(x+ 2π) = cos x

for all values of x.

Example 5. What is the domain of the function f(x) =
1

1− 2 cos x
?

12



Calculus - 1.2 Mathematical Models

Definition 1.2.8. Exponential functions are functions of the form f(x) = bx,
where the base b is a positive constant.

Definition 1.2.9. Logarithmic functions are functions of the form f(x) =
logb x, where the base b is a positive constant.

Remark 7. Logarithmic functions are inverse functions of exponential func-
tions.

Example 6. Classify the following functions as one of the types of functions
that we have discussed.

(a) f(x) = 5x

(b) g(x) = x5

(c) h(x) =
1 + x

1−
√
x

(d) u(t) = 1− t+ 5t4

13



Calculus - 1.3 New Functions from Old Functions

1.3 New Functions from Old Functions

Remark 1 (Vertical and Horizontal Shifts). Suppose c > 0. To obtain the
graph of
y = f(x) + c, shift the graph of y = f(x) a distance c units upward
y = f(x)− c, shift the graph of y = f(x) a distance c units downward
y = f(x− c), shift the graph of y = f(x) a distance c units to the right
y = f(x+ c), shift the graph of y = f(x) a distance c units to the left

Remark 2 (Vertical and Horizontal Stretching and Reflecting). Suppose c > 1.
To obtain the graph of
y = cf(x), stretch the graph of y = f(x) vertically by a factor of c
y = (1/c)f(x), shrink the graph of y = f(x) vertically by a factor of c
y = f(cx), shrink the graph of y = f(x) horizontally by a factor of c
y = f(x/c), stretch the graph of y = f(x) horizontally by a factor of c
y = −f(x), reflect the graph of y = f(x) about the x-axis
y = f(−x), reflect the graph of y = f(x) about the y-axis

Example 1. Given the graph of y =
√
x, use transformations to graph y =√

x− 2, y =
√
x− 2, y = −

√
x, y = 2

√
x, and y =

√
−x.

14



Calculus - 1.3 New Functions from Old Functions

Example 2. Sketch the graph of the function f(x) = x2 + 6x+ 10.

Example 3. Sketch the graphs of the following functions.

(a) y = sin 2x

(b) y = 1− sin x

15



Calculus - 1.3 New Functions from Old Functions

Example 4. The figure shows graphs of the number of hours of daylight as
functions of time of the year at several latitudes. Given that Philadelphia is
located at approximately 40◦N latitude, find a function that models the length
of daylight at Philadelphia.

 SECTION 1.3  New Functions from Old Functions 39

EXAMPLE 3 Sketch the graphs of the following functions.
(a) y − sin 2x (b) y − 1 2 sin x

SOLUTION
(a) We obtain the graph of y − sin 2x from that of y − sin x by compressing horizon-
tally by a factor of 2. (See Figures 6 and 7.) Thus, whereas the period of y − sin x is  
2!, the period of y − sin 2x is 2!y2 − !.

x0

y

1

π
2

π
4

π

y=sin 2x

FIGURE 7

(b) To obtain the graph of y − 1 2 sin x, we again start with y − sin x. We re!ect  
about the x-axis to get the graph of y − 2sin x and then we shift 1 unit upward to get 
y − 1 2 sin x. (See Figure 8.)

x
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y

π0 2π

y=1-sin x

π
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3π
2  Q

EXAMPLE 4 Figure 9 shows graphs of the number of hours of daylight as functions of 
the time of the year at several latitudes. Given that Philadelphia is located at approxi-
mately 408N latitude, "nd a function that models the length of daylight at Philadelphia.
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FIGURE 9 
 Graph of the length of daylight from 

March 21 through December 21  
at various latitudes 

Source: Adapted from L. Harrison,  
Daylight, Twilight, Darkness and Time   
(New York: Silver, Burdett, 1935), 40.
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Calculus - 1.3 New Functions from Old Functions

Example 5. Sketch the graph of the function y = |x2 − 1|.

Definition 1.3.1. The sum and difference functions are defined by

(f + g)(x) = f(x) + g(x) (f − g)(x) = f(x)− g(x).

Similarly, the product and quotient functions are defined by

(fg)(x) = f(x)g(x)

(
f

g

)
(x) =

f(x)

g(x)
, g(x) ̸= 0.

Definition 1.3.2. Given two functions f and g, the composite function f ◦ g
(also called the composition of f and g) is defined by

(f ◦ g)(x) = f(g(x)).

Example 6. If f(x) = x2 and g(x) = x−3, find the composite functions f ◦ g
and g ◦ f .

17



Calculus - 1.3 New Functions from Old Functions

Example 7. If f(x) =
√
x and g(x) =

√
2− x, find each of the following

functions and their domains.

(a) f ◦ g

(b) g ◦ f

(c) f ◦ f

(d) g ◦ g

Example 8. Find f ◦ g ◦h if f(x) = x/(x+1), g(x) = x10, and h(x) = x+3.

Example 9. Given F (x) = cos2(x + 9), find functions f , g, and h such that
F = f ◦ g ◦ h.

18



Calculus - 1.4 Exponential Functions

1.4 Exponential Functions

Theorem 1.4.1 (Laws of Exponents). If a and b are positive numbers and x
and y are any real numbers, then

1. bx+y = bxby 2. bx−y =
bx

by
3. (bx)y = bxy 4. (ab)x = axbx

Example 1. Sketch the graph of the function y = 3 − 2x and determine its
domain and range.

Example 2. Use a graphing calculator to compare the exponential function
f(x) = 2x and the power function g(x) = x2. Which function grows more
quickly when x is large?

Example 3. The half-life of strontium-90, 90Sr, is 25 years. This means that
half of any given quantity of 90Sr will disintegrate in 25 years.

(a) If a sample of 90Sr has a mass of 24 mg, find an expression for the mass
m(t) that remains after t years.
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Calculus - 1.4 Exponential Functions

(b) Find the mass remaining after 40 years, correct to the nearest milligram.

(c) Use a graphing calculator to graph m(t) and use the graph to estimate
the time required for the mass to be reduced to 5 mg.

Definition 1.4.1. We call the function f(x) = ex the natural exponential
function where e is the value of b in y = bx resulting in a tangent line at (0, 1)
with slope 1.

Example 4. Graph the function y = 1
2
e−x − 1 and state the domain and

range.

Example 5. Use a graphing device to find the values of x for which ex >
1, 000, 000.
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Calculus - 1.5 Inverse Functions and Logarithms

1.5 Inverse Functions and Logarithms

Definition 1.5.1. A function is a one-to-one function if it never takes on the
same value twice; that is,

f(x1) ̸= f(x2) whenever x1 ̸= x2.

Theorem 1.5.1 (Horizontal Line Test). A function is one-to-one if and only
if no horizontal line intersects its graph more than once.

Example 1. Is the function f(x) = x3 one-to-one?

Example 2. Is the function g(x) = x2 one-to-one?

Definition 1.5.2. Let f be a one-to-one function with domain A and range
B. Then its inverse function f−1 has domain B and range A and is defined by

f−1(y) = x ⇔ f(x) = y

for any y in B.

Example 3. If f(1) = 5, f(3) = 7, and f(8) = −10, find f−1(7), f−1(5), and
f−1(−10).

Remark 1. The letter x is traditionally used as the independent variable, so
when we concentrate on f−1 we usually reverse the roles of x and y to get

f−1(x) = y ⇔ f(y) = x.

By substituting for x and y, we get the following cancellation equations:

f−1(f(x)) = x for every x in A

f(f−1(x)) = x for every x in B
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Calculus - 1.5 Inverse Functions and Logarithms

Example 4. Find the inverse function of f(x) = x3 + 2.

Remark 2. The graph of f−1 is obtained by reflecting the graph of f about
the line y = x.

Example 5. Sketch the graphs of f(x) =
√
−1− x and its inverse function

using the same coordinate axes.

Definition 1.5.3. The logarithmic function with base b, denoted by logb, is
the inverse function of the exponential function f(x) = bx with b > 0 and
b ̸= 1, i.e.,

logb x = y ⇔ by = x.

Remark 3. By the cancellation equations,

logb(b
x) = x for every x ∈ R

blogb x = x for every x > 0.

Theorem 1.5.2 (Laws of Logarithms). If x and y are positive numbers, then

1. logb(xy) = logb x+ logb y

2. logb

(
x

y

)
= logb x− logb y

3. logb(x
r) = r logb x (where r is any real number)

Example 6. Use the laws of logarithms to evaluate log2 80− log2 5.
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Calculus - 1.5 Inverse Functions and Logarithms

Definition 1.5.4. The logarithm with base e is called the natural logarithm
and is denoted by

loge x = lnx.

Example 7. Find x if lnx = 5.

Example 8. Solve the equation e5−3x = 10.

Example 9. Express ln a+ 1
2
ln b as a single logarithm.

Theorem 1.5.3 (Change of Base Formula). For any positive number b (b ̸= 1),
we have

logb x =
ln x

ln b
.

Proof. Let y = logb x. Then

by = x

y ln b = lnx

y =
ln x

ln b
.

Example 10. Evaluate log8 5 correct to six decimal places.
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Example 11. Sketch the graph of the function y = ln(x− 2)− 1.

Definition 1.5.5. The inverse sine function or arcsine function, denoted by
sin−1, is the inverse of the sine function on the restricted domain [−π/2, π/2].

Remark 4. By the cancellation equations,

sin−1(sin x) = x for − π

2
≤ x ≤ π

2
sin(sin−1 x) = x for − 1 ≤ x ≤ 1.

Example 12. Evaluate (a) sin−1(1
2
) and (b) tan

(
arcsin 1

3

)
.

Definition 1.5.6. The inverse cosine function or arccosine function, denoted
by cos−1, is the inverse of the cosine function on the restricted domain [0, π].

Remark 5. By the cancellation equations,

cos−1(cos x) = x for 0 ≤ x ≤ π

cos(cos−1 x) = x for − 1 ≤ x ≤ 1.

Definition 1.5.7. The inverse tangent function or arctangent function, de-
noted by tan−1, is the inverse of the tangent function on the restricted domain
[−π/2, π/2].
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Example 13. Simplify the expression cos(tan−1 x).

Remark 6. The remaining inverse trigonometric functions are

y = csc−1 x (|x| ≥ 1) ⇐⇒ csc y = x and y ∈ (0, π/2] ∪ (π, 3π/2]

y = sec−1 x (|x| ≥ 1) ⇐⇒ sec y = x and y ∈ [0, π/2) ∪ [π, 3π/2)

y = cot−1 x (|x| ∈ R) ⇐⇒ cot y = x and y ∈ (0, π).
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Chapter 2

Limits and Derivatives

2.1 The Tangent and Velocity Problems

Remark 1. A tangent to a curve is a line that that touches the curve. A secant
is a line that cuts a curve more than once.

Example 1. Find an equation of the tangent line to the parabola y = x2 at
the point P (1, 1).
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Calculus - 2.1 The Tangent and Velocity Problems

t Q
0.00 100.0
0.02 81.87
0.04 67.03
0.06 54.88
0.08 44.93
0.10 36.76

Example 2. The flash unit on a camera operates by storing
charge on a capacitor and releasing it suddenly when the flash is
set off. The data in the table describe the charge Q remaining on
the capacitor (measured in microcoulombs) at time t (measured
in seconds after the flash goes off). Use the data to draw the
graph of this function and estimate the slope of the tangent line
at the point where t = 0.04. [Note: The slope of the tangent line
represents the electric current flowing from the capacitor to the
flash bulb (measured in microamperes).]
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Calculus - 2.1 The Tangent and Velocity Problems

Example 3. Suppose that a ball is dropped from the upper observation deck
of the CN Tower in Toronto, 450 m above the ground. Find the velocity of
the ball after 5 seconds. [If the distance fallen after t seconds is denoted by
s(t) and measured in meters, then Galileo’s law that the distance fallen by any
freely falling body is proportional to the square of the time it has been falling
is expressed by the equation s(t) = 4.9t2.]
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Calculus - 2.2 The Limit of a Function

2.2 The Limit of a Function

Definition 2.2.1. Suppose f(x) is defined when x is near the number a. Then
we write

lim
x→a

f(x) = L

if we can make the values of f(x) arbitrarily close to L by restricting x to be
sufficiently close to a but not equal to a.

Example 1. Guess the value of lim
x→1

x− 1

x2 − 1
.

Example 2. Estimate the value of lim
t→0

√
t2 + 9− 3

t2
.

Example 3. Guess the value of lim
x→0

sin x

x
.
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Calculus - 2.2 The Limit of a Function

Example 4. Investigate lim
x→0

sin
π

x
.

Example 5. Find lim
x→0

(
x3 +

cos 5x

10, 000

)
.

Definition 2.2.2. We write

lim
x→a−

f(x) = L

if we can make the values of f(x) arbitrarily close to L by taking x to be
sufficiently close to a with x less than a. Similarly, if we require that x be
greater than a, we write

lim
x→a+

f(x) = L.

Example 6. Investigate the limit as t approaches 0 of the Heaviside function
H, defined by

H(t) =

{
0 if t < 0,

1 if t ≥ 0.
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Calculus - 2.2 The Limit of a Function

Remark 1. lim
x→a

f(x) = L if and only if lim
x→a−

f(x) = L and lim
x→a+

f(x) = L.

y

0 x

y=©

1 2 3 4 5

1

3

4
Example 7. Use the graph of g to state the values (if they exist)
of the following:

(a) lim
x→2−

g(x) (b) lim
x→2+

g(x)

(c) lim
x→2

g(x) (d) lim
x→5−

g(x)

(e) lim
x→5+

g(x) (f) lim
x→5

g(x)

Definition 2.2.3. Let f be a function defined on both sides of a, except
possibly at a itself. Then

lim
x→a

f(x) = ∞

means that the values of f(x) can be made arbitrarily large by taking x suffi-
ciently close to a, but not equal to a. Similarly,

lim
x→a

f(x) = −∞

means that the values of f(x) can be made arbitrarily large negative by taking
x sufficiently close to a, but not equal to a.

Example 8. Find lim
x→0

1

x2
if it exists.
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Definition 2.2.4. The vertical line x = a is called a vertical asymptote of
the curve y = f(x) if at least one of the following statements is true:

lim
x→a

f(x) = ∞ lim
x→a−

f(x) = ∞ lim
x→a+

f(x) = ∞

lim
x→a

f(x) = −∞ lim
x→a−

f(x) = −∞ lim
x→a+

f(x) = −∞

Example 9. Find lim
x→3+

2x

x− 3
and lim

x→3−

2x

x− 3
.

Example 10. Find the vertical asymptotes of f(x) = tan x.
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2.3 Calculating Limits Using the Limit Laws

Theorem 2.3.1 (Limit Laws). Suppose that c is a constant and the limits

lim
x→a

f(x) and lim
x→a

g(x)

exist. Then

1. lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x)

2. lim
x→a

[f(x)− g(x)] = lim
x→a

f(x)− lim
x→a

g(x)

3. lim
x→a

[cf(x)] = c lim
x→a

f(x)

4. lim
x→a

[f(x)g(x)] = lim
x→a

f(x) · lim
x→a

g(x)

5. lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)
if lim

x→a
g(x) ̸= 0

x

y

0

f

g
1

1

Example 1. Use the Limit Laws and the graphs of f and g to
evaluate the following limits, if they exist.
(a) lim

x→−2
[f(x) + 5g(x)]

(b) lim
x→1

[f(x)g(x)]

(c) lim
x→2

f(x)

g(x)
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Theorem 2.3.2 (Power and Root Laws). By repeatedly applying the Product
Law and using some basic intuition we obtain the following:

6. lim
x→a

[f(x)]n =

[
lim
x→a

f(x)

]n
where n is a positive integer

7. lim
x→a

c = c

8. lim
x→a

x = a

9. lim
x→a

xn = an where n is a positive integer

10. lim
x→a

n
√
x = n

√
a where n is a positive integer

(If n is even, we assume that a > 0.)

11. lim
x→a

n
√

f(x) = n

√
lim
x→a

f(x) where n is a positive integer[
If n is even, we assume that lim

x→a
f(x) > 0.

]
Example 2. Evaluate the following limits and justify each step.

(a) lim
x→5

(2x2 − 3x+ 4)

(b) lim
x→−2

x3 + 2x2 − 1

5− 3x
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Theorem 2.3.3 (Direct Substitution Property). If f is a polynomial or a
rational function and a is in the domain of f , then

lim
x→a

f(x) = f(a).

Example 3. Find lim
x→1

x2 − 1

x− 1
.

Remark 1. If f(x) = g(x) when x ̸= a, then lim
x→a

f(x) = lim
x→a

g(x), provided the

limits exist.

Example 4. Find lim
x→1

g(x) where

g(x) =

{
x+ 1 if x ̸= 1,

π if x = 1.

Example 5. Evaluate lim
h→0

(3 + h)2 − 9

h
.

35



Calculus - 2.3 Calculating Limits Using the Limit Laws

Example 6. Find lim
t→0

√
t2 + 9− 3

t2
.

Example 7. Show that lim
x→0

|x| = 0.

Example 8. Prove that lim
x→0

|x|
x

does not exist.

Example 9. If

f(x) =

{√
x− 4 if x > 4,

8− 2x if x < 4.

determine whether lim
x→4

f(x) exists.
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Example 10. The greatest integer function is defined by JxK = the largest
integer that is less than or equal to x. (For instance, J4K = 4, J4.8K = 4,
JπK = 3, J

√
2K = 1, J−1

2
K = −1.) Show that lim

x→3
JxK does not exist.

Theorem 2.3.4. If f(x) ≤ g(x) when x is near a (except possibly at a) and
the limits of f and g both exist as x approaches a, then

lim
x→a

f(x) ≤ lim
x→a

g(x).

Theorem 2.3.5 (The Squeeze Theorem). If f(x) ≤ g(x) ≤ h(x) when x is
near a (except possibly at a) and

lim
x→a

f(x) = lim
x→a

h(x) = L

then
lim
x→a

g(x) = L.

Example 11. Show that lim
x→0

x2 sin
1

x
= 0.
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2.4 The Precise Definition of a Limit

Definition 2.4.1. Let f be a function defined on some open interval that
contains the number a, except possibly at a itself. Then we write

lim
x→a

f(x) = L

if for every number ε > 0 there is a number δ > 0 such that

if 0 < |x− a| < δ then |f(x)− L| < ε.

Example 1. Use a graph to find a number δ such that if x is within δ of 1,
then f(x) = x3 − 5x+ 6 is within 0.2 of 2.
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Example 2. Prove that lim
x→3

(4x− 5) = 7.

Definition 2.4.2.
lim
x→a−

f(x) = L

if for every number ε > 0 there is a number δ > 0 such that

if a− δ < x < a then |f(x)− L| < ε.

Similarly,
lim
x→a+

f(x) = L

if for every number ε > 0 there is a number δ > 0 such that

if a < x < a+ δ then |f(x)− L| < ε.

39



Calculus - 2.4 The Precise Definition of a Limit

Example 3. Prove that lim
x→0+

√
x = 0.

Example 4. Prove that lim
x→3

x2 = 9.
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Definition 2.4.3. Let f be a function defined on some open interval that
contains the number a, except possibly at a itself. Then

lim
x→a

f(x) = ∞

means that for every positive number M there is a positive number δ such
that

if 0 < |x− a| < δ then f(x) > M.

Similarly,
lim
x→a

f(x) = −∞

means that for every negative number N there is a positive number δ such
that

if 0 < |x− a| < δ then f(x) < N.

Example 5. Prove that lim
x→0

1

x2
= ∞.
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2.5 Continuity

Definition 2.5.1. A function f is continuous at a number a if

lim
x→a

f(x) = f(a).

We say that f is discontinuous at a (or f has a discontinuity at a) if f is not
continuous at a.

y

0 x1 2 3 4 5

Example 1. Use the graph of the function f to determine the
numbers at which f is discontinuous.

Example 2. Where are each of the following functions discontinuous?

(a) f(x) =
x2 − x− 2

x− 2

(b) f(x) =


1

x2
if x ̸= 0

1 if x = 0
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(c) f(x) =


x2 − x− 2

x− 2
if x ̸= 2

1 if x = 2

(d) f(x) = JxK

Definition 2.5.2. A function f is continuous from the right at a number a if

lim
x→a+

f(x) = f(a)

and f is continuous from the left at a if

lim
x→a−

f(x) = f(a).

Example 3. In which direction(s) is the function f(x) = JxK continuous?

Definition 2.5.3. A function f is continuous on an interval if it is continuous
at every number in the interval. (If f is defined only on one side of an endpoint
of the interval, we understand continuous at the endpoint to mean continuous
from the right or continuous from the left.)
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Example 4. Show that the function f(x) = 1−
√
1− x2 is continuous on the

interval [−1, 1].

Theorem 2.5.1. If f and g are continuous at a and c is a constant, then the
following functions are also continuous at a:

1. f + g 2. f − g 3. cf

4. fg 5.
f

g
if g(a) ̸= 0

Proof. All of these results follow from the Limit Laws. For example, f + g is
continuous at a because

lim
x→a

(f + g)(x) = lim
x→a

[f(x) + g(x)]

= lim
x→a

f(x) + lim
x→a

g(x)

= f(a) + g(a)

= (f + g)(a).

Theorem 2.5.2. (a) Any polynomial is continuous everywhere; that is, it is
continuous on R = (−∞,∞).

(b) Any rational function is continuous wherever it is defined; that is, it is
continuous on its domain.

Proof. (a) Let
P (x) = cnx

n + cn−1x
n−1 + · · ·+ c1x+ c0

be a polynomial where c0, c1, . . . , cn are constants. Then

lim
x→a

xm = am m = 1, 2, . . . , n

implies that the function f(x) = xm is continuous. Since

lim
x→a

c0 = c0,
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the constant function is continuous as well, and therefore the product
function g(x) = cxm is continuous. Since P is a sum of functions of this
form, it is continuous as well.

(b) Rational functions are quotients of polynomials, i.e.,

f(x) =
P (x)

Q(x)
,

where P and Q are polynomials. Thus the above result implies that they
are continuous on their domains.

Example 5. Find lim
x→−2

x3 + 2x2 − 1

5− 3x
.

Theorem 2.5.3. The following types of functions are continuous at every
number in their domains:
• polynomials • rational functions • root functions
• trigonometric functions • inverse trigonometric functions
• exponential functions • logarithmic functions

Example 6. Where is the function f(x) =
ln x+ tan−1 x

x2 − 1
continuous?

Example 7. Evaluate lim
x→π

sin x

2 + cos x
.
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Calculus - 2.5 Continuity

Theorem 2.5.4. If f is continuous at b and lim
x→a

g(x) = b, then lim
x→a

f(g(x)) =

f(b), i.e.,

lim
x→a

f(g(x)) = f

(
lim
x→a

g(x)

)
.

Proof. Let ε > 0. Since f is continuous at b, we have limy→b f(y) = f(b) and
so there exists δ1 > 0 such that

if 0 < |y − b| < δ1 then |f(y)− f(b)| < ε.

Since limx→a g(x) = b, there exists δ > 0 such that

if 0 < |x− a| < δ then |g(x)− b| < δ1.

By letting y = g(x) in the first statement, we get that 0 < |x− a| < δ implies
that

∣∣f(g(x))− f(b)
∣∣ < ε, i.e., limx→a f(g(x)) = f(b).

Example 8. Evaluate lim
x→1

arcsin

(
1−

√
x

1− x

)
.

Theorem 2.5.5. If g is continuous at a and f is continuous at g(a), then the
composite function f ◦ g given by (f ◦ g)(x) = f(g(x)) is continuous at a.

Proof. Since g is continuous at a, we have

lim
x→a

g(x) = g(a).

Since f is continuous at g(a), we have

lim
x→a

f(g(x)) = f

(
lim
x→a

g(x)

)
= f(g(a)),

which means f ◦ g is continuous.
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Example 9. Where are the following functions continuous?

(a) h(x) = sin(x2)

(b) F (x) = ln(1 + cos x)

Theorem 2.5.6 (Intermediate Value Theorem). Suppose that f is continuous
on the closed interval [a, b] and let N be any number between f(a) and f(b),
where f(a) ̸= f(b). Then there exists a number c in (a, b) such that f(c) = N .

Example 10. Show that there is a root of the equation 4x3−6x2+3x−2 = 0
between 1 and 2.
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2.6 Limits at Infinity

Definition 2.6.1. Let f be a function defined on some interval (a,∞). Then

lim
x→∞

f(x) = L

means that the values of f(x) can be made arbitrarily close to L by requiring
x to be sufficiently large.

Definition 2.6.2. Let f be a function defined on some interval (−∞, a). Then

lim
x→−∞

f(x) = L

means that the values of f(x) can be made arbitrarily close to L by requiring
x to be sufficiently large negative.

Definition 2.6.3. The line y = L is called a horizontal asymptote of the
curve y = f(x) if either

lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L.

0 x

y

2

2

Example 1. Find the infinite limits, limits at infinity, and
asymptotes for the function f whose graph is shown.

Example 2. Find lim
x→∞

1

x
and lim

x→−∞

1

x
.
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Theorem 2.6.1. If r > 0 is a rational number, then

lim
x→∞

1

xr
= 0.

If r > 0 is a rational number such that xr is defined for all x, then

lim
x→−∞

1

xr
= 0.

Proof. By extending the limit laws to limits at infinity we get

lim
x→∞

1

xr
= lim

x→∞

[
1

x

]r
=

[
lim
x→∞

1

x

]r
= 0r = 0

lim
x→−∞

1

xr
= lim

x→−∞

[
1

x

]r
=

[
lim

x→−∞

1

x

]r
= 0r = 0.

Example 3. Evaluate

lim
x→∞

3x2 − x− 2

5x2 + 4x+ 1
.
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Calculus - 2.6 Limits at Infinity

Example 4. Find the horizontal and vertical asymptotes of the graph of the
function

f(x) =

√
2x2 + 1

3x− 5
.
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Example 5. Compute lim
x→∞

(
√
x2 + 1− x).

Example 6. Evaluate lim
x→2+

arctan

(
1

x− 2

)
.

Example 7. Evaluate lim
x→0−

e1/x.

Example 8. Evaluate lim
x→∞

sin x.
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Example 9. Find lim
x→∞

x3 and lim
x→−∞

x3.

Example 10. Find lim
x→∞

(x2 − x).

Example 11. Find lim
x→∞

x2 + x

3− x
.

Example 12. Sketch the graph of y = (x− 2)4(x + 1)3(x− 1) by finding its
intercepts and its limits as x → ∞ and as x → −∞.
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Definition 2.6.4. Let f be a function defined on some interval (a,∞). Then

lim
x→∞

f(x) = L

means that for every ε > 0 there is a corresponding number N such that

if x > N then |f(x)− L| < ε.

Definition 2.6.5. Let f be a function defined on some interval (−∞, a). Then

lim
x→−∞

f(x) = L

means that for every ε > 0 there is a corresponding number N such that

if x < N then |f(x)− L| < ε.

Example 13. Use a graph to find a number N such that

if x > N then

∣∣∣∣∣ 3x2 − x− 2

5x2 + 4x+ 1
− 0.6

∣∣∣∣∣ < 0.1.

Example 14. Prove that lim
x→∞

1

x
= 0.
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Definition 2.6.6. Let f be a function defined on some interval (a,∞). Then

lim
x→∞

f(x) = ∞

means that for every positive number M there is a corresponding positive
number N such that

if x > N then f(x) > M.

Definition 2.6.7. Let f be a function defined on some interval (a,∞). Then

lim
x→∞

f(x) = −∞

means that for every negative number M there is a corresponding positive
number N such that

if x > N then f(x) < M.

Definition 2.6.8. Let f be a function defined on some interval (−∞, a). Then

lim
x→−∞

f(x) = ∞

means that for every positive number M there is a corresponding negative
number N such that

if x < N then f(x) > M.

Definition 2.6.9. Let f be a function defined on some interval (−∞, a). Then

lim
x→−∞

f(x) = −∞

means that for every negative number M there is a corresponding negative
number N such that

if x < N then f(x) < M.
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2.7 Derivatives and Rates of Change

Definition 2.7.1. The tangent line to the curve y = f(x) at the point
P (a, f(a)) is the line through P with slope

m = lim
x→a

f(x)− f(a)

x− a

provided that this limit exists.

Example 1. Find an equation of the tangent line to the parabola y = x2 at
the point P (1, 1).

Example 2. Use the alternative expression for the slope of a tangent line

m = lim
h→0

f(a+ h)− f(a)

h

to find an equation of the tangent line to the hyperbola y = 3/x at the point
(3, 1).
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Calculus - 2.7 Derivatives and Rates of Change

Definition 2.7.2. A function f describing the motion of an object along a
straight line is called a position function and has velocity

v(a) = lim
h→0

f(a+ h)− f(a)

h

at time t = a.

Example 3. Suppose that a ball is dropped from the upper observation deck
of the CN Tower, 450 m above the ground. Recall that the distance (in meters)
fallen after t seconds is 4.9t2.
(a) What is the velocity of the ball after 5 seconds?

(b) How fast is the ball traveling when it hits the ground?
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Definition 2.7.3. The derivative of a function f at a number a, denoted by
f ′(a) is

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
,

or equivalently

f ′(a) = lim
x→a

f(x)− f(a)

x− a

if this limit exists.

Example 4. Find the derivative of the function f(x) = x2 − 8x + 9 at the
number a.

Example 5. Find an equation of the tangent line to the parabola y = x2 −
8x+ 9 at the point (3,−6).
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Definition 2.7.4. Suppose y is a quantity that depends on another quantity
x. Then y is a function of x and we write y = f(x). If x changes from x1 to
x2, then the change in x (also called the increment of x) is

∆x = x2 − x1

and the corresponding change in y is

∆y = f(x2)− f(x1).

The average rate of change of y with respect x over the interval [x1, x2] is

∆y

∆x
=

f(x2)− f(x1)

x2 − x1

and the instantaneous rate of change of y with respect to x is

lim
∆x→0

∆y

∆x
= lim

x2→x1

f(x2)− f(x1)

x2 − x1

= f ′(x).

Example 6. A manufacturer produces bolts of a fabric with a fixed width.
The cost of producing x yards of this fabric is C = f(x) dollars.
(a) What is the meaning of the derivative of f ′(x)? What are its units?

(b) In practical terms, what does it mean to say that f ′(1000) = 9?

(c) Which do you think is greater, f ′(50) or f ′(500)? What about f ′(5000)?
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Calculus - 2.7 Derivatives and Rates of Change

t D(t)
1985 1945.9
1990 3364.8
1995 4988.7
2000 5662.2
2005 8170.4
2010 14, 025.2

Source: US Dept. of the Treasury

Example 7. Let D(t) be the US national debt at time t. The
table gives approximate values of this function by providing end
of year estimates, in billions of dollars, from 1985 to 2010. In-
terpret and estimate the value of D′(2000).
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2.8 The Derivative as a Function

Definition 2.8.1. The derivative of a function f is the function

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

if this limit exists.

x

y

10

1

y=ƒ

FIGURE 1 

Example 1. The graph of a function f is given. Use it to sketch
the graph of the derivative f ′.

Example 2. (a) If f(x) = x3 − x, find a formula for f ′(x).

(b) Illustrate this formula by comparing the graphs of f and f ′.
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Example 3. If f(x) =
√
x, find the derivative of f . State the domain of f ′.

Example 4. Find f ′ if f(x) =
1− x

2 + x
.

Definition 2.8.2. The symbols D and d/dx are called differentiation opera-
tors and are used as follows:

f ′(x) = y′ = lim
∆x→0

∆y

∆x
=

dy

dx
=

df

dx
=

d

dx
f(x) = Df(x) = Dxf(x).

For fixed a, we use the notation

dy

dx

∣∣∣∣
x=a

or
dy

dx

]
x=a

Definition 2.8.3. A function f is differentiable at a if f ′(a) exists. It is dif-
ferentiable on an open interval (a, b) [or (a,∞) or (−∞, a) or (−∞,∞)] if it
is differentiable at every number in the interval.
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Example 5. Where is the function f(x) = |x| differentiable?
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Theorem 2.8.1. If f is differentiable at a, then f is continuous at a.

Proof. If f is differentiable at a, we have

lim
x→a

[f(x)− f(a)] = lim
x→a

f(x)− f(a)

x− a
(x− a)

= lim
x→a

f(x)− f(a)

x− a
· lim
x→a

(x− a)

= f ′(a) · 0 = 0.

Therefore,

lim
x→a

f(x) = lim
x→a

[f(a) + (f(x)− f(a))]

= lim
x→a

f(a) + lim
x→a

[f(x)− f(a)]

= f(a) + 0 = f(a).

Definition 2.8.4. If the derivative f ′ of a function f has a derivative of its
own we call it the second derivative of f and denote it by

(f ′)′ = f ′′ =
d

dx

(
dy

dx

)
=

d2y

dx2

Example 6. If f(x) = x3 − x, find and interpret f ′′(x).

Definition 2.8.5. The instantaneous rate of change of velocity with respect
to time is called the acceleration a(t) of an object. It is the derivative of the
velocity function, and therefore the second derivative of the position function:

a(t) = v′(t) = s′′(t).
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Definition 2.8.6. The third derivative f ′′′ is the derivative of the second
derivative, denoted by

(f ′′)′ = f ′′′.

Definition 2.8.7. The instantaneous rate of change of acceleration with re-
spect to time is called the jerk j(t) of an object. It is the derivative of the
acceleration function, and therefore the third derivative of the position func-
tion:

j(t) = a′(t) = v′′(t) = s′′′(t).

Definition 2.8.8. The fourth derivative f ′′′′ is usually denoted by f (4). In
general, the nth derivative of f is denoted by f (n) and is obtained from f by
differentiating n times. If y = f(x), we write

y(n) = f (n)(x) =
dny

dxn

Example 7. If f(x) = x3 − x, find f ′′′(x) and f (4)(x).

64



Chapter 3

Differentiation Rules

3.1 Derivatives of Polynomials and Exponen-

tials

Theorem 3.1.1. The derivative of a constant function f(x) = c is 0, i.e.,

d

dx
(c) = 0.

Proof.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

c− c

h
= lim

h→0
0 = 0.

Theorem 3.1.2.

d

dx
(x) = 1

d

dx
(x2) = 2x

d

dx
(x3) = 3x2 d

dx
(x4) = 4x3

Proof. All of these follow directly from the definition of the derivative, as
above.

Theorem 3.1.3 (The Power Rule). If n is a positive integer, then

d

dx
(xn) = nxn−1.

Proof. Since

xn − an = (x− a)(xn−1 + xn−2a+ · · ·+ xan−2 + an−1),
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we have

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

x→a

xn − an

x− a

= lim
x→a

(xn−1 + xn−2a+ · · ·+ xan−2 + an−1)

= an−1 + an−2a+ · · ·+ aan−2 + an−1

= an−1 + an−1 + · · ·+ an−1 + an−1︸ ︷︷ ︸
n

= nan−1.

Example 1. Find the derivative of each of the following:
(a) f(x) = x6

(b) y = x1000

(c) y = t4

(d) f(r) = r3

Theorem 3.1.4 (The Power Rule (General Version)). If n is any real number,
then

d

dx
(xn) = nxn−1.

Example 2. Differentiate:

(a) f(x) =
1

x2

(b) y =
3
√
x2

Definition 3.1.1. The normal line to a curve C at a point P is the line
through P that is perpendicular to the tangent line at P .
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Example 3. Find equations of the tangent line and normal line to the curve
y = x

√
x at the point (1, 1).

Theorem 3.1.5 (The Constant Multiple Rule). If c is a constant and f is a
differentiable function, then

d

dx
[cf(x)] = c

d

dx
f(x).

Proof. Let g(x) = cf(x). Then

g′(x) = lim
h→0

g(x+ h)− g(x)

h
= lim

h→0

cf(x+ h)− cf(x)

h

= lim
h→0

c

[
f(x+ h)− f(x)

h

]
= c lim

h→0

f(x+ h)− f(x)

h
= cf ′(x).

Example 4. Find:

(a)
d

dx
(3x4)

(b)
d

dx
(−x)

Theorem 3.1.6 (The Sum Rule). If f and g are both differentiable, then

d

dx
[f(x) + g(x)] =

d

dx
f(x) +

d

dx
g(x).
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Proof. Let F (x) = f(x) + g(x). Then

F ′(x) = lim
h→0

F (x+ h)− F (x)

h

= lim
h→0

[f(x+ h) + g(x+ h)]− [f(x) + g(x)]

h

= lim
h→0

[
f(x+ h)− f(x)

h
+

g(x+ h)− g(x)

h

]
= lim

h→0

f(x+ h)− f(x)

h
+ lim

h→0

g(x+ h)− g(x)

h
= f ′(x) + g′(x).

Theorem 3.1.7 (The Difference Rule). If f and g are both differentiable, then

d

dx
[f(x)− g(x)] =

d

dx
f(x)− d

dx
g(x).

Example 5. Find
d

dx
(x8 + 12x5 − 4x4 + 10x3 − 6x+ 5).

Example 6. Find the points on the curve y = x4− 6x2+4 where the tangent
line is horizontal.
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Example 7. The equation of motion of a particle is s = 2t3 − 5t2 + 3t + 4,
where s is measured in centimeters and t in seconds. Find the acceleration as
a function of time. What is the acceleration after 2 seconds?

Definition 3.1.2. e is the number such that lim
h→0

eh − 1

h
= 1.

Theorem 3.1.8.
d

dx
(ex) = ex.

Example 8. If f(x) = ex − x, find f ′ and f ′′.

Example 9. At what point on the curve y = ex is the tangent line parallel to
the line y = 2x?
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3.2 The Product and Quotient Rules

Theorem 3.2.1 (The Product Rule). If f and g are both differentiable, then

d

dx
[f(x)g(x)] = f(x)

d

dx
[g(x)] + g(x)

d

dx
[f(x)].

Proof. By the definition of the derivative on the product,

d

dx
[f(x)g(x)] = lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)

h

= lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x) + f(x+ h)g(x)− f(x)g(x)

h

= lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x)

h
+ lim

h→0

f(x+ h)g(x)− f(x)g(x)

h

= lim
h→0

f(x+ h)[g(x+ h)− g(x)]

h
+ lim

h→0

g(x)[f(x+ h)− f(x)]

h

= lim
h→0

f(x+ h) lim
h→0

g(x+ h)− g(x)

h
+ lim

h→0
g(x) lim

h→0

f(x+ h)− f(x)

h

= f(x)
d

dx
[g(x)] + g(x)

d

dx
[f(x)].

Example 1. (a) If f(x) = xex, find f ′(x).

(b) Find the nth derivative, f (n)(x).
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Example 2. Differentiate the function f(t) =
√
t(a+ bt).

Example 3. If f(x) =
√
xg(x), where g(4) = 2 and g′(4) = 3, find f ′(4).

Theorem 3.2.2 (The Quotient Rule). If f and g are differentiable, then

d

dx

[
f(x)

g(x)

]
=

g(x)
d

dx
[f(x)]− f(x)

d

dx
[g(x)]

[g(x)]2
.

Proof. Similar to the Product Rule, except we add and subtract f(x)g(x) in
the numerator when applying the definition of the derivative.
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Example 4. Let y =
x2 + x− 2

x3 + 6
. Find y′.

Example 5. Find an equation of the tangent line to the curve y = ex/(1+x2)
at the point (1, 1

2
e).
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3.3 Derivatives of Trigonometric Functions

Theorem 3.3.1. The derivative of the sine function is the cosine function,
i.e.,

d

dx
(sin x) = cos x.

Example 1. Differentiate y = x2 sin x.

Theorem 3.3.2. The derivative of the cosine function is the negative sine
function, i.e.,

d

dx
(cos x) = − sinx.

Theorem 3.3.3. The derivative of the tangent function is the square of the
secant function, i.e.,

d

dx
(tan x) = sec2 x.

Proof. By the Quotient Rule,

d

dx
(tan x) =

d

dx

(
sin x

cos x

)

=
cos x

d

dx
(sin x)− sin x

d

dx
(cos x)

cos2 x

=
cos x · cos x− sin x(− sin x)

cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
= sec2 x.
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Theorem 3.3.4. The derivatives of the trigonometric functions are

d

dx
(sin x) = cos x

d

dx
(csc x) = − cscx cot x

d

dx
(cos x) = − sinx

d

dx
(sec x) = sec x tan x

d

dx
(tan x) = sec2 x

d

dx
(cot x) = − csc2 x.

Example 2. Differentiate f(x) =
sec x

1 + tan x
. For what values of x does the

graph of f have a horizontal tangent?
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EXAMPLE 2 Differentiate f sxd −
sec x

1 1 tan x
. For what values of x does the graph  

of f  have a horizontal tangent?

SOLUTION The Quotient Rule gives 

  f 9sxd −
s1 1 tan xd 

d
dx

 ssec xd 2 sec x 
d
dx

 s1 1 tan xd

s1 1 tan xd2

 −
s1 1 tan xd sec x tan x 2 sec x ? sec2x

s1 1 tan xd2

 −
sec x stan x 1 tan2x 2 sec2xd

s1 1 tan xd2

 −
sec x stan x 2 1d

s1 1 tan xd2

In simplifying the answer we have used the identity tan2x 1 1 − sec2x.
Since sec x is never 0, we see that f 9sxd − 0 when tan x − 1, and this occurs when 

x − n ! 1 !y4, where n  is an integer (see Figure 4). ■

Trigonometric functions are often used in modeling real-world phenomena. In par-
ticular, vibrations, waves, elastic motions, and other quantities that vary in a periodic 
manner can be described using trigonometric functions. In the following example we 
discuss an instance of simple harmonic motion.

EXAMPLE 3 An object at the end of a vertical spring is stretched 4 cm beyond its rest 
position and released at time t − 0. (See Figure 5 and note that the downward direction 
is positive.) Its position at time t is

s − f std − 4 cos t

Find the velocity and acceleration at time t and use them to analyze the motion of the 
object.

SOLUTION The velocity and acceleration are

v −
ds
dt

−
d
dt

 s4 cos td − 4 
d
dt

 scos td − 24 sin t

a −
dv
dt

−
d
dt

 s24 sin td − 24 
d
dt

 ssin td − 24 cos t

The object oscillates from the lowest point ss − 4 cmd to the highest point 
ss − 24 cmd. The period of the oscillation is 2!, the period of cos t.

The speed is | v | − 4| sin t |, which is greatest when | sin t | − 1, that is, when 
cos t − 0. So the object moves fastest as it passes through its equilibrium position 
ss − 0d. Its speed is 0 when sin t − 0, that is, at the high and low points.

The acceleration a − 24 cos t − 0 when s − 0. It has greatest magnitude at the 
high and low points. See the graphs in Figure 6. ■

3

_3

_3 5

FIGURE 4 
 The horizontal tangents in Example 2 

s

0

4

FIGURE 5

2

_2

√
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π 2π t0

FIGURE 6
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Example 3. An object at the end of a vertical spring is stretched to
4 cm beyond its reset position and released at time t = 0. (See the
figure and note that the downward direction is positive.) Its position
at time t is

s = f(t) = 4 cos t.

Find the velocity and acceleration at time t and use them to analyze the motion
of the object.
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Example 4. Find the 27th derivative of cosx.

Example 5. Find lim
x→0

sin 7x

4x
.

Example 6. Calculate lim
x→0

x cotx.

75



Calculus - 3.4 The Chain Rule

3.4 The Chain Rule

Theorem 3.4.1 (The Chain Rule). If g is differentiable at x and f is differen-
tiable at g(x), then the composite function F = f ◦g defined by F (x) = f(g(x))
is differentiable at x and F ′ is given by the product

F ′(x) = f ′(g(x)) · g′(x).

Example 1. Find F ′(x) if F (x) =
√
x2 + 1.

Example 2. Differentiate (a) y = sin(x2) and (b) y = sin2 x.
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Theorem 3.4.2 (The Power Rule Combined with the Chain Rule). If n is
any real number and u = g(x) is differentiable, then

d

dx
(un) = nun−1du

dx
.

Example 3. Differentiate y = (x3 − 1)100.

Example 4. Find f ′(x) if f(x) =
1

3
√
x2 + x+ 1

.

Example 5. Find the derivative of the function

g(t) =

(
t− 2

2t+ 1

)9

.
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Example 6. Differentiate y = (2x+ 1)5(x3 − x+ 1)4.

Example 7. Differentiate y = esinx.

Theorem 3.4.3. The derivative of the exponential function is

d

dx
(bx) = bx ln b.

Proof. Since
bx = (eln b)x = e(ln b)x,

the Chain Rule gives

d

dx
(bx) =

d

dx
(e(ln b)x)

= e(ln b)x d

dx
(ln b)x

= e(ln b)x · ln b
= bx ln b.
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Example 8. Find
d

dx
(2x).

Example 9. Find f ′(x) if f(x) = sin(cos(tan x)).

Example 10. Differentiate y = esec 3θ.

79



Calculus - 3.5 Implicit Differentiation

3.5 Implicit Differentiation

Definition 3.5.1. Implicit differentiation is the method of differentiation both
sides of an equation with respect to x, and then solving the equation for y′

when y = f(x).

Example 1. (a) If x2 + y2 = 25, find
dy

dx
.

(b) Find an equation of the tangent to the circle x2 + y2 = 25 at the point
(3, 4).

80



Calculus - 3.5 Implicit Differentiation

Example 2. (a) Find y′ if x3 + y3 = 6xy.

(b) Find the tangent to the folium of Descartes x3 + y3 = 6xy at the point
(3, 3).

(c) At what point in the first quadrant is the tangent line horizontal?
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Example 3. Find y′ if sin(x+ y) = y2 cos x.

Example 4. Find y′′ if x4 + y4 = 16.
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Theorem 3.5.1. The derivative of the arcsine function is

d

dx
(sin−1 x) =

1√
1− x2

.

Proof. Since y = sin−1 x means sin y = x and −π/2 ≤ y ≤ π/2, we have
cos y ≥ 0. Thus we can differentiate to obtain

sin y = x

cos y
dy

dx
= 1

dy

dx
=

1

cos y

=
1√

1− sin2 y

=
1√

1− x2
.

Theorem 3.5.2. The derivative of the arctangent function is

d

dx
(tan−1 x) =

1

1 + x2
.

Proof. If y = tan−1 x, then tan y = x. Differentiating then gives us

tan y = x

sec2 y
dy

dx
= 1

dy

dx
=

1

sec2 y

=
1

1 + tan2 y

=
1

1 + x2
.
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Example 5. Differentiate

(a) y =
1

sin−1 x

(b) f(x) = x arctan
√
x.

Theorem 3.5.3. The derivatives of the Inverse Trigonometric Functions are

d

dx
(sin−1 x) =

1√
1− x2

d

dx
(csc−1 x) = − 1

x
√
x2 − 1

d

dx
(cos−1 x) = − 1√

1− x2

d

dx
(sec−1 x) =

1

x
√
x2 − 1

d

dx
(tan−1 x) =

1

1 + x2

d

dx
(cot−1 x) = − 1

1 + x2
.
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Theorem 3.5.4. Suppose f is a one-to-one differentiable function and its
inverse function f−1 is also differentiable. Then f−1 has derivative

(f−1)′(x) =
1

f ′(f−1(x))

provided that the denominator is not 0.

Proof. Since (f ◦ f−1)(x) = x, we have, by the chain rule,

(f ◦ f−1)(x) = x

(f ◦ f−1)′(x) = 1

f ′(f−1(x))(f−1)′(x) = 1

(f−1)′(x) =
1

f ′(f−1(x))
.

Example 6. If f(4) = 5 and f ′(4) = 2
3
, find (f−1)′(5).
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3.6 Derivatives of Logarithmic Functions

Theorem 3.6.1. The derivative of the logarithm function is

d

dx
(logb x) =

1

x ln b
.

Proof. Let y = logb x. Then by = x, so by differentiating we get

by = x

by(ln b)
dy

dx
= 1

dy

dx
=

1

by ln b

=
1

x ln b
.

Theorem 3.6.2. The derivative of the natural logarithm is

d

dx
(ln x) =

1

x
.

Example 1. Differentiate y = ln(x3 + 1).

Example 2. Find
d

dx
ln(sin x).
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Example 3. Differentiate f(x) =
√
ln x.

Example 4. Differentiate f(x) = log10(2 + sin x).

Example 5. Find
d

dx
ln

x+ 1√
x− 2

.

Example 6. Find f ′(x) if f(x) = ln |x|.

87



Calculus - 3.6 Derivatives of Logarithmic Functions

Definition 3.6.1. Logarithmic differentiation is the method of calculating
derivatives of functions by taking logarithms, differentiating implicitly, and
then solving the resulting equation for the derivative.

Example 7. Differentiate y =
x3/4

√
x2 + 1

(3x+ 2)5
.

Theorem 3.6.3 (The Power Rule). If n is any real number and f(x) = xn,
then

f ′(x) = nxn−1.

Proof. Let y = xn. By logarithmic differentiation we get

y = xn

ln |y| = ln |x|n

= n ln |x| x ̸= 0

y′

y
=

n

x

y′ = n
y

x

= n
xn

x
= nxn−1.
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Example 8. Differentiate y = x
√
x.

Theorem 3.6.4. The number e can be defined as the limit

e = lim
n→∞

(
1 +

1

n

)n

.

Proof. If f(x) = ln x, then f ′(1) = 1, so

f ′(1) = lim
h→0

f(1 + h)− f(1)

h
= lim

x→0

f(1 + x)− f(1)

x

= lim
x→0

ln(1 + x)− ln 1

x
= lim

x→0

1

x
ln(1 + x)

= lim
x→0

ln(1 + x)1/x = 1.

Thus

e = e1 = e

(
lim
x→0

ln(1+x)1/x
)
= lim

x→0
eln(1+x)1/x = lim

x→0
(1 + x)1/x.

Then if we let n = 1/x, n → ∞ as x → 0+, so we are done.

89



Calculus - 3.7 Rates of Change in the Sciences

3.7 Rates of Change in the Sciences

Example 1. The position of a particle is given by the equation

s = f(t) = t3 − 6t2 + 9t

where t is measured in seconds and s in meters.

(a) Find the velocity at time t.

(b) What is the velocity after 2 s? After 4 s?

(c) When is the particle at rest?

(d) When is the particle moving forward (that is, in the positive direction)?
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(e) Draw a diagram to represent the motion of the particle.

(f) Find the total distance traveled by the particle during the first five seconds.

(g) Find the acceleration at time t and after 4 s.

(h) Graph the position, velocity, and acceleration functions for 0 ≤ t ≤ 5.
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(i) When is the particle speeding up? When is it slowing down?

Example 2. If a rod or piece of wire is homogeneous, then its linear density is
uniform and is defined as the mass per unit length (ρ = m/l) and measured in
kilograms per meter. Suppose, however, that the rod is not homogeneous but
that its mass measured from its left end to a point x is m = f(x), as shown
in the figure.

226 CHAPTER 3  Differentiation Rules

( i) The particle speeds up when the velocity is positive and increasing (v and a are  
both positive) and also when the velocity is negative and decreasing (v and a are both 
negative). In other words, the particle speeds up when the velocity and acceleration  
have the same sign. (The particle is pushed in the same direction it is moving.) From 
Figure 3 we see that this happens when 1 , t , 2 and when t . 3. The particle slows 
down when v and a have opposite signs, that is, when 0 < t , 1 and when 2 , t , 3. 
Figure 4 summarizes the motion of the particle.

1

5

_5

√
s

a

forward

slows
down

slows
down

backward

speeds
up

speeds
up

forward

t0

■

EXAMPLE 2 If a rod or piece of wire is homogeneous, then its linear density is uniform 
and is defined as the mass per unit length s! − myld and measured in kilograms per 
meter. Suppose, however, that the rod is not homogeneous but that its mass measured 
from its left end to a point x is m − f sxd, as shown in Figure 5.

x¡ x™
This part of the rod has mass ƒ. 

x

The mass of the part of the rod that lies between x − x1 and x − x2 is given by 
Dm − f sx2 d 2 f sx1d, so the average density of that part of the rod is

average density −
Dm
Dx

−
 f sx2 d 2 f sx1d

x2 2 x1

If we now let Dx l 0 (that is, x2 l x1), we are computing the average density over 
smaller and smaller intervals. The linear density ! at x1 is the limit of these average 
densities as Dx l 0; that is, the linear density is the rate of change of mass with 
respect to length. Symbolically, 

! − lim
Dx l 0

 
Dm
Dx

−
dm
dx

Thus the linear density of the rod is the derivative of mass with respect to length.
For instance, if m − f sxd − sx , where x is measured in meters and m in kilograms, 

then the average density of the part of the rod given by 1 < x < 1.2 is

Dm
Dx

−
 f s1.2d 2 f s1d

1.2 2 1
−

s1.2 2 1
0.2

< 0.48 kgym

TEC In Module 3.7 you can see 
an animation of Figure 4 with an 
expression for s that you can choose 
yourself.

FIGURE 4

FIGURE 5
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In this case the average density is the average rate of change over a given
interval, and the linear density is the limit of these average densities.
If m = f(x) =

√
x, where x is measured in meters and m in kilograms, find

the average density of the part of the rod given by 1 ≤ x ≤ 1.2 and the density
at x = 1.
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Example 3. The average current during a time interval is the average rate
of change of the net charge over that interval, and the current at a given time
is the limit of the average current (the rate at which charge flows through a
surface, measured in units of charge per unit time). The quantity of charge
Q in coulombs (C) that has passed through a point in a wire up to time t
(measured in seconds) is given by Q(t) = t3−2t2+6t+2. [The unit of current
is an ampere (1 A = 1 C/s).] Find the current when
(a) t = 0.5 s

(b) t = 1 s.

At what time is the current lowest?
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Example 4. The concentration of a reactant A is the number of moles (1
mole = 6.022× 1023 molecules) per liter and is denoted by [A] for a chemical
reaction

A + B → C.

The average rate of reaction during a time interval is the average rate of
change of the concentration of the product [C] over that interval, and the rate
of reaction at a given time is the limit of the average rate of reaction.
If one molecule of a product C is formed from one molecule of a reactant A
and one molecule of a reactant B, and the initial concentrations of A and B
have a common value [A] = [B] = a moles/L, then

[C] =
a2kt

akt+ 1

where k is a constant.

(a) Find the rate of reaction at time t.

(b) Show that if x = [C], then

dx

dt
= k(a− x)2.
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(c) What happens to the concentration as t → ∞?

(d) What happens to the rate of reaction as t → ∞?

(e) What do the results of parts (c) and (d) mean in practical terms?
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Example 5. If a given substance is kept a constant temperature, then the
rate of change of its volume V with respect to its pressure P is the derivative
dV/dP . The compressibility is defined by

isothermal compressibility = β = − 1

V

dV

dP
.

The volume V (in cubic meters) of a sample of air at 25◦C was found to be
related to the pressure P (in kilopascals) by the equation

V =
5.3

P
.

Determine the compressibility when P = 50 kPa.

Example 6. Let n = f(t) be the number of individuals in an animal or plant
population at time t. The average rate of growth during a time period is the
average rate of change of the growth of the population over that time period,
and the rate of growth at a given time is the limit of the average rate of
growth.
Suppose that a population of bacteria doubles every hour. The population
function representing the bacteria’s growth can be found to be

n = n02
t

where n0 is the initial population and the time t is measured in hours.
Find the rate of growth for a colony of bacteria with an initial population
n0 = 100 after 4 hours.
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Example 7. The shape of a blood vessel can be modeled by a cylindrical tube
with radius R and length l as illustrated in the figure.

230 CHAPTER 3  Differentiation Rules

In Section 3.4 we showed that

d
dx

 sbx d − bx ln b

So the rate of growth of the bacteria population at time t is

dn
dt

−
d
dt

 sn02td − n02t ln 2

For example, suppose that we start with an initial population of n0 − 100 bacteria. 
Then the rate of growth after 4 hours is

dn
dt

 Z
t−4

− 100 ? 24 ln 2 − 1600 ln 2 < 1109

This means that, after 4 hours, the bacteria population is growing at a rate of about 
1109 bacteria per hour. ■

EXAMPLE 7 When we consider the flow of blood through a blood vessel, such as a 
vein or artery, we can model the shape of the blood vessel by a cylindrical tube with 
radius R and length l as illustrated in Figure 8.

R r

l

Because of friction at the walls of the tube, the velocity v of the blood is greatest along 
the central axis of the tube and decreases as the distance r from the axis increases until 
v becomes 0 at the wall. The relationship between v and r is given by the law of lami-
nar flow discovered by the French physician Jean-Louis-Marie Poiseuille in 1840. This 
law states that

1   v −
P

4!l
 sR2 2 r 2 d

where ! is the viscosity of the blood and P is the pressure difference between the ends 
of the tube. If P and l are constant, then v is a function of r with domain f0, Rg.

The average rate of change of the velocity as we move from r − r1 outward to 
r − r2 is given by

Dv
Dr

−
vsr2 d 2 vsr1d

r2 2 r1

and if we let Dr l 0, we obtain the velocity gradient, that is, the instantaneous rate of 
change of velocity with respect to r:

velocity gradient − lim
Dr l 0

 
Dv
Dr

−
dv
dr

Using Equation 1, we obtain

dv
dr

−
P

4!l
 s0 2 2rd − 2

Pr
2!l

FIGURE 8  
Blood flow in an artery

For more detailed information, see  
W. Nichols and M. O’Rourke (eds.), 
McDonald’s Blood Flow in Arteries: 
Theoretical, Experimental, and Clinical 
Principles, 5th ed. (New York, 2005).
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The relationship between the velocity v of the blood and the distance r from
the axis is given by the law of laminar flow

v =
P

4ηl
(R2 − r2)

where η is the viscosity of the blood and P is the pressure difference between
the ends of the tube. If P and l are constant, then v is a function of r with
domain [0, R]. The velocity gradient at a given time is the limit of the average
rate of change of the velocity.
For one of the smaller human arteries we can take η = 0.027, R = 0.008 cm,
l = 2 cm, and P = 4000 dynes/cm2. Find the speed at which blood is flowing
at r = 0.002 and find the velocity gradient at that point.
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Example 8. Suppose C(x) is the total cost that a company incurs in produc-
ing x units of a certain commodity. The function C is called a cost function.
The instantaneous rate of change of cost with respect to the number of items
produced, called the marginal cost, is the limit of the average rate of change
of the cost.
Suppose a company has estimated that the cost (in dollars) of producing x
items is

C(x) = 10, 000 + 5x+ 0.01x2.

Find the marginal cost at the production level of 500 items and compare it to
the actual cost of producing the 501st item.
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3.8 Exponential Growth and Decay

Definition 3.8.1. The equation

dy

dt
= ky

is called the law of natural growth (if k > 0) or the law of natural decay (if
k < 0). It is called a differential equation because it involves an unknown
function y and its derivative dy/dt.

Theorem 3.8.1. The only solutions of the differential equation dy/dt = ky
are the exponential functions

y(t) = y(0)ekt.

Definition 3.8.2. If P (t) is the size of a population at time t, then

k =
1

P

dP

dt

is the growth rate divided by population, called the relative growth rate.

Example 1. Use the fact that the world population was 2560 million in 1950
and 3040 million in 1960 to model the population of the world in the second
half of the 20th century. (Assume that the growth rate is proportional to the
population size.) What is the relative growth rate? Use the model to estimate
the world population in 1993 and to predict the population in the year 2020.
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Definition 3.8.3. If m(t) is the mass remaining from an initial mass m0 of a
substance after time t, then the relative decay rate is

− 1

m

dm

dt
.

It follows that the mass decays exponentially according to the equation

m(t) = m0e
kt,

where the rate of decay is expressed in terms of half-life, the time required for
half of any given quantity to decay.

Example 2. The half-life of radium-226 is 1590 years.

(a) A sample of radium-226 has a mass of 100 mg. Find a formula for the
mass of the sample that remains after t years.

(b) Find the mass after 1000 years correct to the nearest milligram.

(c) When will the mass be reduced to 30 mg?
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Example 3. Newton’s Law of Cooling can be represented as a differential
equation

dT

dt
= k(T − Ts),

where T is the temperature of the object at time t and Ts is the temperature
of the surroundings. The exponential function y(t) = y(0)ekt is a solution to
this differential equation when y(t) = T (t)− Ts.
A bottle of soda pop at room temperature (72◦F) is placed in a refrigerator
where the temperature is 44◦F. After half an hour the soda pop has cooled to
61◦F.

(a) What is the temperature of the soda pop after another half hour?

(b) How long does it take for the soda pop to cool to 50◦F?
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Example 4. In general, if an amount A0 is invested at an interest rate r, then
after t years it is worth A0(1 + r)t. Usually, however, interest is compounded
more frequently, say, n times a year. Then in each compounding period the
interest rate is r/n and there are nt compounding periods in t years, so the
value of the investment is

A0

(
1 +

r

n

)nt

.

Therefore, taking limits gives us the amount after t years as

A(t) = A0e
rt

when interest is continuously compounded. Determine the value of an invest-
ment of $1000 after 3 years of continuously compounding 6% interest. Com-
pare this to the value of the same investment compounded annually instead.
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3.9 Related Rates

Example 1. Air is being pumped into a spherical balloon so that its volume
increases at a rate of 100 cm3/s. How fast is the radius of the balloon increasing
when the diameter is 50 cm?
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Example 2. A ladder 10 ft long rests against a vertical wall. If the bottom
of the ladder slides away from the wall at a rate of 1 ft/s, how fast is the top
of the ladder sliding down the wall when the bottom of the ladder is 6 ft from
the wall?
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Example 3. A water tank has the shape of an inverted circular cone with
base radius 2 m and height 4 m. If water is being pumped into the tank at
a rate of 2 m3/min, find the rate at which the water level is rising when the
water is 3 m deep.
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Example 4. Car A is traveling west at 50 mi/h and car B is traveling north
at 60 mi/h. Both are headed for the intersection of the two roads. At what
rate are the cars approaching each other when car A is 0.3 mi and car B is 0.4
mi from the intersection?
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Example 5. A man walks along a straight path at a speed of 4 ft/s. A
searchlight is located on the ground 20 ft from the path and is kept focused
on the man. At what rate is the searchlight rotating when the man is 15 ft
from the point on the path closest to the searchlight?
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3.10 Linear Approximations and Differentials

Definition 3.10.1. The approximation

f(x) ≈ f(a) + f ′(a)(x− a)

is called the linear approximation or tangent line approximation of f at a. The
linear function whose graph is this tangent line, that is,

L(x) = f(a) + f ′(a)(x− a)

is called the linearization of f at a.

Example 1. Find the linearization of the function f(x) =
√
x+ 3 at a = 1 and

use it to approximate the numbers
√
3.98 and

√
4.05. Are these approximations

overestimates or underestimates?
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Example 2. For what values of x is the linear approximation

√
x+ 3 ≈ 7

4
+

x

4

accurate to within 0.5? What about accuracy to within 0.1?

254 CHAPTER 3  Di!erentiation Rules

ics textbooks obtain the expression aT − 2t sin !  for tangential acceleration and then 
replace sin !  by !  with the remark that sin !  is very close to !  if !  is not too large. [See, 
for exam ple, Physics: Calculus, 2d ed., by Eugene Hecht (Paci!c Grove, CA: Brooks/
Cole, 2000), p. 431.] You can verify that the linearization of the function f sxd − sin x at 
a − 0 is Lsxd − x and so the lin ear approximation at 0 is

sin x < x

(see Exercise 42). So, in effect, the derivation of the formula for the period of a pendulum 
uses the tangent line approximation for the sine function.

Another example occurs in the theory of optics, where light rays that arrive at shallow 
angles relative to the optical axis are called paraxial rays. In paraxial (or Gaussian) optics,  
both sin ! and cos ! are replaced by their linearizations. In other words, the linear  
approximations

sin ! < !    and    cos ! < 1

are used because ! is close to 0. The results of calculations made with these approxima-
tions became the basic theoretical tool used to design lenses. [See Optics, 4th ed., by 
Eugene Hecht (San Francisco, 2002), p. 154.]

In Section 11.11 we will present several other applications of the idea of linear approxi-
mations to physics and engineering.

Di!erentials
The ideas behind linear approximations are sometimes formulated in the terminology and 
notation of differentials. If y − f sxd, where f  is a differentiable function, then the differ-
ential dx is an independent variable; that is, dx can be given the value of any real number. 
The differential dy is then de!ned in terms of dx by the equation

3   dy − f 9sxd dx

So dy is a dependent variable; it depends on the values of x and dx. If dx is given a spe-
ci!c value and x is taken to be some speci!c number in the domain of f , then the numer-
ical value of dy is determined.

The geometric meaning of differentials is shown in Figure 5. Let Psx, f sxdd and 
Qsx 1 Dx, f sx 1 Dxdd be points on the graph of f  and let dx − Dx. The corresponding 
change in y is

Dy − f sx 1 Dxd 2 f sxd

The slope of the tangent line PR is the derivative f 9sxd. Thus the directed distance from 
S to R is f 9sxd dx − dy. Therefore dy represents the amount that the tangent line rises or 
falls (the change in the linearization), whereas Dy represents the amount that the curve 
y − f sxd rises or falls when x changes by an amount dx.

EXAMPLE 3 Compare the values of Dy and dy if y − f sxd − x 3 1 x 2 2 2x 1 1 and  
x changes (a) from 2 to 2.05 and (b) from 2 to 2.01.

SOLUTION 
(a) We have

 f s2d − 23 1 22 2 2s2d 1 1 − 9

  f s2.05d − s2.05d3 1 s2.05d2 2 2s2.05d 1 1 − 9.717625

 Dy − f s2.05d 2 f s2d − 0.717625

If dx ± 0, we can divide both sides of  
Equation 3 by dx to obtain

dy
dx

− f 9sxd

We have seen similar equations before, 
but now the left side can genuinely be 
interpreted as a ratio of differentials.

R

0 x

y

Îy

x

P

Q

dx=Îx

x+Îx

y=ƒ

S

dy

FIGURE 5
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Definition 3.10.2. If y = f(x), where f is a differentiable func-
tion, then the differential dx is an independent variable; that is,
dx can be given the value of any real number. The differential
dy is then defined in terms of dx by the equation

dy = f ′(x)dx.
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Example 3. Compare the values ∆y and dy if y = f(x) = x3 + x2 − 2x + 1
and x changes

(a) from 2 to 2.05

(b) from 2 to 2.01.

Example 4. The radius of a sphere was measured and found to be 21 cm with
a possible error in measurement of at most 0.05 cm. What is the maximum
error in using this value of the radius to compute the volume of the sphere?
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3.11 Hyperbolic Functions

Definition 3.11.1. Functions that have the same relationship to the hyper-
bola that trigonometric functions have to the circle are called hyperbolic func-
tions and are defined as follows

sinh x =
ex − e−x

2
cschx =

1

sinh x

cosh x =
ex + e−x

2
sechx =

1

cosh x

tanh x =
sinh x

cosh x
coth x =

cosh x

sinh x
.

Theorem 3.11.1 (Hyperbolic Identities).

sinh(−x) = − sinh x cosh(−x) = cosh x

cosh2 x− sinh2 x = 1 1− tanh2 x = sech2 x

sinh(x+ y) = sinhx cosh y + cosh x sinh y

cosh(x+ y) = coshx cosh y + sinh x sinh y.

Example 1. Prove

(a) cosh2 x− sinh2 x = 1

(b) 1− tanh2 x = sech2 x.
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Theorem 3.11.2 (Derivatives of Hyperbolic Functions).

d

dx
(sinh x) = cosh x

d

dx
(cschx) = − csch x cothx

d

dx
(cosh x) = sinh x

d

dx
(sechx) = − sech x tanhx

d

dx
(tanh x) = sech2 x

d

dx
(coth x) = − csch2 x.

Example 2. Find
d

dx
(cosh

√
x).

Theorem 3.11.3 (Inverse Hyperbolic Functions).

sinh−1 x = ln(x+
√
x2 + 1) x ∈ R

cosh−1 x = ln(x+
√
x2 − 1) x ≥ 1

tanh−1 x =
1

2
ln

(
1 + x

1− x

)
− 1 < x < 1.

Example 3. Show that sinh−1 x = ln(x+
√
x2 + 1).
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Theorem 3.11.4 (Derivatives of Inverse Hyperbolic Functions).

d

dx
(sinh−1 x) =

1√
1 + x2

d

dx
(csch−1 x) = − 1

|x|
√
x2 + 1

d

dx
(cosh−1 x) =

1√
x2 − 1

d

dx
(sech−1 x) = − 1

x
√
1− x2

d

dx
(tanh−1 x) =

1

1− x2

d

dx
(coth−1 x) =

1

1− x2
.

Example 4. Prove that
d

dx
(sinh−1 x) =

1√
1 + x2

.

Example 5. Find
d

dx
[tanh−1(sin x)].
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Chapter 4

Applications of Differentiation

4.1 Maximum and Minimum Values

Definition 4.1.1. Let c be a number in the domain D of a function f . Then
f(c) is the absolute maximum value (or global maximum value) of f on D if
f(c) ≥ f(x) for all x in D and f(c) is the absolute minimum value (or global
minimum value) of f on D if f(c) ≤ f(x) for all x in D. These values are
called extreme values of f .

Definition 4.1.2. The number f(c) is a local maximum value of f if f(c) ≥
f(x) when x is near c and a local minimum value of f if f(c) ≤ f(x) when x is
near c. When we say near, we mean on an open interval containing c. These
values are called local extreme values of f .

Example 1. For what values of x does f(x) = cosx take on its maximum
and minimum values?

Example 2. Find all of the extreme values of f(x) = x2.
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Example 3. Find all of the extreme values of f(x) = x3.

Example 4. Find all of the extreme values of f(x) = 3x4−16x3+18x2 within
the domain −1 ≤ x ≤ 4.

Theorem 4.1.1 (Extreme Value Theorem). If f is continuous on a closed
interval [a, b] then f attains an absolute maximum value f(c) and an absolute
minimum value f(d) at some numbers c and d in [a, b].

Theorem 4.1.2 (Fermat’s Theorem). If f has a local maximum or minimum
at c, and if f ′(c) exists, then f ′(c) = 0.

Proof. Suppose f has a local maximum at c. Then, by definition, f(c) ≥ f(x)
if x is near c, so if we let h > 0 be close to 0 we have

f(c) ≥ f(c+ h)

f(c+ h)− f(c) ≤ 0

f(c+ h)− f(c)

h
≤ 0

h

lim
h→0+

f(c+ h)− f(c)

h
≤ lim

h→0+
0

f ′(c) ≤ 0.

If h < 0, the direction of the inequality is reversed and we get f ′(c) ≥ 0. Thus
combining these inequalities gives us f ′(c) = 0. A similar argument can be
used to achieve the same result if f has a local minimum at c.
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Example 5. Use the function f(x) = x3 to determine whether the converse
of Fermat’s theorem is true.

Example 6. Does Fermat’s theorem apply to the function f(x) = |x|?

Definition 4.1.3. A critical number of a function f is a number c in the
domain of f such that either f ′(c) = 0 or f ′(c) does not exist.

Example 7. Find the critical numbers of x3/5(4− x).
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Example 8. Find the absolute maximum and minimum values of the function

f(x) = x3 − 3x2 + 1 − 1

2
≤ x ≤ 4.

Example 9. (a) Use a graphing device to estimate the absolute minimum
and maximum values of the function f(x) = x− 2 sin x, 0 ≤ x ≤ 2π.
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(b) Use calculus to find the exact minimum and maximum values.

Example 10. The Hubble Space Telescope was deployed on April 24, 1990,
by the space shuttle Discovery. A model for the velocity of the shuttle during
this mission, from liftoff at t = 0 until the solid rocket boosters were jettisoned
at t = 126 seconds, is given by

v(t) = 0.001302t3 − 0.09029t2 + 23.61t− 3.083

(in feet per second). Using this model, estimate the absolute maximum and
minimum values of the acceleration of the shuttle between liftoff and the jet-
tisoning of the boosters.
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4.2 The Mean Value Theorem

Theorem 4.2.1 (Rolle’s Theorem). Let f be a function that satisfies the fol-
lowing three hypotheses:

1. f is continuous on the closed interval [a, b].

2. f is differentiable on the open interval (a, b).

3. f(a) = f(b).

Then there is a number c in (a, b) such that f ′(c) = 0.

Proof. If f(x) = k, a constant, then f ′(x) = 0 for all x ∈ (a, b). If f(x) > f(a)
for some x ∈ (a, b) then f has a local maximum for a number c ∈ (a, b) by
the extreme value theorem. Since f is differentiable on (a, b), f ′(c) = 0 by
Fermat’s theorem. By the same reasoning, f ′(c) = 0 if f(x) < f(a).

Example 1. How could Rolle’s theorem be applied to a position function that
models a ball thrown upward?

Example 2. Prove that the equation x3+x−1 = 0 has exactly one real root.
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Theorem 4.2.2 (The Mean Value Theorem). Let f be a function that satisfies
the following hypotheses:

1. f is continuous on the closed interval [a, b].

2. f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that

f ′(c) =
f(b)− f(a)

b− a

or, equivalently,
f(b)− f(a) = f ′(c)(b− a).

Proof. Let h be the difference between f and the secant line to f on [a, b], i.e.,

h(x) = f(x)−
[
f(a) +

f(b)− f(a)

b− a
(x− a)

]
.

Then h is continuous on [a, b] and differentiable on (a, b) because it is the sum
of f and a first-degree polynomial, which are both continuous on [a, b] and
differentiable on (a, b). Also,

h(a) = f(a)− f(a)− f(b)− f(a)

b− a
(a− a) = 0

h(b) = f(b)− f(a)− f(b)− f(a)

b− a
(b− a) = 0,

so h(a) = h(b). Therefore, by Rolle’s thereom, there is a number c in (a, b)
such that h′(c) = 0, i.e.,

0 = h′(c) = f ′(c)− f(b)− f(a)

b− a
,

which is equivalent to

f ′(c) =
f(b)− f(a)

b− a

as desired.
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Example 3. Find a number c in (0, 2) such that the slope of the secant line
is equal to the slope of the tangent line for the function f(x) = x3 − x.

Example 4. What does the mean value theorem say about the velocity of an
object moving in a straight line?

Example 5. Suppose that f(0) = −3 and f ′(x) ≤ 5 for all values of x. How
large can f(2) possibly be?

Theorem 4.2.3. If f ′(x) = 0 for all x in an interval (a, b), then f is constant
on (a, b).

Proof. Let x1, x2 ∈ (a, b) be such that x1 < x2. By the mean value theorem
for f on [x1, x2], we get

f(x2)− f(x1) = f ′(c)(x2 − x1),

for some c ∈ (x1, x2). But f
′(x) = 0 for all x in this interval, so f(x2) = f(x1).

Since x1 and x2 were chosen arbitrarily, f is constant on (a, b).
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Corollary 4.2.1. If f ′(x) = g′(x) for all x in an interval (a, b), then f − g is
constant on (a, b); that is f(x) = g(x) + c where c is a constant.

Proof. Let
F (x) = f(x)− g(x).

Then
F ′(x) = f ′(x)− g′(x) = 0,

so F is constant by the previous theorem, and thus f − g is constant.

Example 6. Prove the identity tan−1 x+ cot−1 x = π/2.
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4.3 Derivatives and the Shape of a Graph

Theorem 4.3.1 (Increasing/Decreasing Test).

(a) If f ′(x) > 0 on an interval, then f is increasing on that interval.

(b) If f ′(x) < 0 on an interval, then f is decreasing on that interval.

Proof. Let x1, x2 be two numbers on an interval where f ′(x) > 0 such that
x1 < x2. Then by the mean value theorem,

f(x2)− f(x1) = f ′(c)(x2 − x1)

for some c in the interval. But f ′(c) > 0 and x2−x1 > 0, so f(x2)−f(x1) > 0,
i.e.,

f(x2) > f(x1)

in the interval. Since x1 and x2 were chosen arbitrarily, we are done, and the
second half of the theorem is proved similarly.

Example 1. Find where the function f(x) = 3x4−4x3−12x2+5 is increasing
and where it is decreasing.
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Theorem 4.3.2 (The First Derivative Test). Suppose that c is a critical num-
ber of a continuous function f .

(a) If f ′ changes from positive to negative at c, then f has a local maximum
at c.

(b) If f ′ changes from negative to positive at c, then f has a local minimum
at c.

(c) If f ′ is positive to the left and to the right of c, or negative to the left and
to the right of c, then f has no local minimum or maximum at c.

Example 2. Find the local minimum and maximum values of the function f
in Example 1.

Example 3. Find the local maximum and minimum values of the function

g(x) = x+ 2 sin x 0 ≤ x ≤ 2π.
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Definition 4.3.1. If the graph of f lies above all of its tangents on an interval
I, then it is called concave upward on I. If the graph of f lies below all of its
tangents on I, it is called concave downward on I.

Theorem 4.3.3 (Concavity Test).

(a) If f ′′(x) > 0 for all x in I, then the graph of f is concave upward on I.

(b) If f ′′(x) < 0 for all x in I, then the graph of f is concave downward on I.

Example 4. The figure shows a population graph for Cyprian honeybees
raised in an apiary. How does the rate of population increase change over
time? When is this rate highest? Over what intervals is P concave upward or
concave downward?

296 CHAPTER 4  Applications of Differentiation

In Figure 6 tangents to these curves have been drawn at several points. In (a) the curve 
lies above the tangents and f  is called concave upward on sa, bd. In (b) the curve lies 
below the tangents and t is called concave downward on sa, bd.

 Definition If the graph of f  lies above all of its tangents on an interval I, then it is 
called concave upward on I. If the graph of f  lies below all of its tangents on I, it 
is called concave downward on I.

Figure 7 shows the graph of a function that is concave upward (abbreviated CU) on 
the intervals sb, cd, sd, ed, and se, pd and concave downward (CD) on the intervals sa, bd, 
sc, dd, and sp, q d.

a b c d e p q

B C

D
P

x

y

0

CD CU CD CU CDCU

FIGURE 7 

Let’s see how the second derivative helps determine the intervals of concavity. Look-
ing at Figure 6(a), you can see that, going from left to right, the slope of the tangent 
increas es. This means that the derivative f 9 is an increasing function and therefore its 
derivative f 0 is positive. Likewise, in Figure 6(b) the slope of the tangent decreases from 
left to right, so f 9 decreases and therefore f 0 is negative. This reasoning can be reversed 
and suggests that the following theorem is true. A proof is given in Appendix F with the 
help of the Mean Value Theorem.

Concavity Test
(a) If f 0sxd . 0 for all x in I, then the graph of f  is concave upward on I.

(b) If f 0sxd , 0 for all x in I, then the graph of f  is concave downward on I.

EXAMPLE 4 Figure 8 shows a population graph for Cyprian honeybees raised in an  
apiary. How does the rate of population increase change over time? When is this rate 
highest? Over what intervals is P concave upward or concave downward?
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(a) Concave upward
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FIGURE 6  

FIGURE 8  
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Definition 4.3.2. A point P on a curve y = f(x) is called an inflection point
if f is continuous there and the curve changes from concave upward to concave
downward or from concave downward to concave upward at P .

Example 5. Sketch a possible graph of a function f that satisfies the following
conditions:

(i) f ′(x) > 0 on (−∞, 1), f ′(x) < 0 on (1,∞).

(ii) f ′′(x) > 0 on (−∞,−2) and (2,∞), f ′′(x) < 0 on (−2, 2).

(iii) lim
x→−∞

f(x) = −2, lim
x→∞

f(x) = 0.

Theorem 4.3.4 (The Second Derivative Test). Suppose f ′ is continuous near
c.

(a) If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c.

(b) If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c.
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Example 6. Discuss the curve y = x4 − 4x3 with respect to concavity, points
of inflection, and local maxima and minima. Use this information to sketch
the curve.
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Example 7. Sketch the graph of the function f(x) = x2/3(6− x)1/3.
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Example 8. Use the first and second derivatives of f(x) = e1/x, together with
asymptotes, to sketch its graph.
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4.4 Indeterminate Forms and l’Hospital’s Rule

Theorem 4.4.1 (L’Hospital’s Rule). Suppose f and g are differentiable and
g′(x) ̸= 0 on an open interval I that contains a (except possibly at a). Suppose
that

lim
x→a

f(x) = 0 and lim
x→a

g(x) = 0

or that
lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞

(In other words, we have an indeterminate form of type 0
0
or ∞/∞.) Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

if the limit on the right side exists (or is ∞ or −∞).

Example 1. Find lim
x→1

ln x

x− 1
.

Example 2. Calculate lim
x→∞

ex

x2
.
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Example 3. Calculate lim
x→∞

ln x√
x
.

Example 4. Find lim
x→0

tan x− x

x3
.
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Example 5. Find lim
x→π−

sin x

1− cos x
.

Example 6. Evaluate lim
x→0+

x lnx.
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Example 7. Compute lim
x→1+

(
1

ln x
− 1

x− 1

)
.

Example 8. Calculate lim
x→∞

(ex − x).
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Example 9. Calculate lim
x→0+

(1 + sin 4x)cotx.

Example 10. Find lim
x→0+

xx.
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4.5 Summary of Curve Sketching

Use the following guidelines when sketching curves by hand:

A. Domain

B. Intercepts

C. Symmetry

D. Asymptotes

E. Intervals of Increase or Decrease

F. Local Maximum and Minimum Values

G. Concavity and Points of Inflection

Example 1. Use the guidelines to sketch the curve y =
2x2

x2 − 1
.
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Example 2. Sketch the graph of f(x) =
x2

√
x+ 1

.
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Example 3. Sketch the graph of f(x) = xex.
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Example 4. Sketch the graph of f(x) =
cos x

2 + sin x
.
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Example 5. Sketch the graph of y = ln(4− x2).
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Definition 4.5.1. If
lim
x→∞

[f(x)− (mx+ b)] = 0

where m ̸= 0, then the line y = mx + b is called a slant asymptote because
the vertical distance between the curve y = f(x) and the line y = mx + b
approaches 0.

Example 6. Sketch the graph of f(x) =
x3

x2 + 1
.
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4.6 Graphing with Calculus and Calculators

Example 1. Graph the polynomial f(x) = 2x6 + 3x5 + 3x3 − 2x2. Use the
graphs of f ′ and f ′′ to estimate all maximum and minimum points and intervals
of concavity.
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Example 2. Draw the graph of the function

f(x) =
x2 + 7x+ 3

x2

in a viewing rectangle that contains all the important features of the function.
Estimate the maximum and minimum values and the intervals of concavity.
Then use calculus to find these quantities exactly.
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Example 3. Graph the function f(x) =
x2(x+ 1)3

(x− 2)2(x− 4)4
.
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Example 4. Graph the function f(x) = sin(x + sin 2x). For 0 ≤ x ≤ π,
estimate all maximum and minimum values, intervals of increase and decrease,
and inflection points.
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Example 5. How does the graph of f(x) = 1/(x2 + 2x+ c) vary as c varies?
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4.7 Optimization Problems

Example 1. A farmer has 2400 ft of fencing and wants to fence off a rect-
angular field that borders a straight river. He needs no fence along the river.
What are the dimensions of the field that has the largest area?
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Example 2. A cylindrical can is to be made to hold 1 L of oil. Find the
dimensions that will minimize the cost of the metal to manufacture the can.
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Theorem 4.7.1 (First Derivative Test for Absolute Extreme Values). Suppose
that c is a critical number of a continuous function f defined on an interval.

(a) If f ′(x) > 0 for all x < c and f ′(x) < 0 for all x > c, then f(c) is the
absolute maximum value of f .

(b) If f ′(x) < 0 for all x < c and f ′(x) > 0 for all x > c, then f(c) is the
absolute minimum value of f .

Example 3. Find the point on the parabola y2 = 2x that is closest to the
point (1, 4).
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334 CHAPTER 4  Applications of Differentiation

(You should convince yourself that the minimum of d occurs at the same point as the 
minimum of d2, but d2 is easier to work with.) Note that there are no restrictions on y, 
so the domain is all real numbers. Differentiating, we obtain

f 9syd − 2s1
2 y 2 2 1dy 1 2sy 2 4d − y 3 2 8

so f 9syd − 0 when y − 2. Observe that f 9syd , 0 when y , 2 and f 9syd . 0 when 
y . 2, so by the First Derivative Test for Absolute Extreme Values, the absolute mini-
mum occurs when y − 2. (Or we could simply say that because of the geometric nature 
of the problem, it’s obvious that there is a closest point but not a farthest point.) The 
corresponding value of x is x − 1

2 y 2 − 2. Thus the point on y 2 − 2x closest to s1, 4d is 
s2, 2d. [The distance between the points is d − sf s2d − s5 .] Q

EXAMPLE 4  A man launches his boat from point A on a bank of a straight river, 3 km 
wide, and wants to reach point B, 8 km downstream on the opposite bank, as quickly as 
possible (see Figure 7). He could row his boat directly across the river to point C and 
then run to B, or he could row directly to B, or he could row to some point D between 
C and B and then run to B. If he can row 6 kmyh and run 8 kmyh, where should he 
land to reach B as soon as possible? (We assume that the speed of the water is negli-
gible compared with the speed at which the man rows.)

SOLUTION If we let x be the distance from C to D, then the running distance is 
| DB | − 8 2 x and the Pythagorean Theorem gives the rowing distance as

| AD | − sx 2 1 9 . We use the equation

time −
distance

rate

Then the rowing time is sx 2 1 9 y6 and the running time is s8 2 xdy8, so the total time 
T  as a function of x is

Tsxd −
sx 2 1 9 

6
1

8 2 x
8

The domain of this function T  is f0, 8g. Notice that if x − 0, he rows to C and if x − 8, 
he rows directly to B. The derivative of T  is

T9sxd −
x

6sx 2 1 9 
2

1
8

Thus, using the fact that x > 0, we have

T9sxd − 0  &?  
x

6sx 2 1 9 
−

1
8

  &?  4x − 3sx 2 1 9  

  &?  16x 2 − 9sx 2 1 9d  &?  7x 2 − 81

  &?  x −
9

s7 

The only critical number is x − 9ys7 . To see whether the minimum occurs at this 
critical number or at an endpoint of the domain f0, 8g, we follow the Closed Interval 

8 km

C

D

B

A

3 km

x

FIGURE 7 
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Example 4. A man launches his boat from point A on a bank
of a straight river, 3 km wide, and wants to reach point B, 8 km
downstream on the opposite bank, as quickly as possible (see the
figure). He could row his boat directly across the river to point C
and then run to B, or he could row directly to B, or he could row
to some point D between C and B and then run to B. If he can row
6 km/h and run 8 km/h, where should he land to reach B as soon
as possible? (We assume that the speed of the water is negligible
compared with the speed at which the man rows.)

149



Calculus - 4.7 Optimization Problems

Example 5. Find the area of the largest rectangle that can be inscribed in a
semicircle of radius r.
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Definition 4.7.1. If p(x) is the price per unit that a company can charge if
it sells x units, then p is called the demand function (or price function).
If x units are sold, then the total revenue

R(x) = quantity× price = xp(x)

and R is called the revenue function. The derivative R′ of the revenue function
is called the marginal revenue function and is the rate of change of revenue
with respect to the number of units sold.
If x units are sold, then the total profit is

P (x) = R(x)− C(x)

where C is the cost function and P is called the profit function. The marginal
profit function is P ′, the derivative of the profit function.

Example 6. A store has been selling 200 flat-screen TVs a week at $350
each. A market survey indicates that for each $10 rebate offered to buyers, the
number of TVs sold will increase by 20 a week. Find the demand function and
the revenue function. How large a rebate should the store offer to maximize
its revenue?
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4.8 Newton’s Method

Theorem 4.8.1 (Newton’s Method). If xn is the nth approximation of a root
r for a function f then

xn+1 = xn −
f(xn)

f ′(xn)
.

Example 1. Starting with x1 = 2, find the third approximation x3 to the
root of the equation x3 − 2x− 5 = 0.
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Example 2. Use Newton’s method to find 6
√
2 to eight decimal places.
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Example 3. Find, correct to six decimal places, the root of the equation
cos x = x.
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4.9 Antiderivatives

Definition 4.9.1. A function F is called an antiderivative of f on an interval
I if F ′(x) = f(x) for all x in I.

Theorem 4.9.1. If F is an antiderivative of f on an interval I, then the most
general antiderivative of f on I is

F (x) + C

where C is an arbitrary constant.

Proof. Follows by Corollary 4.2.1 to the mean value theorem.

Example 1. Find the most general antiderivative of each of the following
functions.

(a) f(x) = sinx

(b) f(x) = 1/x

(c) f(x) = xn, n ̸= −1
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Example 2. Find all functions g such that

g′(x) = 4 sin x+
2x5 −

√
x

x
.

Example 3. Find f if f ′(x) = ex + 20(1 + x2)−1 and f(0) = −2.
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Calculus - 4.9 Antiderivatives

Example 4. Find f if f ′′(x) = 12x2 + 6x− 4, f(0) = 4, and f(1) = 1.

354 CHAPTER 4  Applications of Differentiation

EXAMPLE 5  The graph of a function f  is given in Figure 3. Make a rough sketch of 
an antiderivative F, given that Fs0d − 2.

SOLUTION We are guided by the fact that the slope of y − Fsxd is f sxd. We start at the 
point s0, 2d and draw F as an initially decreasing function since f sxd is negative when 
0 , x , 1. Notice that f s1d − f s3d − 0, so F has horizontal tangents when x − 1 and 
x − 3. For 1 , x , 3, f sxd is positive and so F is increasing. We see that F has a local 
minimum when x − 1 and a local maximum when x − 3. For x . 3, f sxd is negative 
and so F is decreasing on s3, `d. Since f sxd l 0 as x l `, the graph of F becomes 
flatter as x l `. Also notice that F0sxd − f 9sxd changes from positive to negative at 
x − 2 and from negative to positive at x − 4, so F has inflection points when x − 2 and 
x − 4. We use this information to sketch the graph of the antiderivative in Figure 4. Q

Rectilinear Motion
Antidifferentiation is particularly useful in analyzing the motion of an object moving in 
a straight line. Recall that if the object has position function s − f std, then the velocity 
function is vstd − s9std. This means that the position function is an antiderivative of the 
velocity function. Likewise, the acceleration function is astd − v9std, so the velocity 
function is an antiderivative of the acceleration. If the acceleration and the initial values ss0d 
and vs0d are known, then the position function can be found by antidifferentiating twice.

EXAMPLE 6 A particle moves in a straight line and has acceleration given by 
astd − 6t 1 4. Its initial velocity is vs0d − 2 6 cmys and its initial displacement is 
ss0d − 9 cm. Find its position function sstd.

SOLUTION Since v9std − astd − 6t 1 4, antidifferentiation gives

vstd − 6 
t 2

2
1 4t 1 C − 3t 2 1 4t 1 C

Note that vs0d − C. But we are given that vs0d − 2 6, so C − 2 6 and

vstd − 3t 2 1 4t 2 6

Since vstd − s9std, s is the antiderivative of v:

sstd − 3 
t 3

3
1 4 

t 2

2
2 6t 1 D − t 3 1 2t 2 2 6t 1 D

This gives ss0d − D. We are given that ss0d − 9, so D − 9 and the required position 
function is

 sstd − t 3 1 2t 2 2 6t 1 9 Q

An object near the surface of the earth is subject to a gravitational force that produces 
a downward acceleration denoted by t. For motion close to the ground we may assume 
that t is constant, its value being about 9.8 mys2 (or 32 ftys2).

EXAMPLE 7 A ball is thrown upward with a speed of 48 ftys from the edge of a cliff 
432 ft above the ground. Find its height above the ground t seconds later. When does it 
reach its maximum height? When does it hit the ground?

1 2 30 4 x

y

y=ƒ

FIGURE 3 

x

y

1
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0

y=F(x)
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FIGURE 4 
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Example 5. The graph of a function f is given in the figure.
Make a rough sketch of an antiderivative F , given that F (0) = 2.
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Calculus - 4.9 Antiderivatives

Example 6. A particle moves in a straight line and has acceleration given by
a(t) = 6t+4. Its initial velocity is v(0) = −6 cm/s and its initial displacement
is s(0) = 9 cm. Find its position function s(t).
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Calculus - 4.9 Antiderivatives

Example 7. A ball is thrown upward with a speed of 48 ft/s from the edge of a
cliff 432 ft above the ground. Find its height above the ground t seconds later.
When does it reach its maximum height? When does it hit the ground? [For
motion close to the ground we may assume that the downward acceleration g
is constant, its value being about 9.8 m/s2 (or 32 ft/s2).]
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Chapter 5

Integrals

5.1 Areas and Distances

Example 1. Use rectangles to estimate the area under the parabola y = x2

from 0 to 1.
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Calculus - 5.1 Areas and Distances

Example 2. For the region in Example 1, show that the sum of the areas of
the upper approximating rectangles approaches 1

3
, that is,

lim
n→∞

Rn =
1

3
.
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Definition 5.1.1. The area A of the region S that lies under the graph of the
continuous function f is the limit of the sum of the areas of approximating
rectangles:

A = lim
n→∞

Rn = lim
n→∞

[f(x1)∆x+f(x2)∆x+ · · ·+f(xn)∆x] = lim
n→∞

n∑
i=1

f(xi)∆x.

The last equality is an example of the use of sigma notation to write sums
with many terms more compactly.

Definition 5.1.2. Numbers x∗
i in the ith subinterval [xi−1, xi] are called sam-

ple points. We form lower (and upper) sums by choosing the sample points x∗
i

so that f(x∗
i ) is the minimum (and maximum) value of f on the ith subinterval.

 SECTION 5.1  Areas and Distances 371

2   De!nition The area A of the region S that lies under the graph of the contin-
uous function f  is the limit of the sum of the areas of approximating rectangles:

A − lim
n l `

 Rn − lim
n l ` 

f f sx1d Dx 1 f sx2 d Dx 1 ∙ ∙ ∙ 1 f sxn d Dxg

It can be proved that the limit in De"nition 2 always exists, since we are assuming that 
f  is continuous. It can also be shown that we get the same value if we use left endpoints:

 A − lim
n l `

 Ln − lim
n l `

 f f sx0 d Dx 1 f sx1d Dx 1 ∙ ∙ ∙ 1 f sxn21d Dxg

In fact, instead of using left endpoints or right endpoints, we could take the height of 
the ith rectangle to be the value of f  at any number xi* in the ith subinterval fxi21, xig. 
We call the numbers x1*, x2*, . . . , xn* the sample points. Figure 13 shows approximating 
rectangles when  the sample points are not chosen to be endpoints. So a more general 
expression for the area of S is

 A − lim
n l ` 

f f sx1*d Dx 1 f sx2*d Dx 1 ∙ ∙ ∙ 1 f sxn* d Dxg

xixi-10

y

xa bx2⁄ ‹ xn-1

x¡* x™* x£* xn*xi*

Îx

f(xi*)

NOTE It can be shown that an equivalent de"nition of area is the following: A is the 
unique number that is smaller than all the upper sums and bigger than all the lower sums.
We saw in Examples 1 and 2, for instance, that the area sA − 1

3d is trapped between 
all the left approximating sums Ln and all the right approximating sums Rn. The function 
in those examples, f sxd − x 2, happens to be increasing on f0, 1g and so the lower sums 
arise from left endpoints and the upper sums from right endpoints. (See Figures 8 and 9.) 
In gen eral, we form lower (and upper) sums by choosing the sample points xi* so that 
f sxi*d is the minimum (and maximum) value of f  on the ith subinterval. (See Figure 14 
and Exercises 7–8.)

0

y

xa b

3

4

FIGURE 13

FIGURE 14
Lower sums (short rectangles) and 

upper sums (tall rectangles)
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Example 3. Let A be the area of the region that lies under the graph of
f(x) = e−x between x = 0 and x = 2.

(a) Using right endpoints, find an expression for A as a limit. Do not evaluate
the limit.
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(b) Estimate the area by taking the sample points to be midpoints and using
four subintervals and then ten subintervals.
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Example 4. Suppose the odometer on a car is broken. Estimate the distance
driven in feet over a 30-second time interval by using the speedometer readings
taken every five seconds and recorded in the following table:

Time (s) 0 5 10 15 20 25 30
Velocity (mi/h) 17 21 24 29 32 31 28
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5.2 The Definite Integral

Definition 5.2.1. If f is a function defined for a ≤ x ≤ b, we divide the
interval [a, b] into n subintervals of equal width ∆x = (b − a)/n. We let
x0(= a), x1, x2, . . . , xn(= b) be the endpoints of these subintervals and we let
x∗
1, x

∗
2, . . . , x

∗
n be any sample points in these subintervals, so x∗

i lies in the ith
subinterval [xi−1, xi]. Then the definite integral of f from a to b is

ˆ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗
i )∆x

provided that this limit exists and gives the same value for all possible choices
of sample points. If it does exist, we say that f is integrable on [a, b].

Definition 5.2.2. The symbol
´

is called an integral sign. In the notation´ b
a
f(x)dx, f(x) is called the integrand and a and b are called the limits of

integration; a is the lower limit and b is the upper limit. The procedure of
calculating an integral is called integration.

Definition 5.2.3. The sum

n∑
i=1

f(x∗
i )∆x

is called a Riemann sum and it can be used to approximate the definite integral
of an integrable function within any desired degree of accuracy.

 SECTION 5.2  The De!nite Integral 379

 yb
a  f sxd dx, f sxd is called the integrand and a and b are called the limits of integration; 

a is the lower limit and b is the upper limit. For now, the symbol dx has no meaning by 
itself; yb

a  f sxd dx is all one symbol. The dx simply indicates that the independent vari able 
is x. The procedure of calculating an integral is called integration.

NOTE 2 The de!nite integral yb
a  f sxd dx is a number; it does not depend on x. In fact, 

we could use any letter in place of x without changing the value of the integral:

yb

a
 f sxd dx − yb

a
 f std dt − yb

a
 f srd dr

NOTE 3 The sum

o
n

i−1
 f sxi*d Dx

that occurs in De!nition 2 is called a Riemann sum after the German mathematician 
Bernhard Riemann (1826 –1866). So De!nition 2 says that the de!nite integral of an 
integrable function can be approximated to within any desired degree of accuracy by a 
Riemann sum.

We know that if f  happens to be positive, then the Riemann sum can be interpreted 
as a sum of areas of approximating rectangles (see Figure 1). By comparing De!nition 2 
with the de!nition of area in Section 5.1, we see that the de!nite integral yb

a  f sxd dx can 
be interpreted as the area under the curve y − f sxd from a to b. (See Figure 2.)

xi*0

y

xa

Îx y=ƒ

0

y

xab b

FIGURE 1  
If f sxd > 0, the Riemann sum o  f sxi*d Dx  
is the sum of areas of rectangles.

FIGURE 2  
If f sxd > 0, the integral yb

a f sxd dx is the  
area under the curve y − f sxd from a to b.

If f  takes on both positive and negative values, as in Figure 3, then the Riemann sum 
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Definition 5.2.4. A definite integral can be interpreted as a net area, that
is, a difference of areas:

ˆ b

a

f(x) dx = A1 − A2

where A1 is the area of the region above the x-axis and below the graph of f ,
and A2 is the area of the region below the x-axis and the above the graph of
f .
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a
 f srd dr
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o
n

i−1
 f sxi*d Dx
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Theorem 5.2.1. If f is continuous on [a, b], or if f has only a finite number of
jump discontinuities, then f is integrable on [a, b]; that is, the definite integral´ b
a
f(x)dx exists.

Theorem 5.2.2. If f is integrable on [a, b], then

ˆ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(xi)∆x

where

∆x =
b− a

n
and xi = a+ i∆x.
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Example 1. Express

lim
n→∞

n∑
i=1

(x3
i + xi sin xi)∆x

as an integral on the interval [0, π].

Theorem 5.2.3. The following formulas are true when working with sigma
notation:

n∑
i=1

i =
n(n+ 1)

2

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =

[
n(n+ 1)

2

]2
n∑

i=1

c = nc

n∑
i=1

cai = c

n∑
i=1

ai

n∑
i=1

(ai + bi) =
n∑

i=1

ai +
n∑

i=1

bi

n∑
i=1

(ai − bi) =
n∑

i=1

ai −
n∑

i=1

bi.
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Example 2. (a) Evaluate the Riemann sum for f(x) = x3 − 6x, taking the
sample points to be right endpoints and a = 0, b = 3, and n = 6.

(b) Evaluate

ˆ 3

0

(x3 − 6x) dx.
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Example 3. (a) Set up an expression for

ˆ 3

1

ex dx as a limit of sums.

(b) Use a computer algebra system to evaluate the expression.
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Example 4. Evaluate the following integrals by interpreting each in terms of
areas.

(a)

ˆ 1

0

√
1− x2 dx

(b)

ˆ 3

0

(x− 1) dx
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Theorem 5.2.4 (Midpoint Rule).

ˆ b

a

f(x) dx ≈
n∑

i=1

f(x̄i)∆x = ∆x[f(x̄1) + · · ·+ f(x̄n)]

where

∆x =
b− a

n

and

x̄i =
1

2
(xi−1 + xi) = midpoint of [xi−1, xi].

Example 5. Use the Midpoint Rule with n = 5 to approximate

ˆ 2

1

1

x
dx.
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Theorem 5.2.5 (Properties of the Definite Integral).

1.

ˆ b

a

f(x) dx = −
ˆ a

b

f(x) dx.

2.

ˆ a

a

f(x) dx = 0.

3.

ˆ b

a

c dx = c(b− a), where c is any constant.

4.

ˆ b

a

[f(x) + g(x)] dx =

ˆ b

a

f(x) dx+

ˆ b

a

g(x) dx.

5.

ˆ b

a

cf(x) dx = c

ˆ b

a

f(x) dx, where c is any constant.

6.

ˆ b

a

[f(x)− g(x)] dx =

ˆ b

a

f(x) dx−
ˆ b

a

g(x) dx.

7.

ˆ c

a

f(x) dx+

ˆ b

c

f(x) dx =

ˆ b

a

f(x) dx.

Example 6. Use the properties of integrals to evaluate

ˆ 1

0

(4 + 3x2) dx.
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Example 7. If it is known that

ˆ 10

0

f(x) dx = 17 and

ˆ 8

0

f(x) dx = 12, find
ˆ 10

8

f(x) dx.

Theorem 5.2.6 (Comparison Properties of the Integral).

8. If f(x) ≥ 0 for a ≤ x ≤ b, then

ˆ b

a

f(x) dx ≥ 0.

9. If f(x) ≥ g(x) for a ≤ x ≤ b, then

ˆ b

a

f(x) dx ≥
ˆ b

a

g(x) dx.

10. If m ≤ f(x) ≤ M for a ≤ x ≤ b, then

m(b− a) ≤
ˆ b

a

f(x) dx ≤ M(b− a).

Example 8. Use Property 10 to estimate

ˆ 1

0

e−x2

dx.
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5.3 The Fundamental Theorem of Calculus

392 CHAPTER 5  Integrals

The Fundamental Theorem of Calculus is appropriately named because it establishes a  
con nection between the two branches of calculus: differential calculus and integral 
calculus. Differential calculus arose from the tangent problem, whereas integral calcu-
lus arose from a seemingly unrelated problem, the area problem. Newton’s mentor at 
Cambridge, Isaac Barrow (1630 –1677), discovered that these two problems are actu-
ally closely related. In fact, he realized that differentiation and integration are inverse 
processes. The Fundamental Theorem of Calculus gives the precise inverse relationship 
between the derivative and the integral. It was Newton and Leibniz who exploited this 
relationship and used it to develop calculus into a systematic mathema tical method. In 
particular, they saw that the Fundamental Theorem enabled them to compute areas and 
integrals very easily without having to compute them as limits of sums as we did in Sec-
tions 5.1 and 5.2.

The first part of the Fundamental Theorem deals with functions defined by an equa-
tion of the form

tsxd − y x

a
 f std dt

where f  is a continuous function on fa, bg and x varies between a and b. Observe that t 
depends only on x, which appears as the variable upper limit in the integral. If x is a fixed 
number, then the integral yx

a f std dt is a definite number. If we then let x vary, the number 
yx
a f std dt also varies and defines a function of x denoted by tsxd.

If f  happens to be a positive function, then tsxd can be interpreted as the area under the 
graph of f  from a to x, where x can vary from a to b. (Think of t as the “area so far” 
function; see Figure 1.)

EXAMPLE 1  If f  is the function whose graph is shown in Figure 2 and 
tsxd − yx

0 f std dt, find the values of ts0d, ts1d, ts2d, ts3d, ts4d, and ts5d. Then sketch a 
rough graph of t.

SOLUTION First we notice that ts0d − y0
0 f std dt − 0. From Figure 3 we see that ts1d is 

the area of a triangle:

ts1d − y1

0
 f std dt − 1

2 s1 ? 2d − 1

1

0

y

ta bx

area=©

y=f(t)

FIGURE 1  

t0

1

1

22

42

y

y=f(t)

FIGURE 2  

of x at which tsxd starts to decrease. [Unlike the integral in Problem 2, it is impossible 
to evaluate the integral defining t to obtain an explicit expression for tsxd.]

(c)  Use the integration command on your calculator or computer to estimate ts0.2d, 
ts0.4d, ts0.6d, . . . , ts1.8d, ts2d. Then use these values to sketch a graph of t.

(d)  Use your graph of t from part (c) to sketch the graph of t9 using the interpretation of 
t9sxd as the slope of a tangent line. How does the graph of t9 compare with the graph 
of f ?

 4.  Suppose f  is a continuous function on the interval fa, bg and we define a new function t 
by the equation

tsxd − yx

a
 f std dt

Based on your results in Problems 1–3, conjecture an expression for t9sxd.
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Example 1. If f is the function whose graph is shown in the
figure and g(x) =

´ x
0
f(t) dt, find the values of g(0), g(1), g(2),

g(3), g(4), and g(5). Then sketch a rough graph of g.

Theorem 5.3.1 (The Fundamental Theorem of Calculus, Part 1). If f is
continuous on [a, b], then the function g defined by

g(x) =

ˆ x

a

f(t) dt a ≤ x ≤ b

is continuous on [a, b] and differentiable on (a, b), and g′(x) = f(x).

Proof. If x and x+ h are in (a, b), then

g(x+ h)− g(x) =

ˆ x+h

a

f(t) dt−
ˆ x

a

f(t) dt

=

(ˆ x

a

f(t) dt+

ˆ x+h

x

f(t) dt

)
−
ˆ x

a

f(t) dt

=

ˆ x+h

x

f(t) dt
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394 CHAPTER 5  Integrals

Intuitively, we therefore expect that

t9sxd − lim
h  l 0

 
tsx 1 h d 2 tsxd

h
− f sxd

The fact that this is true, even when f  is not necessarily positive, is the first part of the 
Fun damental Theorem of Calculus.

 The Fundamental Theorem of Calculus, Part 1 If f  is continuous on fa, bg, then 
the function t defined by

tsxd − y x

a
 f std dt    a < x < b

is continuous on fa, bg and differentiable on sa, bd, and t9sxd − f sxd.

PROOF If x and x 1 h  are in sa, bd, then

  tsx 1 h d 2 tsxd − y x1h

a
 f std dt 2 y x

a
 f std dt

  − Sy x

a
 f std dt 1 y x1h

x
 f std dtD 2 y x

a
 f std dt    (by Property 5)

  − y x1h

x
 f std dt

and so, for h ± 0,

tsx 1 h d 2 tsxd
h

−
1
h

 y x1h

x
 f std dt

For now let’s assume that h . 0. Since f  is continuous on fx, x 1 h g, the Extreme 
Value Theorem says that there are numbers u  and v in fx, x 1 h g such that f su d − m 
and f svd − M, where m and M are the absolute minimum and maximum values of f  on 
fx, x 1 h g. (See Figure 6.)

By Property 8 of integrals, we have

 mh < y x1h

x
 f std dt < Mh

that is,  f su dh < yx1h

x
 f std dt < f svdh

Since h . 0, we can divide this inequality by h :

f su d <
1
h

 y x1h

x
 f std dt < f svd

Now we use Equation 2 to replace the middle part of this inequality:

f su d <
tsx 1 h d 2 tsxd

h
< f svd

Inequality 3 can be proved in a similar manner for the case where h , 0. (See Exer-
cise 77.)

We abbreviate the name of this theorem 
as FTC1. In words, it says that the 
derivative of a definite integral with 
respect to its upper limit is the inte-
grand evaluated at the upper limit.

0

y

xx u √=x+h

y=ƒ

m
M

FIGURE 6 

2

3

TEC Module 5.3 provides visual  
evidence for FTC1.
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and so, for h ̸= 0,
g(x+ h)− g(x)

h
=

1

h

ˆ x+h

x

f(t) dt.

For now let’s assume that h > 0. Since f is continuous on [x, x+
h], the Extreme Value Theorem says that there are numbers u
and v in [x, x+ h] such that f(u) = m and f(v) = M , where m
and M are the absolute minimum and maximum values of f on
[x, x+ h]. (See the figure.)
Then

mh ≤
ˆ x+h

x

f(t) dt ≤ Mh

f(u)h ≤
ˆ x+h

x

f(t) dt ≤ f(v)h

f(u) ≤ 1

h

ˆ x+h

x

f(t) dt ≤ f(v)

f(u) ≤ g(x+ h)− g(x)

h
≤ f(v).

This inequality can be proved in a similar manner for the case where h < 0.
Now we let h → 0. Then u → x and v → x, since u and v lie between x and
x+ h. Therefore

lim
h→0

f(u) = lim
u→x

f(u) = f(x) and lim
h→0

f(v) = lim
u→x

f(v) = f(x)

because f is continuous at x. We conclude, from the Squeeze Theorem, that

g′(x) = lim
h→0

g(x+ h)− g(x)

h
= f(x).

If x = a or b, then this equation can be interpreted as a one-sided limit, and
thus g is continuous on [a, b].

Example 2. Find the derivative of the function g(x) =

ˆ x

0

√
1 + t2 dt.
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Example 3. Find the derivative of the Fresnel function

S(x) =

ˆ x

0

sin(πt2/2) dt

and compare its graph with that of S(x) to visually confirm the fundamental
theorem of calculus.

Example 4. Find
d

dx

ˆ x4

1

sec t dt.
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Theorem 5.3.2 (The Fundamental Theorem of Calculus, Part 2). If f is
continuous on [a, b], then

ˆ b

a

f(x) dx = F (b)− F (a)

where F is any antiderivative of f , that is, a function such that F ′ = f .

Proof. Let g(x) =
´ x
a
f(t) dt. By Part 1, g′(x) = f(x); that is, g is an an-

tiderivative of f . If F is any other antiderivative of f on [a, b], then, by
Corollary 4.2.1,

F (x) = g(x) + C

for a < x < b. By continuity, this is also true for x ∈ [a, b], so again by Part 1,

g(a) =

ˆ a

a

f(t) dt = 0

and thus

F (b)− F (a) = [g(b) + C]− [g(a) + C]

= g(b) + C − 0− C

= g(b)

=

ˆ b

a

f(t) dt.

Example 5. Evaluate the integral

ˆ 3

1

ex dx.
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Remark 1. We often use the notation

F (x)
]b
a
= F (b)− F (a).

So the equation of the Fundamental Theorem of Calculus Part 2 can be written
as ˆ b

a

f(x) dx = F (x)
]b
a

where F ′ = f.

Other common notations are F (x)|ba and [F (x)]ba.

Example 6. Find the area under the parabola y = x2 from 0 to 1.

Example 7. Evaluate

ˆ 6

3

dx

x
.
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Example 8. Find the area under the cosine curve from 0 to b, where
0 ≤ b ≤ π/2.

Example 9. What is wrong with the following calculation?

ˆ 3

−1

1

x2
dx =

x−1

−1

]3
−1

= −1

3
− 1 = −4

3
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5.4 Indefinite Integrals and the Net Change

Theorem

Definition 5.4.1. An antiderivative of f is called an indefinite integral where

ˆ
f(x) dx = F (x) means F ′(x) = f(x).

Example 1. Find the general indefinite integral

ˆ
(10x4 − 2 sec2 x) dx.

Example 2. Evaluate

ˆ
cos θ

sin2 θ
dθ.

Example 3. Evaluate

ˆ 3

0

(x3 − 6x) dx.
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Example 4. Find

ˆ 2

0

(
2x3 − 6x+

3

x2 + 1

)
dx and interpret the result in

terms of areas.

Example 5. Evaluate

ˆ 9

1

2t2 + t2
√
t− 1

t2
dt.
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Theorem 5.4.1 (Net Change Theorem). The integral of a rate of change is
the net change: ˆ b

a

F ′(x) dx = F (b)− F (a).

Example 6. A particle moves along a line so that its velocity at time t is
v(t) = t2 − t− 6 (measured in meters per second).

(a) Find the displacement of the particle during the time period 1 ≤ t ≤ 4.

(b) Find the distance traveled during this time period.
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Calculus - 5.4 Indefinite Integrals and the Net Change Theorem

Example 7. The figure shows the power consumption in the city of San Fran-
cisco for a day in September (P is measured in megawatts; t is measured in
hours starting at midnight). Estimate the energy used on that day.

408 CHAPTER 5  Integrals

EXAMPLE 7  Figure 4 shows the power consumption in the city of San Francisco for 
a day in September (P is measured in megawatts; t is measured in hours starting at 
midnight). Estimate the energy used on that day.

P

0 181512963 t21

400

600

800

200

Pacific Gas & Electric

SOLUTION Power is the rate of change of energy: Pstd − E9std. So, by the Net Change 
Theorem,

y24

0
 Pstd dt − y24

0
 E9std dt − Es24d 2 Es0d

is the total amount of energy used on that day. We approximate the value of the integral 
using the Midpoint Rule with 12 subintervals and Dt − 2:

 y24

0
 Pstd dt < fPs1d 1 Ps3d 1 Ps5d 1 ∙ ∙ ∙ 1 Ps21d 1 Ps23dg Dt

 < s440 1 400 1 420 1 620 1 790 1 840 1 850

1 840 1 810 1 690 1 670 1 550ds2d

− 15,840

The energy used was approximately 15,840 megawatt-hours. ■

How did we know what units to use for energy in Example 7? The integral y24
0  Pstd dt 

is defined as the limit of sums of terms of the form Psti*d Dt. Now Psti*d is measured in 
megawatts and Dt is measured in hours, so their product is measured in megawatt-hours. 
The same is true of the limit. In general, the unit of measurement for yb

a f sxd dx is the 
product of the unit for f sxd and the unit for x.

FIGURE 4

A note on units

1–4 Verify by differentiation that the formula is correct.

 1. y 
1

x 2s1 1 x 2 
 dx − 2

s1 1 x 2 

x
1 C

 2. y cos2 x dx − 1
2 x 1 1

4 sin 2x 1 C

 3. y tan2 x dx − tan x 2 x 1 C

 4. y xsa 1 bx  dx −
2

15b2 s3bx 2 2adsa 1 bxd3y2 1 C

5–18 Find the general indefinite integral.

 5. y sx1.3 1 7x 2.5d dx

 6. y s4 x5  dx
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5.5 The Substitution Rule

Theorem 5.5.1 (The Substitution Rule). If u = g(x) is a differentiable func-
tion whose range is an interval I and f is continuous on I, then

ˆ
f(g(x))g′(x) dx =

ˆ
f(u) du.

Proof. If f = F ′, then, by the Chain Rule,

d

dx
[F (g(x))] = f(g(x))g′(x).

Thus if u = g(x), then we have

ˆ
f(g(x))g′(x) dx = F (g(x)) + C = F (u) + C =

ˆ
f(u) du.

Example 1. Find

ˆ
x3 cos(x4 + 2) dx.

Example 2. Evaluate

ˆ √
2x+ 1 dx.
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Example 3. Find

ˆ
x√

1− 4x2
dx.

Example 4. Calculate

ˆ
e5x dx.

Example 5. Find

ˆ √
1 + x2x5 dx.
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Example 6. Calculate

ˆ
tan x dx.

Theorem 5.5.2 (The Substitution Rule for Definite Integrals). If g′ is con-
tinuous on [a, b] and f is continuous on the range of u = g(x), then

ˆ b

a

f(g(x))g′(x) dx =

ˆ g(b)

g(a)

f(u) du.

Proof. Let F be an antiderivative of f . Then F (g(x)) is an antiderivative of
f(g(x))g′(x), so by part 2 of the fundamental theorem of calculus, we have

ˆ b

a

f(g(x))g′(x) dx = F (g(x))
]b
a
= F (g(b))− F (g(a)).

By applying part 2 a second time, we also have

ˆ g(b)

g(a)

f(u) du = F (u)
]g(b)
g(a)

= F (g(b))− F (g(a)).
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Example 7. Evaluate

ˆ 4

0

√
2x+ 1 dx.

Example 8. Evaluate

ˆ 2

1

dx

(3− 5x)2
.

Example 9. Calculate

ˆ e

1

ln x

x
dx.
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Theorem 5.5.3 (Integrals of Symmetric Functions). Suppose f is continuous
on [−a, a].

(a) If f is even [f(−x) = f(x)], then

ˆ a

−a

f(x) dx = 2

ˆ a

0

f(x) dx.

(b) If f is odd [f(−x) = −f(x)], then

ˆ a

−a

f(x) dx = 0.

Proof. First we split the integral:

ˆ a

−a

f(x) dx =

ˆ 0

−a

f(x) dx+

ˆ a

0

f(x) dx = −
ˆ −a

0

f(x) dx+

ˆ a

0

f(x) dx.

By substituting u = −x we get du = −dx and u = a when x = −a, so

−
ˆ −a

0

f(x) dx = −
ˆ a

0

f(−u) (−du) =

ˆ a

0

f(−u) du

and therefore ˆ a

−a

f(x) dx =

ˆ a

0

f(−u) du+

ˆ a

0

f(x) dx.

(a) If f is even then f(−u) = f(u), so

ˆ a

−a

f(x) dx =

ˆ a

0

f(u) du+

ˆ a

0

f(x) dx = 2

ˆ a

0

f(x) dx.

(b) If f is odd then f(−u) = −f(u), so

ˆ a

−a

f(x) dx = −
ˆ a

0

f(u) du+

ˆ a

0

f(x) dx = 0.
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Example 10. Evaluate

ˆ 2

−2

(x6 + 1) dx.

Example 11. Evaluate

ˆ 1

−1

tan x

1 + x2 + x4
dx.
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Chapter 6

Applications of Integration

6.1 Areas Between Curves

428 CHAPTER 6  Applications of Integration

In Chapter 5 we de!ned and calculated areas of regions that lie under the graphs of func-
tions. Here we use integrals to !nd areas of regions that lie between the graphs of two 
functions.

Consider the region S that lies between two curves y − f sxd and y − tsxd and 
between the vertical lines x − a and x − b, where f  and t are continuous functions and 
f sxd > tsxd for all x in fa, bg. (See Figure 1.)

Just as we did for areas under curves in Section 5.1, we divide S into n strips of equal 
width and then we approximate the ith strip by a rectangle with base Dx and height 
f sxi*d 2 tsxi*d. (See Figure 2. If we like, we could take all of the sample points to be 
right endpoints, in which case xi* − xi.) The Riemann sum

o
n

i−1
 f f sxi*d 2 tsxi*dg Dx

is therefore an approximation to what we intuitively think of as the area of S.

(a) Typical rectangle

x

y

b0 a

f(x i*)
f(x i*) -g(x i*)

_g(x i*)
x i*

Îx

(b) Approximating rectangles

x

y

b0 a

This approximation appears to become better and better as n l `. Therefore we 
de!ne the area A of the region S as the limiting value of the sum of the areas of these 
approxi mating rectangles.

A − lim
n l `

 o
n

i−1
 f f sxi*d 2 tsxi*dg Dx

We recognize the limit in (1) as the de!nite integral of f 2 t. Therefore we have the 
fol lowing formula for area.

2   The area A of the region bounded by the curves y − f sxd, y − tsxd, and the 
lines x − a, x − b, where f  and t are continuous and f sxd > tsxd for all x in 
fa, bg, is

A − yb

a
 f f sxd 2 tsxdg dx

Notice that in the special case where tsxd − 0, S is the region under the graph of f  and 
our general de!nition of area (1) reduces to our previous de!nition (De!nition 5.1.2).

FIGURE 1 
S − hsx, yd | a < x < b, 
tsxd < y < f sxdj

0
y=©

y=ƒ

S

x

y

ba

FIGURE 2 

1
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Definition 6.1.1. The area A of the region bounded by the
curves y = f(x), y = g(x), and the lines x = a, x = b, where f
and g are continuous and f(x) ≥ g(x) for all x in [a, b], is

A = lim
n→∞

n∑
i=1

[f(x∗
i )− g(x∗

i )]∆x =

ˆ b

a

[f(x)− g(x)] dx.

428 CHAPTER 6  Applications of Integration

In Chapter 5 we de!ned and calculated areas of regions that lie under the graphs of func-
tions. Here we use integrals to !nd areas of regions that lie between the graphs of two 
functions.

Consider the region S that lies between two curves y − f sxd and y − tsxd and 
between the vertical lines x − a and x − b, where f  and t are continuous functions and 
f sxd > tsxd for all x in fa, bg. (See Figure 1.)

Just as we did for areas under curves in Section 5.1, we divide S into n strips of equal 
width and then we approximate the ith strip by a rectangle with base Dx and height 
f sxi*d 2 tsxi*d. (See Figure 2. If we like, we could take all of the sample points to be 
right endpoints, in which case xi* − xi.) The Riemann sum

o
n

i−1
 f f sxi*d 2 tsxi*dg Dx

is therefore an approximation to what we intuitively think of as the area of S.

(a) Typical rectangle

x

y

b0 a

f(x i*)
f(x i*) -g(x i*)

_g(x i*)
x i*

Îx

(b) Approximating rectangles

x

y

b0 a

This approximation appears to become better and better as n l `. Therefore we 
de!ne the area A of the region S as the limiting value of the sum of the areas of these 
approxi mating rectangles.

A − lim
n l `

 o
n

i−1
 f f sxi*d 2 tsxi*dg Dx

We recognize the limit in (1) as the de!nite integral of f 2 t. Therefore we have the 
fol lowing formula for area.

2   The area A of the region bounded by the curves y − f sxd, y − tsxd, and the 
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 f f sxd 2 tsxdg dx

Notice that in the special case where tsxd − 0, S is the region under the graph of f  and 
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Calculus - 6.1 Areas Between Curves

Example 1. Find the area of the region bounded above by y = ex, bounded
below by y = x, and bounded on the sides by x = 0 and x = 1.

Example 2. Find the area of the region enclosed by the parabolas y = x2

and y = 2x− x2.
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Calculus - 6.1 Areas Between Curves

Example 3. Find the approximate area of the region bounded by the curves
y = x/

√
x2 + 1 and y = x4 − x.
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430 CHAPTER 6  Applications of Integration

Sometimes it’s difficult, or even impossible, to find the points of intersection of two 
curves exactly. As shown in the following example, we can use a graphing calculator 
or computer to find approximate values for the intersection points and then proceed as 
before.

EXAMPLE 3  Find the approximate area of the region bounded by the curves
y − xysx 2 1 1 and y − x 4 2 x.

SOLUTION If we were to try to find the exact intersection points, we would have to 
solve the equation

x

sx 2 1 1
− x 4 2 x

This looks like a very difficult equation to solve exactly (in fact, it’s impossible), so 
instead we use a graphing device to draw the graphs of the two curves in Figure 7. One 
intersection point is the origin. We zoom in toward the other point of intersection and 
find that x < 1.18. (If greater accuracy is required, we could use Newton’s method or 
solve numerically on our graphing device.) So an approximation to the area between 
the curves is

A < y1.18

0
 F x

sx 2 1 1
2 sx 4 2 xdG dx

To integrate the first term we use the substitution u − x 2 1 1. Then du − 2x dx, and 
when x − 1.18, we have u < 2.39; when x − 0, u − 1. So

 A < 1
2 y2.39

1
 

du

su  2 y1.18

0
 sx 4 2 xd dx

 − su  g
1

2.39

2 F x 5

5
2

x 2

2 G0

1.18

 − s2.39 2 1 2
s1.18d5

5
1

s1.18d2

2

  < 0.785  n

EXAMPLE 4  Figure 8 shows velocity curves for two cars, A and B, that start side by 
side and move along the same road. What does the area between the curves represent? 
Use the Midpoint Rule to estimate it.

SOLUTION We know from Section 5.4 that the area under the velocity curve A rep-
resents the distance traveled by car A during the first 16 seconds. Similarly, the area 
under curve B is the distance traveled by car B during that time period. So the area 
between these curves, which is the difference of the areas under the curves, is the 
distance between the cars after 16 seconds. We read the velocities from the graph and 
convert them to feet per second s1 miyh − 5280

3600 ftysd.

t 0   2   4   6   8 10 12 14 16

vA 0 34 54 67 76 84 89 92 95

vB 0 21 34 44 51 56 60 63 65

vA 2 vB 0 13 20 23 25 28 29 29 30

1.5

_1

_1 2
y=x$-x

x
œ„„„„„≈+1

y=

FIGURE 7 
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FIGURE 8 
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Example 4. The figure shows the velocity curves for two cars,
A and B, that start side by side and move along the same road.
What does the area between the curves represent? Use the Mid-
point Rule to estimate it.
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Calculus - 6.1 Areas Between Curves

Example 5. The figure is an example of a pathogenesis curve for a measles
infection. It shows how the disease develops in an individual with no immunity
after the measles virus spreads to the bloodstream from the respiratory tract.

 SECTION 6.1  Areas Between Curves 431

We use the Midpoint Rule with n − 4 intervals, so that Dt − 4. The midpoints of 
the intervals are t1 − 2, t2 − 6, t3 − 10, and t4 − 14. We estimate the distance between 
the cars after 16 seconds as follows:

 y16

0
 svA 2 vBd dt < Dt f13 1 23 1 28 1 29g

  − 4s93d − 372 ft  n

EXAMPLE 5  Figure 9 is an example of a pathogenesis curve for a measles infection. 
It shows how the disease develops in an individual with no immunity after the measles 
virus spreads to the bloodstream from the respiratory tract.
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The patient becomes infectious to others once the concentration of infected cells 
becomes great enough, and he or she remains infectious until the immune system 
manages to prevent further transmission. However, symptoms don’t develop until the 
“amount of infection” reaches a particular threshold. The amount of infection needed 
to develop symptoms depends on both the concentration of infected cells and time, 
and corresponds to the area under the pathogenesis curve until symptoms appear. (See 
Exercise 5.1.19.)
(a) The pathogenesis curve in Figure 9 has been modeled by f std − 2tst 2 21dst 1 1d. 
If infectiousness begins on day t1 − 10 and ends on day t2 − 18, what are the corre-
sponding concentration levels of infected cells?
(b) The level of infectiousness for an infected person is the area between N − f std and 
the line through the points P1st1, f st1dd and P2st2, f st2dd, measured in (cellsymL) ? days. 
(See Figure 10.) Compute the level of infectiousness for this particular patient.

SOLUTION
(a) Infectiousness begins when the concentration reaches f s10d − 1210 cellsymL and 
ends when the concentration reduces to f s18d − 1026 cellsymL.

FIGURE 9 
Measles pathogenesis curve 

Source: J. M. Heffernan et al., “An In-Host Model 
of Acute Infection: Measles as a Case Study,” 

Theoretical Population Biology  
73 (2008): 134–47.
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The patient becomes infectious to others once the concentration of infected
cells becomes great enough, and he or she remains infectious until the immune
system manages to prevent further transmission. However, symptoms don’t
develop until the “amount of infection” reaches a particular threshold. The
amount of infection needed to develop symptoms depends on both the con-
centration of infected cells and time, and corresponds to the area under the
pathogenesis curve until symptoms appear.

(a) The pathogenesis curve in the figure has been modeled by f(t) = −t(t −
21)(t+1). If infectiousness begins on day t1 = 10 and ends on day t2 = 18,
what are the corresponding concentration levels of infected cells?
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(b) The level of infectiousness for an infected person is the area between
N = f(t) and the line through the points P1(t1, (f(t1)) and P2(t2, f(t2)),
measured in (cells/mL)· days. Compute the level of infectiousness for this
particular patient.

195



Calculus - 6.1 Areas Between Curves

Definition 6.1.2. The area between the curves y = f(x) and y = g(x) and
between x = a and x = b is

A =

ˆ b

a

|f(x)− g(x)| dx.

Example 6. Find the area of the region bounded by the curves y = sin x,
y = cos x, x = 0, and x = π/2.
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 SECTION 6.1  Areas Between Curves 433

Observe that cos x > sin x when 0 < x < !y4 but sin x > cos x when 
!y4 < x < !y2. Therefore the required area is

 A − y!y2

0
 | cos x 2 sin x | dx − A1 1 A2

 − y!y4

0
 scos x 2 sin xd dx 1 y!y2

!y4
 ssin x 2 cos xd dx

 − fsin x 1 cos xg0

!y4
1 f2cos x 2 sin xg!y4

!y2

 − S 1

s2
1

1

s2
2 0 2 1D 1 S20 2 1 1

1

s2
1

1

s2D
 − 2s2 2 2

In this particular example we could have saved some work by noticing that the 
region is symmetric about x − !y4 and so

 A − 2A1 − 2 y!y4

0
 scos x 2 sin xd dx Q

Some regions are best treated by regarding x as a function of y. If a region is bounded 
by curves with equations x − f syd, x − tsyd, y − c, and y − d, where f  and t are con-
tinuous and f syd > tsyd for c < y < d (see Figure 13), then its area is

A − yd

c
 f f syd 2 tsydg dy

If we write xR for the right boundary and xL for the left boundary, then, as Fig ure 14 
illustrates, we have

A − yd

c
 sxR 2 xLd dy

Here a typical approximating rectangle has dimensions xR 2 xL and Dy.

EXAMPLE 7  Find the area enclosed by the line y − x 2 1 and the parabola 
y 2 − 2x 1 6.

SOLUTION By solving the two equations we !nd that the points of intersection are 
s21, 22d and s5, 4d. We solve the equation of the parabola for x and notice from  
Fig ure 15 that the left and right boundary curves are

xL − 1
2 y 2 2 3    and    xR − y 1 1

x

y

_2

4

0

(_1, _2)

(5, 4)

xR=y+1

1
2xL= ¥-3

FIGURE 13 

FIGURE 14 
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Remark 1. Some regions are best treated by regarding x as a
function of y. If a region is bounded by curves with equations
x = f(y), x = g(y), y = c, and y = d, where f and g are
continuous and f(y) ≥ g(y) for c ≤ y ≤ d (see the figure), then
its area is

A =

ˆ d

c

[f(y)− g(y)] dy.

Example 7. Find the area enclosed by the line y = x − 1 and
the parabola y2 = 2x+ 6.
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6.2 Volumes

Definition 6.2.1 (Definition of Volume). Let S be a solid that lies between
x = a and x = b. If the cross-sectional area of S in the plane Px, through
x and perpendicular to the x-axis, is A(x), where A is a continuous function,
then the volume of S is

V = lim
n→∞

n∑
i=1

A(x∗
i )∆x =

ˆ b

a

A(x) dx.

SeCtion 6.2  Volumes 439

Let’s divide S into n “slabs” of equal width Dx by using the planes Px1, Px2 , . . . to slice 
the solid. (Think of slicing a loaf of bread.) If we choose sample points xi* in fxi21, xig, 
we can approximate the ith slab Si (the part of S that lies between the planes Pxi21 and Pxi)  
by a cylinder with base area Asxi*d and “height” Dx. (See Figure 3.)

xi-1 xi

y

0 xx*i

Îx

S

a b

y

0 xx¶=ba=x¸ ⁄ x™ ‹ x¢ x∞ xß

The volume of this cylinder is Asxi*d Dx, so an approximation to our intuitive concep-
tion of the volume of the ith slab Si is

VsSid < Asxi*d Dx

Adding the volumes of these slabs, we get an approximation to the total volume (that is, 
what we think of intuitively as the volume): 

V < o
n

i−1
 Asxi*d Dx

This approximation appears to become better and better as n l `. (Think of the slices 
as becoming thinner and thinner.) Therefore we define the volume as the limit of these 
sums as n l `. But we recognize the limit of Riemann sums as a definite integral and 
so we have the following definition.

 Definition of Volume Let S be a solid that lies between x − a and x − b. If the 
cross-sectional area of S in the plane Px, through x and perpendicular to the x-axis, 
is Asxd, where A is a continuous function, then the volume of S is

V − lim
n l `

 o
n

i−1
Asxi*d Dx − yb

a
 Asxd dx

When we use the volume formula V − yb
a  Asxd dx, it is important to remember that

Asxd is the area of a moving cross-section obtained by slicing through x perpendicular 
to the x-axis.

Notice that, for a cylinder, the cross-sectional area is constant: Asxd − A for all x. So 
our definition of volume gives V − yb

a  A dx − Asb 2 ad; this agrees with the formula 
V − Ah.

ExamplE 1  Show that the volume of a sphere of radius r is V − 4
3 �r 3.

SoLUtion If we place the sphere so that its center is at the origin, then the plane Px 
intersects the sphere in a circle whose radius (from the Pythagorean Theorem) is 

FIGURE 3� 

It can be proved that this definition is 
independent of how S is situated with 
respect to the x-axis. In other words, 
no matter how we slice S with parallel 
planes, we always get the same answer 
for V.
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Example 1. Show that the volume of a sphere of radius r is V = 4
3
πr3.
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Calculus - 6.2 Volumes

Example 2. Find the volume of the solid obtained by rotating about the x-
axis the region under the curve y =

√
x from 0 to 1. Illustrate the definition

of volume by sketching a typical approximating cylinder.

Example 3. Find the volume of the solid obtained by rotating the region
bounded by y = x3, y = 8, and x = 0 about the y-axis.

199



Calculus - 6.2 Volumes

Example 4. The region R enclosed by the curves y = x and y = x2 is rotated
about the x-axis. Find the volume of the resulting solid.

Example 5. Find the volume of the solid obtained by rotating the region in
Example 4 about the line y = 2.
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Calculus - 6.2 Volumes

Example 6. Find the volume of the solid obtained by rotating the region in
Example 4 about the line x = −1.

444 CHAPTER 6  Applications of Integration

EXAMPLE 6  Find the volume of the solid obtained by rotating the region in  
Example 4 about the line x − 21.

SOLUTION Figure 11 shows a horizontal cross-section. It is a washer with inner radius 
1 1 y and outer radius 1 1 sy  , so the cross-sectional area is

 Asyd − !souter radiusd2 2 !sinner radiusd2

 − ! (1 1 sy )2 2 !s1 1 yd2

The volume is

 V − y1

0
 Asyd dy − ! y1

0
 fs1 1 sy d2 2 s1 1 yd2 g dy

− ! y1

0
 s2sy 2 y 2 y 2 d dy − !F 4y 3y2

3
2

 y 2

2
2

 y 3

3 G0

1

−
!

2

 x=_1

y

y

x0

x=œ„y

y

x=y

y

1 y
1+y

1+œ„

 n

We now find the volumes of three solids that are not solids of revolution.

EXAMPLE 7  Figure 12 shows a solid with a circular base of radius 1. Parallel cross- 
sections perpendicular to the base are equilateral triangles. Find the volume of the solid.

SOLUTION Let’s take the circle to be x 2 1 y 2 − 1. The solid, its base, and a typical 
cross-section at a distance x from the origin are shown in Figure 13.

Since B lies on the circle, we have y − s1 2 x 2  and so the base of the triangle ABC 
is | AB | − 2y − 2s1 2 x 2 . Since the triangle is equilateral, we see from Figure 13(c) 

TEC Visual 6.2C shows how the  
solid in Figure 12 is generated.

FIGURE 12  
Computer-generated picture 
of the solid in Example 7

y

x

FIGURE 13

FIGURE 11

y y
60° 60° BA

C

œ„3y

(c) A cross-section

A

B(x, y)y=œ„„„„„„1-≈

(b) Its base

x

y

0

y

x

(a) The solid

0

A

x

B

1_1 x

y
C
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Example 7. The figure shows a solid with a circular base of
radius 1. Parallel cross-sections perpendicular to the base are
equilateral triangles. Find the volume of the solid.
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Calculus - 6.2 Volumes

Example 8. Find the volume of a pyramid whose base is a square with side
L and whose height is h.

Example 9. A wedge is cut out of a circular cylinder of radius 4 by two planes.
One plane is perpendicular to the axis of the cylinder. The other intersects
the first at an angle of 30◦ along a diameter of the cylinder. Find the volume
of the wedge.
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Calculus - 6.3 Volumes by Cylindrical Shells

6.3 Volumes by Cylindrical Shells

Theorem 6.3.1 (Method of Cylindrical Shells). The volume of the solid in
the figure, obtained by rotating about the y-axis the region under the curve
y = f(x) from a to b, is

V = lim
n→∞

n∑
i=1

2πx̄if(x̄i)∆x =

ˆ b

a

2πxf(x) dx where 0 ≤ a ≤ b

and where x̄i is the midpoint of the ith subinterval [xi−1, xi].

450 Chapter 6  Applications of Integration

r2, and height h. Its volume V  is calculated by subtracting the volume V1 of the inner 
cylinder from the volume V2 of the outer cylinder:

V − V2 2 V1

− �r 2
2 h 2 �r 2

1 h − �sr 2
2 2 r 2

1 dh

− �sr2 1 r1dsr2 2 r1dh

− 2�
r2 1 r1

2
hsr2 2 r1d

If we let Dr − r2 2 r1 (the thickness of the shell) and r − 1
2 sr2 1 r1d (the average radius 

of the shell), then this formula for the volume of a cylindrical shell becomes

V − 2�rh Dr1�

and it can be remembered as

V − [circumference][height][thickness]

Now let S be the solid obtained by rotating about the y-axis the region bounded by 
y − f sxd [where f sxd > 0], y − 0, x − a,  and x − b, where b . a > 0. (See Figure 3.)

x

y

a b0

y=ƒ

a b x

y

0

y=ƒ

We divide the interval fa, bg into n subintervals fxi21, xig of equal width Dx and let xi

be the midpoint of the ith subinterval. If the rectangle with base fxi21, xig and height f sxid 
is rotated about the y-axis, then the result is a cylindrical shell with average radius xi , 
height f sxid, and thickness Dx (see Figure 4). So by Formula 1 its volume is

Vi − s2�xidf f sxidg Dx

x

y

a b0

y=ƒ

xi–

a b0 x

y

xi-1
xi

y=ƒ

x

y

a b0

y=ƒ

Therefore an approximation to the volume V  of S is given by the sum of the volumes of 

FIGURE 3�

FIGURE 4�
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Example 1. Find the volume of the solid obtained by rotating about the
y-axis the region bounded by y = 2x2 − x3 and y = 0.
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Calculus - 6.3 Volumes by Cylindrical Shells

Example 2. Find the volume of the solid obtained by rotating about the
y-axis the region between y = x and y = x2.

Example 3. Use cylindrical shells to find the volume of the solid obtained by
rotating about the x-axis the region under the curve y =

√
x from 0 to 1.
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Calculus - 6.3 Volumes by Cylindrical Shells

Example 4. Find the volume of the solid obtained by rotating the region
bounded by y = x− x2 and y = 0 about the line x = 2.

205



Calculus - 6.4 Work

6.4 Work

Definition 6.4.1. In general, if an object moves along a straight line with
position function s(t), then the force F on the object (in the same direction)
is given by Newton’s Second Law of Motion as the product of its mass m and
its acceleration a:

F = ma = m
d2s

dt2
.

Definition 6.4.2. In the case of constant acceleration, the force F is also
constant and the work done is defined to be the product of the force F and
distance d that the object moves:

W = Fd work = force× distance.

Example 1. (a) How much work is done in lifting a 1.2-kg book off the floor
to put it on a desk that is 0.7 m high? Use the fact that the acceleration
due to gravity is g = 9.8 m/s2.

(b) How much work is done in lifting a 20-lb weight 6 ft off the ground?
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Calculus - 6.4 Work

Definition 6.4.3. If the force f(x) on an object is variable, then we define
the work done in moving the object from a to b as

W = lim
n→∞

n∑
i=1

f(x∗
i )∆x =

ˆ b

a

f(x) dx.

Example 2. When a particle is located a distance x feet from the origin, a
force of x2 + 2x pounds acts on it. How much work is done in moving it from
x = 1 to x = 3?

Theorem 6.4.1 (Hooke’s Law). The force required to maintain a spring
stretched x units beyond its natural length is proportional to x:

f(x) = kx

where k is a positive constant called the spring constant (see the figure). Hooke’s
Law holds provided that x is not too large. SECTION 6.4 Work 457

W − y0.08

0.05
 800x dx − 800 

x 2

2 G0.05

0.08

− 400fs0.08d2 2 s0.05d2g − 1.56 J Q

EXAMPLE 4  A 200-lb cable is 100 ft long and hangs vertically from the top of a tall 
building. How much work is required to lift the cable to the top of the building?

SOLUTION Here we don’t have a formula for the force function, but we can use an 
argument similar to the one that led to Definition 4.

Let’s place the origin at the top of the building and the x-axis pointing downward as 
in Figure 2. We divide the cable into small parts with length Dx. If xi* is a point in the 
ith such interval, then all points in the interval are lifted by approximately the same 
amount, namely xi*. The cable weighs 2 pounds per foot, so the weight of the ith part is 
(2 lbyft)(Dx ft) − 2Dx lb. Thus the work done on the ith part, in foot-pounds, is 

s2Dxd ? xi* − 2xi* Dx
force distance

We get the total work done by adding all these approximations and letting the num-
ber of parts become large (so Dx l 0):

W − lim
n l `

 o
n

i−1
 2xi*Dx − y100

0
 2x dx

− x 2g100

0 − 10,000 ft-lb Q

EXAMPLE 5  A tank has the shape of an inverted circular cone with height 10 m and 
base radius 4 m. It is filled with water to a height of 8 m. Find the work required to 
empty the tank by pumping all of the water to the top of the tank. (The density of water 
is 1000 kgym3.)

x0frictionless
surface

x0 x

ƒ=kx

(a) Natural position of spring (b) Stretched position of spring

0

100

x*i

x

Îx

FIGURE 2 

If we had placed the origin at the 
bottom of the cable and the x-axis 
upward, we would have gotten

W − y100

0
 2s100 2 xd dx

which gives the same answer.
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Calculus - 6.4 Work

Example 3. A force of 40 N is required to hold a spring that has been
stretched from its natural length of 10 cm to a length of 15 cm. How much
work is done in stretching the spring from 15 cm to 18 cm?

Example 4. A 200-lb cable is 100 ft long and hangs vertically from the top
of a tall building. How much work is required to lift the cable to the top of
the building?
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Calculus - 6.4 Work

Example 5. A tank has the shape of an inverted circular cone with height
10 m and base radius 4 m. It is filled with water to a height of 8 m. Find the
work required to empty the tank by pumping all of the water to the top of the
tank. (The density of water is 1000 kg/m3.)
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Calculus - 6.5 Average Value of a Function

6.5 Average Value of a Function

Definition 6.5.1. The average value of a function f on the interval [a, b] is

fave =
1

b− a

ˆ b

a

f(x) dx.

Example 1. Find the average value of the function f(x) = 1 + x2 on the
interval [−1, 2].

Theorem 6.5.1 (The Mean Value Theorem for Integrals). If f is continuous
on [a, b], then there exists a number c in [a, b] such that

f(c) = fave =
1

b− a

ˆ b

a

f(x) dx,

that is, ˆ b

a

f(x) dx = f(c)(b− a).

Proof. By applying the Mean Value Theorem for derivatives to the function
F (x) =

´ x
a
f(t)dt, we see that there exists a number c in [a, b] such that

F ′(c) =
F (b)− F (a)

b− a

d

dx

[ˆ x

a

f(t) dt

]∣∣∣∣∣
c

=
F (b)− F (a)

b− a

f(c) =
1

b− a
[F (b)− F (a)]

=
1

b− a

ˆ b

a

f(x) dx.
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Calculus - 6.5 Average Value of a Function

Example 2. Find a number c in the interval [−1, 2] that satisfies the mean
value theorem for integrals for the function f(x) = 1 + x2.

Example 3. Show that the average velocity of a car over a time interval [t1, t2]
is the same as the average of its velocities during the trip.
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Chapter 7

Techniques of Integration

7.1 Integration by Parts

Theorem 7.1.1 (Formula for Integration by Parts). If f and g are differen-
tiable functions then

ˆ
f(x)g′(x) dx = f(x)g(x)−

ˆ
g(x)f ′(x) dx,

or, equivalently, ˆ
u dv = uv −

ˆ
v du

where u = f(x) and v = g(x).

Proof. By the Product Rule,

d

dx
[f(x)g(x)] = f(x)g′(x) + g(x)f ′(x)

f(x)g(x) =

ˆ
[f(x)g′(x) + g(x)f ′(x)] dx

=

ˆ
f(x)g′(x) dx+

ˆ
g(x)f ′(x) dx

ˆ
f(x)g′(x) dx = f(x)g(x)−

ˆ
g(x)f ′(x) dx

212



Calculus - 7.1 Integration by Parts

Example 1. Find

ˆ
x sinx dx.

Example 2. Evaluate

ˆ
ln x dx.
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Calculus - 7.1 Integration by Parts

Example 3. Find

ˆ
t2et dt.
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Calculus - 7.1 Integration by Parts

Example 4. Evaluate

ˆ
ex sin x dx.
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Calculus - 7.1 Integration by Parts

Theorem 7.1.2 (Formula for Definite Integration by Parts). If f and g are
differentiable on (a, b) and f ′ and g′ are continuous, then

ˆ b

a

f(x)g′(x) dx = f(x)g(x)
]b
a
−
ˆ b

a

g(x)f ′(x) dx.

Example 5. Calculate

ˆ 1

0

tan−1 x dx.
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Calculus - 7.1 Integration by Parts

Example 6. Prove the reduction formula

ˆ
sinn x dx = − 1

n
cos x sinn−1 x+

n− 1

n

ˆ
sinn−2 x dx

where n ≥ 2 is an integer.
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Calculus - 7.2 Trigonometric Integrals

7.2 Trigonometric Integrals

Example 1. Evaluate

ˆ
cos3 x dx.

Example 2. Find

ˆ
sin5 x cos2 x dx.
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Calculus - 7.2 Trigonometric Integrals

Remark 1. Sometimes it is easier to use the half-angle identities

sin2 x =
1

2
(1− cos 2x) and cos2 x =

1

2
(1 + cos 2x)

to evaluate an integral.

Example 3. Evaluate

ˆ π

0

sin2 x dx.

Example 4. Find

ˆ
sin4 x dx.
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Calculus - 7.2 Trigonometric Integrals

Example 5. Evaluate

ˆ
tan6 x sec4 x dx.

Example 6. Find

ˆ
tan5 θ sec7 θ dθ.

220



Calculus - 7.2 Trigonometric Integrals

Example 7. Find

ˆ
tan3 x dx.

Example 8. Find

ˆ
sec3 x dx.
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Calculus - 7.2 Trigonometric Integrals

Remark 2. To evaluate the integrals (a)
´
sinmx cosnx dx, (b)

´
sinmx sinnx dx,

or (c)
´
cosmx cosnx dx, use the corresponding identity:

(a) sinA cosB =
1

2
[sin(A−B) + sin(A+B)]

(b) sinA sinB =
1

2
[cos(A−B)− cos(A+B)]

(c) cosA cosB =
1

2
[cos(A−B) + cos(A+B)].

Example 9. Evaluate

ˆ
sin 4x cos 5x dx.
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Calculus - 7.3 Trigonometric Substitution

7.3 Trigonometric Substitution

Table of Trigonometric Substitutions

Expression Substitution Identity

√
a2 − x2 x = a sin θ, −π

2
≤ θ ≤ π

2
1− sin2 θ = cos2 θ

√
a2 + x2 x = a tan θ, −π

2
≤ θ ≤ π

2
1 + tan2 θ = sec2 θ

√
x2 − a2 x = a sec θ, 0 ≤ θ ≤ π

2
or π ≤ θ ≤ 3π

2
sec2 θ − 1 = tan2 θ

Example 1. Evaluate

ˆ √
9− x2

x2
dx.
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Calculus - 7.3 Trigonometric Substitution

Example 2. Find the area enclosed by the ellipse

x2

a2
+

y2

b2
= 1.
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Calculus - 7.3 Trigonometric Substitution

Example 3. Find

ˆ
1

x2
√
x2 + 4

dx.
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Calculus - 7.3 Trigonometric Substitution

Example 4. Find

ˆ
x√

x2 + 4
dx.

Example 5. Evaluate

ˆ
dx√

x2 − a2
, where a > 0.
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Calculus - 7.3 Trigonometric Substitution

Example 6. Find

ˆ 3
√
3/2

0

x3

(4x2 + 9)3/2
dx.
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Calculus - 7.3 Trigonometric Substitution

Example 7. Evaluate

ˆ
x√

3− 2x− x2
dx.
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7.4 Integration by Partial Fractions

Example 1. Find

ˆ
x3 + x

x− 1
dx.
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Calculus - 7.4 Integration by Partial Fractions

Example 2. Evaluate

ˆ
x2 + 2x− 1

2x3 + 3x2 − 2x
dx.
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Calculus - 7.4 Integration by Partial Fractions

Example 3. Find

ˆ
dx

x2 − a2
, where a ̸= 0.
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Calculus - 7.4 Integration by Partial Fractions

Example 4. Find

ˆ
x4 − 2x2 + 4x+ 1

x3 − x2 − x+ 1
dx.
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Calculus - 7.4 Integration by Partial Fractions

Theorem 7.4.1. ˆ
dx

x2 + a2
=

1

a
tan−1

(
x

a

)
+ C.

Example 5. Evaluate

ˆ
2x2 − x+ 4

x3 + 4x
dx.
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Calculus - 7.4 Integration by Partial Fractions

Example 6. Evaluate

ˆ
4x2 − 3x+ 2

4x2 − 4x+ 3
dx.
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Calculus - 7.4 Integration by Partial Fractions

Example 7. Write out the form of the partial fraction decomposition of the
function

x3 + x2 + 1

x(x− 1)(x2 + x+ 1)(x2 + 1)3
.

Example 8. Evaluate

ˆ
1− x+ 2x2 − x3

x(x2 + 1)2
dx.
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Calculus - 7.4 Integration by Partial Fractions

Example 9. Evaluate

ˆ √
x+ 4

x
dx.
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Calculus - 7.5 Strategy for Integration

7.5 Strategy for Integration

Example 1.

ˆ
tan3 x

cos3 x
dx.

Example 2.

ˆ
e
√
x dx.
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Calculus - 7.5 Strategy for Integration

Example 3.

ˆ
x5 + 1

x3 − 3x2 − 10x
dx.

238



Calculus - 7.5 Strategy for Integration

Example 4.

ˆ
dx

x
√
ln x

.

Example 5.

ˆ √
1− x

1 + x
dx.
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7.6 Integration Using Tables and CAS’s

Example 1. The region bounded by the curves y = arctanx, y = 0, and
x = 1 is rotated about the y-axis. Find the volume of the resulting solid.

Example 2. Use the Table of Integrals to find

ˆ
x2

√
5− 4x2

dx.
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Calculus - 7.6 Integration Using Tables and CAS’s

Example 3. Use the Table of Integrals to evaluate

ˆ
x3 sin x dx.

Example 4. Use the Table of Integrals to find

ˆ
x
√
x2 + 2x+ 4 dx.
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Calculus - 7.6 Integration Using Tables and CAS’s

Example 5. Use a computer algebra system to find

ˆ
x
√
x2 + 2x+ 4 dx.

Example 6. Use a CAS to evaluate

ˆ
x(x2 + 5)8 dx.

Example 7. Use a CAS to find

ˆ
sin5 x cos2 x dx.
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Calculus - 7.7 Approximate Integration

7.7 Approximate Integration

 SECTION 7.7  Approximate Integration 515

example, it is impossible to evaluate the following integrals exactly:

y1

0
 ex 2 

dx      y1

21
 s1 1 x 3  dx

The second situation arises when the function is determined from a scienti!c experi-
ment through instrument readings or collected data. There may be no formula for the 
function (see Example 5).

In both cases we need to !nd approximate values of de!nite integrals. We already 
know one such method. Recall that the de!nite integral is de!ned as a limit of Riemann 
sums, so any Riemann sum could be used as an approximation to the integral: If we 
divide fa, bg into n subintervals of equal length Dx − sb 2 adyn, then we have

yb

a
 f sxd dx < o

n

i−1
 f sxi*d Dx

where x i* is any point in the ith subinterval fxi21, xig. If x i* is chosen to be the left end-
point of the interval, then x i* − xi21 and we have

yb

a
 f sxd dx < Ln − o

n

i−1
 f sxi21d Dx

If f sxd > 0, then the integral represents an area and (1) represents an approximation of 
this area by the rectangles shown in Figure 1(a). If we choose x i* to be the right endpoint, 
then x i* − xi and we have

yb

a
 f sxd dx < Rn − o

n

i−1
 f sxid Dx

[See Figure 1(b).] The approximations Ln and Rn de!ned by Equations 1 and 2 are called 
the left endpoint approximation and right endpoint approximation, respectively.

In Section 5.2 we also considered the case where x i* is chosen to be the midpoint xi 
of the subinterval fxi21, xig. Figure 1(c) shows the midpoint approximation Mn, which 
appears to be better than either Ln or Rn.

Midpoint Rule 

yb

a
 f sxd dx < Mn − Dx f f sx1d 1 f sx2 d 1 ∙ ∙ ∙ 1 f sxn dg

where  Dx −
b 2 a

n

and  xi − 1
2 sxi21 1 xid − midpoint of fxi21, xig

Another approximation, called the Trapezoidal Rule, results from averaging the 
approximations in Equations 1 and 2:

 yb

a
 f sxd dx <

1
2

 Fo
n

i−1
 f sxi21 d Dx 1 o

n

i−1
 f sxid DxG −

Dx
2

 Fo
n

i−1
 s f sxi21 d 1 f sxiddG

 −
Dx
2

 fs f sx0 d 1 f sx1dd 1 s f sx1d 1 f sx2 dd 1 ∙ ∙ ∙ 1 s f sxn21d 1 f sxn ddg

 −
Dx
2

 f f sx0 d 1 2 f sx1d 1 2 f sx2 d 1 ∙ ∙ ∙ 1 2 f sxn21d 1 f sxn dg

1

⁄ ¤– – ––

(a) Left endpoint approximation

y

x¸ ⁄ ¤ ‹ x¢

x¸ ⁄ ¤ ‹ x¢

‹ x¢

x0

(b) Right endpoint approximation

y

x0

x

(c) Midpoint approximation

y

0

FIGURE 1 

2
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Theorem 7.7.1 (Midpoint Rule).

ˆ b

a

f(x) dx ≈ Mn = ∆x[f(x̄1) + f(x̄2) + · · ·+ f(x̄n)]

where

∆x =
b− a

n

and

x̄i =
1

2
(xi−1 + xi) = midpoint of [xi−1, xi]. 516 CHAPTER 7  Techniques of Integration

Trapezoidal Rule 

yb

a
 f sxd dx < Tn −

Dx
2

 f f sx0 d 1 2 f sx1d 1 2 f sx2 d 1 ∙ ∙ ∙ 1 2 f sxn21d 1 f sxn dg

where Dx − sb 2 adyn and xi − a 1 i Dx.

The reason for the name Trapezoidal Rule can be seen from Figure 2, which illustrates 
the case with f sxd > 0 and n − 4. The area of the trapezoid that lies above the ith sub-
interval is

Dx S  f sxi21d 1 f sxid
2 D −

Dx
2

 f f sxi21d 1 f sxidg

and if we add the areas of all these trapezoids, we get the right side of the Trapezoidal 
Rule.

EXAMPLE 1  Use (a) the Trapezoidal Rule and (b) the Midpoint Rule with n − 5 to  
approximate the integral y2

1
 s1yxd dx.

SOLUTION
(a) With n − 5, a − 1, and b − 2, we have Dx − s2 2 1dy5 − 0.2, and so the Trape-
zoidal Rule gives

 y2

1
 
1
x

 dx < T5 −
0.2
2

 f f s1d 1 2 f s1.2d 1 2 f s1.4d 1 2 f s1.6d 1 2 f s1.8d 1 f s2dg

 − 0.1S 1
1

1
2

1.2
1

2
1.4

1
2

1.6
1

2
1.8

1
1
2D

 < 0.695635

This approximation is illustrated in Figure 3.

(b) The midpoints of the "ve subintervals are 1.1, 1.3, 1.5, 1.7, and 1.9, so the Mid-
point Rule gives

 y2

1
 
1
x

 dx < Dx f f s1.1d 1 f s1.3d 1 f s1.5d 1 f s1.7d 1 f s1.9dg

 −
1
5

 S 1
1.1

1
1

1.3
1

1
1.5

1
1

1.7
1

1
1.9D

 < 0.691908

This approximation is illustrated in Figure 4. Q

In Example 1 we deliberately chose an integral whose value can be computed explic-
itly so that we can see how accurate the Trapezoidal and Midpoint Rules are. By the 
Fundamental Theorem of Calculus,

y2

1
 
1
x

 dx − ln xg 1

2
− ln 2 − 0.693147 . . .

The error in using an approximation is de"ned to be the amount that needs to be added 
to the approximation to make it exact. From the values in Example 1 we see that the 

0

y

xx¸ ⁄ ¤ ‹ x¢

1 2

1 2

1
xy=

1
xy=

FIGURE 2  
Trapezoidal approximation

FIGURE 3  

FIGURE 4  

yb

a
 f sxd dx − approximation 1 error
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Theorem 7.7.2 (Trapezoidal Rule).

ˆ b

a

f(x) dx ≈ Tn =
∆x

2
[f(x0)+2f(x1)+2f(x2)+· · ·+2f(xn−1)+f(xn)]

where ∆x = (b− a)/n and xi = a+ i∆x.

Example 1. Use (a) the Trapezoidal Rule and (b) the Midpoint

Rule with n = 5 to approximate the integral
´ 2
1
(1/x) dx.
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Calculus - 7.7 Approximate Integration

Theorem 7.7.3 (Error Bounds). Suppose |f ′′(x)| ≤ K for a ≤ x ≤ b. If ET

and EM are the errors in the Trapezoidal and Midpoint Rules, then

|ET | ≤
K(b− a)3

12n2
and |EM | ≤ K(b− a)3

24n2
.

Example 2. How large should we take n in order to guarantee that the Trape-
zoidal and Midpoint Rule approximations for

´ 2
1
(1/x) dx are accurate to within

0.0001?
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Calculus - 7.7 Approximate Integration

Example 3. (a) Use the Midpoint Rule with n = 10 to approximate the

integral
´ 1

0
ex

2
dx.

(b) Give an upper bound for the error involved in this approximation.
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Calculus - 7.7 Approximate Integration

Theorem 7.7.4 (Simpson’s Rule).

ˆ b

a

f(x) dx ≈ Sn =
∆x

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·

+ 2f(xn−2) + 4f(xn−1) + f(xn)]

where n is even and ∆x = (b− a)/n.

 SECTION 7.7  Approximate Integration 519

EXAMPLE 3  
(a) Use the Midpoint Rule with n − 10 to approximate the integral y1

0 e
x 2

dx.
(b) Give an upper bound for the error involved in this approximation.

SOLUTION
(a) Since a − 0, b − 1, and n − 10, the Midpoint Rule gives

 y1

0
 ex 2

dx < Dx f f s0.05d 1 f s0.15d 1 ∙ ∙ ∙ 1 f s0.85d 1 f s0.95dg

 − 0.1fe 0.0025 1 e 0.0225 1 e 0.0625 1 e 0.1225 1 e 0.2025 1 e 0.3025

    1 e 0.4225 1 e 0.5625 1 e 0.7225 1 e 0.9025g

 < 1.460393

Figure 6 illustrates this approximation.

(b) Since f sxd − ex 2
, we have f 9sxd − 2xex 2

 and f 0sxd − s2 1 4x 2dex 2
. Also, since 

0 < x < 1, we have x 2 < 1 and so

0 < f 0sxd − s2 1 4x 2dex 2
< 6e

Taking K − 6e, a − 0, b − 1, and n − 10 in the error estimate (3), we see that an 
upper bound for the error is

 
6es1d3

24s10d2 −
e

400
< 0.007 Q

Simpson’s Rule
Another rule for approximate integration results from using parabolas instead of straight 
line segments to approximate a curve. As before, we divide fa, bg into n subintervals  
of equal length h − Dx − sb 2 adyn, but this time we assume that n is an even number. 
Then on each consecutive pair of intervals we approximate the curve y − f sxd > 0  
by a parabola as shown in Figure 7. If yi − f sxid, then Pisxi, yid is the point on the curve 
lying above xi. A typical parabola passes through three consecutive points Pi, Pi11,  
and Pi12.

0

y

xa=x¸ ⁄ x™ x¢x£ xß=bx∞

P¸ P¡

P™
P¢

P£

PßP∞

0

y

xh_h

P¸(_h, y¸) P¡(0, ›)

P™(h, fi)

To simplify our calculations, we "rst consider the case where x0 − 2h, x1 − 0, and 
x2 − h. (See Figure 8.) We know that the equation of the parabola through P0, P1, and 

FIGURE 6 

0

y

x1

y=ex2

Error estimates give upper bounds 
for the error. They are theoretical, 
worst-case scenarios. The actual 
error in this case turns out to be 
about 0.0023.

FIGURE 7 FIGURE 8
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Example 4. Use Simpson’s Rule with n = 10 to approximate
´ 2

1
(1/x) dx.
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Calculus - 7.7 Approximate Integration

Example 5. The figure shows data traffic on the link from the United States
to SWITCH, the Swiss academic and research network, on February 10, 1998.
D(t) is the data throughput, measured in megabits per second (Mb/s). Use
Simpson’s Rule to estimate the total amount of data transmitted on the link
from midnight to noon on that day.

 SECTION 7.7  Approximate Integration 521

EXAMPLE 4  Use Simpson’s Rule with n − 10 to approximate y2
1  s1yxd dx.

SOLUTION Putting f sxd − 1yx, n − 10, and Dx − 0.1 in Simpson’s Rule, we obtain

 y2

1
 
1
x

 dx < S10

 −
Dx
3

 f f s1d 1 4 f s1.1d 1 2 f s1.2d 1 4 f s1.3d 1 ∙ ∙ ∙ 1 2 f s1.8d 1 4 f s1.9d 1 f s2dg

 −
0.1
3

 S 1
1

1
4

1.1
1

2
1.2

1
4

1.3
1

2
1.4

1
4

1.5
1

2
1.6

1
4

1.7
1

2
1.8

1
4

1.9
1

1
2D

< 0.693150 Q

Notice that, in Example 4, Simpson’s Rule gives us a much  better approximation 
sS10 < 0.693150d to the true value of the integral sln 2 < 0.693147. . .d than does the 
Trapezoidal Rule sT10 < 0.693771d or the Midpoint Rule sM10 < 0.692835d. It turns out 
(see Exercise 50) that the approximations in Simpson’s Rule are weighted averages of 
those in the Trapezoidal and Midpoint Rules:

S2 n − 1
3 Tn 1 2

3 Mn

(Recall that ET and EM usually have opposite signs and | EM | is about half the size of 
| ET |.)

In many applications of calculus we need to evaluate an integral even if no explicit 
formula is known for y as a function of x. A function may be given graphically or as a 
table of values of collected data. If there is evidence that the values are not changing 
rapidly, then the Trapezoidal Rule or Simpson’s Rule can still be used to find an approxi-
mate value for yb

a y dx, the integral of y with respect to x. 

EXAMPLE 5  Figure 9 shows data traffic on the link from the United States to 
SWITCH, the Swiss academic and research network, on February 10, 1998. Dstd is the 
data throughput, measured in megabits per second sMbysd. Use Simpson’s Rule to esti-
mate the total amount of data transmitted on the link from midnight to noon on that day.

0

2

4

6

D
8

3 6 9 12 15 18 21 24 t (hours)

SOLUTION Because we want the units to be consistent and Dstd is measured in mega-
bits per second, we convert the units for t from hours to seconds. If we let Astd be the  
amount of data (in megabits) transmitted by time t, where t is measured in seconds, 
then A9std − Dstd. So, by the Net Change Theorem (see Section 5.4), the total amount 

FIGURE 9 
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Calculus - 7.7 Approximate Integration

Theorem 7.7.5 (Error Bound for Simpson’s Rule). Suppose that |f (4)(x)| ≤
K for a ≤ x ≤ b. If ES is the error involved in using Simpson’s Rule, then

|ES| ≤
K(b− a)5

180n4
.

Example 6. How large should we take n in order to guarantee that the Simp-
son’s Rule approximation for

´ 2
1
(1/x) dx is accurate to within 0.0001?
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Calculus - 7.7 Approximate Integration

Example 7. (a) Use Simpson’s Rule with n = 10 to approximate the integral´ 1
0
ex

2
dx.

(b) Estimate the error involved in this approximation.
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Calculus - 7.8 Improper Integrals

7.8 Improper Integrals

Definition 7.8.1 (Definition of an Improper Integral of Type 1).

(a) If
´ t

a
f(x) dx exists for every number t ≥ a, then

ˆ ∞

a

f(x) dx = lim
t→∞

ˆ t

a

f(x) dx

provided this limit exists (as a finite number).

(b) If
´ b

t
f(x) dx exists for every number t ≤ b, then

ˆ b

−∞
f(x) dx = lim

t→−∞

ˆ b

t

f(x) dx

provided this limit exists (as a finite number).

The improper integrals
´∞
a

f(x) dx and
´ b
−∞ f(x) dx are called convergent if

the corresponding limit exists and divergent if the limit does not exist.

(c) If both
´∞
a

f(x) dx and
´ a
−∞ f(x) dx are convergent, then we define

ˆ ∞

−∞
f(x) dx =

ˆ a

−∞
f(x) dx+

ˆ ∞

a

f(x) dx.

In part (c) any real number a can be used.

Example 1. Determine whether the integral
´∞
1
(1/x) dx is convergent or

divergent.
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Calculus - 7.8 Improper Integrals

Example 2. Evaluate

ˆ 0

−∞
xex dx.
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Calculus - 7.8 Improper Integrals

Example 3. Evaluate

ˆ ∞

−∞

1

1 + x2
dx.
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Calculus - 7.8 Improper Integrals

Example 4. For what values of p is the integral

ˆ ∞

1

1

xp
dx

convergent?
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Calculus - 7.8 Improper Integrals

Definition 7.8.2 (Definition of an Improper Integral of Type 2).

(a) If f is continuous on [a, b) and is discontinuous at b, then

ˆ b

a

f(x) dx = lim
t→b−

ˆ t

a

f(x) dx

if this limit exists (as a finite number).

(b) If f is continuous on (a, b] and is discontinuous at a, then

ˆ b

a

f(x) dx = lim
t→a+

ˆ b

t

f(x) dx

if this limit exists (as a finite number).

The improper integral
´ b

a
f(x) dx is called convergent if the corresponding limit

exists and divergent if the limit does not exist.

(c) If f has a discontinuity at c, where a < c < b, and both
´ c
a
f(x) dx and´ b

c
f(x) dx are convergent, then we define

ˆ b

a

f(x) dx =

ˆ c

a

f(x) dx+

ˆ b

c

f(x) dx.

Example 5. Find

ˆ 5

2

1√
x− 2

dx.
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Calculus - 7.8 Improper Integrals

Example 6. Determine whether

ˆ π/2

0

sec x dx converges or diverges.

Example 7. Evaluate

ˆ 3

0

dx

x− 1
if possible.
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Calculus - 7.8 Improper Integrals

Example 8.

ˆ 1

0

ln x dx.
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Calculus - 7.8 Improper Integrals

Theorem 7.8.1 (Comparison Theorem). Suppose that f and g are continuous
functions with f(x) ≥ g(x) ≥ 0 for x ≥ a.

(a) If
´∞
a

f(x) dx is convergent, then
´∞
a

g(x) dx is convergent.

(b) If
´∞
a

g(x) dx is divergent, then
´∞
a

f(x) dx is divergent.

Example 9. Show that

ˆ ∞

0

e−x2

dx is convergent.

Example 10. Determine whether

ˆ ∞

1

1 + e−x

x
dx converges or diverges.
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Chapter 8

Further Applications of
Integration

8.1 Arc Length

Definition 8.1.1. The length L of the curve C with equation y = f(x),
a ≤ x ≤ b, is

L = lim
n→∞

n∑
i=1

|Pi−1Pi|

where Pi is the point (xi, f(xi)).

544 CHAPTER 8  Further Applications of Integration

What do we mean by the length of a curve? We might think of !tting a piece of string to 
the curve in Figure 1 and then measuring the string against a ruler. But that might be dif-
!cult to do with much accuracy if we have a complicated curve. We need a precise de!ni-
tion for the length of an arc of a curve, in the same spirit as the de!nitions we developed 
for the con cepts of area and volume.

If the curve is a polygon, we can easily !nd its length; we just add the lengths of the line 
segments that form the polygon. (We can use the distance formula to !nd the distance  
between the endpoints of each segment.) We are going to de!ne the length of a general 
curve by !rst approximating it by a polygon and then taking a limit as the number of seg-
ments of the polygon is increased. This process is familiar for the case of a circle, where 
the cir cumference is the limit of lengths of inscribed polygons (see Figure 2).

Now suppose that a curve C is de!ned by the equation y − f sxd, where f  is continuous 
and a < x < b. We obtain a polygonal approximation to C by dividing the interval fa, bg 
into n subintervals with endpoints x0, x1, . . . , xn and equal width Dx. If yi − f sxid, then  
the point Pisxi, yid lies on C and the polygon with vertices P0, P1, . . . , Pn, illustrated 
in Fig ure 3, is an approximation to C.

y

P¸

P¡
P™

Pi-1 Pi Pn

y=ƒ

0 xi¤ i-1 bx¡a x x

The length L of C is approximately the length of this polygon and the approximation 
gets better as we let n increase. (See Figure 4, where the arc of the curve between Pi21 and 
Pi has been magni!ed and approximations with successively smaller values of Dx are  
shown.) Therefore we de!ne the length L of the curve C with equation y − f sxd, 
a < x < b, as the limit of the lengths of these inscribed polygons (if the limit exists):

L − lim
n l `

 o
n

i−1
| Pi21 Pi |

Notice that the procedure for de!ning arc length is very similar to the procedure we 
used for de!ning area and volume: We divided the curve into a large number of small 
parts. We then found the approximate lengths of the small parts and added them. Finally, 
we took the limit as n l `.

The de!nition of arc length given by Equation 1 is not very convenient for compu-
tational purposes, but we can derive an integral formula for L in the case where f  has a 
continuous derivative. [Such a function f  is called smooth because a small change in x 
produces a small change in f 9sxd.]

If we let Dyi − yi 2 yi21, then

| Pi21 Pi | − ssxi 2 xi21 d2 1 syi 2 yi21 d2 − ssDxd2 1 sDyid2 

FIGURE 1 

FIGURE 2 

FIGURE 3 

Pi-1

Pi

Pi-1

Pi

Pi-1

Pi

Pi-1

Pi

FIGURE 4 

1

TEC Visual 8.1 shows an animation 
of Figure 2.
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Calculus - 8.1 Arc Length

Theorem 8.1.1 (The Arc Length Formula). If f ′ is continuous on [a, b], then
the length of the curve y = f(x), a ≤ x ≤ b, is

L =

ˆ b

a

√
1 + [f ′(x)]2 dx =

ˆ b

a

√
1 +

(
dy

dx

)2

dx.

Proof. Let ∆yi = yi − yi−1. By the Mean Value Theorem, there is a number
x∗
i between xi−1 and xi such that

f(xi)− f(xi−1) = f ′(x∗
i )(xi − xi−1)

∆yi = f ′(x∗
i )∆x.

Therefore,

|Pi−1Pi| =
√

(∆x)2 + (∆yi)2 =
√
(∆x)2 + [f ′(x∗

i )∆x]2

=
√

1 + [f ′(x∗
i )]

2
√
(∆x)2 =

√
1 + [f ′(x∗

i )]
2∆x.

Hence

lim
n→∞

n∑
i=1

|Pi−1Pi| = lim
n→∞

n∑
i=1

√
1 + [f ′(x∗

i )]
2∆x =

ˆ b

a

√
1 + [f ′(x)]2 dx.
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By applying the Mean Value Theorem to f  on the interval fxi21, xig, we find that there is 
a number xi* between xi21 and xi such that

  f sxid 2 f sxi21 d − f 9sxi*dsxi 2 xi21 d

that is,  Dyi − f 9sxi*d Dx

Thus we have

  | Pi21 Pi | − ssDxd2 1 sDyid2 − ssDxd2 1 f f 9sxi*d Dxg2 

 − s1 1 [ f 9sxi*dg2  ssDxd2 − s1 1 f f 9sxi*dg2  Dx    (since Dx . 0)

Therefore, by Definition 1,

L − lim
n l `

o
n

i−1
| Pi21 Pi | − lim

n l `
 o

n

i−1
 s1 1 f f 9sxi*dg 2  Dx

We recognize this expression as being equal to

yb

a
 s1 1 f f 9sxdg2  dx

by the definition of a definite integral. We know that this integral exists because the func-
tion tsxd − s1 1 f f 9sxdg2  is continuous. Thus we have proved the following theorem:

2   The Arc Length Formula If f 9 is continuous on fa, bg, then the length of 
the curve y − f sxd, a < x < b, is

L − yb

a
 s1 1 f f 9sxdg2  dx

If we use Leibniz notation for derivatives, we can write the arc length formula as 
follows:

L − yb

a
 Î1 1 S dy

dxD2 

 dx

EXAMPLE 1  Find the length of the arc of the semicubical parabola y 2 − x 3 between the 
points s1, 1d and s4, 8d. (See Figure 5.)

SOLUTION For the top half of the curve we have

y − x 3y2      
dy
dx

− 3
2 x 1y2

and so the arc length formula gives

L − y4

1
 Î1 1 S dy

dxD2

 dx − y4

1
 s1 1 9

4 x 
 dx

If we substitute u − 1 1 9
4 x, then du − 9

4 dx. When x − 1, u − 13
4 ; when x − 4, u − 10. 

3

(4, 8)

0 x

y

(1, 1)

¥=˛

FIGURE 5 
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Example 1. Find the length of the arc of the semicubical
parabola y2 = x3 between the points (1, 1) and (4, 8). (See the
figure.)
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Calculus - 8.1 Arc Length

Remark 1. If a curve has the equation x = g(y), c ≤ y ≤ d, and g′(y) is
continuous, then by interchanging the roles of x and y in the Arc Length
Formula, we obtain the following formula for its length:

L =

ˆ d

c

√
1 + [g′(y)]2 dy =

ˆ d

c

√
1 +

(
dx

dy

)2

dy.

Example 2. Find the length of the arc of the parabola y2 = x from (0, 0) to
(1, 1).
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Calculus - 8.1 Arc Length

Example 3. (a) Set up an integral for the length of the arc of the hyperbola
xy = 1 from the point (1, 1) to the point (2, 1

2
).

(b) Use Simpson’s Rule with n = 10 to estimate the arc length.

Theorem 8.1.2. If a smooth curve C (a curve that has a continuous deriva-
tive) has the equation y = f(x), a ≤ x ≤ b, then s(x), the distance along C
from the initial point (a, f(a)) to the point (x, f(x)), is called the arc length
function and is given by

s(x) =

ˆ x

a

√
1 + [f ′(t)]2 dt.
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Calculus - 8.1 Arc Length

Example 4. Find the arc length function for the curve y = x2 − 1
8
ln x taking

(1, 1) as the starting point.
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Calculus - 8.2 Area of a Surface of Revolution

8.2 Area of a Surface of Revolution

552 Chapter 8  Further Applications of Integration

Putting this in Equation 1, we get

A − �sr1l 1 r2ld

or

A − 2�rl

where r − 1
2 sr1 1 r2 d is the average radius of the band.

Now we apply this formula to our strategy. Consider the surface shown in Figure 4, 
which is obtained by rotating the curve y − f sxd, a < x < b, about the x-axis, where f  
is positive and has a continuous derivative. In order to define its surface area, we divide 
the interval fa, bg into n subintervals with endpoints x0, x1, . . . , xn and equal width Dx,  
as we did in determining arc length. If yi − f sxid, then the point Pisxi, yid lies on the 
curve. The part of the surface between xi21 and xi is approximated by taking the line 
segment Pi21 Pi and rotating it about the x-axis. The result is a band with slant height 
l − | Pi21 Pi | and average radius r − 1

2 syi21 1 yid so, by Formula 2, its surface area is

2� 
yi21 1 yi

2 | Pi21 Pi |

As in the proof of Theorem 8.1.2, we have

| Pi21 Pi | − s1 1 f f 9sxi*dg2
 

 Dx

where xi* is some number in fxi21, xig. When Dx is small, we have yi − f sxid < f sxi*d and 
also yi21 − f sxi21d < f sxi*d, since f  is continuous. Therefore

2� 
yi21 1 yi

2 | Pi21 Pi | < 2� f sxi*d s1 1 f f 9sxi*dg2  Dx

and so an approximation to what we think of as the area of the complete surface of revo-
lution is

o
n

i−1
2� f sxi*d s1 1 f f 9sxi*dg2  Dx

This approximation appears to become better as n l ` and, recognizing (3) as a Rie-
mann sum for the function tsxd − 2� f sxd s1 1 f f 9sxdg2 , we have

lim
n l `

 o
n

i−1
2� f sxi*d s1 1 f f 9sxi*dg2  Dx − yb

a
2� f sxd s1 1 f f 9sxdg2  dx

Therefore, in the case where f  is positive and has a continuous derivative, we define the  
surface area of the surface obtained by rotating the curve y − f sxd, a < x < b, about  
the x-axis as

S − yb

a
2� f sxd s1 1 f f 9sxdg2  dx

2

x

y y=ƒ

P¸
Pi-1

Pi

Pn

yi

0 x

y

a b

0 a b

FIGURE 4� 

3

4�
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Definition 8.2.1. In the case where f is positive and has
a continuous derivative, we define the surface area of the
surface obtained by rotating the curve y = f(x), a ≤ x ≤ b,
about the x-axis as

S = lim
n→∞

n∑
i=1

2πf(x∗
i )
√
1 + [f ′(x∗

i )]
2∆x

=

ˆ b

a

2πf(x)
√
1 + [f ′(x)]2 dx.
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EXAMPLE 1  The curve y − s4 2 x 2 , 21 < x < 1, is an arc of the circle 
x 2 1 y 2 − 4. Find the area of the surface obtained by rotating this arc about the  
x-axis. (The surface is a portion of a sphere of radius 2. See Figure 6.)

SOLUTION  We have

dy
dx

− 1
2 s4 2 x 2 d21y2s22xd −

2x

s4 2 x 2 

and so, by Formula 5, the surface area is

  S − y1

21
 2!y Î1 1 S dy

dxD2 

 dx

  − 2! y1

21
 s4 2 x 2  Î1 1

x 2

4 2 x 2
  dx

 − 2! y1

21
 s4 2 x 2  Î4 2 x 2 1 x 2

4 2 x 2
  dx

  − 2! y1

21
 s4 2 x 2  

2

s4 2 x 2 
 dx − 4! y1

21
 1 dx − 4!s2d − 8! n

EXAMPLE 2  The arc of the parabola y − x 2 from s1, 1d to s2, 4d is rotated about the  
y-axis. Find the area of the resulting surface.

SOLUTION 1  Using

y − x 2    and    
dy
dx

− 2x

we have, from Formula 8,

 S − y 2!x ds

 − y2

1
 2!x Î1 1 S dy

dxD2 

 dx

 − 2! y2

1
 x s1 1 4x 2  dx

Substituting u − 1 1 4x 2, we have du − 8x dx. Remembering to change the limits of 
integration, we have

S − 2! y17

5
 su  ? 1

8 du

−
!

4
 y17

5
 u 1y2 du −

!

4
 f 2

3 u 3y2g 5

17

−
!

6
 (17s17 2 5s5 )

SOLUTION 2 Using

x − sy      and    
dx
dy

−
1

2sy  

x

y

1  

FIGURE 6 

Figure 6 shows the portion of the 
sphere whose surface area is computed 
in Example 1.

Figure 7 shows the surface of revolution 
whose area is computed in Example 2.

(2, 4)

(1, 1)

y=≈

x0

y

1 2
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Example 1. The curve y =
√
4− x2, −1 ≤ x ≤ 1, is an arc of

the circle x2 + y2 = 4. Find the area of the surface obtained by
rotating this arc about the x-axis. (The surface is a portion of a
sphere of radius 2. See the bottom figure.)
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Example 2. The arc of the parabola y = x2 from (1, 1) to (2, 4) is rotated
about the y-axis. Find the area of the resulting surface.
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Example 3. Find the area of the surface generated by rotating the curve
y = ex, 0 ≤ x ≤ 1, about the x-axis.
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8.3 Applications to Physics and Engineering

Definition 8.3.1. In general, the hydrostatic force exerted on a thin plate
with area A square meters submerged in a fluid with density ρ kilograms per
cubic meter at a depth d meters below the surface of the fluid is

F = mg = ρgAd

where m is the mass and g is the acceleration due to gravity. The pressure P
(in pascals) on the plate is defined to be the force per unit area:

P =
F

A
= ρgd.
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Among the many applications of integral calculus to physics and engineering, we con-
sider two here: force due to water pressure and centers of mass. As with our previous 
applications to geometry (areas, volumes, and lengths) and to work, our strategy is to 
break up the phys ical quantity into a large number of small parts, approximate each 
small part, add the results (giving a Riemann sum), take the limit, and then evaluate the 
resulting integral.

Hydrostatic Pressure and Force
Deep-sea divers realize that water pressure increases as they dive deeper. This is because 
the weight of the water above them increases.

In general, suppose that a thin horizontal plate with area A square meters is sub-
merged in a fluid of density ! kilograms per cubic meter at a depth d meters below the 
surface of the fluid as in Figure 1. The fluid directly above the plate (think of a column 
of liquid) has volume V − Ad, so its mass is m − !V − !Ad. The force exerted by the 
fluid on the plate is therefore

F − mt − !tAd

where t is the acceleration due to gravity. The pressure P on the plate is defined to be 
the force per unit area:

P −
F
A

− !td

The SI unit for measuring pressure is a newton per square meter, which is called a pascal 
(abbreviation: 1 Nym2 − 1 Pa). Since this is a small unit, the kilopascal (kPa) is often 
used. For instance, because the density of water is ! − 1000 kgym3, the pressure at the 
bottom of a swimming pool 2 m deep is

 P − !td − 1000 kgym3 3 9.8 mys2 3 2 m

 − 19,600 Pa − 19.6 kPa

An important principle of fluid pressure is the experimentally verified fact that at any 
point in a liquid the pressure is the same in all directions. (A diver feels the same pres-
sure on nose and both ears.) Thus the pressure in any direction at a depth d in a fluid with 
mass density ! is given by

P − !td − "d

This helps us determine the hydrostatic force (the force exerted by a fluid at rest) against 
a vertical plate or wall or dam. This is not a straightforward problem because the pres-
sure is not constant but increases as the depth increases.

EXAMPLE 1  A dam has the shape of the trapezoid shown in Figure 2. The height is 
20 m and the width is 50 m at the top and 30 m at the bottom. Find the force on the 
dam due to hydrostatic pressure if the water level is 4 m from the top of the dam.

SOLUTION We choose a vertical x-axis with origin at the surface of the water and 
directed downward as in Figure 3(a). The depth of the water is 16 m, so we divide the 

surface of fluid

d
A

FIGURE 1 

1

50 m

20 m

30 m

FIGURE 2 

When using US Customary units, we 
write P − !td − "d, where " − !t 
is the weight density (as opposed to 
!, which is the mass density). For 
in stance, the weight density of water 
is " − 62.5 lbyft3.
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Example 1. A dam has the shape of the trapezoid shown in
the figure. The height is 20 m and the width is 50 m at the
top and 30 m at the bottom. Find the force on the dam due to
hydrostatic pressure if the water level is 4 m from the top of the
dam.
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Example 2. Find the hydrostatic force on one end of a cylindrical drum with
radius 3 ft if the drum is submerged in water 10 ft deep.
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Definition 8.3.2. In general, for a system of n particles with masses
m1,m2, . . . ,mn located at the points x1, x2, . . . , xn on the x-axis,

560 CHAPTER 8  Further Applications of Integration

The total force is obtained by adding the forces on all the strips and taking the limit:

 F − lim
n  l`

 o
n

i−1
 62.5s7 2 yi*d 2s9 2 syi*d2  Dy

 − 125 y3

23
 s7 2 yd s9 2 y 2  dy

 − 125 ? 7 y3

23
 s9 2 y 2  dy 2 125 y3

23
 ys9 2 y 2  dy

The second integral is 0 because the integrand is an odd function (see Theorem 5.5.7). 
The first integral can be evaluated using the trigonometric substitution y − 3 sin !, but 
it’s simpler to observe that it is the area of a semicircular disk with radius 3. Thus

 F − 875 y3

23
 s9 2 y 2  dy − 875 ? 1

2 "s3d2

  −
7875"

2
< 12,370 lb  n

Moments and Centers of Mass
Our main objective here is to find the point P on which a thin plate of any given shape 
bal ances horizontally as in Figure 5. This point is called the center of mass (or center of 
grav ity) of the plate.

We first consider the simpler situation illustrated in Figure 6, where two masses m1 
and m2 are attached to a rod of negligible mass on opposite sides of a fulcrum and at 
distances d1 and d2 from the fulcrum. The rod will balance if

m1 d1 − m2 d2

This is an experimental fact discovered by Archimedes and called the Law of the Lever. 
(Think of a lighter person balancing a heavier one on a seesaw by sitting farther away 
from the center.)

Now suppose that the rod lies along the x-axis with m1 at x1 and m2 at x2 and the center 
of mass at x. If we compare Figures 6 and 7, we see that d1 − x 2 x1 and d2 − x2 2 x 
and so Equation 2 gives

 m1sx 2 x1d − m2sx2 2 xd

 m1 x 1 m2 x − m1 x1 1 m2 x2

 x −
m1 x1 1 m2 x2

m1 1 m2

The numbers m1 x1 and m2 x2 are called the moments of the masses m1 and m2 (with 
respect to the origin), and Equation 3 says that the center of mass x is obtained by adding 
the moments of the masses and dividing by the total mass m − m1 1 m2.

0
⁄ –x ¤

¤-x–m¡ m™ x
–x-⁄

In general, if we have a system of n  particles with masses m1, m2, . . . , mn  located at 
the points x1, x2, . . . , xn  on the x-axis, it can be shown similarly that the center of mass 

P

FIGURE 5 2

m¡ m™

d¡

fulcrum

d™

FIGURE 6 

3

FIGURE 7 
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the center of mass x̄ is the point on which a thin plate of any given shape
balances horizontally, and can be shown to be

x̄ =

∑n
i=1mixi

m
,

where mixi are called the moments of the masses mi and m =
∑

mi is the
total mass of the system.
The sum of the individual moments

M =
n∑

i=1

mixi

is called the moment of the system about the origin.

Definition 8.3.3. In general, for a system of n particles with masses
m1,m2, . . . ,mn located at the points (x1, y1), (x2, y2), . . . , (xn, yn) in the xy-
plane

 SECTION 8.3  Applications to Physics and Engineering 561

of the system is located at

x −
o

n

i−1
 mixi

o
n

i−1
 mi

−
o

n

i−1
 mixi

m

where m − omi is the total mass of the system, and the sum of the individual moments

M − o
n

i−1
 mixi

is called the moment of the system about the origin. Then Equation 4 could be rewrit-
ten as mx − M, which says that if the total mass were considered as being concen- 
trated at the center of mass x, then its moment would be the same as the moment of the 
system.

Now we consider a system of n  particles with masses m1, m2, . . . , mn  located at the 
points sx1, y1d, sx2, y2 d, . . . , sxn , yn d in the xy-plane as shown in Figure 8. By analogy 
with the one-dimensional case, we define the moment of the system about the y-axis 
to be

My − o
n

i−1
 mixi

and the moment of the system about the x-axis as

Mx − o
n

i−1
 miyi

Then My measures the tendency of the system to rotate about the y-axis and Mx measures 
the tendency to rotate about the x-axis.

As in the one-dimensional case, the coordinates sx, yd of the center of mass are given 
in terms of the moments by the formulas

x −
My

m       y −
Mx

m

where m − omi is the total mass. Since mx − My and my − Mx, the center of mass 
sx, yd is the point where a single particle of mass m would have the same moments as 
the system.

EXAMPLE 3  Find the moments and center of mass of the system of objects that have 
masses 3, 4, and 8 at the points s21, 1d, s2, 21d, and s3, 2d, respectively.

SOLUTION We use Equations 5 and 6 to compute the moments:

 My − 3s21d 1 4s2d 1 8s3d − 29

 Mx − 3s1d 1 4s21d 1 8s2d − 15

Since m − 3 1 4 1 8 − 15, we use Equations 7 to obtain

x −
My

m
−

29
15

      y −
Mx

m
−

15
15

− 1

Thus the center of mass is s114
15 , 1d. (See Figure 9.) n
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we define the moment of the system about the y-axis to be

My =
n∑

i=1

mixi

and the moment of the system about the x-axis to be

Mx =
n∑

i=1

miyi.

The coordinates (x̄, ȳ) of the center of mass are given by

x̄ =
My

m
ȳ =

Mx

m
.
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Example 3. Find the moments and center of mass of the system of objects
that have masses 3, 4, and 8 at the points (−1, 1), (2,−1), and (3, 2), respec-
tively.

562 CHAPTER 8  Further Applications of Integration

Next we consider a !at plate (called a lamina) with uniform density ! that occupies a 
region 5 of the plane. We wish to locate the center of mass of the plate, which is called 
the centroid of 5. In doing so we use the following physical principles: The symmetry 
principle says that if 5 is symmetric about a line l, then the centroid of 5 lies on l. (If 5 
is re!ected about l, then 5 remains the same so its centroid remains "xed. But the only 
"xed points lie on l.) Thus the centroid of a rectangle is its center. Moments should be 
de"ned so that if the entire mass of a region is concentrated at the center of mass, then 
its moments remain unchanged. Also, the moment of the union of two nonoverlapping 
regions should be the sum of the moments of the individual regions.

Suppose that the region 5 is of the type shown in Figure 10(a); that is, 5 lies between 
the lines x − a and x − b, above the x-axis, and beneath the graph of f, where f  is a 
continuous function. We divide the interval fa, bg into n subintervals with endpoints x0, 
x1, . . . , xn and equal width Dx. We choose the sample point xi* to be the midpoint xi of 
the ith subinterval, that is, xi − sxi21 1 xidy2. This determines the polygonal approxima-
tion to 5 shown in Figure 10(b). The centroid of the ith approximating rectangle Ri is its 
center Ci(xi, 12 f sxid). Its area is f sxid Dx, so its mass is

! f sxid Dx

The moment of Ri about the y-axis is the product of its mass and the distance from Ci to 
the y-axis, which is xi. Thus

MysRid − f! f sxid Dxg xi − ! xi f sxid Dx

Adding these moments, we obtain the moment of the polygonal approximation to 5, and 
then by taking the limit as n l ` we obtain the moment of 5 itself about the y-axis:

My − lim
nl `

o
n

i−1
 !xi f sxid Dx − ! yb

a
 x f sxd dx

In a similar fashion we compute the moment of Ri about the x-axis as the product of 
its mass and the distance from Ci to the x-axis (which is half the height of Ri):

MxsRid − f! f sxid Dxg 12 f sxid − ! ? 1
2 f f sxidg2 Dx

Again we add these moments and take the limit to obtain the moment of 5 about the  
x-axis:

Mx − lim
nl `

 o
n

i−1
 ! ? 1

2 f f sxidg2 Dx − ! yb

a

1
2 f f sxdg2 dx

Just as for systems of particles, the center of mass of the plate is de"ned so that 
mx − My and my − Mx. But the mass of the plate is the product of its density and its 
area:

m − !A − ! yb

a
 f sxd dx

FIGURE 10 
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Definition 8.3.4. The center of mass of a lamina (a flat
plate) with uniform density ρ and area A that occupies a
region R of the plane is called the centroid of R and is
located at the point (x̄, ȳ), where

x̄ =
1

A

ˆ b

a

xf(x) dx ȳ =
1

A

ˆ b

a

1

2
[f(x)]2 dx.

Remark 1. The symmetry principle says that if R is sym-
metric about a line l, then the centroid of R lies on l.
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Example 4. Find the center of mass of a semicircular plate of radius r.

Example 5. Find the centroid of the region bounded by the curves y = cos x,
y = 0, x = 0, and x = π/2.

270



Calculus - 8.3 Applications to Physics and Engineering

564 CHAPTER 8  Further Applications of Integration

so Formulas 8 give

 x −
1
A

 y!y2

0
 x f sxd dx − y!y2

0
 x cos x dx

 − x sin xg0

!y2
2 y!y2

0
 sin x dx    (by integration by parts)

 −
!

2
2 1

 y −
1
A

 y!y2

0
 12 f f sxdg2 dx − 1

2 y!y2

0
 cos2x dx

 − 1
4 y!y2

0
 s1 1 cos 2xd dx − 1

4 fx 1 1
2 sin 2xg 0

!y2
 −

!

8

The centroid is (1
2 ! 2 1, 18 !) and is shown in Figure 12. n

If the region 5 lies between two curves y − f sxd and y − tsxd, where f sxd > tsxd, 
as illustrated in Figure 13, then the same sort of argument that led to Formulas 8 can be 
used to show that the centroid of 5 is sx, yd, where

 x −
1
A

 yb

a
 xf f sxd 2 tsxdg dx

 y −
1
A

 yb

a
 12 hf f sxdg2 2 ftsxdg2 j dx

9

(See Exercise 51.)

EXAMPLE 6  Find the centroid of the region bounded by the line y − x and the 
parabola y − x 2.

SOLUTION The region is sketched in Figure 14. We take f sxd − x, tsxd − x 2, a − 0, 
and b − 1 in Formulas 9. First we note that the area of the region is

A − y1

0
 sx 2 x 2 d dx −

x 2

2
2

x 3

3 G0

1

−
1
6

Therefore

 x −
1
A

 y1

0
 xf f sxd 2 tsxdg dx −

1
1
6

 y1

0
 xsx 2 x 2 d dx

 − 6 y1

0
 sx 2 2 x 3 d dx − 6F x 3

3
2

x 4

4 G0

1

−
1
2

 y −
1
A

 y1

0
 12 hf f sxdg2 2 ftsxdg2 j dx −

1
1
6

 y1

0
 12 sx 2 2 x 4 d dx

 − 3F x 3

3
2

x 5

5 G0

1

−
2
5

The centroid is s1
2 , 25 d. n

FIGURE 12 
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Theorem 8.3.1. If the region R lies between two curves
y = f(x) and y = g(x), where f(x) ≥ g(x), then the cen-
troid of R is (x̄, ȳ) where

x̄ =
1

A

ˆ b

a

x[f(x)− g(x)] dx

ȳ =
1

A

ˆ b

a

1

2
{[f(x)]2 − [g(x)]2} dx.

Example 6. Find the centroid of the region bounded by the line y = x and
the parabola y = x2.

271



Calculus - 8.3 Applications to Physics and Engineering

Theorem 8.3.2 (Theorem of Pappus). Let R be a plane region that lies en-
tirely on one side of a line l in the plane. If R is rotated about l, then the
volume of the resulting solid is the product of the area A of R and the distance
d traveled by the centroid of R.

Example 7. A torus is formed by rotating a circle of radius r about a line in
the plane of the circle that is a distance R (> r) from the center of the circle.
Find the volume of the torus.
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8.4 Applications to Economics and Biology

SECTION 8.4  Applications to Economics and Biology 569

In this section we consider some applications of integration to economics (consumer 
surplus) and biology (blood !ow, cardiac output). Others are described in the exercises.

Consumer Surplus
Recall from Section 4.7 that the demand function psxd is the price that a company has to 
charge in order to sell x units of a commodity. Usually, selling larger quantities requires 
lowering prices, so the demand function is a decreasing function. The graph of a typical 
demand function, called a demand curve, is shown in Figure 1. If X is the amount of the 
commodity that can currently be sold, then P − psXd is the current selling price.

At a given price, some consumers who buy a good would be willing to pay more; they 
bene"t by not having to. The difference between what a consumer is willing to pay and 
what the consumer actually pays for a good is called the consumer surplus. By "nding 
the total consumer surplus among all purchasers of a good, economists can assess the 
overall bene"t of a market to society. 

To determine the total consumer surplus, we look at the demand curve and divide the 
interval f0, Xg into n subintervals, each of length Dx − Xyn, and let xi* − xi be the right 
endpoint of the ith subinterval, as in Figure 2. According to the demand curve, xi21 units 
would be purchased at a price of psxi21d dollars per unit. To increase sales to xi units, 
the price would have to be lowered to psxid dollars. In this case, an additional Dx units 
would be sold (but no more). In general, the consumers who would have paid psxid dol-
lars placed a high value on the product; they would have paid what it was worth to them. 
So in paying only P dollars they have saved an amount of

ssavings per unitdsnumber of unitsd − fpsxid 2 Pg Dx

Considering similar groups of willing consumers for each of the subintervals and adding 
the savings, we get the total savings:

o
n

i−1
 fpsxid 2 Pg Dx

(This sum corresponds to the area enclosed by the rectangles in Figure 2.) If we let 
n l `, this Riemann sum approaches the integral

yX

0
 fpsxd 2 Pg dx

which economists call the consumer surplus for the commodity.
The consumer surplus represents the amount of money saved by consumers in pur-

chasing the commodity at price P, corresponding to an amount demanded of X. Figure 3 
shows the interpretation of the consumer surplus as the area under the demand curve and 
above the line p − P.

EXAMPLE 1  The demand for a product, in dollars, is

p − 1200 2 0.2x 2 0.0001x 2

Find the consumer surplus when the sales level is 500.

SOLUTION  Since the number of products sold is X − 500, the corresponding price is

P − 1200 2 s0.2ds500d 2 s0.0001ds500d2 − 1075

FIGURE 1 
A typical demand curve
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Definition 8.4.1. The consumer surplus for a commodity
is defined as ˆ X

0

[p(x)− P ] dx

where p(x) is the demand function, and P is the current
selling price for the amount of the commodity X that can
currently be sold.

Example 1. The demand for a product, in dollars, is

p = 1200− 0.2x− 0.0001x2.

Find the consumer surplus when the sales level is 500.
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Definition 8.4.2. The cardiac output of the heart is the volume of blood
pumped by the heart per unit time, that is, the rate of flow into the aorta. It
is given by

F =
A´ T

0
c(t) dt

where A is the amount of dye injected into the right atrium, [0, T ] is the time
interval until the dye has cleared, and c(t) is the concentration of the dye at
time t.

t c(t)
0 0
1 0.4
2 2.8
3 6.5
4 9.8
5 8.9
6 6.1
7 4.0
8 2.3
9 1.1
10 0

Example 2. A 5-mg bolus of dye is injected into a right atrium.
The concentration of the dye (in milligrams per liter) is mea-
sured in the aorta at one-second intervals as shown in the table.
Estimate the cardiac output.
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8.5 Probability

Definition 8.5.1. The probability density function f of a continuous random
variable X (a quantity whose values range over an interval of real numbers) is
given by:

P (a ≤ X ≤ b) =

ˆ b

a

f(x) dx

where f(x) ≥ 0 for all x and

ˆ ∞

−∞
f(x) dx = 1.

Example 1. Let f(x) = 0.006x(10 − x) for 0 ≤ x ≤ 10 and f(x) = 0 for all
other values of x.

(a) Verify that f is a probability density function.

(b) Find P (4 ≤ X ≤ 8)
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Example 2. Phenomena such as waiting times and equipment failure times
are commonly modeled by exponentially decreasing probability density func-
tions. Find the exact form of such a function.
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Definition 8.5.2. In general, the mean of any probability density function f
is defined to be

µ =

ˆ ∞

−∞
xf(x) dx.

Example 3. Find the mean of the exponential distribution of Example 2:

f(t) =

{
0 if t < 0,

ce−ct if t ≥ 0.
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Example 4. Suppose the average waiting time for a customer’s call to be
answered by a company representative is five minutes.

(a) Find the probability that a call is answered during the first minute, as-
suming that an exponential distribution is appropriate.

(b) Find the probability that a customer waits more than five minutes to be
answered.
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Definition 8.5.3. When random phenomena are modeled by a normal distri-
bution this means that the probability density function of the random variable
X is a member of the family of functions

f(x) =
1

σ
√
2π

e−(x−µ)2/(2σ2)

where the positive constant σ is called the standard deviation (a measure of
how spread out the values of X are).

578 CHAPTER 8  Further Applications of Integration

Notice the result of Example 4(b): Even though the mean waiting time is 5 minutes, 
only 37% of callers wait more than 5 minutes. The reason is that some callers have to 
wait much longer (maybe 10 or 15 minutes), and this brings up the average.

Another measure of centrality of a probability density function is the median . That is 
a number m such that half the callers have a waiting time less than m and the other call-
ers have a waiting time longer than m. In general, the median of a probability density 
function is the number m such that

y`

m
 f sxd dx − 1

2

This means that half the area under the graph of f  lies to the right of m. In Exercise 9 you 
are asked to show that the median waiting time for the company described in Example 4 
is approximately 3.5 minutes.

Normal Distributions
Many important random phenomena—such as test scores on aptitude tests, heights and 
weights of individuals from a homogeneous population, annual rainfall in a given loca-
tion—are modeled by a normal distribution. This means that the probability density 
function of the random variable X is a member of the family of functions

f sxd −
1

!s2"   e
2sx2#d2ys2! 2d

You can verify that the mean for this function is #. The positive constant ! is called 
the stan dard deviation; it measures how spread out the values of X are. From the bell-
shaped graphs of members of the family in Figure 5, we see that for small values of ! 
the values of X are clustered about the mean, whereas for larger values of ! the values 
of X are more spread out. Statisticians have methods for using sets of data to estimate 
# and !.

x

y

0 m

1
2

s=2
s=1

s=

The factor 1ys!s2"  d is needed to make f  a probability density function. In fact, it 
can be verified using the methods of multivariable calculus that

y`

2`
 

1
!s2"   e

2sx2#d2ys2! 2d 

dx − 1

EXAMPLE 5  Intelligence Quotient (IQ) scores are distributed normally with mean  
100 and standard deviation 15. (Figure 6 shows the corresponding probability density 
function.)
(a) What percentage of the population has an IQ score between 85 and 115?
(b) What percentage of the population has an IQ above 140?

3

The standard deviation is denoted by 
the lowercase Greek letter ! (sigma).

FIGURE 5  
Normal distributions
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Example 5. Intelligence Quotient (IQ) scores are distributed
normally with mean 100 and standard deviation 15. (The figure
shows the corresponding probability density function.)

(a) What percentage of the population has an IQ score between
85 and 115?

(b) What percentage of the population has an IQ above 140?
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Chapter 9

Differential Equations

9.1 Modeling with Differential Equations

Definition 9.1.1. In general, a differential equation is an equation that con-
tains an unknown function and one or more of its derivatives. The order of a
differential equation is the order of the highest derivative that occurs in the
equation. A function f is called a solution of a differential equation if the
equation is satisfied when y = f(x) and its derivatives are substituted into the
equation.

Example 1. Show that every member of the family of functions

y =
1 + cet

1− cet

is a solution of the differential equation y′ = 1
2
(y2 − 1).
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Example 2. Find a solution of the differential equation y′ = 1
2
(y2 − 1) that

satisfies the initial condition y(0) = 2.
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9.2 Direction Fields and Euler’s Method

Definition 9.2.1. In general, suppose we have a first-order differential equa-
tion of the form

y′ = F (x, y)

where F (x, y) is some expression in x and y. If we draw short line segments
with slope F (x, y) at several points (x, y), the result is called a direction field
(or slope field).

Example 1.

(a) Sketch the direction field for the differential equation y′ = x2 + y2 − 1.

(b) Use part (a) to sketch the solution curve that passes through the origin.
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 SECTION 9.2  Direction Fields and Euler’s Method 593

SOLUTION
(a) We start by computing the slope at several points in the following chart:

x 22 21 0 1 2 22 21 0 1 2 . . .

y 0 0 0 0 0 1 1 1 1 1 . . .

y9 − x 2 1 y 2 2 1 3 0 21 0 3 4 1 0 1 4 . . .

Now we draw short line segments with these slopes at these points. The result is the 
direction field shown in Figure 5.

(b) We start at the origin and move to the right in the direction of the line segment 
(which has slope 21). We continue to draw the solution curve so that it moves parallel 
to the nearby line segments. The resulting solution curve is shown in Figure 6. Return-
ing to the origin, we draw the solution curve to the left as well. n

The more line segments we draw in a direction field, the clearer the picture becomes. 
Of course, it’s tedious to compute slopes and draw line segments for a huge number 
of points by hand, but computers are well suited for this task. Figure 7 shows a more 
detailed, computer-drawn direction field for the differential equation in Example 1. It 
enables us to draw, with reasonable accuracy, the solution curves with y-intercepts 22,  
21, 0, 1, and 2.

Now let’s see how direction fields give insight into physical situations. The simple 
electric circuit shown in Figure 8 contains an electromotive force (usually a battery or 
generator) that produces a voltage of Estd volts (V) and a current of Istd amperes (A) at 
time t. The circuit also contains a resistor with a resistance of R ohms (V) and an induc-
tor with an inductance of L henries (H).

Ohm’s Law gives the drop in voltage due to the resistor as RI. The voltage drop due to 
the inductor is LsdIydtd. One of Kirchhoff’s laws says that the sum of the voltage drops 
is equal to the supplied voltage Estd. Thus we have

L 
dI
dt

1 RI − Estd

which is a first-order differential equation that models the current I at time t.

EXAMPLE 2  Suppose that in the simple circuit of Figure 8 the resistance is 12 V, the 
inductance is 4 H, and a battery gives a constant voltage of 60 V.
(a) Draw a direction field for Equation 1 with these values.
(b) What can you say about the limiting value of the current?
(c) Identify any equilibrium solutions.
(d) If the switch is closed when t − 0 so the current starts with Is0d − 0, use the direc-
tion field to sketch the solution curve.

SOLUTION
(a) If we put L − 4, R − 12, and Estd − 60 in Equation 1, we get

4 
dI
dt

1 12I − 60    or    
dI
dt

− 15 2 3I
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Example 2. Suppose that in the simple circuit of the figure the
resistance is 12 Ω, the inductance is 4 H, and a battery gives a
constant voltage of 60 V.
(a) Draw a direction field for

L
dI

dt
+RI = E(t)

with these values.

(b) What can you say about the limiting value of the current?

(c) Identify any equilibrium solutions.

(d) If the switch is closed when t = 0 so the current starts with
I(0) = 0, use the direction field to sketch the solution curve.
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Theorem 9.2.1 (Euler’s Method). Approximate values for the solution of the
initial-value problem y′ = F (x, y), y(x0) = y0 with step size h, at xn = xn−1+h,
are

yn = yn−1 + hF (xn−1, yn−1) n = 1, 2, 3, . . . .

Example 3. Use Euler’s method with step size 0.1 to construct a table of
approximate values for the solution of the initial-value problem

y′ = x+ y y(0) = 1.
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Example 4. In Example 2 we discussed a simple electric circuit with resistance
12 Ω, inductance 4 H, and a battery with voltage 60 V. If the switch is closed
when t = 0, we modeled the current I at time t by the initial-value problem

dI

dt
= 15− 3I I(0) = 0.

Estimate the current in the circuit half a second after the switch is closed.
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9.3 Separable Equations

Definition 9.3.1. A separable equation is a first-order differential equation
in which the expression for dy/dx can be factored as a function of x times a
function of y. In other words, it can be written in the form

dy

dx
= g(x)g(y).

Example 1. (a) Solve the differential equation
dy

dx
=

x2

y2
.

(b) Find the solution of this equation that satisfies the initial condition y(0) =
2.
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Example 2. Solve the differential equation
dy

dx
=

6x2

2y + cos y
.

Example 3. Solve the equation y′ = x2y.
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 SECTION 9.2  Direction Fields and Euler’s Method 593

SOLUTION
(a) We start by computing the slope at several points in the following chart:

x 22 21 0 1 2 22 21 0 1 2 . . .

y 0 0 0 0 0 1 1 1 1 1 . . .

y9 − x 2 1 y 2 2 1 3 0 21 0 3 4 1 0 1 4 . . .

Now we draw short line segments with these slopes at these points. The result is the 
direction field shown in Figure 5.

(b) We start at the origin and move to the right in the direction of the line segment 
(which has slope 21). We continue to draw the solution curve so that it moves parallel 
to the nearby line segments. The resulting solution curve is shown in Figure 6. Return-
ing to the origin, we draw the solution curve to the left as well. n

The more line segments we draw in a direction field, the clearer the picture becomes. 
Of course, it’s tedious to compute slopes and draw line segments for a huge number 
of points by hand, but computers are well suited for this task. Figure 7 shows a more 
detailed, computer-drawn direction field for the differential equation in Example 1. It 
enables us to draw, with reasonable accuracy, the solution curves with y-intercepts 22,  
21, 0, 1, and 2.

Now let’s see how direction fields give insight into physical situations. The simple 
electric circuit shown in Figure 8 contains an electromotive force (usually a battery or 
generator) that produces a voltage of Estd volts (V) and a current of Istd amperes (A) at 
time t. The circuit also contains a resistor with a resistance of R ohms (V) and an induc-
tor with an inductance of L henries (H).

Ohm’s Law gives the drop in voltage due to the resistor as RI. The voltage drop due to 
the inductor is LsdIydtd. One of Kirchhoff’s laws says that the sum of the voltage drops 
is equal to the supplied voltage Estd. Thus we have

L 
dI
dt

1 RI − Estd

which is a first-order differential equation that models the current I at time t.

EXAMPLE 2  Suppose that in the simple circuit of Figure 8 the resistance is 12 V, the 
inductance is 4 H, and a battery gives a constant voltage of 60 V.
(a) Draw a direction field for Equation 1 with these values.
(b) What can you say about the limiting value of the current?
(c) Identify any equilibrium solutions.
(d) If the switch is closed when t − 0 so the current starts with Is0d − 0, use the direc-
tion field to sketch the solution curve.

SOLUTION
(a) If we put L − 4, R − 12, and Estd − 60 in Equation 1, we get

4 
dI
dt

1 12I − 60    or    
dI
dt

− 15 2 3I
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Example 4. In Section 9.2 we modeled the current I(t) in the
electric circuit shown in the figure by the differential equation

L
dI

dt
+RI = E(t).

Find an expression for the current in a circuit where the resis-
tance is 12 V, the inductance is 4 H, a battery gives a constant
voltage of 60 V, and the switch is turned on when t = 0. What
is the limiting value of the current?
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 SECTION 9.3  Separable Equations 603

Orthogonal Trajectories
An orthogonal trajectory of a family of curves is a curve that intersects each curve of 
the family orthogonally, that is, at right angles (see Figure 7). For instance, each mem-
ber of the family y − mx of straight lines through the origin is an orthogonal trajectory 
of the family x 2 1 y 2 − r 2 of concentric circles with center the origin (see Figure 8). We 
say that the two families are orthogonal trajectories of each other.

EXAMPLE 5  Find the orthogonal trajectories of the family of curves x − ky 2, where k 
is an arbitrary constant.

SOLUTION The curves x − ky 2 form a family of parabolas whose axis of symmetry is  
the x-axis. The first step is to find a single differential equation that is satisfied by all 
members of the family. If we differentiate x − ky 2, we get

1 − 2ky 
dy
dx

    or    
dy
dx

−
1

2ky

This differential equation depends on k, but we need an equation that is valid for all 
values of k simultaneously. To eliminate k we note that, from the equation of the given 
general parabola x − ky 2, we have k − xyy 2 and so the differential equation can be  
written as

dy
dx

−
1

2ky
−

1

2 
x
y 2  y

  or  
dy
dx

−
 y
2x

This means that the slope of the tangent line at any point sx, yd on one of the parabolas 
is y9 − yys2xd. On an orthogonal trajectory the slope of the tangent line must be the 
negative reciprocal of this slope. Therefore the orthogonal trajectories must satisfy the 
differ ential equation

dy
dx

− 2
2x
 y

This differential equation is separable, and we solve it as follows:

 y y dy − 2y 2x dx

 
 y 2

2
− 2x 2 1 C

 x 2 1
y 2

2
− C

where C is an arbitrary positive constant. Thus the orthogonal trajectories are the  
family of ellipses given by Equation 4 and sketched in Figure 9. n

Orthogonal trajectories occur in various branches of physics. For example, in an elec-
trostatic field the lines of force are orthogonal to the lines of constant potential. Also, 
the streamlines in aerodynamics are orthogonal trajectories of the velocity-equipotential 
curves.
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Definition 9.3.2. An orthogonal trajectory of a family of curves
is a curve that intersects each curve of the family orthogonally,
that is, at right angles (see the figure).

Example 5. Find the orthogonal trajectories of the family of
curves x = ky2, where k is an arbitrary constant.
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Example 6. A tank contains 20 kg of salt dissolved in 5000 L of water. Brine
that contains 0.03 kg of salt per liter of water enters the tank at a rate of 25
L/min. The solution is kept thoroughly mixed and drains from the tank at
the same rate. How much salt remains in the tank after half an hour?
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9.4 Models for Population Growth

Definition 9.4.1. In general, if P (t) is the value of a quantity y at time t and
if the rate of change of P with respect to t is proportional to its size P (t) at
any time, then

dP

dt
= kP

where k is a constant. This equation is sometimes called the law of natural
growth.

Theorem 9.4.1. The solution of the initial-value problem

dP

dt
= kP P (0) = P0

is
P (t) = P0e

kt.

Proof. The law of natural growth is a separable differential equation, so

dP

dt
= kPˆ

dP

P
=

ˆ
k dt

ln |P | = kt+ C

|P | = ekt+C = eCekt

P = Aekt,

where A (= ±eC or 0) is an arbitrary constant. Since P (0) = A, P (t) =
P0e

kt.

Definition 9.4.2. The model for population growth known as the logistic
differential equation is

dP

dt
= kP

(
1− P

M

)
,

where M is the carrying capacity, the maximum population that the environ-
ment is capable of sustaining in the long run.
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Example 1. Draw a direction field for the logistic equation with k = 0.08
and carrying capacity M = 1000. What can you deduce about the solutions?
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Theorem 9.4.2. The solution to the logistic equation is

P (t) =
M

1 + Ae−kt
where A =

M − P0

P0

.

Proof. The logistic equation is separable, so using partial fractions, we get

dP

dt
= kP

(
1− P

M

)
ˆ

dP

P (1− P/M)
=

ˆ
k dt

ˆ
M

P (M − P )
dP =

ˆ
k dt

ˆ (
1

P
+

1

M − P

)
dP =

ˆ
k dt

ln |P | − ln |M − P | = kt+ C

ln

∣∣∣∣M − P

P

∣∣∣∣ = −kt− C∣∣∣∣M − P

P

∣∣∣∣ = e−kt−C = e−Ce−kt

M − P

P
= Ae−kt

M

P
− 1 = Ae−kt

M

P
= 1 + Ae−kt

P =
M

1 + Ae−kt
,

where A = ±e−C . If t = 0, we have

M − P0

P0

= Ae0 = A.

293



Calculus - 9.4 Models for Population Growth

Example 2. Write the solution of the initial-value problem

dP

dt
= 0.08P

(
1− P

1000

)
P (0) = 100

and use it to find the population sizes P (40) and P (80). At what time does
the population reach 900?
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Example 3. In the 1930s the biologist G. F. Gause conducted an experiment
with the protozoan Paramecium and used a logistic equation to model his
data. The table gives his daily count of the population of protozoa. He esti-
mated the initial relative growth rate to be 0.7944 and the carrying capacity
to be 64.

t (days) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
P (observed) 2 3 22 16 39 52 54 47 50 76 69 51 57 70 53 59 57

Find the exponential and logistic models for Gause’s data. Compare the pre-
dicted values with the observed values and comment on the fit.
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9.5 Linear Equations

Definition 9.5.1. A first-order linear differential equation is one that can be
put into the form

dy

dx
+ P (x)y = Q(x)

where P and Q are continuous functions on a given interval.

Theorem 9.5.1. To solve the linear differential equation y′ + P (x)y = Q(x),
multiply both sides by the integrating factor I(x) = e

´
P (x)dx and integrate both

sides.

Example 1. Solve the differential equation
dy

dx
+ 3x2y = 6x2.
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Example 2. Find the solution of the initial-value problem

x2y′ + xy = 1 x > 0 y(1) = 2.
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Example 3. Solve y′ + 2xy = 1.
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 SECTION 9.2  Direction Fields and Euler’s Method 593

SOLUTION
(a) We start by computing the slope at several points in the following chart:

x 22 21 0 1 2 22 21 0 1 2 . . .

y 0 0 0 0 0 1 1 1 1 1 . . .

y9 − x 2 1 y 2 2 1 3 0 21 0 3 4 1 0 1 4 . . .

Now we draw short line segments with these slopes at these points. The result is the 
direction field shown in Figure 5.

(b) We start at the origin and move to the right in the direction of the line segment 
(which has slope 21). We continue to draw the solution curve so that it moves parallel 
to the nearby line segments. The resulting solution curve is shown in Figure 6. Return-
ing to the origin, we draw the solution curve to the left as well. n

The more line segments we draw in a direction field, the clearer the picture becomes. 
Of course, it’s tedious to compute slopes and draw line segments for a huge number 
of points by hand, but computers are well suited for this task. Figure 7 shows a more 
detailed, computer-drawn direction field for the differential equation in Example 1. It 
enables us to draw, with reasonable accuracy, the solution curves with y-intercepts 22,  
21, 0, 1, and 2.

Now let’s see how direction fields give insight into physical situations. The simple 
electric circuit shown in Figure 8 contains an electromotive force (usually a battery or 
generator) that produces a voltage of Estd volts (V) and a current of Istd amperes (A) at 
time t. The circuit also contains a resistor with a resistance of R ohms (V) and an induc-
tor with an inductance of L henries (H).

Ohm’s Law gives the drop in voltage due to the resistor as RI. The voltage drop due to 
the inductor is LsdIydtd. One of Kirchhoff’s laws says that the sum of the voltage drops 
is equal to the supplied voltage Estd. Thus we have

L 
dI
dt

1 RI − Estd

which is a first-order differential equation that models the current I at time t.

EXAMPLE 2  Suppose that in the simple circuit of Figure 8 the resistance is 12 V, the 
inductance is 4 H, and a battery gives a constant voltage of 60 V.
(a) Draw a direction field for Equation 1 with these values.
(b) What can you say about the limiting value of the current?
(c) Identify any equilibrium solutions.
(d) If the switch is closed when t − 0 so the current starts with Is0d − 0, use the direc-
tion field to sketch the solution curve.

SOLUTION
(a) If we put L − 4, R − 12, and Estd − 60 in Equation 1, we get

4 
dI
dt

1 12I − 60    or    
dI
dt

− 15 2 3I
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Example 4. Suppose that in the simple circuit of the figure the
resistance is 12 V and the inductance is 4 H. If a battery gives a
constant voltage of 60 V and the switch is closed when t = 0 so
the current starts with I(0) = 0, find

(a) I(t),

(b) the current after 1 second, and

(c) the limiting value of the current.
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Example 5. Suppose that the resistance and inductance remain as in Example
4 but, instead of the battery, we use a generator that produces a variable
voltage of E(t) = 60 sin 30t volts. Find I(t).
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9.6 Predator-Prey Systems

Definition 9.6.1. The equations

dR

dt
= kR− aRW

dW

dt
= −rW + bRW

are known as the predator-prey equations, or the Lotka-Volterra equations. A
solution of this system of equations is a pair of functions R(t) and W (t) that
describe the populations of prey and predators as functions of time.

Example 1. Suppose that populations of rabbits and wolves are described
by the Lotka-Volterra equations with k = 0.08, a = 0.001, r = 0.02, and
b = 0.00002. The time t is measured in months.

(a) Find the constant solutions (called the equilibrium solutions) and interpret
the answer.
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Calculus - 9.6 Predator-Prey Systems

(b) Use the system of differential equations to find an expression for dW/dR.

(c) Draw a direction field for the resulting differential equation in the RW -
plane. Then use that direction field to sketch some solution curves.
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(d) Suppose that, at some point in time, there are 1000 rabbits and 40 wolves.
Draw the corresponding solution curve and use it to describe the changes
in both population levels.

(e) Use part (d) to make sketches of R and W as functions of t.

303



Chapter 10

Parametric Equations and Polar
Coordinates

10.1 Curves Defined by Parametric Equations

Definition 10.1.1. Suppose that x and y are both given as functions of a
third variable t (called a parameter) by the equations

x = f(t) y = g(t)

(called parametric equations). Each value of t determines a point (x, y), which
we can plot in a coordinate plane. As t varies, the point (x, y) = (f(t), g(t))
varies and traces out a curve C, which we call a parametric curve.

Example 1. Sketch and identify the curve defined by the parametric equations

x = t2 − 2t y = t+ 1.
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Definition 10.1.2. In general, the curve with parametric equations

x = f(t) y = g(t) a ≤ t ≤ b

has initial point (f(a), g(a)) and terminal point (f(b), g(b)).

Example 2. What curve is represented by the following parametric equations?

x = cos t y = sin t 0 ≤ t ≤ 2π.

Example 3. What curve is represented by the given parametric equations?

x = sin 2t y = cos 2t 0 ≤ t ≤ 2π.
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Example 4. Find parametric equations for the circle with center (h, k) and
radius r.

Example 5. Sketch the curve with parametric equations x = sin t, y = sin2 t.
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Example 6. Use a graphing device to graph the curve x = y4 − 3y2.

Example 7. The curve traced out by a point P on the circumference of a
circle as the circle rolls along a straight line is called a cycloid (see the figure).
If the circle has radius r and rolls along the x-axis and if one position of P is
the origin, find parametric equations for the cycloid.

 SECTION 10.1  Curves Defined by Parametric Equations 643

EXAMPLE 6  Use a graphing device to graph the curve x − y 4 2 3y 2.

SOLUTION If we let the parameter be t − y, then we have the equations

x − t 4 2 3t 2    y − t

Using these parametric equations to graph the curve, we obtain Figure 9. It would be 
possible to solve the given equation sx − y 4 2 3y 2 d for y as four functions of x and 
graph them individually, but the parametric equations provide a much easier method. n

In general, if we need to graph an equation of the form x − tsyd, we can use the 
parametric equations

x − tstd    y − t

Notice also that curves with equations y − f sxd (the ones we are most familiar with—
graphs of functions) can also be regarded as curves with parametric equations

x − t    y − f std

Graphing devices are particularly useful for sketching complicated parametric curves. 
For instance, the curves shown in Figures 10, 11, and 12 would be virtually impossible to  
produce by hand.

13

0

1

_1

_1 1

3.5

_3.5

_3.5 3.5

13

FIGURE 10  
x − t 1 sin 5t 
y − t 1 sin 6t 

  FIGURE 11  
  x − sin 9t 
  y − sin 10 t 

FIGURE 12  
x − 2.3 cos  10t 1 cos 23t 
y − 2.3 sin 10t 2 sin 23t 

One of the most important uses of parametric curves is in computer-aided design 
(CAD). In the Laboratory Project after Section 10.2 we will investigate special paramet-
ric curves, called Bézier curves, that are used extensively in manufacturing, especially 
in the auto motive industry. These curves are also employed in specifying the shapes of 
letters and other symbols in laser printers and in documents viewed electronically.

The Cycloid

EXAMPLE 7  The curve traced out by a point P on the circumference of a circle as 
the circle rolls along a straight line is called a cycloid (see Figure 13). If the circle has 
radius r and rolls along the x-axis and if one position of P is the origin, find parametric 
equations for the cycloid.

P

P
P

TEC An animation in Module 10.1B 
shows how the cycloid is formed as 
the circle moves.

FIGURE 13 

FIGURE 9 

3

_3

_3 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

307



Calculus - 10.1 Curves Defined by Parametric Equations

Example 8. Investigate the family of curves with parametric equations

x = a+ cos t y = a tan t+ sin t.

What do these curves have in common? How does the shape change as a
increases?
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10.2 Calculus with Parametric Curves

Theorem 10.2.1. Suppose f and g are differentiable functions. Then for a
point on the parametric curve x = f(t), y = g(t), where y is also a differen-
tiable function of x, we have

dy

dx
=

dy

dt
dx

dt

if
dx

dt
̸= 0.

Proof. Since y is a differentiable function of x, we have, by the Chain Rule,

dy

dt
=

dy

dx
· dx
dt

.

Then if dx
dt

̸= 0 we can divide by it, so

dy

dx
=

dy

dt
dx

dt

.

Theorem 10.2.2. Suppose f and g are differentiable functions. Then for a
point on the parametric curve x = f(t), y = g(t), where y is also a differen-
tiable function of x, we have

d2y

dx2
=

d

dt

(
dy

dx

)
dx

dt

if
dx

dt
̸= 0.

Proof. By the previous theorem,

d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dt

(
dy

dx

)
dx

dt

if
dx

dt
̸= 0.
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Example 1. A curve C is defined by the parametric equations x = t2, y =
t3 − 3t.

(a) Show that C has two tangents at the point (3, 0) and find their equations

(b) Find the points on C where the tangent is horizontal or vertical.

(c) Determine where the curve is concave upward or downward.

(d) Sketch the curve.
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Example 2.

(a) Find the tangent to the cycloid x = r(θ − sin θ), y = r(1 − cos θ) at the
point where θ = π/3.

(b) At what points is the tangent horizontal? When is it vertical?
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Theorem 10.2.3. If a curve is traced out once by the parametric equations
x = f(t) and y = g(t), α ≤ t ≤ β, then the area under the curve is given by

A =

ˆ β

α

g(t)f ′(t) dt

[
or

ˆ α

β

g(t)f ′(t) dt

]
.

Proof. Since the area under the curve y = F (x) from a to b is A =
´ b
a
F (x) dx,

we can use the Substitution Rule for Definite Integrals with y = g(t) and
dx = f ′(t) dt to get

A =

ˆ b

a

y dx =

ˆ β

α

g(t)f ′(t) dt.

 SECTION 10.2  Calculus with Parametric Curves 651

Therefore the slope of the tangent is s3  and its equation is

y 2
r
2

− s3  Sx 2
r!

3
1

rs3 

2 D    or    s3  x 2 y − rS !

s3 2 2D
The tangent is sketched in Figure 2.

0

y

x2πr 4πr

(πr, 2r)(_πr, 2r) (3πr, 2r) (5πr, 2r)

π
3¨=

(b) The tangent is horizontal when dyydx − 0, which occurs when sin " − 0 and 
1 2 cos " ± 0, that is, " − s2n 2 1d!, n  an integer. The corresponding point on the 
cycloid is ss2n 2 1d!r, 2rd.

When " − 2n !, both dxyd" and dyyd" are 0. It appears from the graph that there  
are vertical tangents at those points. We can verify this by using l’Hospital’s Rule as 
follows:

lim
" l

 

2n !1
 
dy
dx

− lim
" l

 

2n !1
 

sin "
1 2 cos " −  lim

" l
 

2n !1
 
cos "
sin " − `

A similar computation shows that dyydx l 2` as " l 2n !2, so indeed there are 
vertical tangents when " − 2n !, that is, when x − 2n !r. n

Areas
We know that the area under a curve y − Fsxd from a to b is A − yb

a Fsxd dx, where 
Fsxd > 0. If the curve is traced out once by the parametric equations x − f std and 
y − tstd, # < t < $, then we can calculate an area formula by using the Sub stitution 
Rule for Definite Integrals as follows:

 A − yb

a
 y dx − y$

#
 tstd f 9std dt    For y#

$
 tstd f 9std dtG

EXAMPLE 3  Find the area under one arch of the cycloid

x − rs" 2 sin "d    y − rs1 2 cos "d

(See Figure 3.)

SOLUTION One arch of the cycloid is given by 0 < " < 2!. Using the Substitution 
Rule with y − rs1 2 cos "d and dx − rs1 2 cos "d d", we have

 A − y2!r

0
 y dx − y2!

0
 rs1 2 cos "d rs1 2 cos "d d"

 − r 2 y2!

0
 s1 2 cos "d2 d" − r 2 y2!

0
 s1 2 2 cos " 1 cos2"d d"

 − r 2 y2!

0
 f1 2 2 cos " 1 1

2 s1 1 cos 2"dg d"

 − r 2 f 3
2 " 2 2 sin " 1 1

4 sin 2"g0

2!

  − r 2 (3
2 ? 2!) − 3!r 2 n

FIGURE 2

The limits of integration for t are found  
as usual with the Substitution Rule. 
When x − a, t is either # or $. When 
x − b, t is the remaining value.

0

y

x2πr

FIGURE 3 

The result of Example 3 says that the 
area under one arch of the cycloid 
is three times the area of the rolling 
circle that generates the cycloid (see 
Example 10.1.7). Galileo guessed this 
result but it was first proved by the 
French mathematician Roberval and 
the Italian mathematician Torricelli.
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Example 3. Find the area under one arch of the cycloid

x = r(θ − sin θ) y = r(1− cos θ).

(See the figure.)
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Theorem 10.2.4. If a curve C is described by the parametric equations x =
f(t), y = g(t), α ≤ t ≤ β, where f ′ and g′ are continuous on [α, β] and C is
traversed exactly once as t increases from α to β, then the length of C is

L =

ˆ β

α

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Example 4. (a) Use the representation of the unit circle given by

x = cos t y = sin t 0 ≤ t ≤ 2π

to find its arc length.

(b) Use the representation of the unit circle given by

x = sin 2t y = cos 2t 0 ≤ t ≤ 2π

to find its arc length.
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Example 5. Find the length of one arch of the cycloid x = r(θ − sin θ),
y = r(1− cos θ).

314



Calculus - 10.2 Calculus with Parametric Curves

Theorem 10.2.5. Suppose a curve C is given by the parametric equations
x = f(t), y = g(t), α ≤ t ≤ β, where f ′, g′ are continuous, g′(t) ≥ 0, is
rotated about the x-axis. If C is traversed exactly once as t increases from α
to β, then the area of the resulting surface is given by

S =

ˆ β

α

2πy

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Example 6. Show that the surface area of a sphere of radius r is 4πr2.
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10.3 Polar Coordinates

658 CHAPTER 10  Parametric Equations and Polar Coordinates

A coordinate system represents a point in the plane by an ordered pair of numbers called 
coordinates. Usually we use Cartesian coordinates, which are directed distances from 
two perpendicular axes. Here we describe a coordinate system introduced by Newton, 
called the polar coordinate system, which is more convenient for many purposes.

We choose a point in the plane that is called the pole (or origin) and is labeled O. Then 
we draw a ray (half-line) starting at O called the polar axis. This axis is usually drawn 
hor izontally to the right and corresponds to the positive x-axis in Cartesian coordinates.

If P is any other point in the plane, let r be the distance from O to P and let ! be the 
angle (usually measured in radians) between the polar axis and the line OP as in Fig- 
 ure 1. Then the point P is represented by the ordered pair sr, !d and r, ! are called polar 
coordinates of P. We use the convention that an angle is positive if measured in the 
counterclockwise direction from the polar axis and negative in the clockwise direction. 
If P − O, then r − 0 and we agree that s0, !d represents the pole for any value of !.

We extend the meaning of polar coordinates sr, !d to the case in which r is negative by 
agreeing that, as in Figure 2, the points s2r, !d and sr, !d lie on the same line through O 
and at the same distance | r | from O, but on opposite sides of O. If r . 0, the point sr, !d 
lies in the same quadrant as !; if r , 0, it lies in the quadrant on the opposite side of the 
pole. Notice that s2r, !d represents the same point as sr, ! 1 "d.

EXAMPLE 1  Plot the points whose polar coordinates are given. 
(a) s1, 5"y4d      (b) s2, 3"d      (c) s2, 22"y3d      (d) s23, 3"y4d

FIGURE 1 

xO ¨

r

polar axis

P(r, ̈ )

FIGURE 2 

(_r, ̈ )

O
¨

(r, ̈ )

¨+π

where 0 < t < 1. Notice that when t − 0 we have sx, yd − sx0, y0 d and when t − 1 we have 
sx, yd − sx3, y3d, so the curve starts at P0 and ends at P3.

1.  Graph the Bézier curve with control points P0s4, 1d, P1s28, 48d, P2s50, 42d, and P3s40, 5d. 
Then, on the same screen, graph the line segments P0P1, P1P2, and P2P3. (Exercise 10.1.31 
shows how to do this.) Notice that the middle control points P1 and P2 don’t lie on the  
curve; the curve starts at P0, heads toward P1 and P2 without reaching them, and ends at P3.

2.  From the graph in Problem 1, it appears that the tangent at P0 passes through P1 and the  
tangent at P3 passes through P2. Prove it.

3.  Try to produce a Bézier curve with a loop by changing the second control point in  
Problem 1.

4.  Some laser printers use Bézier curves to represent letters and other symbols. Experiment with 
control points until you find a Bézier curve that gives a reasonable representation of the  
letter C.

5.  More complicated shapes can be represented by piecing together two or more Bézier  
curves. Suppose the first Bézier curve has control points P0, P1, P2, P3 and the second one  
has control points P3, P4, P5, P6. If we want these two pieces to join together smoothly, then 
the tangents at P3 should match and so the points P2, P3, and P4 all have to lie on this com- 
mon tangent line. Using this principle, find control points for a pair of Bézier curves that 
represent the letter S.
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Definition 10.3.1. The polar coordinate system consists of a
point called the pole (or origin) O, a ray starting at the pole
called the polar axis, and other points P represented by (r, θ)
where r is the distance from O to P and θ is the angle (usually
measured in radians) between the polar axis and the line OP as
in the figure. r, θ are called polar coordinates of P .

Example 1. Plot the points whose polar coordinates are given.

(a) (1, 5π/4)

(b) (2, 3π)

(c) (2,−2π/3)

(d) (−3, 3π/4)
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Theorem 10.3.1. If the point P has Cartesian coordinates (x, y) and polar
coordinates (r, θ), then

x = r cos θ y = r sin θ

and
r2 = x2 + y2 tan θ =

y

x
.

Example 2. Convert the point (2, π/3) from polar to Cartesian coordinates.

Example 3. Represent the point with Cartesian coordinates (1,−1) in terms
of polar coordinates.

Example 4. What curve is represented by the polar equation r = 2?

317



Calculus - 10.3 Polar Coordinates

Example 5. Sketch the polar curve θ = 1.

Example 6. (a) Sketch the curve with polar equation r = 2 cos θ.

(b) Find a Cartesian equation for this curve.
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Example 7. Sketch the curve r = 1 + sin θ.

Example 8. Sketch the curve r = cos 2θ.
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Theorem 10.3.2. The slope of the tangent line to a polar curve r = f(θ) is

dy

dx
=

dr

dθ
sin θ + r cos θ

dr

dθ
cos θ − r sin θ

Proof. Regard θ as a parameter and write

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ.

Then by Theorem 10.2.1 and the product rule, we have

dy

dx
=

dy

dθ
dx

dθ

=

dr

dθ
sin θ + r cos θ

dr

dθ
cos θ − r sin θ

.

Example 9.

(a) For the cardioid r = 1 + sin θ of Example 7, find the slope of the tangent
line when θ = π/3.
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(b) Find the points on the cardioid where the tangent line is horizontal or
vertical.

Example 10. Graph the curve r = sin(8θ/5).
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Example 11. Investigate the family of polar curves given by r = 1 + c sin θ.
How does the shape change as c changes? (These curves are called limaçons,
after a French word for snail, because of the shape of the curves for certain
values of c.)
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10.4 Areas and Lengths in Polar Coordinates

 SECTION 10.4  Areas and Lengths in Polar Coordinates 669

In this section we develop the formula for the area of a region whose boundary is given 
by a polar equation. We need to use the formula for the area of a sector of a circle:

A − 1
2 r 2!

where, as in Figure 1, r is the radius and ! is the radian measure of the central angle. 
Formula 1 follows from the fact that the area of a sector is proportional to its central 
angle: A − s!y2"d"r 2 − 1

2 r 2! . (See also Exercise 7.3.35.)
Let 5 be the region, illustrated in Figure 2, bounded by the polar curve r − f s!d 

and by the rays ! − a and ! − b, where f  is a positive continuous function and where 
0 , b 2 a < 2". We divide the interval fa, bg into subintervals with endpoints !0, !1, 
!2, . . . , !n  and equal width D!. The rays ! − !i then divide 5 into n  smaller regions 
with central angle D! − !i 2 !i21. If we choose !i* in the i th subinterval f!i21, !ig, 
then the area DAi of the ith region is approximated by the area of the sector of a circle 
with central angle D! and radius f s!i*d. (See Figure 3.)

Thus from Formula 1 we have

DAi < 1
2 f f s!i*dg2 D!

and so an approximation to the total area A of 5 is

A < o
n

i−1
 12 f f s!i*dg2 D!

It appears from Figure 3 that the approximation in (2) improves as n l `. But the sums 
in (2) are Riemann sums for the function ts!d − 1

2 f f s!dg2, so

lim
n l `

o
n

i−1
 12 f f s!i*dg2 D! − yb

a
 12 f f s!dg2 d!

1
¨

r

FIGURE 1 

2

O

¨=b

¨=a

¨=¨i-1

¨=¨i

Î¨

f(̈ i*)

FIGURE 3 

O

¨=b
b ¨=a

r=f(¨)

a

!

FIGURE 2 

  Investigate how the graph changes as the number a changes. In particular, you should  
identify the transitional values of a for which the basic shape of the curve changes.

4.  The astronomer Giovanni Cassini (1625–1712) studied the family of curves with polar  
equations

r 4 2 2c2r 2 cos 2! 1 c 4 2 a4 − 0 

  where a and c are positive real numbers. These curves are called the ovals of Cassini  
even though they are oval shaped only for certain values of a and c. (Cassini thought that 
these curves might represent planetary orbits better than Kepler’s ellipses.) Investigate the 
variety of shapes that these curves may have. In particular, how are a and c related to each 
other when the curve splits into two parts?
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Theorem 10.4.1. Let R be the region, illustrated in the figure,
bounded by the polar curve r = f(θ) and by the rays θ = a
and θ = b, where f is a positive continuous function and where
0 < b− a ≤ 2π. The area A of the polar region R is

A =

ˆ b

a

1

2
r2 dθ.

Example 1. Find the area enclosed by one loop of the four-leaved rose r =
cos 2θ.
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Example 2. Find the area of the region that lies inside the circle r = 3 sin θ
and outside the cardioid r = 1 + sin θ.

Example 3. Find all points of intersection of the curves r = cos 2θ and r = 1
2
.
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Theorem 10.4.2. The length of a curve with polar equation r = f(θ), a ≤
θ ≤ b, is

L =

ˆ b

a

√
r2 +

(
dr

dθ

)2

dθ.

Proof. Regard θ as a parameter and write

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ.

Then by the product rule, we have

dy

dθ
=

dr

dθ
sin θ + r cos θ

dx

dθ
=

dr

dθ
cos θ − r sin θ.

Since cos2 θ + sin2 θ = 1,(
dx

dθ

)2

+

(
dy

dθ

)2

=

(
dr

dθ

)2

cos2 θ − 2r
dr

dθ
cos θ sin θ + r2 sin2 θ

+

(
dr

dθ

)2

sin2 θ + 2r
dr

dθ
sin θ cos θ + r2 cos2 θ

=

(
dr

dθ

)2

+ r2,

so

L =

ˆ b

a

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ =

ˆ b

a

√
r2 +

(
dr

dθ

)2

dθ.
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Example 4. Find the length of the cardioid r = 1 + sin θ.
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10.5 Conic Sections

Definition 10.5.1. Parabolas, ellipses, and hyperbolas are called conic sec-
tions, or conics, because they result from intersecting a cone with a plane as
shown in the figure.

674 Chapter 10  Parametric Equations and Polar Coordinates

In this section we give geometric definitions of parabolas, ellipses, and hyperbolas and 
derive their standard equations. They are called conic sections, or conics, because they 
result from intersecting a cone with a plane as shown in Figure 1.

ellipse hyperbolaparabola

parabolas
A parabola is the set of points in a plane that are equidistant from a fixed point F (called 
the focus) and a fixed line (called the directrix). This definition is illustrated by Figure 2. 
Notice that the point halfway between the focus and the directrix lies on the parabola; 
it is called the vertex. The line through the focus perpendicular to the directrix is called 
the axis of the parabola.

In the 16th century Galileo showed that the path of a projectile that is shot into the 
air at an angle to the ground is a parabola. Since then, parabolic shapes have been used 
in designing automobile headlights, reflecting telescopes, and suspension bridges. (See 
Problem 22 on page 273 for the reflection property of parabolas that makes them so 
useful.)

We obtain a particularly simple equation for a parabola if we place its vertex at the 
origin O and its directrix parallel to the x-axis as in Figure 3. If the focus is the point 
s0, pd, then the directrix has the equation y − 2p. If Psx, yd is any point on the parabola, 

axis

F
focus

parabola

vertex directrix

FIGURE 2� 

51–54� Use a calculator to find the length of the curve correct to 
four decimal places. If necessary, graph the curve to determine the 
parameter interval.

51.  One loop of the curve r − cos 2�

52.  r − tan �,  �y6 < � < �y3

53.  r − sins6 sin �d

54�.  r − sins�y4d

55.  (a)  Use Formula 10.2.6 to show that the area of the surface
generated by rotating the polar curve

r − f s�d    a < � < b

 (where f 9 is continuous and 0 < a , b < �) about the 
polar axis is

S − yb

a
 2�r sin � Îr 2 1 S dr

d�
D2

 d�

(b)  Use the formula in part (a) to find the surface area gener-
ated by rotating the lemniscate r 2 − cos 2� about the
polar axis.

56.  (a)  Find a formula for the area of the surface generated by
rotating the polar curve r − f s�d, a < � < b (where f 9 is 
continuous and 0 < a , b < �), about the line � − �y2.

(b)  Find the surface area generated by rotating the lemniscate
r 2 − cos 2� about the line � − �y2.

FIGURE 1�  
Conics
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674 CHAPTER 10  Parametric Equations and Polar Coordinates

In this section we give geometric definitions of parabolas, ellipses, and hyperbolas and 
derive their standard equations. They are called conic sections, or conics, because they 
result from intersecting a cone with a plane as shown in Figure 1.

ellipse hyperbolaparabola

Parabolas
A parabola is the set of points in a plane that are equidistant from a fixed point F (called 
the focus) and a fixed line (called the directrix). This definition is illustrated by Figure 2. 
Notice that the point halfway between the focus and the directrix lies on the parabola; 
it is called the vertex. The line through the focus perpendicular to the directrix is called 
the axis of the parabola.

In the 16th century Galileo showed that the path of a projectile that is shot into the 
air at an angle to the ground is a parabola. Since then, parabolic shapes have been used 
in designing automobile headlights, reflecting telescopes, and suspension bridges. (See 
Problem 22 on page 273 for the reflection property of parabolas that makes them so 
useful.)

We obtain a particularly simple equation for a parabola if we place its vertex at the 
origin O and its directrix parallel to the x-axis as in Figure 3. If the focus is the point 
s0, p d, then the directrix has the equation y − 2p . If Psx, yd is any point on the parabola, 

axis

F
focus

parabola

vertex directrix

FIGURE 2 

51–54 Use a calculator to find the length of the curve correct to 
four decimal places. If necessary, graph the curve to determine the 
parameter interval.

 51.  One loop of the curve r − cos 2!

 52.  r − tan !,  "y6 < ! < "y3

 53.  r − sins6 sin !d

 54.  r − sins!y4d

 55.  (a)  Use Formula 10.2.6 to show that the area of the surface 
generated by rotating the polar curve

r − f s!d    a < ! < b

   (where f 9 is continuous and 0 < a , b < ") about the 
polar axis is

S − yb

a
 2"r sin ! Îr 2 1 S dr

d!D2

 d!

 (b)  Use the formula in part (a) to find the surface area gener-
ated by rotating the lemniscate r 2 − cos 2! about the  
polar axis.

 56.  (a)  Find a formula for the area of the surface generated by 
rotating the polar curve r − f s!d, a < ! < b (where f 9 is 
continuous and 0 < a , b < "), about the line ! − "y2.

 (b)  Find the surface area generated by rotating the lemniscate 
r 2 − cos 2! about the line ! − "y2.

FIGURE 1  
Conics
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Definition 10.5.2. A parabola is the set of points in a plane
that are equidistant from a fixed point F (called the focus) and
a fixed line (called the directrix). This definition is illustrated
by the figure. Notice that the point halfway between the focus
and the directrix lies on the parabola; it is called the vertex. The
line through the focus perpendicular to the directrix is called the
axis of the parabola.

Theorem 10.5.1. An equation of the parabola with focus (0, p) and directrix
y = −p is

x2 = 4py.

Theorem 10.5.2. An equation of the parabola with focus (p, 0) and directrix
x = −p is

y2 = 4px.
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Example 1. Find the focus and directrix of the parabola y2 + 10x = 0 and
sketch the graph.

676 CHAPTER 10  Parametric Equations and Polar Coordinates

Ellipses
An ellipse is the set of points in a plane the sum of whose distances from two fixed points 
F1 and F2 is a constant (see Figure 6). These two fixed points are called the foci (plural 
of focus). One of Kepler’s laws is that the orbits of the planets in the solar system are 
ellipses with the sun at one focus.

F¡ F™

P

      

F¡(_c, 0) F™(c, 0)0 x

y
P(x, y)

FIGURE 6 FIGURE 7

In order to obtain the simplest equation for an ellipse, we place the foci on the x-axis 
at the points s2c, 0d and sc, 0d as in Figure 7 so that the origin is halfway between the 
foci. Let the sum of the distances from a point on the ellipse to the foci be 2a . 0. Then 
Psx, yd is a point on the ellipse when

| PF1 | 1 | PF2 | − 2a

that is, ssx 1 cd2 1 y 2 1 ssx 2 cd2 1 y 2 − 2a

or ssx 2 cd2 1 y 2 − 2a 2 ssx 1 cd2 1 y 2 

Squaring both sides, we have

x 2 2 2cx 1 c 2 1 y 2 − 4a2 2 4assx 1 cd2 1 y 2 1 x 2 1 2cx 1 c 2 1 y 2

which simplifies to assx 1 cd2 1 y 2 − a2 1 cx

We square again:

 a2sx 2 1 2cx 1 c 2 1 y 2 d − a4 1 2a2cx 1 c 2x 2

which becomes  sa2 2 c 2 dx 2 1 a2 y 2 − a2sa2 2 c 2 d

From triangle F1F2P in Figure 7 we can see that 2c , 2a, so c , a and therefore 
a2 2 c 2 . 0. For convenience, let b 2 − a2 2 c 2. Then the equation of the ellipse 
becomes b 2x 2 1 a2 y 2 − a2b 2 or, if both sides are divided by a2b 2, 

x 2

a2 1
 y 2

b 2 − 1

Since b 2 − a2 2 c 2 , a2, it follows that b , a. The x-intercepts are found by setting 
y − 0. Then x 2ya2 − 1, or x 2 − a2, so x − 6a. The corresponding points sa, 0d and 
s2a, 0d are called the vertices of the ellipse and the line segment joining the vertices is 
called the major axis. To find the y-intercepts we set x − 0 and obtain y 2 − b 2, so 
y − 6b. The line segment joining s0, bd and s0, 2bd is the minor axis. Equation 3 is 
unchanged if x is replaced by 2x or y is replaced by 2y, so the ellipse is symmetric  
about both axes. Notice that if the foci coincide, then c − 0, so a − b and the ellipse 
becomes a circle with radius r − a − b.

We summarize this discussion as follows (see also Figure 8).

3

FIGURE 8 
x 2

a2 1
 y 2

b 2 − 1, a > b

(c, 0)0 x

y

ab
c

(0, b)

(_c, 0)

(0, _b)

(a, 0)
(_a, 0)
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Definition 10.5.3. An ellipse is the set of points in a plane the
sum of whose distances from two fixed points F1 and F2 is a
constant (see the figure). These two fixed points are called the
foci (plural of focus).

Definition 10.5.4. If (−c, 0) and (c, 0) are the foci of an ellipse, the sum of
the distances from a point on the ellipse to the foci are 2a > 0, and b2 = a2−c2,
then the points (a, 0) and (−a, 0) are called the vertices of ellipse and the line
segment joining the vertices is called the major axis. The line segment joining
(0, b) and (0,−b) is the minor axis.

Theorem 10.5.3. The ellipse

x2

a2
+

y2

b2
= 1 a ≥ b > 0

has foci (±c, 0), where c2 = a2 − b2, and vertices (±a, 0).

Theorem 10.5.4. The ellipse

x2

b2
+

y2

a2
= 1 a ≥ b > 0

has foci (0,±c), where c2 = a2 − b2, and vertices (0,±a).
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Example 2. Sketch the graph of 9x2 + 16y2 = 144 and locate the foci.

Example 3. Find an equation of the ellipse with foci (0,±2) and vertices
(0,±3).
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4   The ellipse
x 2

a2 1
 y 2

b2 − 1    a > b . 0

has foci s6c, 0d, where c 2 − a2 2 b2, and vertices s6a, 0d.

If the foci of an ellipse are located on the y-axis at s0, 6cd, then we can find its equa-
tion by interchanging x and y in (4). (See Figure 9.)

5   The ellipse
x 2

b2 1
 y 2

a2 − 1    a > b . 0

has foci s0, 6cd, where c 2 − a2 2 b2, and vertices s0, 6ad.

EXAMPLE 2  Sketch the graph of 9x 2 1 16y 2 − 144 and locate the foci.

SOLUTION Divide both sides of the equation by 144:

x 2

16
1

 y 2

9
− 1

The equation is now in the standard form for an ellipse, so we have a2 − 16, b2 − 9,  
a − 4, and b − 3. The x-intercepts are 64 and the y-intercepts are 63. Also, 
c 2 − a2 2 b2 − 7, so c − s7  and the foci are s6s7 , 0d. The graph is sketched in 
Figure 10. n

EXAMPLE 3  Find an equation of the ellipse with foci s0, 62d and vertices s0, 63d.

SOLUTION Using the notation of (5), we have c − 2 and a − 3. Then we obtain 
b2 − a2 2 c 2 − 9 2 4 − 5, so an equation of the ellipse is

x 2

5
1

 y 2

9
− 1

Another way of writing the equation is 9x 2 1 5y 2 − 45. n

Like parabolas, ellipses have an interesting reflection property that has practical con-
se quences. If a source of light or sound is placed at one focus of a surface with elliptical 
cross-sections, then all the light or sound is reflected off the surface to the other focus 
(see Exercise 65). This principle is used in lithotripsy, a treatment for kidney stones. 
A reflector with elliptical cross-section is placed in such a way that the kidney stone is 
at one focus. High-intensity sound waves generated at the other focus are reflected to 
the stone and destroy it without damaging surrounding tissue. The patient is spared the 
trauma of surgery and recovers within a few days.

Hyperbolas
A hyperbola is the set of all points in a plane the difference of whose distances from two 
fixed points F1 and F2 (the foci) is a constant. This definition is illustrated in Figure 11.

Hyperbolas occur frequently as graphs of equations in chemistry, physics, biology, 
and economics (Boyle’s Law, Ohm’s Law, supply and demand curves). A particularly 

FIGURE 9 
x 2

b2 1
 y 2

a2 − 1, a > b

0 x

y
(0, a)

(0, c)

(b, 0)

(0, _c)

(_b, 0)

(0, _a)

FIGURE 10 
9x 2 1 16y 2 − 144

0 x

y

(0, 3)

{œ„7, 0}

(4, 0)(_4, 0)

(0, _3)

{_œ„7, 0}

F™(c, 0)F¡(_c, 0) 0 x

y

P(x, y)

FIGURE 11  
P is on the hyperbola when
| PF1 | 2 | PF2 | − 62a.
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Definition 10.5.5. A hyperbola is the set of all points in a plane
the difference of whose distances from two fixed points F1 and
F2 (the foci) is a constant. This definition is illustrated in the
figure.

Theorem 10.5.5. The hyperbola

x2

a2
− y2

b2
= 1

has foci (±c, 0), where c2 = a2 + b2, vertices (±a, 0), and asymptotes y =
±(b/a)x.

Theorem 10.5.6. The hyperbola

y2

a2
− x2

b2
= 1

has foci (0,±c), where c2 = a2 + b2, vertices (0,±a), and asymptotes y =
±(a/b)x.

Example 4. Find the foci and asymptotes of the hyperbola 9x2− 16y2 = 144
and sketch its graph.
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Example 5. Find the foci and equation of the hyperbola with vertices (0,±1)
and asymptote y = 2x.

Example 6. Find an equation of the ellipse with foci (2,−2), (4,−2), and
vertices (1,−2), (5,−2).

Example 7. Sketch the conic 9x2−4y2−72x+8y+176 = 0 and find its foci.
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10.6 Conic Sections in Polar Coordinates
 SECTION 10.6  Conic Sections in Polar Coordinates 683

polar axis. If the point P has polar coordinates sr, !d, we see from Figure 1 that

| PF | − r      | Pl | − d 2 r cos !

Thus the condition | PF |y| Pl | − e, or | PF | − e | Pl |, becomes

r − esd 2 r cos !d

If we square both sides of this polar equation and convert to rectangular coordinates,  
we get

x 2 1 y 2 − e 2sd 2 xd2 − e 2sd 2 2 2dx 1 x 2 d

or s1 2 e 2 dx 2 1 2de 2x 1 y 2 − e 2d 2

After completing the square, we have

Sx 1
e 2d

1 2 e 2D2

1
 y 2

1 2 e 2 −
e 2d 2

s1 2 e 2 d2

If e , 1, we recognize Equation 3 as the equation of an ellipse. In fact, it is of the form

sx 2 hd2

a 2 1
 y 2

b 2 − 1

where

h − 2
e 2d

1 2 e 2       a 2 −
e 2d 2

s1 2 e 2 d2       b 2 −
e 2d 2

1 2 e 2

In Section 10.5 we found that the foci of an ellipse are at a distance c from the center, 
where

c 2 − a 2 2 b 2 −
e 4d 2

s1 2 e 2 d2

This shows that c −
e 2d

1 2 e 2 − 2h

and con!rms that the focus as de!ned in Theorem 1 means the same as the focus de!ned 
in Section 10.5. It also follows from Equations 4 and 5 that the eccentricity is given by

e −
c
a

If e . 1, then 1 2 e 2 , 0 and we see that Equation 3 represents a hyperbola. Just as we 
did before, we could rewrite Equation 3 in the form

sx 2 hd2

a 2 2
 y 2

b 2 − 1

and see that

 e −
c
a

    where c 2 − a 2 1 b 2 Q

y

xF

l (directrix)

x=d

r cos ¨

P

¨
r

d

C

FIGURE 1 

2

3

4

5
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Theorem 10.6.1. Let F be a fixed point (called the focus) and
l be a fixed line (called the directrix) in a plane. Let e be a fixed
positive number (called the eccentricity). The set of all points P
in the plane such that

|PF |
|Pl|

= e

(that is, the ratio of the distance from F to the distance from l
is the constant e) is a conic section. The conic is

(a) an ellipse if e < 1

(b) a parabola if e = 1

(c) a hyperbola if e > 1

Theorem 10.6.2. A polar equation of the form

r =
ed

1± e cos θ
or r =

ed

1± e sin θ

represents a conic section with eccentricity e. The conic is an ellipse if e < 1,
a parabola if e = 1, or a hyperbola if e > 1.

684 CHAPTER 10  Parametric Equations and Polar Coordinates

By solving Equation 2 for r, we see that the polar equation of the conic shown in Fig-
ure 1 can be written as

r −
ed

1 1 e cos !

If the directrix is chosen to be to the left of the focus as x − 2d, or if the directrix is 
cho sen to be parallel to the polar axis as y − 6d, then the polar equation of the conic is 
given by the following theorem, which is illustrated by Figure 2. (See Exercises 21–23.)

(a) r= ed
1+e cos ¨

y

xF

x=d
directrix

(b) r= ed
1-e cos ¨

xF

y

x=_d
directrix

(c) r= ed
1+e sin ¨

y

F x

y=d         directrix

(d) r= ed
1-e sin ¨

x

y

y=_d         directrix

F

6   Theorem A polar equation of the form

r −
ed

1 6 e cos !
    or    r −

ed
1 6 e sin !

represents a conic section with eccentricity e. The conic is an ellipse if e , 1,  
a parabola if e − 1, or a hyperbola if e . 1.

EXAMPLE 1  Find a polar equation for a parabola that has its focus at the origin and 
whose directrix is the line y − 26.

SOLUTION Using Theorem 6 with e − 1 and d − 6, and using part (d) of Figure 2, we 
see that the equation of the parabola is

 r −
6

1 2 sin !
 Q

EXAMPLE 2  A conic is given by the polar equation

r −
10

3 2 2 cos !

Find the eccentricity, identify the conic, locate the directrix, and sketch the conic.

SOLUTION Dividing numerator and denominator by 3, we write the equation as

r −
10
3

1 2 2
3 cos !

FIGURE 2  
Polar equations of conics
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Example 1. Find a polar equation for a parabola that has its focus at the
origin and whose directrix is the line y = −6.
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Example 2. A conic is given by the polar equation

r =
10

3− 2 cos θ
.

Find the eccentricity, identify the conic, locate the directrix, and sketch the
conic.

Example 3. Sketch the conic r =
12

2 + 4 sin θ
.
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Example 4. If the ellipse of Example 2 is rotated through an angle π/4 about
the origin, find a polar equation and graph the resulting ellipse.

Theorem 10.6.3. The polar equation of an ellipse with focus at the origin,
semimajor axis a, eccentricity e, and directrix x = d can be written in the form

r =
a(1− e2)

1 + e cos θ
.

 SECTION 10.6  Conic Sections in Polar Coordinates 687

7   The polar equation of an ellipse with focus at the origin, semimajor axis a, 
eccentricity e, and directrix x − d can be written in the form

r −
as1 2 e2d

1 1 e cos !

The positions of a planet that are closest to and farthest from the sun are called its 
peri helion and aphelion, respectively, and correspond to the vertices of the ellipse 
(see Figure 7). The distances from the sun to the perihelion and aphelion are called the  
perihelion distance and aphelion distance, respectively. In Figure 1 on page 683 the 
sun is at the focus F, so at perihelion we have ! − 0 and, from Equation 7,

r −
as1 2 e2d

1 1 e cos 0
−

as1 2 eds1 1 ed
1 1 e

− as1 2 ed

Similarly, at aphelion ! − " and r − as1 1 ed.

8   The perihelion distance from a planet to the sun is as1 2 ed and the aphelion 
distance is as1 1 ed.

EXAMPLE 5  
(a) Find an approximate polar equation for the elliptical orbit of the earth around the 
sun (at one focus) given that the eccentricity is about 0.017 and the length of the major 
axis is about 2.99 3 108 km.
(b) Find the distance from the earth to the sun at perihelion and at aphelion.

SOLUTION
(a) The length of the major axis is 2a − 2.99 3 108, so a − 1.495 3 108. We are 
given that e − 0.017 and so, from Equation 7, an equation of the earth’s orbit around 
the sun is

r −
as1 2 e2d

1 1 e cos !
−

s1.495 3 108d f1 2 s0.017d2g
1 1 0.017 cos !

or, approximately,

r −
1.49 3 108

1 1 0.017 cos !

(b) From (8), the perihelion distance from the earth to the sun is

as1 2 ed < s1.495 3 108ds1 2 0.017d < 1.47 3 108 km

and the aphelion distance is

 as1 1 ed < s1.495 3 108ds1 1 0.017d < 1.52 3 108 km n

FIGURE 7 

perihelionaphelion
sun

planet

¨
r
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Definition 10.6.1. The positions of a planet that are closest
to and farthest from the sun are called its perihelion and aphe-
lion, respectively, and correspond to the vertices of the ellipse
(see the figure). The distances from the sun to the perihelion
and aphelion are called the perihelion distance and aphelion dis-
tance, respectively.

Theorem 10.6.4. The perihelion distance from a planet to the
sun is a(1− e) and the aphelion distance is a(1 + e).

Proof. If the sun is at the focus F , at perihelion we have θ = 0, so

r =
a(1− e2)

1 + e cos 0
=

a(1− e)(1 + e)

1 + e
= a(1− e).

Similarly, at aphelion θ = π and r = a(1 + e).
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Example 5. (a) Find an approximate polar equation for the elliptical orbit
of the earth around the sun (at one focus) given that the eccentricity is
about 0.017 and the length of the major axis is about 2.99× 108 km.

(b) Find the distance from the earth to the sun at perihelion and at aphelion.
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Chapter 11

Infinite Sequences and Series

11.1 Sequences

Definition 11.1.1. A sequence can be thought of as a list of numbers written
in a definite order:

a1, a2, a3, a4, . . . , an, . . . .

The number a1 is called the first term, a2 is the second term, and in general
an is the nth term.
A sequence can also be defined as a function whose domain is the set of positive
integers. However, we usually write an instead of the function notation f(n)
for the value of the function at the number n.
The sequence {a1, a2, a3, . . .} is also denoted by

{an} or {an}∞n=1.

Example 1. Some sequences can be defined by giving a formula for the nth
term. In the following examples we give three descriptions of the sequence:
one by using the preceding notation, another by using the defining formula,
and a third by writing out the terms of the sequence. Notice that n doesn’t
have to start at 1.
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(a)

{
n

n+ 1

}∞

n=1

an =
n

n+ 1

{
1

2
,
2

3
,
3

4
,
4

5
, . . . ,

n

n+ 1
, . . .

}
(b)

{
(−1)n(n+ 1)

3n

}
an =

(−1)n(n+ 1)

3n

{
−2

3
,
3

9
,− 4

27
,
5

81
, . . . ,

(−1)n(n+ 1)

3n
, . . .

}
(c)

{√
n− 3

}∞

n=3
an =

√
n− 3, n ≥ 3

{
0, 1,

√
2,
√
3, . . . ,

√
n− 3, . . .

}
(d)

{
cos

nπ

6

}∞

n=0

an = cos
nπ

6
, n ≥ 0

{
1,

√
3

2
,
1

2
, 0, . . . , cos

nπ

6
, . . .

}

Example 2. Find a formula for the general term an of the sequence{
3

5
,− 4

25
,

5

125
,− 6

625
,

7

3125
, . . .

}
assuming that the pattern of the first few terms continues.
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Example 3. Here are some sequences that don’t have a simple defining equa-
tion.

(a) The sequence {pn}, where pn is the population of the world as of January
1 in the year n.

(b) If we let an be the digit in the nth decimal place of the number e, then
{an} is a well-defined sequence whose first few terms are

{7, 1, 8, 2, 8, 1, 8, 2, 4, 5, . . .}.

(c) The Fibonacci sequence {fn} is defined recursively by the conditions

f1 = 1 f2 = 1 fn = fn−1 + fn−2 n ≥ 3.

Each term is the sum of the two preceding terms. The first few terms are

{1, 1, 2, 3, 5, 8, 13, 21, . . .}

This sequence arose when the 13th-century Italian mathematician known
as Fibonacci solved a problem concerning the breeding of rabbits.

Definition 11.1.2. A sequence {an} has the limit L and we write

lim
n→∞

an = L or an → L as n → ∞

if we can make the terms an as close to L as we like by taking n sufficiently
large. If limn→∞ exists, we say the sequence converges (or is convergent).
Otherwise, we say the sequence diverges (or is divergent).

Definition 11.1.3 (Precise Definition of the Limit of a Sequence). A sequence
{an} has the limit L and we write

lim
n→∞

an = L or an → L as n → ∞

if for every ε > 0 there is a corresponding integer N such that

if n > N then |an − L| < ε.

Theorem 11.1.1. If limx→∞ f(x) = L and f(n) = an when n is an integer,
then limn→∞ an = L.

Definition 11.1.4. limn→∞ an = ∞ means that for every positive number M
there is an integer N such that

if n > N then an > M.
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Theorem 11.1.2 (Limit Laws for Sequences). If {an} and {bn} are convergent
sequences and c is a constant, then

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn

lim
n→∞

(an − bn) = lim
n→∞

an − lim
n→∞

bn

lim
n→∞

can = c lim
n→∞

an lim
n→∞

c = c

lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn

lim
n→∞

an
bn

=
lim
n→∞

an

lim
n→∞

bn
if lim

n→∞
bn ̸= 0

lim
n→∞

apn =

[
lim
n→∞

an

]p
if p > 0 and an > 0.

Theorem 11.1.3 (Squeeze Theorem for Sequences). If an ≤ bn ≤ cn for
n ≥ n0 and lim

n→∞
an = lim

n→∞
cn = L, then lim

n→∞
bn = L.

Theorem 11.1.4. If lim
n→∞

|an| = 0, then lim
n→∞

an = 0.

Proof. Since limn→∞ |an| = 0,

lim
n→∞

−|an| = 0 = − lim
n→∞

|an| = 0.

But −|an| ≤ an ≤ |an| for all n, so by the squeeze theorem for sequences,
limn→∞ an = 0.

Example 4. Find lim
n→∞

n

n+ 1
.
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Example 5. Is the sequence an =
n√

10 + n
convergent or divergent?

Example 6. Calculate lim
n→∞

lnn

n
.

Example 7. Determine whether the sequence an = (−1)n is convergent or
divergent.
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Example 8. Evaluate lim
n→∞

(−1)n

n
if it exists.

Theorem 11.1.5. If lim
n→∞

an = L and the function f is continuous at L, then

lim
n→∞

f(an) = f(L).

Proof. Choose a particular n, say n0. By the definition of a limit of a sequence,
given ε1 > 0 there exists an integer N , such that |an0 − L| < ε1 for n0 > N .
Similarly, by the definition of continuity, the limit of f exists at L, so for ε2 > 0
there exists ε1 > 0 such that if |an0 − L| < ε1 then |f(an0)− f(L)| < ε2. This
is true for arbitrary ε2 > 0, so limn→∞ f(an) = f(L).

Example 9. Find lim
n→∞

sin(π/n).
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Example 10. Discuss the convergence of the sequence an = n!/nn, where
n! = 1 · 2 · 3 · · · · · n.

Example 11. For what values of r is the sequence {rn} convergent?

342



Calculus - 11.1 Sequences

Definition 11.1.5. A sequence {an} is called increasing if an < an+1 for all
n ≥ 1, that is, a1 < a2 < a3 < · · · . It is called decreasing if an > an+1 for all
n ≥ 1. A sequence is monotonic if it is either increasing or decreasing.

Example 12. Is the sequence

{
3

n+ 5

}
increasing or decreasing?

Example 13. Show that the sequence an =
n

n2 + 1
is decreasing.
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Definition 11.1.6. A sequence {an} is bounded above if there is a number
M such that

an ≤ M for all n ≥ 1.

It is bounded below if there is a number m such that

m ≤ an for all n ≥ 1.

If it is bounded above and below, then {an} is a bounded sequence.

Theorem 11.1.6 (Monotonic Sequence theorem). Every bounded, monotonic
sequence is convergent.

Example 14. Investigate the sequence {an} defined by the recurrence relation

a1 = 2 an+1 =
1

2
(an + 6) for n = 1, 2, 3, . . . .
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11.2 Series

Definition 11.2.1. In general, if we try to add the terms of an infinite se-
quence {an}∞n=1 we get an expression of the form

a1 + a2 + a3 + · · ·+ an + · · ·

which is called an infnite series (or just a series) and is denoted, for short, by
the symbol

∞∑
n=1

an or
∑

an.

Definition 11.2.2. Given a series
∑∞

n=1 an = a1+a2+a3+ · · · , let sn denote
its nth partial sum:

sn =
n∑

i=1

ai = a1 + a2 + · · ·+ an.

If the sequence {sn} is convergent and limn→∞ sn = s exists as a real number,
then the series

∑
an is called convergent and we write

a1 + a2 + · · ·+ an + · · · = s or
∞∑
n=1

= s.

The number s is called the sum of the series. If the sequence {sn} is divergent,
then the series is called divergent.

Example 1. Find the sum of the series
∑∞

n=1 an if the sum of the first n terms
of the series is

sn = a1 + a2 + · · ·+ an =
2n

3n+ 5
.
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Example 2. Find the sum of the geometric series

a+ ar + ar2 + ar3 + · · ·+ arn−1 + · · · =
∞∑
n=1

arn−1 a ̸= 0

where each term is obtained from the preceding one by multiplying it by the
common ratio r.
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Example 3. Find the sum of the geometric series

5− 10

3
+

20

9
− 40

27
+ · · · .

Example 4. Is the series
∞∑
n=1

22n31−n convergent or divergent?
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Example 5. A drug is administered to a patient at the same time every day.
Suppose the concentration of the drug is Cn (measured in mg/mL) after the
injection on the nth day. Before the injection the next day, only 30% of the
drug remains in the bloodstream and the daily dose raises the concentration
by 0.2 mg/mL.

(a) Find the concentration after three days.

(b) What is the concentration after the nth dose?

(c) What is the limiting concentration?

348



Calculus - 11.2 Series

Example 6. Write the number 2.317 = 2.3171717 . . . as a ratio of integers.

Example 7. Find the sum of the series
∞∑
n=0

xn, where |x| < 1.
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Example 8. Show that the series
∞∑
n=1

1

n(n+ 1)
is convergent, and find its

sum.
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Example 9. Show that the harmonic series

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ · · ·

is divergent.
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Theorem 11.2.1. If the series
∞∑
n=1

an is convergent, then lim
n→∞

an = 0.

Proof. Let sn = a1 + a2 + · · · + an. Then an = sn − sn−1. Since
∑

an
is convergent, the sequence {sn} is convergent. Let limn→∞ sn = s. Since
n− 1 → ∞ as n → ∞, we also have limn→∞ sn−1 = s. Therefore

lim
n→∞

an = lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = s− s = 0.

Corollary 11.2.1 (Test for Divergence). If lim
n→∞

an does not exist or if lim
n→∞

an ̸=

0, then the series
∞∑
n=1

an is divergent.

Proof. If the series is not divergent, then it is convergent, and so limn→∞ an = 0
by Theorem 11.2.1. The result follows by contrapositive.

Example 10. Show that the series
∞∑
n=1

n2

5n2 + 4
diverges.
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Theorem 11.2.2. If
∑

an and
∑

bn are convergent series, then so are the
series

∑
can (where c is a constant),

∑
(an + bn), and

∑
(an − bn), and

(i)
∞∑
n=1

can = c
∞∑
n=1

an

(ii)
∞∑
n=1

(an + bn) =
∞∑
n=1

an +
∞∑
n=1

bn

(iii)
∞∑
n=1

(an − bn) =
∞∑
n=1

an −
∞∑
n=1

bn

Example 11. Find the sum of the series
∞∑
n=1

(
3

n(n+ 1)
+

1

2n

)
.

Remark 1. A finite number of terms doesn’t affect the convergence or diver-
gence of a series. For instance, suppose that we were able to show that the
series

∞∑
n=4

n

n3 + 1

is convergent. Since

∞∑
n=1

n

n3 + 1
=

1

2
+

2

9
+

3

28
+

∞∑
n=4

n

n3 + 1

it follows that the entire series
∑∞

n=1 n/(n
3 + 1) is convergent. Similarly, if it

is known that the series
∑∞

n=N+1 an converges, then the full series

∞∑
n=1

an =
N∑

n=1

an +
∞∑

n=N+1

an

is also convergent.
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11.3 The Integral Test and Estimates of Sums

Theorem 11.3.1 (The Integral Test). Suppose f is a continuous, positive,
decreasing function on [1,∞) and an = f(n). The the series

∑∞
n=1 an is con-

vergent if and only if the improper integral
´∞
1

f(x) dx is convergent. In other
words:

(i) If

ˆ ∞

1

f(x) dx is convergent, then
∞∑
n=1

an is convergent.

(ii) If

ˆ ∞

1

f(x) dx is divergent, then
∞∑
n=1

an is divergent.

Proof. SECTION 11.3  The Integral Test and Estimates of Sums 725

Proof of the Integral Test
We have already seen the basic idea behind the proof of the Integral Test in Figures 1 and 
2 for the series o  1yn2 and o  1ysn . For the general series o  an, look at Figures 5 and 6.
The area of the "rst shaded rectangle in Figure 5 is the value of f  at the right endpoint of 
f1, 2g, that is, f s2d − a2. So, comparing the areas of the shaded rectangles with the area 
under y − f sxd from 1 to n, we see that

a2 1 a3 1 ∙ ∙ ∙ 1 an < yn

1
 f sxd dx

(Notice that this inequality depends on the fact that f  is decreasing.) Likewise, Figure 6 
shows that

yn

1
 f sxd dx < a1 1 a2 1 ∙ ∙ ∙ 1 an21

(i) If y`

1
 f sxd dx is convergent, then (4) gives

o
n

i−2
 ai < yn

1
f sxd dx < y`

1
 f sxd dx

since f sxd > 0. Therefore

sn − a1 1 o
n

i−2
 ai < a1 1 y`

1
 f sxd dx − M, say

Since sn < M for all n, the sequence hsn j is bounded above. Also

sn11 − sn 1 an11 > sn

since an11 − f sn 1 1d > 0. Thus hsn j is an increasing bounded sequence and so it is 
con vergent by the Monotonic Sequence Theorem (11.1.12). This means that o  an is  
convergent.

(ii) If y`
1 f sxd dx is divergent, then yn

1  f sxd dx l ` as n l ` because f sxd > 0. But  
(5) gives

yn

1
f sxd dx < o

n21

i−1
 ai − sn21

and so sn21 l `. This implies that sn l ` and so o  an diverges. Q
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2.   Suppose f  is a continuous positive decreasing function for
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three quantities in increasing order:
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(i) If
´∞
1

f(x) dx is convergent, then comparing the areas of the
rectangles with the area under y = f(x) from 1 to n in the
top figure, we see that

n∑
i=2

ai = a2 + a3 + · · ·+ an ≤
ˆ n

1

f(x) dx ≤
ˆ ∞

1

f(x) dx

since f(x) ≥ 0. Therefore

sn = a1 +
n∑

i=2

ai ≤ a1 +

ˆ ∞

1

f(x) dx = M, say.

Since sn ≤ M for all n, the sequence {sn} is bounded above. Also

sn+1 = sn + an+1 ≥ sn

since an+1 = f(n+1) ≥ 0. Thus {sn} is an increasing bounded sequence
and so it is convergent by the Monotonic Sequence Theorem.
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(ii) If
´∞
1

f(x) dx is divergent, then
´ n
1
f(x) dx → ∞ as n → ∞

because f(x) ≥ 0. But the bottom figure shows that

ˆ n

1

f(x) dx ≤ a1 + a2 + · · ·+ an−1 =
n−1∑
i=1

ai = sn−1

and so sn−1 → ∞, implying that sn → ∞.
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Example 1. Test the series
∞∑
n=1

1

n2 + 1
for convergence or divergence.

Example 2. For what values of p is the series
∞∑
n=1

1

np
convergent? (This series

is called the p-series.)
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Example 3. Determine whether each series converges or diverges.

(a)
∞∑
n=1

1

n3
=

1

13
+

1

23
+

1

33
+

1

43
+ · · ·

(b)
∞∑
n=1

1
3
√
n
= 1 +

1
3
√
2
+

1
3
√
3
+

1
3
√
4
+ · · ·

Example 4. Determine whether the series
∞∑
n=1

lnn

n
converges or diverges.
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Definition 11.3.1. The remainder

Rn = s− sn = an+1 + an+2 + an+3 + · · ·

is the error made when sn, the sum of the first n terms, is used as an approx-
imation to the total sum.

SECTION 11.3  The Integral Test and Estimates of Sums 723

Estimating the Sum of a Series
Suppose we have been able to use the Integral Test to show that a series o  an is conver-
gent and we now want to !nd an approximation to the sum s of the series. Of course, any 
partial sum sn is an approximation to s because limn l ` sn − s. But how good is such an 
approximation? To !nd out, we need to estimate the size of the remainder

Rn − s 2 sn − an11 1 an12 1 an13 1 ∙ ∙ ∙

The remainder Rn is the error made when sn, the sum of the !rst n terms, is used as an 
approximation to the total sum.

We use the same notation and ideas as in the Integral Test, assuming that f  is decreas-
ing on fn, ̀ d . Comparing the areas of the rectangles with the area under y − f sxd for 
x . n in Figure 3, we see that

Rn − a n11 1 a n12 1 ∙ ∙ ∙ < y`

n
 f sxd dx

Similarly, we see from Figure 4 that

Rn − an11 1 an12 1 ∙  ∙ ∙ > y`

n11
 f sxd d x

So we have proved the following error estimate.

2   Remainder Estimate for the Integral Test Suppose f skd − ak, where f  is 
a continuous, positive, decreasing function for x > n and o an is convergent. If 
Rn − s 2 sn, then

y`

n11
f sxd dx < Rn < y`

n
 f sxd dx

EXAMPLE 5
(a) Approximate the sum of the series o1yn3 by using the sum of the !rst 10 terms.
Estimate the error involved in this approximation.
(b) How many terms are required to ensure that the sum is accurate to within 0.0005?

SOLUTION In both parts (a) and (b) we need to know y`
n  f sxd dx. With f sxd − 1yx 3, 

which satis!es the conditions of the Integral Test, we have

y`

n

1
x 3  dx − lim

t l `
 F2

1
2x 2G

n

t

− lim
t l `

S2
1

2t 2 1
1

2n2D −
1

2n2

(a) Approximating the sum of the series by the 10th partial sum, we have

o
`

n−1

1
n3 < s10 −

1
13 1

1
23 1

1
33 1 ∙ ∙ ∙ 1

1
103 < 1.1975

According to the remainder estimate in (2), we have

R10 < y`

10

1
x 3  dx −

1
2s10d2 −

1
200

So the size of the error is at most 0.005.

0 x

y

n

. . .

y=ƒ

an+1 an+2
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Theorem 11.3.2 (Remainder Estimate for the Integral Test).
Suppose f(k) = ak, where f is a continuous, positive, decreasing
function for x ≥ n and

∑
an is convergent. If Rn = s− sn, then

ˆ ∞

n+1

f(x) dx ≤ Rn ≤
ˆ ∞

n

f(x) dx.

Proof. Comparing the rectangles with the area under y = f(x)
for x > n in the top figure, we see that

Rn = an+1 + an+2 + · · · ≤
ˆ ∞

n

f(x) dx.

Similarly, we see from the bottom figure that

Rn = an+1 + an+2 + · · · ≥
ˆ ∞

n+1

f(x) dx.

Example 5. (a) Approximate the sum of the series
∑

1/n3 by using the sum
of the first 10 terms. Estimate the error involved in this approximation.
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(b) How many terms are required to ensure that the sum is accurate to within
0.0005?

Corollary 11.3.1. Suppose f(k) = ak, where f is a continuous, positive,
decreasing function for x ≥ n and

∑
an is convergent. Then

sn +

ˆ ∞

n+1

f(x) dx ≤ s ≤ sn +

ˆ ∞

n

f(x) dx.

Example 6. Use Corollary 11.3.1 with n = 10 to estimate the sum of the

series
∞∑
n=1

1

n3
.

358



Calculus - 11.4 The Comparison Tests

11.4 The Comparison Tests

Theorem 11.4.1 (The Comparison Test). Suppose that
∑

an and
∑

bn are
series with positive terms.

(i) If
∑

bn is convergent and an ≤ bn for all n, then
∑

an is also convergent.

(ii) If
∑

bn is divergent and an ≥ bn for all n, then
∑

an is also divergent.

Proof. (i) Let

sn =
n∑

i=1

ai tn =
n∑

i=1

bi t =
∞∑
n=1

bn

Since both series have positive terms, the sequences {sn} and {tn} are
increasing (sn+1 = sn+an+1 ≥ sn). Also tn → t, so tn ≤ t for all n. Since
ai ≤ bi, we have sn ≤ tn. Thus sn ≤ t for all n. This means that {sn} is
increasing and bounded above and therefore converges by the Monotonic
Sequence Theorem. Thus

∑
an converges.

(ii) If
∑

bn is divergent, then tn → ∞ (since {tn} is increasing). But ai ≥ bi
so sn ≥ tn. Thus sn → ∞. Therefore

∑
an diverges.

Example 1. Determine whether the series
∞∑
n=1

5

2n2 + 4n+ 3
converges or di-

verges.

359



Calculus - 11.4 The Comparison Tests

Example 2. Test the series
∞∑
k=1

ln k

k
for convergence or divergence.

Theorem 11.4.2 (The Limit Comparison Test). Suppose that
∑

an and
∑

bn
are series with positive terms. If

lim
n→∞

an
bn

= c

where c is a finite number and c > 0, then either both series converge or both
diverge.

Proof. Let m and M be positive numbers such that m < c < M . Because
an/bn is close to c for large n, there is an integer N such that

m <
an
bn

< M when n > N,

and so
mbn < an < Mbn when n > N.

If
∑

bn converges, so does
∑

Mbn. Thus
∑

an converges by part (i) of the
Comparison Test. If

∑
bn diverges, so does

∑
mbn and part (ii) of the Com-

parison Test shows that
∑

an diverges.
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Example 3. Test the series
∞∑
n=1

1

2n − 1
for convergence or divergence.

Example 4. Determine whether the series
∞∑
n=1

2n2 + 3n√
5 + n5

converges or diverges.
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Example 5. Use the sum of the first 100 terms to approximate the sum of
the series

∑
1/(n3 + 1). Estimate the error involved in this approximation.
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11.5 Alternating Series

Definition 11.5.1. An alternating series is a series whose terms are alter-
nately positive and negative.

Theorem 11.5.1 (Alternating Series Test). If the alternating series

∞∑
n=1

(−1)n−1bn = b1 − b2 + b3 − b4 + b5 − b6 + · · · bn > 0

satisfies

(i) bn+1 ≤ bn for all n

(ii) lim
n→∞

bn = 0

then the series is convergent.

Proof.

 SECTION 11.5  Alternating Series 733

Before giving the proof let’s look at Figure 1, which gives a picture of the idea behind 
the proof. We !rst plot s1 − b1 on a number line. To !nd s2 we subtract b2, so s2 is to 
the left of s1. Then to !nd s3 we add b3, so s3 is to the right of s2. But, since b3 , b2, s3 
is to the left of s1. Continuing in this manner, we see that the partial sums oscillate back 
and forth. Since bn l 0, the successive steps are becoming smaller and smaller. The 
even partial sums s2, s4, s6, . . . are increasing and the odd partial sums s1, s3, s5, . . . are 
decreasing. Thus it seems plausible that both are converging to some number s, which is 
the sum of the series. Therefore we consider the even and odd partial sums separately in 
the following proof.

0 s¡s™ s£s¢ s∞sß s

b¡
-b™

+b£
-b¢

+b∞
-bß

PROOF OF THE ALTERNATING SERIES TEST We !rst consider the even partial sums:

 s2 − b1 2 b2 > 0 since b2 < b1

 s4 − s2 1 sb3 2 b4 d > s2 since b4 < b3

In general s2n − s2n22 1 sb2n21 2 b2n d > s2n22    since b2n < b2n21

Thus 0 < s2 < s4 < s6 < ∙ ∙ ∙ < s2n < ∙ ∙ ∙

But we can also write

s2n − b1 2 sb2 2 b3 d 2 sb4 2 b5 d 2 ∙ ∙ ∙ 2 sb2n22 2 b2n21d 2 b2n

Every term in parentheses is positive, so s2n < b1 for all n. Therefore the sequence hs2n j  
of even partial sums is increasing and bounded above. It is therefore convergent by the 
Monotonic Sequence Theorem. Let’s call its limit s, that is,

lim 
n l `

 s2n − s

Now we compute the limit of the odd partial sums:

 lim
nl`

 s2n11 − lim
nl`

 ss2n 1 b2n11d

 − lim
nl`

 s2n 1 lim
nl`

 b2n11

 − s 1 0

 − s

Since both the even and odd partial sums converge to s, we have lim n l ` sn − s  
[see Exercise 11.1.92(a)] and so the series is convergent. Q

FIGURE 1

[by condition (ii)]
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We first consider the even partial sums:

s2 = b1 − b2 ≥ 0 since b2 ≤ b1

s4 = s2 + (b3 − b4) ≥ s2 since b4 ≤ b3.

In general

s2n = s2n−2 + (b2n−1 − b2n) ≥ s2n−2 since b2n ≤ b2n−1.

Thus
0 ≤ s2 ≤ s4 ≤ s6 ≤ · · · ≤ s2n ≤ · · · .

But we can also write

s2n = b1 − (b2 − b3)− (b4 − b5)− · · · − (b2n−2 − b2n−1)− b2n.
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Every term in parenthesis is positive, so s2n ≤ b1 for all n. Therefore, the
sequence {s2n} of even partial sums is increasing and bounded above. It is
therefore convergent by the Monotonic Sequence Theorem. Let’s call its limit
s, that is,

lim
n→∞

s2n = s.

Now we compute the limit of the odd partial sums:

lim
n→∞

s2n+1 = lim
n→∞

(s2n + b2n+1)

= lim
n→∞

s2n + lim
n→∞

b2n+1

= s+ 0

= s.

Since both the even and odd partial sums converge to s, we have limn→∞ sn = s
and so the series is convergent.

Example 1. Determine whether the alternating harmonic series

1− 1

2
+

1

3
− 1

4
+ · · · =

∞∑
n=1

(−1)n−1

n

converges or diverges.
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Example 2. Determine whether the series
∞∑
n=1

(−1)n3n

4n− 1
converges or diverges.

Example 3. Test the series
∞∑
n=1

(−1)n+1 n2

n3 + 1
for convergence or divergence.
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Theorem 11.5.2 (Alternating Series Estimation Theorem). If s =
∑

(−1)n−1bn,
where bn > 0, is the sum of an alternating series that satisfies

(i) bn+1 ≤ bn and (ii) lim
n→∞

bn = 0

then
|Rn| = |s− sn| ≤ bn+1.

Proof. We know from the proof of the Alternating Series Test that s lies be-
tween any two consecutive partial sums sn and sn+1. (There we showed that
s is larger than all the even partial sums. A similar argument shows that s is
smaller than all the odd sums.) It follows that

|s− sn| ≤ |sn+1 − sn| = bn+1.

Example 4. Find the sum of the series
∞∑
n=0

(−1)n

n!
correct to three decimal

places.
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11.6 Absolute Convergence, Ratio and Root

Tests

Definition 11.6.1. A series
∑

an is called absolutely convergent if the series
of absolute values

∑
|an| is convergent.

Example 1. Is the series

∞∑
n=1

(−1)n−1

n2
= 1− 1

22
+

1

32
− 1

42
+ · · ·

absolutely convergent?

Example 2. Is the series

∞∑
n=1

(−1)n−1

n
= 1− 1

2
+

1

3
− 1

4
+ · · ·

absolutely convergent?
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Definition 11.6.2. A series
∑

an is called conditionally convergent if it is
convergent but not absolutely convergent.

Theorem 11.6.1. If a series
∑

an is absolutely convergent, then it is conver-
gent.

Proof. Observe that the inequality

0 ≤ an + |an| ≤ 2|an|

is true because |an| is either an or −an. If
∑

an is absolutely convergent, then∑
|an| is convergent, so

∑
2|an| is convergent. Therefore, by the Comparison

Test,
∑

(an + |an|) is convergent. Then∑
an =

∑
(an + |an|)−

∑
|an|

is the difference of two convergent series and is therefore convergent.

Example 3. Determine whether the series

∞∑
n=1

cosn

n2
=

cos 1

12
+

cos 2

22
+

cos 3

32
+ · · ·

is convergent or divergent.
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Theorem 11.6.2 (The Ratio Test).

(i) If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L < 1, then the series
∞∑
n=1

an is absolutely convergent

(and therefore convergent).

(ii) If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L > 1 or lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ∞, then the series
∞∑
n=1

an is

divergent.

(iii) If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1, the Ratio Test is inconclusive; that is, no conclusion

can be drawn about the convergence or divergence of
∑

an.

Example 4. Test the series
∞∑
n=1

(−1)n
n3

3n
for absolute convergence.

Example 5. Test the convergence of the series
∞∑
n=1

nn

n!
.
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Theorem 11.6.3 (The Root Test).

(i) If lim
n→∞

n
√
|an| = L < 1, then the series

∞∑
n=1

an is absolutely convergent

(and therefore convergent).

(ii) If lim
n→∞

n
√

|an| = L > 1 or lim
n→∞

n
√

|an| = ∞, then the series
∞∑
n=1

an is

divergent.

(iii) If lim
n→∞

n
√

|an| = 1, the Root Test is inconclusive.

Example 6. Test the convergence of the series
∞∑
n=1

(
2n+ 3

3n+ 2

)n

.
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Definition 11.6.3. By a rearrangement of an infinite series
∑

an we mean a
series obtained by simply changing the order of the terms.

Remark 1. If
∑

an is an absolutely convergent series with sum s, then any
rearrangement of

∑
an has the same sum s.

Remark 2. If
∑

an is a conditionally convergent series and r is any real number
whatsoever, then there is a rearrangement of

∑
an that has a sum equal to r.

For example, if we multiply the alternating harmonic series

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+ · · · = ln 2

by 1
2
, we get

1

2
− 1

4
+

1

6
− 1

8
+ · · · = 1

2
ln 2.

Then inserting zeros between the terms of this series gives

0 +
1

2
+ 0− 1

4
+ 0 +

1

6
+ 0− 1

8
+ · · · = 1

2
ln 2,

and we can add this to the alternating harmonic series to get

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+ · · · = 3

2
ln 2,

which is a rearrangement of the alternating harmonic series with a different
sum.
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11.7 Strategy for Testing Series

Example 1.
∞∑
n=1

n− 1

2n+ 1
.

Example 2.
∞∑
n=1

√
n3 + 1

3n3 + 4n2 + 2
.

Example 3.
∞∑
n=1

ne−n2

.
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Example 4.
∞∑
n=1

(−1)n
n3

n4 + 1
.

Example 5.
∞∑
k=1

2k

k!
.

Example 6.
∞∑
n=1

1

2 + 3n
.
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11.8 Power Series

Definition 11.8.1. A power series is a series of the form

∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + c3x
3 + · · ·

where x is a variable and the cn’s are constants called the coefficients of the
series.
More generally, a series of the form

∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + · · ·

is called a power series in (x− a) or a power series centered at a or a power
series about a.

Example 1. For what values of x is the series
∞∑
n=0

n!xn convergent?
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Example 2. For what values of x does the series
∞∑
n=1

(x− 3)n

n
converge?

Example 3. Find the domain of the Bessel function of order 0 defined by

J0(x) =
∞∑
n=0

(−1)nx2n

22n(n!)2
.
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Theorem 11.8.1. For a given power series
∞∑
n=0

cn(x−a)n, there are only three

possibilities:

(i) The series converges only when x = a.

(ii) The series converges for all x.

(iii) There is a positive number R such that the series converges if |x−a| < R
and diverges if |x− a| > R.

Definition 11.8.2. The number R in case (iii) is called the radius of conver-
gence of the power series. By convention, the radius of convergence is R = 0 in
case (i) and R = ∞ in case (ii). The interval of convergence of a power series
is the interval that consists of all values of x for which the series converges.

Example 4. Find the radius of convergence and interval of convergence of
the series

∞∑
n=0

(−3)nxn

√
n+ 1

.
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Example 5. Find the radius of convergence and interval of convergence of
the series

∞∑
n=0

n(x+ 2)n

3n+1
.
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11.9 Representations of Functions as Power

Series

Example 1. Express 1/(1 + x2) as the sum of a power series and find the
interval of convergence.

Example 2. Find a power series representation for 1/(x+ 2).
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Example 3. Find a power series representation of x3/(x+ 2).

Theorem 11.9.1. If the power series
∑

cn(x− a)n has radius of convergence
R > 0, then the function f defined by

f(x) = c0 + c1(x− a) + c2(x− a)2 + · · · =
∞∑
n=0

cn(x− a)n

is differentiable (and therefore continuous) on the interval (a−R, a+R) and

(i) f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + · · · =
∞∑
n=1

ncn(x− a)n−1

(ii)

ˆ
f(x) dx = C + c0(x− a) + c1

(x− a)2

2
+ c2

(x− a)3

3
+ · · ·

= C +
∞∑
n=0

cn
(x− a)n+1

n+ 1
.

The radii of convergence of the power series in Equations (i) and (ii) are both
R.
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Example 4. Find the derivative of the Bessel function

J0(x) =
∞∑
n=0

(−1)nx2n

22n(n!)2
.

Example 5. Express 1/(1− x)2 as a power series using differentiation. What
is the radius of convergence?
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Example 6. Find a power series representation for ln(1+x) and its radius of
convergence.

Example 7. Find a power series representation for f(x) = tan−1 x.
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Example 8. (a) Evaluate
´
[1/(1 + x7)]dx as a power series.

(b) Use part (a) to approximate
´ 0.5

0
[1/(1 + x7)]dx correct to within 10−7.
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11.10 Taylor and Maclaurin Series

Theorem 11.10.1. If f has a power series representation (expansion) at a,
that is, if

f(x) =
∞∑
n=0

cn(x− a)n |x− a| < R

then its coefficients are given by the formula

cn =
f (n)(a)

n!
.

Definition 11.10.1. The Taylor series of the function f at a (or about a or
centered at a) is

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n

= f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · · .

For the special case a = 0 the Taylor series becomes

f(x) =
∞∑
n=0

f (n)(0)

n!
xn = f(0) +

f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · · ,

which we call the Maclaurin Series.

Example 1. Find the Maclaurin series of the function f(x) = ex and its radius
of convergence.
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Theorem 11.10.2. If f(x) = Tn(x)+Rn(x), where Tn is the nth-degree Taylor
polynomial of f at a, Rn is the remainder of the Taylor series, and

lim
n→∞

Rn(x) = 0

for |x− a| < R, then f is equal to the sum of its Taylor series on the interval
|x− a| < R.

Theorem 11.10.3 (Taylor’s Inequality). If |f (n+1)(x)| ≤ M for |x − a| ≤ d,
then the remainder Rn(x) of the Taylor series satisfies the inequality

|Rn(x)| ≤
M

(n+ 1)!
|x− a|n+1 for |x− a| ≤ d.

Example 2. Prove that ex is equal to the sum of its Maclaurin series.
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Example 3. Find the Taylor series f(x) = ex at a = 2.

Example 4. Find the Maclaurin series for sin x and prove that it represents
sin x for all x.
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Example 5. Find the Maclaurin series for cos x.

Example 6. Find the Maclaurin series for the function f(x) = x cosx.
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Example 7. Represent f(x) = sin x as the sum of its Taylor series centered
at π/3.
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Example 8. Find the Maclaurin series for f(x) = (1 + x)k, where k is any
real number.
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Theorem 11.10.4 (The Binomial Series). If k is any real number and |x| < 1,
then

(1 + x)k =
∞∑
n=0

(
k

n

)
xn = 1 + kx+

k(k − 1)

2!
x2 +

k(k − 1)(k − 2)

3!
x3 + · · ·

where the coefficients(
k

n

)
=

k(k − 1)(k − 2) · · · (k − n+ 1)

n!

are called the binomial coefficients.

Example 9. Find the Maclaurin series for the function f(x) =
1√
4− x

and

its radius of convergence.
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Example 10. Find the sum of the series
1

1 · 2
− 1

2 · 22
+

1

3 · 23
− 1

4 · 24
+ · · · .

Example 11. (a) Evaluate
´
e−x2

dx as an infinite series.

(b) Evaluate
´ 1
0
e−x2

dx correct to within an error of 0.001.
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Example 12. Evaluate lim
x→0

ex − 1− x

x2
.
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Example 13. Find the first three nonzero terms in the Maclaurin series for

(a) ex sin x

(b) tan x
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11.11 Applications of Taylor Polynomials

Example 1. (a) Approximate the function f(x) = 3
√
x by a Taylor polyno-

mial of degree 2 at a = 8.

(b) How accurate is this approximation when 7 ≤ x ≤ 9?
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Example 2. (a) What is the maximum error possible in using the approxi-
mation

sin x ≈ x− x3

3!
+

x5

5!

when −0.3 ≤ x ≤ 0.3? Use this approximation to find sin 12◦ correct to
six decimal places.

(b) For what values of x is this approximation accurate to within 0.00005?
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Example 3. In Einstein’s theory of special relativity the mass of an object
moving with velocity v is

m =
m0√

1− v2/c2

where m0 is the mass of an object when at rest and c is the speed of light.
The kinetic energy of the object is the difference between its total energy and
its energy at rest:

K = mc2 −m0c
2.

(a) Show that when v is very small compared with c, this expression for K
agrees with classical Newtonian physics: K = 1

2
m0v

2.
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(b) Use Taylor’s Inequality to estimate the difference in these expressions for
K when |v| ≤ 100 m/s.
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Chapter 12

Vectors and the Geometry of
Space

12.1 Three-Dimensional Coordinate Systems

792 CHAPTER 12  Vectors and the Geometry of Space

3D Space
To locate a point in a plane, we need two numbers. We know that any point in the plane 
can be represented as an ordered pair sa, bd of real numbers, where a is the x-coordinate 
and b is the y-coordinate. For this reason, a plane is called two-dimensional. To locate a 
point in space, three numbers are required. We represent any point in space by an ordered 
triple sa, b, cd of real numbers.

In order to represent points in space, we first choose a fixed point O (the origin) and  
three directed lines through O that are perpendicular to each other, called the coordinate 
axes and labeled the x-axis, y-axis, and z-axis. Usually we think of the x- and y-axes as 
being horizontal and the z-axis as being vertical, and we draw the orientation of the axes  
as in Figure 1. The direction of the z-axis is determined by the right-hand rule as illus- 
trated in Figure 2: If you curl the fingers of your right hand around the z-axis in the direc-
tion of a 90° counterclockwise rotation from the positive x-axis to the positive y-axis, 
then your thumb points in the positive direction of the z-axis.

The three coordinate axes determine the three coordinate planes illustrated in Fig- 
ure 3(a). The xy-plane is the plane that contains the x- and y-axes; the yz-plane contains  
the y- and z-axes; the xz-plane contains the x- and z-axes. These three coordinate planes 
divide space into eight parts, called octants. The first octant, in the foreground, is deter-
mined by the positive axes.

(a) Coordinate planes

y

z

x

O

yz-plane

xy-plane

xz-plane

(b)

z

O
right wall

left w
all

y
x floor

Because many people have some difficulty visualizing diagrams of three-dimensional 
figures, you may find it helpful to do the following [see Figure 3(b)]. Look at any bottom 
corner of a room and call the corner the origin. The wall on your left is in the xz-plane, 
the wall on your right is in the yz-plane, and the floor is in the xy-plane. The x-axis runs 
along the intersection of the floor and the left wall. The y-axis runs along the intersection 
of the floor and the right wall. The z-axis runs up from the floor toward the ceiling along 
the intersection of the two walls. You are situated in the first octant, and you can now 
imagine seven other rooms situated in the other seven octants (three on the same floor 
and four on the floor below), all connected by the common corner point O.

Now if P is any point in space, let a be the (directed) distance from the yz-plane to P,  
let b be the distance from the xz-plane to P, and let c be the distance from the xy-plane to  
P. We represent the point P by the ordered triple sa, b, cd of real numbers and we call  
a, b, and c the coordinates of P; a is the x-coordinate, b is the y-coordinate, and c is the  
z-coordinate. Thus, to locate the point sa, b, cd, we can start at the origin O and move  
a units along the x-axis, then b units parallel to the y-axis, and then c units parallel to the  
z-axis as in Figure 4.

O

z

y
x

FIGURE 1  
Coordinate axes

x

z

y

FIGURE 2  
Right-hand rule

FIGURE 3

z

y
x

O

b

a
c

P(a, b, c)

FIGURE 4
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Definition 12.1.1. The coordinate axes are three directed lines
through the origin that are perpendicular to each other and la-
beled the x-axis, y-axis, and z-axis. The direction of the z-axis
is determined by the right-hand rule as illustrated in the figure.
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corner of a room and call the corner the origin. The wall on your left is in the xz-plane, 
the wall on your right is in the yz-plane, and the floor is in the xy-plane. The x-axis runs 
along the intersection of the floor and the left wall. The y-axis runs along the intersection 
of the floor and the right wall. The z-axis runs up from the floor toward the ceiling along 
the intersection of the two walls. You are situated in the first octant, and you can now 
imagine seven other rooms situated in the other seven octants (three on the same floor 
and four on the floor below), all connected by the common corner point O.

Now if P is any point in space, let a be the (directed) distance from the yz-plane to P,  
let b be the distance from the xz-plane to P, and let c be the distance from the xy-plane to  
P. We represent the point P by the ordered triple sa, b, cd of real numbers and we call  
a, b, and c the coordinates of P; a is the x-coordinate, b is the y-coordinate, and c is the  
z-coordinate. Thus, to locate the point sa, b, cd, we can start at the origin O and move  
a units along the x-axis, then b units parallel to the y-axis, and then c units parallel to the  
z-axis as in Figure 4.
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Definition 12.1.2. The three coordinate axes determine the
three coordinate planes illustrated in the figure. These three
coordinate planes divide space into eight parts, called octants.
The first octant, in the foreground of the figure, is determined
by the positive axes.

Definition 12.1.3. We represent a point P in space by the or-
dered triple (a, b, c) where a is the distance from the yz-plane to
P , b is the distance from the xz-plane to P , and c is the distance
from the xy-plane to P . We call a, b, and c the coordinates of P .
The points (a, b, 0), (0, b, c), and (a, 0, c) are called the projections of P onto
the xy-plane, yz-plane, and xz-plane, respectively.

Definition 12.1.4. The Cartesian product R×R×R = {(x, y, z) | x, y, z ∈ R}
is the set of all ordered triples of real numbers and is denoted by R3. It is
called a three-dimensional rectangular coordinate system.

397



Calculus - 12.1 Three-Dimensional Coordinate Systems

Example 1. What surfaces in R3 are represented by the following equations?

(a) z = 3

(b) y = 5

Example 2. (a) Which points (x, y, z) satisfy the equations

x2 + y2 = 1 and z = 3?

(b) What does the equation x2 + y2 = 1 represent as a surface in R3?
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Example 3. Describe and sketch the surface in R3 represented by the equation
y = x.

Theorem 12.1.1 (Distance Formula in Three Dimensions). The distance
|P1P2| between the points P1(x1, y1, z1) and P2(x2, y2, z2) is

|P1P2| =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

Example 4. Find the distance from the point P (2,−1, 7) to the pointQ(1,−3, 5).

Example 5. Find an equation of a sphere with radius r and center C(h, k, l).
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Example 6. Show that x2 + y2 + z2 + 4x − 6y + 2z + 6 = 0 is the equation
of a sphere, and find its center and radius.

Example 7. What region in R3 is represented by the following inequalities?

1 ≤ x2 + y2 + z2 ≤ 4 z ≤ 0.
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12.2 Vectors

798 CHAPTER 12  Vectors and the Geometry of Space

The term vector is used by scientists to indicate a quantity (such as displacement or 
velocity or force) that has both magnitude and direction. A vector is often represented by 
an arrow or a directed line segment. The length of the arrow represents the magnitude of 
the vector and the arrow points in the direction of the vector. We denote a vector by print-
ing a letter in boldface svd or by putting an arrow above the letter svld.

For instance, suppose a particle moves along a line segment from point A to point B. The 
corresponding displacement vector v, shown in Figure 1, has initial point A (the tail)

and terminal point B (the tip) and we indicate this by writing v − AB
l

. Notice that the 

vector u − CD
l

 has the same length and the same direction as v even though it is in a 
different position. We say that u and v are equivalent (or equal) and we write u − v. 
The zero vector, denoted by 0, has length 0. It is the only vector with no specific direction.

Combining Vectors
Suppose a particle moves from A to B, so its displacement vector is AB

l
. Then the particle 

changes direction and moves from B to C, with displacement vector BC
l

 as in Figure 2. 
The combined effect of these displacements is that the particle has moved from A to C. 
The resulting displacement vector AC

l
 is called the sum of AB

l
 and BC

l
 and we write

AC
l

− AB
l

1 BC
l

In general, if we start with vectors u and v, we first move v so that its tail coincides 
with the tip of u and define the sum of u and v as follows.

Definition of Vector Addition  If u and v are vectors positioned so the initial 
point of v is at the terminal point of u, then the sum u 1 v is the vector from the 
initial point of u to the terminal point of v.

The definition of vector addition is illustrated in Figure 3. You can see why this defi-
nition is sometimes called the Triangle Law.

vu+v

u

FIGURE 3  
The Triangle Law     

v
v+u

u

u

v

u+v

FIGURE 4  
The Parallelogram Law

In Figure 4 we start with the same vectors u and v as in Figure 3 and draw another  
copy of v with the same initial point as u. Completing the parallelogram, we see that 
u 1 v − v 1 u. This also gives another way to construct the sum: if we place u and v so 
they start at the same point, then u 1 v lies along the diagonal of the parallelogram with 
u and v as sides. (This is called the Parallelogram Law.)

EXAMPLE 1 Draw the sum of the vectors a and b shown in Figure 5.

SOLUTION First we move b and place its tail at the tip of a, being careful to draw a 
copy of b that has the same length and direction. Then we draw the vector a 1 b [see 
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Definition 12.2.1. A vector is a quantity that has both mag-
nitude and direction, denoted v or v⃗. For a particle that moves
along a line segment from point A to point B, the correspond-
ing displacement vector, shown in the figure, has initial point A

and terminal point B and we indicate this by writing v =
−→
AB.

Because the vector u =
−−→
CD has the same length and the same

direction as v, even though it is in a different position, we say that u and v
are equivalent (or equal) and we write u = v. The zero vector, denoted by 0
has length 0.

Definition 12.2.2 (Vector Addition). If u and v are vectors positioned so
the initial point of v is at the terminal point of u, then the sum u + v is the
vector from the initial point of u to the terminal point of v.
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Example 1. Draw the sum of the vectors a and b shown in the
figure.

Definition 12.2.3 (Scalar Multiplication). If c is a scalar and v is a vector,
then the scalar multiple cv is the vector whose length is |c| times the length of
v and whose direction is the same as v if c > 0 and is opposite to v if c < 0.
If c = 0 or v = 0, then cv = 0.

Definition 12.2.4. Two nonzero vectors are parallel if they are scalar multi-
ples of one another. In particular, the vector −v = (−1)v, called the negative
of v, has the same length as v but points in the opposite direction. By the
difference u− v of two vectors we mean

u− v = u+ (−v).
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EXAMPLE 2 If a and b are the vectors shown in Figure 9, draw a 2 2b.

SOLUTION We first draw the vector 22b pointing in the direction opposite to b and 
twice as long. We place it with its tail at the tip of a and then use the Triangle Law to 
draw a 1 s22bd as in Figure 10. n

Components
For some purposes it’s best to introduce a coordinate system and treat vectors algebra- 
ically. If we place the initial point of a vector a at the origin of a rectangular coordinate  
system, then the terminal point of a has coordinates of the form sa1, a2d or sa1, a2, a3d, 
depending on whether our coordinate system is two- or three-dimensional (see Figure 11). 
These coordinates are called the components of a and we write

a − ka1, a2 l       or      a − ka1, a2, a3 l

We use the notation ka1, a2l for the ordered pair that refers to a vector so as not to confuse 
it with the ordered pair sa1, a2d that refers to a point in the plane.

a=ka¡, a™l a=ka¡, a™, a£l

(a¡, a™)

O

y

x

a

z

x y

a
O

(a¡, a™, a£)

For instance, the vectors shown in Figure 12 are all equivalent to the vector OP
l

− k3, 2l 
whose terminal point is Ps3, 2d. What they have in common is that the terminal point 
is reached from the initial point by a displacement of three units to the right and two 
upward. We can think of all these geometric vectors as representations of the algebraic 
vector a − k3,  2l. The particular representation OP

l
 from the origin to the point Ps3, 2d 

is called the position vector of the point P.
In three dimensions, the vector a − OP

l
− ka1, a2, a3l is the position vector of the  

point Psa1, a2, a3d. (See Figure 13.) Let’s consider any other representation AB
l

 of a, 
where the initial point is Asx1, y1, z1d and the terminal point is Bsx2, y2, z2 d. Then we must 
have x1 1 a1 − x2, y1 1 a2 − y2, and z1 1 a3 − z2 and so a1 − x2 2 x1, a2 − y2 2 y1, 
and a3 − z2 2 z1. Thus we have the following result.

1  Given the points Asx1, y1, z1d and Bsx2, y2, z2 d, the vector a with represen-

tation AB
l

 is

a − kx2 2 x1, y2 2 y1, z2 2 z1l

EXAMPLE 3 Find the vector represented by the directed line segment with initial  
point As2, 23, 4) and terminal point Bs22, 1, 1d.

SOLUTION By (1), the vector corresponding to AB
l

 is

 a −  k22 2 2, 1 2 s23d, 1 2 4l −  k24, 4, 23l n
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b

a_2b
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FIGURE 9
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FIGURE 12  
Representations of a − k3,  2l
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P(a¡, a™, a£)

A(x, y, z) B(x+a¡, y+a™, z+a£)

FIGURE 13  
Representations of a − ka1, a2, a3l
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Example 2. If a and b are the vectors shown in the figure, draw
a− 2b.

Definition 12.2.5. If we place the initial point of a vector a at the origin of a
rectangular coordinate system, then the terminal point of a has coordinates of
the form (a1, a2) or (a1, a2, a3). These coordinates are called the components
of a and we write

a = ⟨a1, a2⟩ or a = ⟨a1, a2, a3⟩.

The representation of a vector from the origin to a point is called the position
vector of the point.

Theorem 12.2.1. Given the points A(x1, y1, z1) and B(x2, y2, z2), the vector

a with representation
−→
AB is

a = ⟨x2 − x1, y2 − y1, z2 − z1⟩.

Proof. The vector a =
−→
OP = ⟨a1, a2, a3⟩ is the position vector of the point

P (a1, a2, a3). If
−→
AB is another representation of a, where the initial point is

A(x1, y1, z1) and the terminal point is B(x2, y2, z2), then we must have x1+a1 =
x2, y1 + a2 = y2, and z1 + a3 = z2. Therefore, a1 = x2 − x1, a2 = y2 − y1, and
a3 = z2 − z1.

Example 3. Find the vector represented by the directed line segment with
initial point A(2,−3, 4) and terminal point B(−2, 1, 1).
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Definition 12.2.6. The magnitude or length of the vector v is the length of
any of its representations and is denoted by the symbol |v| or ∥v∥.

Theorem 12.2.2. The length of the two-dimensional vector a = ⟨a1, a2⟩ is

|a| =
√

a21 + a22.

The length of the three-dimensional vector a = ⟨a1, a2, a3⟩ is

|a| =
√
a21 + a22 + a23.

Theorem 12.2.3. If a = ⟨a1, a2⟩ and b = ⟨b1, b2⟩, then

a+ b = ⟨a1 + b1, a2 + b2⟩ a− b = ⟨a1 − b1, a2 − b2⟩

and
ca = ⟨ca1, ca2⟩

for a scalar c. Similarly, for three-dimensional vectors,

⟨a1, a2, a3⟩+ ⟨b1, b2, b3⟩ = ⟨a1 + b1, a2 + b2, a3 + b3⟩
⟨a1, a2, a3⟩ − ⟨b1, b2, b3⟩ = ⟨a1 − b1, a2 − b2, a3 − b3⟩

c⟨a1, a2, a3⟩ = ⟨ca1, ca2, ca3⟩.

Example 4. If a = ⟨4, 0, 3⟩ and b = ⟨−2, 1, 5⟩, find |a| and the vectors a+b,
a− b, 3b, and 2a+ 5b.
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Definition 12.2.7. We denote by V2 the set of all two-dimensional vectors
and by V3 the set of all three-dimensional vectors. More generally, we denote
by Vn the set of all n-dimensional vectors. An n-dimensional vector is an
ordered n-tuple:

a = ⟨a1, a2, . . . , an⟩

where a1, a2, . . . , an are real numbers that are called the components of a.
Addition and scalar multiplication are defined in terms of components just as
for the cases n = 2 and n = 3.

Theorem 12.2.4 (Properties of Vectors). If a, b, and c are vectors in Vn and
c and d are scalars, then

a+ b = b+ a1. a+ (b+ c) = (a+ b) + c2.

a+ 0 = a3. a+ (−a) = 04.

c(a+ b) = ca+ cb5. (c+ d)a = ca+ da6.

(cd)a = c(da)7. 1a = a8.

Definition 12.2.8. The vectors

i = ⟨1, 0, 0⟩ j = ⟨0, 1, 0⟩ k = ⟨0, 0, 1⟩

are called the standard basis vectors. They have length 1 and point in the
directions of the positive x-, y-, and z-axes. Similarly, in two dimensions we
define i = ⟨1, 0⟩ and j = ⟨0, 1⟩.

Theorem 12.2.5. Any vector in V3 can be expressed in terms of i, j, and k.
Similarly, any vector in V2 can be expressed in terms of i and j.

Proof. If a = ⟨a1, a2, a3⟩, then we can write

a = ⟨a1, a2, a3⟩ = ⟨a1, 0, 0⟩+ ⟨0, a2, 0⟩+ ⟨0, 0, a3⟩
= a1⟨1, 0, 0⟩+ a2⟨0, 1, 0⟩+ a3⟨0, 0, 1⟩
= a1i+ a2j+ a3k.

Similarly, in two dimensions, we can write

a = ⟨a1, a2⟩ = a1i+ a2j.
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Example 5. If a = i + 2j − 3k and b = 4i + 7k, express the vector 2a + 3b
in terms of i, j, and k.

Definition 12.2.9. A unit vector is a vector whose length is 1. For instance,
i, j, and k are all unit vectors.

Theorem 12.2.6. In general, if a ̸= 0, then the unit vector that has the same
direction as a is

u =
1

|a|
a =

a

|a|
.

Proof. Let c = 1/|a|. Then u = ca and c is a positive scalar, so u has the
same direction as a. Also

|u| = |ca| = |c||a| = 1

|a|
|a| = 1.

Example 6. Find the unit vector in the direction of the vector 2i− j− 2k.
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Definition 12.2.10. A force is represented by a vector because it has both a
magnitude (measured in pounds or newtons) and a direction. If several forces
are acting on an object, the resultant force experienced by the object is the
vector sum of these forces.

Example 7. A 100-lb weight hangs from two wires as shown in the figure.
Find the tensions (forces) T1 and T2 in both wires and the magnitudes of the
tensions.

804 CHAPTER 12  Vectors and the Geometry of Space

EXAMPLE 7 A 100-lb weight hangs from two wires as shown in Figure 19. Find the 
tensions (forces) T1 and T2 in both wires and the magnitudes of the tensions.

50°

w

T¡
50° 32°

32°

T™

100

T¡

50° 32°

T™

SOLUTION We first express T1 and T2 in terms of their horizontal and vertical compo-
nents. From Figure 20 we see that

5    T1 − 2| T1 | cos 50° i 1 | T1 | sin 50° j

6    T2 − | T2 | cos 32° i 1 | T2 | sin 32° j

The resultant T1 1 T2 of the tensions counterbalances the weight w − 2100 j and so 
we must have

T1 1 T2 − 2w − 100 j

Thus

(2| T1 | cos 50° 1 | T2 | cos 32°) i 1 (| T1 | sin 50° 1 | T2 | sin 32°) j − 100 j

Equating components, we get

 2| T1 | cos 50° 1 | T2 | cos 32° − 0

 | T1 | sin 50° 1 | T2 | sin 32° − 100

Solving the first of these equations for | T2 | and substituting into the second, we get

 | T1 | sin 50° 1 | T1| cos 50°
cos 32°

 sin 32° − 100

 | T1 | Ssin 50° 1 cos 50° 
sin 32°
cos 32°

 D − 100

So the magnitudes of the tensions are

 | T1 | −
100

sin 50° 1 tan 32° cos 50°
< 85.64 lb

and  | T2 | − | T1 | cos 50°
cos 32°

< 64.91 lb

Substituting these values in (5) and (6), we obtain the tension vectors

  T1 < 255.05 i 1 65.60 j

  T2 < 55.05 i 1 34.40 j  n

FIGURE 19
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12.3 The Dot Product

Definition 12.3.1. If a = ⟨a1, a2, a3⟩ and b = ⟨b1, b2, b3⟩, then the dot product
of a and b is the number a · b given by

a · b = a1b1 + a2b2 + a3b3

and similarly
⟨a1, a2⟩ · ⟨b1, b2⟩ = a1b1 + a2b2

for two-dimensional vectors.

Example 1. Compute the following dot products:

(a) ⟨2, 4⟩ · ⟨3,−1⟩

(b) ⟨−1, 7, 4⟩ · ⟨6, 2,−1
2
⟩

(c) (i+ 2j− 3k) · (2j− k)

Theorem 12.3.1 (Properties of the Dot Product). If a, b, and c are vectors
in V3 and c is a scalar, then

a · a = |a|21. a · b = b · a2.

a · (b+ c) = a · b+ a · c3. (ca) · (b) = c(a · b) = a · (cb)4.

0 · a = 05.

Theorem 12.3.2. If θ is the angle between the vectors a and b, then

a · b = |a||b| cos θ.
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These properties are easily proved using Definition 1. For instance, here are the proofs 
of Properties 1 and 3:

1. a ? a − a2
1 1 a2

2 1 a2
3 − | a |2

3.  a ? sb 1 cd − ka1, a2, a3l ? kb1 1 c1, b2 1 c2, b3 1 c3l

  − a1sb1 1 c1d 1 a2sb2 1 c2d 1 a3sb3 1 c3d

  − a1b1 1 a1c1 1 a2b2 1 a2c2 1 a3b3 1 a3c3

  − sa1b1 1 a2b2 1 a3b3d 1 sa1c1 1 a2c2 1 a3c3 d

  − a ? b 1 a ? c

The proofs of the remaining properties are left as exercises. ■

The dot product a ? b can be given a geometric interpretation in terms of the angle ! 
between a and b, which is defined to be the angle between the representations of a and  
b that start at the origin, where 0 < ! < ". In other words, ! is the angle between the 
line segments OA

l
 and OB

l
 in Figure 1. Note that if a and b are parallel vectors, then 

! − 0 or ! − ".
The formula in the following theorem is used by physicists as the definition of the dot 

product.

3  Theorem If ! is the angle between the vectors a and b, then

a ? b − | a | | b | cos !

PROOF If we apply the Law of Cosines to triangle OAB in Figure 1, we get

4  | AB |2 − | OA |2 1 | OB |2 2 2 | OA | | OB | cos !

(Observe that the Law of Cosines still applies in the limiting cases when ! − 0 or ", or 
a − 0 or b − 0.) But | OA | − | a |, | OB | − | b |, and | AB | − | a 2 b |, so Equation 4 
becomes

5  | a 2 b |2 − | a |2 1 | b |2 2 2 | a | | b | cos !

Using Properties 1, 2, and 3 of the dot product, we can rewrite the left side of this 
equation as follows:

 | a 2 b |2 − sa 2 bd ? sa 2 bd

 − a ? a 2 a ? b 2 b ? a 1 b ? b

 − | a |2 2 2a ? b 1 | b |2

Therefore Equation 5 gives

 | a |2 2 2a ? b 1 | b |2 − | a |2 1 | b |2 2 2 | a | | b | cos !

Thus  22a ? b − 22 | a | | b | cos !

or  a ? b − | a | | b | cos !  ■
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a
¨
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a-b
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O
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FIGURE 1
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Proof. If we apply the Law of Cosines to triangle OAB in the
figure, we get

|AB|2 = |OA|2 + |OB|2 − 2|OA||OB| cos θ
|a− b|2 = |a|2 + |b|2 − 2|a||b| cos θ

(a− b) · (a− b) = |a|2 + |b|2 − 2|a||b| cos θ
a · a− a · b− b · a+ b · b = |a|2 + |b|2 − 2|a||b| cos θ

|a|2 − 2a · b+ |b|2 = |a|2 + |b|2 − 2|a||b| cos θ
−2a · b = −2|a||b| cos θ

a · b = |a||b| cos θ
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Example 2. If the vectors a and b have lengths 4 and 6, and the angle
between them is π/3, find a · b.

Corollary 12.3.1. If θ is the angle between the nonzero vectors a and b, then

cos θ =
a · b
|a||b|

.

Example 3. Find the angle between the vectors a = ⟨2, 2,−1⟩ and b =
⟨5,−3, 2⟩.

Definition 12.3.2. Two nonzero vectors a and b are called perpendicular
or orthogonal if the angle between them is θ = π/2. The zero vector 0 is
considered to be perpendicular to all vectors.

Theorem 12.3.3. Two vectors a and b are orthogonal if and only if a ·b = 0.

Proof. If θ = π/2, then

a · b = |a||b| cos(π/2) = 0.

Conversely, if a · b = 0, then cos θ = 0, so θ = π/2.

408



Calculus - 12.3 The Dot Product

Example 4. Show that 2i+ 2j− k is perpendicular to 5i− 4j+ 2k.

810 CHAPTER 12  Vectors and the Geometry of Space

Because cos ! . 0 if 0 < ! , "y2 and cos ! , 0 if "y2 , ! < ", we see that 
a ? b is positive for ! , "y2 and negative for ! . "y2. We can think of a ? b as mea-
suring the extent to which a and b point in the same direction. The dot product a ? b is 
positive if a and b point in the same general direction, 0 if they are perpendicular, and 
negative if they point in generally opposite directions (see Figure 2). In the extreme case 
where a and b point in exactly the same direction, we have ! − 0, so cos ! − 1 and

a ? b − | a | | b |
If a and b point in exactly opposite directions, then we have ! − " and so cos ! − 21 
and a ? b − 2| a | | b |.

Direction Angles and Direction Cosines
The direction angles of a nonzero vector a are the angles #, $, and % (in the interval 
f0, "gd that a makes with the positive x-, y-, and z-axes, respectively. (See Figure 3.)

The cosines of these direction angles, cos #, cos $, and cos %, are called the direction 
cosines of the vector a. Using Corollary 6 with b replaced by i, we obtain

8  cos # −
a ? i

| a | | i | −
a1

| a |
(This can also be seen directly from Figure 3.)

Similarly, we also have

9  cos $ −
a2

| a |       cos % −
a3

| a |
By squaring the expressions in Equations 8 and 9 and adding, we see that

10  cos2# 1 cos2$ 1 cos2% − 1

We can also use Equations 8 and 9 to write

 a − k a1, a2, a3 l − k | a | cos #, |a | cos $, |a | cos % l

 − | a |kcos #, cos $, cos %l

Therefore

11  
1

| a |  a − k cos #, cos $, cos % l

which says that the direction cosines of a are the components of the unit vector in the 
direction of a.

EXAMPLE 5 Find the direction angles of the vector a − k 1, 2, 3 l.

SOLUTION Since | a | − s12 1 22 1 32 − s14 , Equations 8 and 9 give

cos # −
1

s14       cos $ −
2

s14       cos % −
3

s14 

and so

# − cos21S 1

s14 D < 74°   $ − cos21S 2

s14 D < 58°    % − cos21S 3

s14 D < 37°

� n

a
b

a · b>0¨

a b
a · b=0

a
b

a · b<0
¨

¨ acute

¨ obtuse

¨=π/2

FIGURE 2

TEC Visual 12.3A shows an anima-
tion of Figure 2.
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Definition 12.3.3. The direction angles of a nonzero vector a
are the angles α, β, and γ (in the interval [0, π]) that a makes
with the positive x-, y-, and z-axes, respectively. (See the figure.)
The cosines of these direction angles, cosα, cos β, cos γ, are called
the direction cosines of the vector a.

Theorem 12.3.4. The direction cosines of a vector a = ⟨a1, a2, a3⟩ are the
components of the unit vector in the direction of a, i.e.,

1

|a|
a = ⟨cosα, cos β, cos γ⟩.

Proof. By Corollary 12.3.1,

cosα =
a · i
|a||i|

=
a1
|a|

.

Similarly,

cos β =
a2
|a|

cos γ =
a3
|a|

.

Therefore,

a = ⟨a1, a2, a3⟩
a = ⟨|a| cosα, |a| cos β, |a| cos γ⟩
a = |a|⟨cosα, cos β, cos γ⟩

1

|a|
a = ⟨cosα, cos β, cos γ⟩.

Example 5. Find the direction angles of the vector a = ⟨1, 2, 3⟩.
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Projections
Figure 4 shows representations PQ

l
 and PR

l
 of two vectors a and b with the same initial 

point P. If S is the foot of the perpendicular from R to the line containing PQ
l

, then the 
vector with representation PS

l
 is called the vector projection of b onto a and is denoted 

by proja b. (You can think of it as a shadow of b).
The scalar projection of b onto a (also called the component of b along a) is defined 

to be the signed magnitude of the vector projection, which is the number | b | cos !, 
where ! is the angle between a and b. (See Figure 5.) This is denoted by compa b. 
Observe that it is negative if "y2 , ! < ". The equation

a ? b − | a || b | cos ! − | a |(| b | cos !)
shows that the dot product of a and b can be interpreted as the length of a times the sca-
lar projection of b onto a. Since

| b | cos ! −
a ? b

| a | −
a

| a | ? b

the component of b along a can be computed by taking the dot product of b with the unit 
vector in the direction of a. We summarize these ideas as follows.

Scalar projection of b onto a: compa b −
a ? b

| a |

Vector projection of b onto a: proja b − S a ? b

| a | D 
a

| a | −
a ? b

| a |2  a

Notice that the vector projection is the scalar projection times the unit vector in the direc-
tion of a.

EXAMPLE 6 Find the scalar projection and vector projection of b − k 1, 1, 2 l  
onto a − k 22, 3, 1 l.

SOLUTION Since | a | − ss22d2 1 32 1 12 − s14 , the scalar projection of b onto a 
is

compa b −
a ? b

| a | −
s22ds1d 1 3s1d 1 1s2d

s14 
−

3

s14 

The vector projection is this scalar projection times the unit vector in the direction of a:

 proja b −
3

s14  
a

| a | −
3

14
 a − K2

3
7

, 
9
14

, 
3
14L n

One use of projections occurs in physics in calculating work. In Section 6.4 we 
defined the work done by a constant force F in moving an object through a distance d as 
W − Fd, but this applies only when the force is directed along the line of motion of the 
object. Suppose, however, that the constant force is a vector F − PR

l
 pointing in some 

other direction, as in Figure 6. If the force moves the object from P to Q, then the dis-
placement vector is D − PQ

l
. The work done by this force is defined to be the product 

of the component of the force along D and the distance moved:

W − s| F | cos !d | D |

TEC Visual 12.3B shows how Fig- 
ure 4 changes when we vary a and b.

Q
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R

S
P

¨

D

FIGURE 6

Q
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b
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R
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Q

a

proja b

b

FIGURE 4  
Vector projections

!b ! cos ¨ =

b

a

R

S Q¨
P compa b

FIGURE 5  
Scalar projection
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l

, then the 
vector with representation PS
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by proja b. (You can think of it as a shadow of b).
The scalar projection of b onto a (also called the component of b along a) is defined 

to be the signed magnitude of the vector projection, which is the number | b | cos !, 
where ! is the angle between a and b. (See Figure 5.) This is denoted by compa b. 
Observe that it is negative if "y2 , ! < ". The equation
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shows that the dot product of a and b can be interpreted as the length of a times the sca-
lar projection of b onto a. Since

| b | cos ! −
a ? b

| a | −
a

| a | ? b

the component of b along a can be computed by taking the dot product of b with the unit 
vector in the direction of a. We summarize these ideas as follows.

Scalar projection of b onto a: compa b −
a ? b

| a |

Vector projection of b onto a: proja b − S a ? b

| a | D 
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| a | −
a ? b
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Notice that the vector projection is the scalar projection times the unit vector in the direc-
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EXAMPLE 6 Find the scalar projection and vector projection of b − k 1, 1, 2 l  
onto a − k 22, 3, 1 l.

SOLUTION Since | a | − ss22d2 1 32 1 12 − s14 , the scalar projection of b onto a 
is

compa b −
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s14 
−

3

s14 

The vector projection is this scalar projection times the unit vector in the direction of a:
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One use of projections occurs in physics in calculating work. In Section 6.4 we 
defined the work done by a constant force F in moving an object through a distance d as 
W − Fd, but this applies only when the force is directed along the line of motion of the 
object. Suppose, however, that the constant force is a vector F − PR

l
 pointing in some 

other direction, as in Figure 6. If the force moves the object from P to Q, then the dis-
placement vector is D − PQ

l
. The work done by this force is defined to be the product 

of the component of the force along D and the distance moved:

W − s| F | cos !d | D |

TEC Visual 12.3B shows how Fig- 
ure 4 changes when we vary a and b.
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Definition 12.3.4. If S is the foot of the perpendicular from R

to the line containing
−→
PQ, then the vector with representation−→

PS is called the vector projection of b onto a and is denoted by
proja b. (See the figure.)
The scalar projection of b onto a (also called the component of
b along a) is defined to be the signed magnitude of the vector
projection, which is the number |b| cos θ where θ is the angle
between a and b. (See the figure.) This is denoted by compa b.

Theorem 12.3.5. The scalar projection of b onto a is

compa b =
a · b
|a|

.

The vector projection of b onto a is

proja b =

(
a · b
|a|

)
a

|a|
=

a · b
|a|2

a.

Proof. By Theorem 12.3.2,

a · b = |a||b| cos θ
a · b
|a|

= |b| cos θ,

which gives us the scalar projection of b onto a. Multiplying by the unit vector
gives us the vector projection in the direction of a.

Example 6. Find the scalar projection and vector projection of b = ⟨1, 1, 2⟩
onto a = ⟨−2, 3, 1⟩.
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Projections
Figure 4 shows representations PQ
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shows that the dot product of a and b can be interpreted as the length of a times the sca-
lar projection of b onto a. Since

| b | cos ! −
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| a | −
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the component of b along a can be computed by taking the dot product of b with the unit 
vector in the direction of a. We summarize these ideas as follows.

Scalar projection of b onto a: compa b −
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| a |

Vector projection of b onto a: proja b − S a ? b

| a | D 
a

| a | −
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| a |2  a

Notice that the vector projection is the scalar projection times the unit vector in the direc-
tion of a.

EXAMPLE 6 Find the scalar projection and vector projection of b − k 1, 1, 2 l  
onto a − k 22, 3, 1 l.

SOLUTION Since | a | − ss22d2 1 32 1 12 − s14 , the scalar projection of b onto a 
is

compa b −
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| a | −
s22ds1d 1 3s1d 1 1s2d

s14 
−
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3
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One use of projections occurs in physics in calculating work. In Section 6.4 we 
defined the work done by a constant force F in moving an object through a distance d as 
W − Fd, but this applies only when the force is directed along the line of motion of the 
object. Suppose, however, that the constant force is a vector F − PR

l
 pointing in some 

other direction, as in Figure 6. If the force moves the object from P to Q, then the dis-
placement vector is D − PQ

l
. The work done by this force is defined to be the product 

of the component of the force along D and the distance moved:

W − s| F | cos !d | D |

TEC Visual 12.3B shows how Fig- 
ure 4 changes when we vary a and b.
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Definition 12.3.5. Suppose that the constant force in moving

an object from P to Q is F =
−→
PR, as in the figure. Then the

displacement vector is D =
−→
PQ and the work done by this force

is defined to be the product of the component of the force along
D and the distance moved:

W =
(
|F| cos θ

)
|D|.

Theorem 12.3.6. The work done by a constant force F is the dot product
F ·D, where D is the displacement vector.

Proof. By Theorem 12.3.2,

W = |F||D| cos θ = F ·D.

Example 7. A wagon is pulled a distance of 100 m along a horizontal path
by a constant force of 70 N. The handle of the wagon is held at an angle of
35◦ above the horizontal path. Find the work done by the force.

Example 8. A force is given by a vector F = 3i+4j+5k and moves a particle
from the point P (2, 1, 0) to the point Q(4, 6, 2). Find the work done.
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12.4 The Cross Product

Definition 12.4.1. If a = ⟨a1, a2, a3⟩ and b = ⟨b1, b2, b3⟩, then the cross
product of a and b is the vector

a× b = ⟨a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1⟩.

Definition 12.4.2. A determinant of order 2 is defined by∣∣∣∣∣a b
c d

∣∣∣∣∣ = ad− bc.

A determinant of order 3 is defined by∣∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣∣ = a1

∣∣∣∣∣b2 b3
c2 c3

∣∣∣∣∣− a2

∣∣∣∣∣b1 b3
c1 c3

∣∣∣∣∣+ a3

∣∣∣∣∣b1 b2
c1 c2

∣∣∣∣∣ .
Theorem 12.4.1. The cross product of the vectors a = a1i + b2j + b3k and
b = b1i+ b2j+ b3k is

a× b =

∣∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣∣ =
∣∣∣∣∣a2 a3
b2 b3

∣∣∣∣∣ i−
∣∣∣∣∣a1 a3
b1 b3

∣∣∣∣∣ j+
∣∣∣∣∣a1 a2
b1 b2

∣∣∣∣∣k.
Example 1. If a = ⟨1, 3, 4⟩ and b = ⟨2, 7,−5⟩, find a× b.
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Example 2. Show that a× a = 0 for any vector a in V3.

Theorem 12.4.2. The vector a× b is orthogonal to both a and b.

Proof.

(a× b) · a =

∣∣∣∣∣a2 a3
b2 b3

∣∣∣∣∣ a1 −
∣∣∣∣∣a1 a3
b1 b3

∣∣∣∣∣ a2 +
∣∣∣∣∣a1 a2
b1 b2

∣∣∣∣∣ a3
= a1(a2b3 − a3b2)− a2(a1b3 − a3b1) + a3(a1b2 − a2b1)

= a1a2b3 − a1b2a3 − a1a2b3 + b1a2a3 + a1b2a3 − b1a2a3

= 0.

Similarly, (a× b) · b = 0.

Theorem 12.4.3. If θ is the angle between a and b (so 0 ≤ θ ≤ π), then

|a× b| = |a||b| sin θ.

Proof.

|a× b|2 = (a2b3 − a3b2)
2 + (a3b1 − a1b3)

2 + (a1b2 − a2b1)
2

= a22b
2
3 − 2a2a3b2b3 + a23b

2
2 + a23b

2
1 − 2a1a3b1b3 + a21b

2
3

+ a21b
2
2 − 2a1a2b1b2 + a22b

2
1

= (a21 + a22 + a23)(b
2
1 + b22 + b23)− (a1b1 + a2b2 + a3b3)

2

= |a|2|b|2 − (a · b)2

= |a|2|b|2 − |a|2|b|2 cos2 θ
= |a|2|b|2(1− cos2 θ)

= |a|2|b|2 sin2 θ.
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√
sin2 θ = sin θ because sin θ ≥ 0 when 0 ≤ θ ≤ π, so

|a× b| = |a||b| sin θ.

Corollary 12.4.1. Two nonzero vectors a and b are parallel if and only if

a× b = 0.

Proof. Two nonzero vectors a and b are parallel if and only if θ = 0 or π. In
either case sin θ = 0, so |a× b| = 0 and therefore a× b = 0.

Corollary 12.4.2. The length of the cross product a× b is equal to the area
of the parallelogram determined by a and b.

 SECTION 12.4  The Cross Product 817

a rotation (through an angle less than 180°) from a to b, then your thumb points in the 
direction of a 3 b.

Now that we know the direction of the vector a 3 b, the remaining thing we need to 
complete its geometric description is its length | a 3 b |. This is given by the following  
theorem.

9  Theorem If ! is the angle between a and b (so 0 < ! < "), then

| a 3 b | − | a | | b | sin !

PROOF From the definitions of the cross product and length of a vector, we have

  | a 3 b |2 − sa2b3 2 a3b2d2 1 sa3b1 2 a1b3d2 1 sa1b2 2 a2b1d2

  − a2
2 b2

3 2 2a2a3b2b3 1 a2
3 b2

2 1 a2
3 b2

1 2 2a1a3b1b3 1 a2
1 b2

3

 1 a2
1 b2

2 2 2a1 a2 b1b2 1 a2
2 b2

1

  − sa2
1 1 a2

2 1 a2
3 dsb2

1 1 b2
2 1 b2

3 d 2 sa1b1 1 a2b2 1 a3b3d2

  − | a |2 | b |2 2 sa ? bd2

 − | a |2 | b |2 2 | a |2 | b |2 cos2!    (by Theorem 12.3.3)

  − | a |2 | b |2 s1 2 cos2!d

  − | a |2 | b |2 sin2!

Taking square roots and observing that ssin2! − sin ! because sin ! > 0 when 
0 < ! < ", we have

 | a 3 b | − | a | | b | sin ! n

Since a vector is completely determined by its magnitude and direction, we can now 
say that a 3 b is the vector that is perpendicular to both a and b, whose orientation is 
determined by the right-hand rule, and whose length is | a | | b | sin !. In fact, that is 
exactly how physicists define a 3 b.

10  Corollary Two nonzero vectors a and b are parallel if and only if

a 3 b − 0

PROOF Two nonzero vectors a and b are parallel if and only if ! − 0 or ". In either 
case sin ! − 0, so | a 3 b | − 0 and therefore a 3 b − 0. n

The geometric interpretation of Theorem 9 can be seen by looking at Figure 2. If a 
and b are represented by directed line segments with the same initial point, then they 
determine a parallelogram with base | a |, altitude | b | sin !, and area

A − | a | ( | b | sin !) − | a 3 b |
Thus we have the following way of interpreting the magnitude of a cross product.

TEC Visual 12.4 shows how a 3 b 
changes as b changes.

Geometric characterization of a 3 b

a

b

¨

!b ! sin ¨

FIGURE 2
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Proof. The geometric interpretation of Theorem 12.4.3. can be
seen by looking at the figure. If a and b are represented by
directed line segments with the same initial point, then they
determine a parallelogram with base |a|, altitude |b| sin θ, and
area

A = |a|(|b| sin θ) = |a× b|.
Example 3. Find a vector perpendicular to the plane that passes through the
points P (1, 4, 6), Q(−2, 5,−1), and R(1,−1, 1).

414



Calculus - 12.4 The Cross Product

Example 4. Find the area of the triangle with vertices P (1, 4, 6), Q(−2, 5,−1),
and R(1,−1, 1).

Theorem 12.4.4. If a, b, and c are vectors and c is a scalar, then

1. a× b = −b× a

2. (ca)× b = c(a× b) = a× (cb)

3. a× (b+ c) = a× b+ a× c

4. (a+ b)× c = a× c+ b× c

5. a · (b× c) = (a× b) · c

6. a× (b× c) = (a · c)b− (a · b)c
Theorem 12.4.5. The volume of the parallelepiped determined by the vectors
a, b, and c is the magnitude of their scalar triple product:

V = |a · (b× c)| =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ .

If the volume of the parallelepiped determined by a, b, and c is 0, then the
vectors must lie in the same plane; that is, they are coplanar.
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So the associative law for multiplication does not usually hold; that is, in general,

sa 3 bd 3 c ± a 3 sb 3 cd

However, some of the usual laws of algebra do hold for cross products. The following 
the orem summarizes the properties of vector products.

11  Properties of the Cross Product If a, b, and c are vectors and c is a  
scalar, then

1. a 3 b − 2b 3 a
2. scad 3 b − csa 3 bd − a 3 scbd
3. a 3 sb 1 cd − a 3 b 1 a 3 c
4. sa 1 bd 3 c − a 3 c 1 b 3 c
5. a ? sb 3 cd − sa 3 bd ? c
6. a 3 sb 3 cd − sa ? cdb 2 sa ? bdc

These properties can be proved by writing the vectors in terms of their components  
and using the definition of a cross product. We give the proof of Property 5 and leave the 
remaining proofs as exercises.

PROOF OF PROPERTY 5 If a − k a1, a2, a3 l, b − kb1, b2, b3 l, and c − k c1, c2, c3 l, then

12   a ? sb 3 cd − a1sb2c3 2 b3c2d 1 a2sb3c1 2 b1c3d 1 a3sb1c2 2 b2c1d

 − a1b2c3 2 a1b3c2 1 a2b3c1 2 a2b1c3 1 a3b1c2 2 a3b2c1

 − sa2b3 2 a3b2 dc1 1 sa3b1 2 a1b3 dc2 1 sa1b2 2 a2b1dc3

  − sa 3 bd ? c  ■

Triple Products
The product a ? sb 3 cd that occurs in Property 5 is called the scalar triple product of 
the vectors a, b, and c. Notice from Equation 12 that we can write the scalar triple prod-
uct as a determinant:

13
 

a ? sb 3 cd − Z a1

 b1

 c1

a2

b2

c2

a3

b3

c3

Z
The geometric significance of the scalar triple product can be seen by considering the 

par allelepiped determined by the vectors a, b, and c. (See Figure 3.) The area of the base  
parallelogram is A − | b 3 c |. If ! is the angle between a and b 3 c, then the height h  
of the parallelepiped is h − | a | | cos ! |. (We must use | cos ! | instead of cos ! in case 
! . "y2.) Therefore the volume of the parallelepiped is

V − Ah − | b 3 c | | a | | cos ! | − | a ? sb 3 cd |
Thus we have proved the following formula.

a

b

¨

bxc

c
h

FIGURE 3
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Proof. The geometric interpretation of the scalar triple product
can be seen by looking at the figure. The area of the base paral-
lelogram is A = |b×c|. If θ is the angle between a and b×c, then
the height h of the parallelepiped is h = |a|| cos θ|. Therefore the
volume of the parallelepiped is

V = Ah = |b× c||a|| cos θ| = |a · (b× c)|.
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Example 5. Use the scalar triple product to show that the vectors a =
⟨1, 4,−7⟩, b = ⟨2,−1, 4⟩, and c = ⟨0,−9, 18⟩ are coplanar.

Definition 12.4.3. If F is a force acting on a rigid body at a point given by
a position vector r then the torque τ (relative to the origin) is defined to be
the cross product of the position and force vectors

τ = r× F

and measures the tendency of the body to rotate about the origin.

Theorem 12.4.6. The magnitude of the torque vector is

|τ | = |r× F| = |r||F| sin θ

where θ is the angle between the position and force vectors.

820 CHAPTER 12  Vectors and the Geometry of Space

14   The volume of the parallelepiped determined by the vectors a, b, and c is the 
magnitude of their scalar triple product:

V − | a ? sb 3 cd |

If we use the formula in (14) and discover that the volume of the parallelepiped  
determined by a, b, and c is 0, then the vectors must lie in the same plane; that is, they 
are coplanar.

EXAMPLE 5 Use the scalar triple product to show that the vectors a − k1, 4, 27 l, 
b − k2, 21, 4l, and c − k0, 29, 18l are coplanar.

SOLUTION We use Equation 13 to compute their scalar triple product:

 
a ? sb 3 cd − Z 1

2
0

4
21
29

27
4

18
Z

 − 1 Z21
29

4
18

 Z 2 4 Z 20 4
18

 Z 2 7 Z 20 21
29

 Z
 − 1s18d 2 4s36d 2 7s218d − 0

Therefore, by (14), the volume of the parallelepiped determined by a, b, and c is 0.  
This means that a, b, and c are coplanar. ■

The product a 3 sb 3 cd that occurs in Property 6 is called the vector triple product 
of a, b, and c. Property 6 will be used to derive Kepler’s First Law of planetary motion 
in Chapter 13. Its proof is left as Exercise 50.

Torque
The idea of a cross product occurs often in physics. In particular, we consider a force F 
acting on a rigid body at a point given by a position vector r. (For instance, if we tighten 
a bolt by applying a force to a wrench as in Figure 4, we produce a turning effect.) The 
torque t (relative to the origin) is defined to be the cross product of the position and 
force vectors

t − r 3 F

and measures the tendency of the body to rotate about the origin. The direction of the 
torque vector indicates the axis of rotation. According to Theorem 9, the magnitude of 
the torque vector is

| t | − | r 3 F | − | r | | F | sin !

where ! is the angle between the position and force vectors. Observe that the only com-
ponent of F that can cause a rotation is the one perpendicular to r, that is, | F | sin !. The 
magnitude of the torque is equal to the area of the parallelogram determined by r and F.

EXAMPLE 6 A bolt is tightened by applying a 40-N force to a 0.25-m wrench as 
shown in Figure 5. Find the magnitude of the torque about the center of the bolt.

r

F

!

¨

FIGURE 4

75°

40 N0.25 m

FIGURE 5
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Example 6. A bolt is tightened by applying a 40-N force to a
0.25-m wrench as shown in the figure. Find the magnitude of
the torque about the center of the bolt.
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12.5 Equations of Lines and Planes

 SECTION 12.5  Equations of Lines and Planes 823

DISCOVERY PROJECT

A tetrahedron is a solid with four vertices, P, Q, R, and S, and four triangular faces, as shown in 
the !gure.

1.  Let v1, v2, v3, and v4 be vectors with lengths equal to the areas of the faces opposite the  
vertices P, Q, R, and S, respectively, and directions perpendicular to the respective faces and 
pointing outward. Show that

v1 1 v2 1 v3 1 v4 − 0

2.  The volume V of a tetrahedron is one-third the distance from a vertex to the opposite face, 
times the area of that face.

 (a)  Find a formula for the volume of a tetrahedron in terms of the coordinates of its vertices 
P, Q, R, and S.

 (b)   Find the volume of the tetrahedron whose vertices are Ps1, 1, 1d, Qs1, 2, 3d, Rs1, 1, 2d, 
and Ss3, 21, 2d.

3.  Suppose the tetrahedron in the !gure has a trirectangular vertex S. (This means that the three 
angles at S are all right angles.) Let A, B, and C be the areas of the three faces that meet at S,  
and let D be the area of the opposite face PQR. Using the result of Problem 1, or otherwise, 
show that

D 2 − A2 1 B 2 1 C 2

 (This is a three-dimensional version of the Pythagorean Theorem.)

P

RQ
S

THE GEOMETRY OF A TETRAHEDRON

 53. Suppose that a ± 0.
 (a) If a ? b − a ? c, does it follow that b − c?
 (b) If a 3 b − a 3 c, does it follow that b − c?
 (c)  If a ? b − a ? c and a 3 b − a 3 c, does it follow  

that b − c?

 54. If v1, v2, and v3 are noncoplanar vectors, let

k1 −
v2 3 v3

v1 ? sv2 3 v3 d
    k2 −

v3 3 v1

v1 ? sv2 3 v3 d

k3 −
v1 3 v2

v1 ? sv2 3 v3 d

   (These vectors occur in the study of crystallography. Vectors  
of the form n1 v1 1 n2 v2 1 n3 v3 , where each ni is an integer, 
form a lattice for a crystal. Vectors written similarly in terms of 
k1, k2, and k3 form the reciprocal lattice.)

 (a) Show that k i is perpendicular to vj if i ± j.
 (b) Show that k i ? vi − 1 for i − 1, 2, 3.

 (c) Show that k1 ? sk2 3 k3 d −
1

v1 ? sv2 3 v3 d
.

Lines
A line in the xy-plane is determined when a point on the line and the direction of the line 
(its slope or angle of inclination) are given. The equation of the line can then be written 
using the point-slope form.

Likewise, a line L in three-dimensional space is determined when we know a point 
P0sx0, y0, z0d on L and the direction of L. In three dimensions the direction of a line is 
con veniently described by a vector, so we let v be a vector parallel to L. Let Psx, y, zd be 
an arbi trary point on L and let r0 and r be the position vectors of P0 and P (that is, they
have representations OPA̧ and OP

l
). If a is the vector with representation P¸PA, as in Fig-

ure 1, then the Triangle Law for vector addition gives r − r0 1 a. But, since a and v are 
parallel vectors, there is a scalar t such that a − tv. Thus 

x

O

z

y

a

v
rr¸L

P¸(x¸, y¸, z¸)

P(x, y, z)

FIGURE 1
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Theorem 12.5.1. The vector equation of a line through the point
(x0, y0, z0) is

r = r0 + tv

where r0 is the position vector of (x0, y0, z0), v is a vector parallel
to the line, and t is a scalar.
Parametric equations for a line through the point (x0, y0, z0) and
parallel to the direction vector ⟨a, b, c⟩ are

x = x0 + at y = y0 + bt z = z0 + ct.

Example 1. (a) Find a vector equation and parametric equations for the
line that passes through the point (5, 1, 3) and is parallel to the vector
i+ 4j− 2k.

(b) Find two other points on the line.

Definition 12.5.1. In general, if a vector v = ⟨a, b, c⟩ is used to describe the
direction of a line L, then the numbers a, b, and c are called the direction
numbers of L. The equations

x− x0

a
=

y − y0
b

=
z − z0

c

obtained by eliminating the parameter t are called symmetric equations of L.
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Calculus - 12.5 Equations of Lines and Planes

Example 2. (a) Find parametric equations and symmetric equations of the
line that passes through the points A(2, 4,−3) and B(3,−1, 1).

(b) At what point does this line intersect the xy-plane?

Theorem 12.5.2. The line segment from r0 to r1 is given by the vector equa-
tion

r(t) = (1− t)r0 + tr1 0 ≤ t ≤ 1.
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Example 3. Show that the lines L1 and L2 with parametric equations

L1 : x = 1 + t y = −2 + 3t z = 4− t

L2 : x = 2s y = 3 + s z = −3 + 4s

are skew lines; that is, they do not intersect and are not parallel (and therefore
do not lie in the same plane).

 SECTION 12.5  Equations of Lines and Planes 827

“direction” of the plane, but a vector perpendicular to the plane does completely specify 
its direction. Thus a plane in space is determined by a point P0sx0, y0, z0d in the plane and 
a vector n that is orthogonal to the plane. This orthogonal vector n is called a normal  
vector. Let Psx, y, zd be an arbitrary point in the plane, and let r0 and r be the position
vectors of P0 and P. Then the vector r 2 r0 is represented by P¸PA. (See Figure 6.) The 
normal vector n is orthogonal to every vector in the given plane. In particular, n is 
orthogonal to r 2 r0 and so we have

5   n ? sr 2 r0 d − 0

which can be rewritten as

6   n ? r − n ? r0

Either Equation 5 or Equation 6 is called a vector equation of the plane.
To obtain a scalar equation for the plane, we write n − ka, b,  c l, r − k x, y, z l, and 

r0 − kx0, y0, z0 l . Then the vector equation (5) becomes

 ka, b, c l ? kx 2 x0, y 2 y0, z 2 z0 l − 0

or
 asx 2 x0 d 1 bsy 2 y0 d 1 csz 2 z0 d − 0

7   A scalar equation of the plane through point P0sx0, y0, z0 d with normal 
vector n − ka, b, c l is

asx 2 x0 d 1 bsy 2 y0 d 1 csz 2 z0 d − 0

EXAMPLE 4 Find an equation of the plane through the point s2, 4, 21d with normal 
vector n − k2, 3, 4 l . Find the intercepts and sketch the plane.

SOLUTION Putting a − 2, b − 3, c − 4, x0 − 2, y0 − 4, and z0 − 21 in Equation 7, 
we see that an equation of the plane is

 2sx 2 2d 1 3sy 2 4d 1 4sz 1 1d − 0

or  2x 1 3y 1 4z − 12

To !nd the x-intercept we set y − z − 0 in this equation and obtain x − 6. Similarly, the 
y-intercept is 4 and the z-intercept is 3. This enables us to sketch the portion of the plane 
that lies in the !rst octant (see Figure 7). Q

By collecting terms in Equation 7 as we did in Example 4, we can rewrite the equation 
of a plane as

8   ax 1 by 1 cz 1 d − 0

where d − 2sax0 1 by0 1 cz0 d. Equation 8 is called a linear equation in x, y, and z. 
Conversely, it can be shown that if a, b, and c are not all 0, then the linear equation (8) 
represents a plane with normal vector ka, b, c l . (See Exercise 83.)

0

n

r

r¸

r-r¸

P¸(x¸, y¸, z¸)

P(x, y, z)

y

z

x

FIGURE 6

x

z

y

(0, 0, 3)

(0, 4, 0)
(6, 0, 0)

FIGURE 7
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Definition 12.5.2. Either

n · (r− r0) = 0

or
n · r = n · r0

is called a vector equation of a plane through point (x0, y0, z0)
where r0 is the position vector of (x0, y0, z0), r is the vector equa-
tion of the line through (x0, y0, z0), and n is the vector through (x0, y0, z0)
orthogonal to the plane, called a normal vector.
A scalar equation of the plane through point P0(x0, y0, z0) with normal vector
n = ⟨a, b, c⟩ is

a(x− x0) + b(y − y0) + c(z − z0) = 0.
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Example 4. Find an equation of the plane through the point (2, 4,−1) with
normal vector n = ⟨2, 3, 4⟩. Find the intercepts and sketch the plane.

Theorem 12.5.3. The equation of a plane can be rewritten as the linear equa-
tion

ax+ by + cz + d = 0

where d = −(ax0 + by0 + cz0).

Example 5. Find an equation of the plane that passes through the points
P (1, 3, 2), Q(3,−1, 6), and R(5, 2, 0).
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Example 6. Find the point at which the line with parametric equations x =
2 + 3t, y = −4t, z = 5 + t intersects the plane 4x+ 5y − 2z = 18.

828 CHAPTER 12  Vectors and the Geometry of Space

EXAMPLE 5 Find an equation of the plane that passes through the points Ps1, 3, 2d, 
Qs3, 21, 6d, and Rs5, 2, 0d.

SOLUTION The vectors a and b corresponding to PQ
l

 and PR
l

 are

a − k 2, 24, 4 l      b − k4, 21, 22 l

Since both a and b lie in the plane, their cross product a 3 b is orthogonal to the plane 
and can be taken as the normal vector. Thus

n − a 3 b − Z i
2
4

j
24
21

k
4

22
Z − 12 i 1 20 j 1 14 k

With the point Ps1, 3, 2d and the normal vector n, an equation of the plane is

 12sx 2 1d 1 20sy 2 3d 1 14sz 2 2d − 0

or  6x 1 10y 1 7z − 50 ■

EXAMPLE 6 Find the point at which the line with parametric equations x − 2 1 3t, 
y − 24t, z − 5 1 t intersects the plane 4x 1 5y 2 2z − 18.

SOLUTION We substitute the expressions for x, y, and z from the parametric equations 
into the equation of the plane:

4s2 1 3td 1 5s24td 2 2s5 1 td − 18

This simplifies to 210t − 20, so t − 22. Therefore the point of intersection occurs 
when the parameter value is t − 22. Then x − 2 1 3s22d − 24, y − 24s22d − 8, 
z − 5 2 2 − 3 and so the point of intersection is s24, 8, 3d. ■

Two planes are parallel if their normal vectors are parallel. For instance, the planes 
x 1 2y 2 3z − 4 and 2x 1 4y 2 6z − 3 are parallel because their normal vectors are 
n1 − k1, 2, 23 l  and n2 − k2, 4, 26 l and n2 − 2n1. If two planes are not parallel, then 
they intersect in a straight line and the angle between the two planes is defined as the 
acute angle between their normal vectors (see angle ! in Figure 9).

EXAMPLE 7 
(a) Find the angle between the planes x 1 y 1 z − 1 and x 2 2y 1 3z − 1.
(b) Find symmetric equations for the line of intersection L of these two planes.

SOLUTION

(a) The normal vectors of these planes are

n1 − k1, 1, 1 l       n2 − k1, 22, 3 l

and so, if ! is the angle between the planes, Corollary 12.3.6 gives

 cos ! −
n1 ? n2

| n1 || n2 | −
1s1d 1 1s22d 1 1s3d

s1 1 1 1 1  s1 1 4 1 9 
−

2

s42 

 ! − cos21S 2

s42 D < 72°

(b) We first need to find a point on L. For instance, we can find the point where the line 
intersects the xy-plane by setting z − 0 in the equations of both planes. This gives the 

Figure 8 shows the portion of the 
plane in Example 5 that is enclosed by 
triangle PQR.

x

z

y

R(5, 2, 0)

P(1, 3, 2)

Q(3, _1, 6)

FIGURE 8

¨ n¡n™

¨

FIGURE 9

Figure 10 shows the planes in Example 
7 and their line of intersection L.

x-2y+3z=1x+y+z=1

L

z

y x

6
4
2
0

_2
_4

0 2
_2 02

_2

FIGURE 10
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Definition 12.5.3. Two planes are parallel if their normal vec-
tors are parallel. If two planes are not parallel, then they in-
tersect in a straight line and the angle between the two planes
is defined as the acute angle between their normal vectors (see
angle θ in the figure).

Example 7. (a) Find the angle between the planes x + y + z = 1 and x −
2y + 3z = 1
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(b) Find symmetric equations for the line of intersection L of these two planes.

Example 8. Find a formula for the distance D from a point P1(x1, y1, z1) to
the plane ax+ by + cz + d = 0.
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Example 9. Find the distance between the parallel planes 10x+2y− 2z = 5
and 5x+ y − z = 1.

Example 10. In Example 3 we showed that the lines

L1 : x = 1 + t y = −2 + 3t z = 4− t

L2 : x = 2s y = 3 + s z = −3 + 4s

are skew. Find the distance between them.
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12.6 Cylinders and Quadric Surfaces

Definition 12.6.1. The curves of intersection of a surface with planes parallel
to the coordinate planes are called traces (or cross-sections) of the surface.

Definition 12.6.2. A cylinder is a surface that consists of all lines (called
rulings) that are parallel to a given line and pass through a given plane curve.

Example 1. Sketch the graph of the surface z = x2.

Example 2. Identify and sketch the surfaces.

(a) x2 + y2 = 1

(b) y2 + z2 = 1
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Definition 12.6.3. A quadric surface is the graph of a second-degree equation
in three variables x, y, and z. The most general such equation is

Ax2 +By2 + Cz2 +Dxy + Eyz + Fxz +Gx+Hy + Iz + J = 0

where A,B,C, . . . , J are constants, but by translation and rotation it can be
brought into one of the two standard forms

Ax2 +By2 + Cz2 + J = 0 or Ax2 +By2 + Iz = 0.

Example 3. Use traces to sketch the quadric surface with equation

x2 +
y2

9
+

z2

4
= 1.

Example 4. Use traces to sketch the surface z = 4x2 + y2.
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Example 5. Sketch the surface z = y2 − x2.

Example 6. Sketch the surface
x2

4
+ y2 − z2

4
= 1.
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Surface Equation Surface Equation

Ellipsoid

 SECTION 12.6  Cylinders and Quadric Surfaces 837

EXAMPLE 6 Sketch the surface 
x 2

4
1 y 2 2

z 2

4
− 1.

SOLUTION The trace in any horizontal plane z − k is the ellipse

x 2

4
1 y 2 − 1 1

k 2

4
z − k

but the traces in the xz- and yz-planes are the hyperbolas

x 2

4
2

z2

4
− 1 y − 0 and y2 2

z2

4
− 1 x − 0

This surface is called a hyperboloid of one sheet and is sketched in Figure 9. n

The idea of using traces to draw a surface is employed in three-dimensional graphing 
software. In most such software, traces in the vertical planes x − k and y − k are drawn 
for equally spaced values of k, and parts of the graph are eliminated using hidden line 
removal. Table 1 shows computer-drawn graphs of the six basic types of quadric surfaces 
in standard form. All surfaces are symmetric with respect to the z-axis. If a quadric sur-
face is symmetric about a different axis, its equation changes accordingly.

(0, 1, 0)(2, 0, 0)
yx

z

FIGURE 9

Surface Equation Surface Equation

Ellipsoid

z

y

x

z

yx

z

yx

x 2

a 2 1
y 2

b 2 1
z 2

c 2 − 1

All traces are ellipses.

If a − b − c, the ellipsoid is 
a sphere.

Cone
z

yx

z

yx

z

yx

z 2

c 2 −
x 2

a 2 1
y 2

b 2

Horizontal traces are ellipses.

Vertical traces in the planes 
x − k and y − k are hyper-
bolas if k ± 0 but are pairs of 
lines if k − 0.

Elliptic Paraboloid

z

y

x

z

yx

z

yx

z
c

−
x 2

a 2 1
y 2

b 2

Horizontal traces are ellipses.

Vertical traces are parabolas.

The variable raised to the first 
power indicates the axis of the 
paraboloid.

Hyperboloid of One Sheet

z

yx

z

yx

z

yx

x 2

a 2 1
y 2

b 2 2
z 2

c 2 − 1

Horizontal traces are ellipses.

Vertical traces are hyperbolas.

The axis of symmetry corre-
sponds to the variable whose 
coefficient is negative.

Hyperbolic Paraboloid

z

y

x

z

yx

z

yx

z
c

−
x 2

a 2 2
y 2

b 2

Horizontal traces are hyper-
bolas.

Vertical traces are parabolas.

The case where c , 0 is 
illustrated.

Hyperboloid of Two Sheets

z

yx

z

yx

z

yx

2
x 2

a 2 2
y 2

b 2 1
z 2

c 2 − 1

Horizontal traces in z − k are 
ellipses if k . c or k , 2c.

Vertical traces are hyperbolas.

The two minus signs indicate 
two sheets.

Table 1 Graphs of Quadric Surfaces
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EXAMPLE 6 Sketch the surface 
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This surface is called a hyperboloid of one sheet and is sketched in Figure 9. n

The idea of using traces to draw a surface is employed in three-dimensional graphing 
software. In most such software, traces in the vertical planes x − k and y − k are drawn 
for equally spaced values of k, and parts of the graph are eliminated using hidden line 
removal. Table 1 shows computer-drawn graphs of the six basic types of quadric surfaces 
in standard form. All surfaces are symmetric with respect to the z-axis. If a quadric sur-
face is symmetric about a different axis, its equation changes accordingly.
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The idea of using traces to draw a surface is employed in three-dimensional graphing 
software. In most such software, traces in the vertical planes x − k and y − k are drawn 
for equally spaced values of k, and parts of the graph are eliminated using hidden line 
removal. Table 1 shows computer-drawn graphs of the six basic types of quadric surfaces 
in standard form. All surfaces are symmetric with respect to the z-axis. If a quadric sur-
face is symmetric about a different axis, its equation changes accordingly.
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software. In most such software, traces in the vertical planes x − k and y − k are drawn 
for equally spaced values of k, and parts of the graph are eliminated using hidden line 
removal. Table 1 shows computer-drawn graphs of the six basic types of quadric surfaces 
in standard form. All surfaces are symmetric with respect to the z-axis. If a quadric sur-
face is symmetric about a different axis, its equation changes accordingly.
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for equally spaced values of k, and parts of the graph are eliminated using hidden line 
removal. Table 1 shows computer-drawn graphs of the six basic types of quadric surfaces 
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face is symmetric about a different axis, its equation changes accordingly.
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− y2
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+
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= 1

Horizontal traces in
z = k are ellipses if
k > c or k < −c.

Vertical traces are
hyperbolas.

The two minus signs
indicate two sheets.
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Calculus - 12.6 Cylinders and Quadric Surfaces

Example 7. Identify and sketch the surface 4x2 − y2 + 2z2 + 4 = 0.

Example 8. Classify the quadric surface x2 + 2z2 − 6x− y + 10 = 0.
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Chapter 13

Vector Functions

13.1 Vector Functions and Space Curves

Definition 13.1.1. A vector-valued function, or vector function is a function
whose domain is a set of real numbers and whose range is a set of vectors.
If f(t), g(t), and h(t) are the components of a vector function r(t) whose
values are three-dimensional vectors, then we call f , g, and h the component
functions of r and we can write

r(t) = ⟨f(t), g(t), h(t)⟩ = f(t)i+ g(t)j+ h(t)k.

Example 1. What are the component functions and domain of

r(t) =
〈
t3, ln(3− t),

√
t
〉
?

Definition 13.1.2. The limit of a vector function r is defined by taking the
limits of its component functions, i.e., if r(t) = ⟨f(t), g(t), h(t)⟩, then

lim
t→a

r(t) =

〈
lim
t→a

f(t), lim
t→a

g(t), lim
t→a

h(t)

〉
provided the limits of the component functions exist.
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Calculus - 13.1 Vector Functions and Space Curves

Example 2. Find lim
t→0

r(t), where r(t) = (1 + t3)i+ te−tj+
sin t

t
k.

Definition 13.1.3. A vector function r is continuous at a if

lim
t→a

r(t) = r(a),

so r is continuous at a if and only if its component functions f , g, and h are
continuous at a.

 SECTION 13.1  Vector Functions and Space Curves 849

A vector function r is continuous at a if

lim
t l a

 rstd − rsad

In view of Definition 1, we see that r is continuous at a if and only if its component func-
tions f , t, and h  are continuous at a.

Space Curves
There is a close connection between continuous vector functions and space curves. Sup-
pose that f , t, and h  are continuous real-valued functions on an interval I. Then the set 
C of all points sx, y, zd in space, where

2   x − f std    y − tstd    z − h std 

and t varies throughout the interval I, is called a space curve. The equations in (2) are 
called parametric equations of C and t is called a parameter. We can think of C as 
being traced out by a moving particle whose position at time t is s f std, tstd, h stdd. If we 
now consider the vector function  rstd − k f std, tstd, h stdl, then rstd is the position vector 
of the point Ps f std, tstd, h stdd on C. Thus any continuous vector function r defines a space 
curve C that is traced out by the tip of the moving vector rstd, as shown in Figure 1.

EXAMPLE 3 Describe the curve defined by the vector function

rstd − k1 1 t, 2 1 5t, 21 1 6t l

SOLUTION The corresponding parametric equations are

x − 1 1 t    y − 2 1 5t    z − 21 1 6t

which we recognize from Equations 12.5.2 as parametric equations of a line passing 
through the point s1, 2, 21d and parallel to the vector k1, 5, 6l. Alternatively, we could 
observe that the function can be written as r − r0 1 tv, where r0 − k1, 2, 21l and 
v − k1, 5, 6l, and this is the vector equation of a line as given by Equation 12.5.1. ■

Plane curves can also be represented in vector notation. For instance, the curve given 
by the parametric equations x − t 2 2 2t and y − t 1 1 (see Example 10.1.1) could also 
be described by the vector equation

rstd − k t 2 2 2t, t 1 1l − st 2 2 2td i 1 st 1 1d j

where i − k1, 0l and j − k0, 1l.

EXAMPLE 4 Sketch the curve whose vector equation is

rstd − cos t i 1 sin t j 1 t k

SOLUTION The parametric equations for this curve are

x − cos t    y − sin t    z − t

Since x 2 1 y 2 − cos2t 1 sin2t − 1 for all values of t, the curve must lie on the circular 
cylinder x 2 1 y 2 − 1. The point sx, y, zd lies directly above the point sx, y, 0d, which 
moves counterclockwise around the circle x 2 1 y 2 − 1 in the xy-plane. (The projection 
of the curve onto the xy-plane has vector equation rstd − kcos t, sin t, 0l. See Example 
10.1.2.) Since z − t, the curve spirals upward around the cylinder as t increases. The 
curve, shown in Figure 2, is called a helix. ■

C

0

z

x y

P{f(t), g(t), h(t)}

r(t)=kf(t), g(t), h(t)l

FIGURE 1  
C is traced out by the tip of a moving 
position vector rstd.

TEC Visual 13.1A shows several 
curves being traced out by position 
vectors, including those in Figures 1 
and 2.

 ”0, 1,    ’π
2

(1, 0, 0)

z

x
y

FIGURE 2
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Definition 13.1.4. Suppose that f , g, and h are continuous
real-valued functions on an interval I. Then the set C of all
points (x, y, z) in space, where

x = f(t) y = g(t) z = h(t)

(called the parametric equations of C for a parameter t) and
t varies throughout the interval I, is called a space curve.
If we consider the vector function r(t) = ⟨f(t), g(t), h(t)⟩,
then r(t) is the position vector of the point P (f(t), g(t), h(t)) on C. Thus any
continuous vector function r defines a space curve C that is traced out by the
tip of the moving vector r(t), as shown in the figure.

Example 3. Describe the curve defined by the vector function

r(t) = ⟨1 + t, 2 + 5t,−1 + 6t⟩.
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Calculus - 13.1 Vector Functions and Space Curves

Example 4. Sketch the curve whose vector equation is

r(t) = cos ti+ sin tj+ tk.

Example 5. Find a vector equation and parametric equations for the line
segment that joins the point P (1, 3,−2) to the point Q(2,−1, 3).
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Calculus - 13.1 Vector Functions and Space Curves

Example 6. Find a vector function that represents the curve of intersection
of the cylinder x2 + y2 = 1 and the plane y + z = 2.

Example 7. Use a computer to draw the curve with vector equation r(t) =
⟨t, t2, t3⟩. This curve is called a twisted cubic.
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Calculus - 13.2 Vector Function Derivatives & Integrals

13.2 Vector Function Derivatives & Integrals

Definition 13.2.1. The derivative r′ of a vector function r is defined as

dr

dt
= r′(t) = lim

h→0

r(t+ h)− r(t)

h

if this limit exists.

Definition 13.2.2. The vector r′(t) is called the tangent vector to the curve
defined by r at the point P , provided that r′(t) exists and r′(t) ̸= 0. The tan-
gent line to C at P is defined to be the line through P parallel to the tangent
vector r′(t). The unit tangent vector is

T(t) =
r′(t)

|r′(t)|
.

Theorem 13.2.1. If r(t) = ⟨f(t), g(t), h(t)⟩ = f(t)i+ g(t)j+ h(t)k, where f ,
g, and h are differentiable functions, then

r′(t) = ⟨f ′(t), g′(t), h′(t)⟩ = f ′(t)i+ g′(t)j+ h′(t)k.

Proof.

r′(t) = lim
∆t→0

1

∆t
[r(t+∆t)− r(t)]

= lim
∆t→0

1

∆t
[⟨f(t+∆t), g(t+∆t), h(t+∆t)⟩ − ⟨f(t), g(t), h(t)⟩]

= lim
∆t→0

〈
f(t+∆t)− f(t)

∆t
,
g(t+∆t)− g(t)

∆t
,
h(t+∆t)− h(t)

∆t

〉
=

〈
lim
∆t→0

f(t+∆t)− f(t)

∆t
, lim
∆t→0

g(t+∆t)− g(t)

∆t
, lim
∆t→0

h(t+∆t)− h(t)

∆t

〉
= ⟨f ′(t), g′(t), h′(t)⟩.

Example 1. (a) Find the derivative of r(t) = (1 + t3)i+ te−tj+ sin 2tk.

(b) Find the unit tangent vector at the point where t = 0.
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Example 2. For the curve r(t) =
√
ti + (2 − t)j, find r′(t) and sketch the

position vector r(1) and the tangent vector r′(1).

Example 3. Find parametric equations for the tangent line to the helix with
parametric equations

x = 2 cos t y = sin t z = t

at the point (0, 1, π/2).

Definition 13.2.3. The second derivative of a vector function r is the deriva-
tive of r′, that is, r′′ = (r′)′.
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Theorem 13.2.2. Suppose u and v are differentiable vector functions, c is a
scalar, and f is a real-valued function. Then

1.
d

dt
[u(t) + v(t)] = u′(t) + v′(t)

2.
d

dt
[cu(t)] = cu′(t)

3.
d

dt
[f(t)u(t)] = f ′(t)u(t) + f(t)u′(t)

4.
d

dt
[u(t) · v(t)] = u′(t) · v(t) + u(t) · v′(t)

5.
d

dt
[u(t)× v(t)] = u′(t)× v(t) + u(t)× v′(t)

6.
d

dt
[u(f(t))] = f ′(t)u′(f(t))

Example 4. Show that if |r(t)| = c (a constant), then r′(t) is orthogonal to
r(t) for all t.
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Definition 13.2.4. The definite integral of a continuous vector function r(t)
is

ˆ b

a

r(t)dt = lim
n→∞

n∑
i=1

r(t∗i )∆t

= lim
n→∞


 n∑

i=1

f(t∗i )∆t

 i+

 n∑
i=1

g(t∗i )∆t

 j+

 n∑
i=1

h(t∗i )∆t

k


and so

ˆ b

a

r(t)dt =

(ˆ b

a

f(t)dt

)
i+

(ˆ b

a

g(t)dt

)
j+

(ˆ b

a

h(t)dt

)
k.

Theorem 13.2.3. We can extend the Fundamental Theorem of Calculus to
continuous vector functions as follows:

ˆ b

a

r(t)dt = R(t)
]b
a
= R(b)−R(a).

where R is an antiderivative of r, that is, R′(t) = r(t). We use the notation´
r(t)dt for indefinite integrals (antiderivatives).

Example 5. If r(t) = 2 cos ti + sin tj + 2tk, then what are
´
r(t)dt and´ π/2

0
r(t)dt?
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13.3 Arc Length and Curvature

Definition 13.3.1. If a space curve is given by r(t) = ⟨f(t), g(t), h(t)⟩, a ≤
t ≤ b, or equivalently, the parametric equations x = f(t), y = g(t), z = h(t),
where f ′, g′, and h′ are continuous, then the length of the curve traversed
exactly once as t increases from a to b is

L =

ˆ b

a

√
[f ′(t)]2 + [g′(t)]2 + [h′(t)]2dt

=

ˆ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt,

or equivalently,

L =

ˆ b

a

|r′(t)|dt.

Example 1. Find the length of the arc of the circular helix with vector equa-
tion r(t) = cos ti+ sin tj+ tk from the point (1, 0, 0) to the point (1, 0, 2π).

Remark 1. A single curve C can be represented by more than one vector
function. For instance, the twisted cubic

r1(t) = ⟨t, t2, t3⟩ 1 ≤ t ≤ 2

could also be represented by the function

r2(u) = ⟨eu, e2u, e3u⟩ 0 ≤ u ≤ ln 2

We say that these equations are parametrizations of the curve C. It can be
shown that our arc length equation is independent of the parametrization that
is used.
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Definition 13.3.2. Suppose that C is a curve given by a vector function

r(t) = f(t)i+ g(t)j+ h(t)k a ≤ t ≤ b

where r′ is continuous and C is traversed exactly once as t increases from a to
b. We define its arc length function s by

s(t) =

ˆ t

a

|r′(u)|du =

ˆ t

a

√(
dx

du

)2

+

(
dy

du

)2

+

(
dz

du

)2

du

where differentiating both sides of the arc length function using the Funda-
mental Theorem of Calculus gives

ds

dt
= |r′(t)|.

Remark 2. If a curve r(t) is already given in terms of a parameter t and s(t)
is the arc length function, then we may be able to solve for t as a function of
s: t = t(s). Then the curve can be reparametrized with respect to arc length
by substituting for t: r = r(t(s)).

Example 2. Reparametrize the helix r(t) = cos ti + sin tj + tk with respect
to arc length measured from (1, 0, 0) in the direction of increasing t.
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Definition 13.3.3. The curvature of a curve C at a given point is a measure
of how quickly the curve changes direction at that point, defined as

κ =

∣∣∣∣dTds
∣∣∣∣

where T is the unit tangent vector.

Remark 3. A parametrization is called smooth on an interval I if r′ is con-
tinuous and r′(t) ̸= 0 on I. A curve is called smooth if it has a smooth
parametrization. Since the unit tangent vector is only defined for smooth
curves, the curvature is only defined for smooth curves.

Theorem 13.3.1.

κ(t) =
|T′(t)|
|r′(t)|

.

Proof. By the chain rule
dT

dt
=

dT

ds

ds

dt
,

so

κ =

∣∣∣∣dTds
∣∣∣∣ = ∣∣∣∣dT/dt

ds/dt

∣∣∣∣ = |T′(t)|
|r′(t)|

.

Example 3. Show that the curvature of a circle of radius a is 1/a.
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Theorem 13.3.2. The curvature of the curve given by the vector function r
is

κ(t) =
|r′(t)× r′′(t)|

|r′(t)|3
.

Proof. Since T = r′/|r′| and |r′| = ds/dt, we have

r′ = |r′|T =
ds

dt
T

r′′ =
d2s

dt2
T+

ds

dt
T′.

Since T×T = 0, we have

r′ × r′′ =
ds

dt
T×

(
d2s

dt2
T+

ds

dt
T′

)

r′ × r′′ =
ds

dt
T× d2s

dt2
T+

ds

dt
T× ds

dt
T′

r′ × r′′ =

(
ds

dt

d2s

dt2

)
(T×T) +

(
ds

dt

)2

(T×T′)

r′ × r′′ =

(
ds

dt

)2

(T×T′).

Since |T(t)| = 1 for all t, T and T′ are orthogonal, so

|r′ × r′′| =
(
ds

dt

)2

|T×T′|

=

(
ds

dt

)2

|T||T′| sin
(
π

2

)
=

(
ds

dt

)2

|T′|.

Thus

|T′| = |r′ × r′′|
(ds/dt)2

=
|r′ × r′′|
|r′|2

and

κ =
|T′|
|r′|

=
|r′ × r′′|
|r′|3

.
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Example 4. Find the curvature of the twisted cubic r(t) = ⟨t, t2, t3⟩ at a
general point and at (0, 0, 0).

Theorem 13.3.3. If y = f(x) is a plane curve, then

κ(x) =
|f ′′(x)|

[1 + (f ′(x))2]3/2
.

Proof. Choose x as the parameter and write r(x) = xi+ f(x)j. Then r′(x) =
i + f ′(x)j and r′′(x) = f ′′(x)j. Since i × j = k and j × j = 0, it follows that
r′(x)× r′′(x) = f ′′(x)k. We also have |r′(x)| =

√
1 + [f ′(x)]2, and so

κ(x) =
|r′(x)× r′′(x)|

|r′(x)|3
=

|f ′′(x)|
[1 + (f ′(x))2]3/2

.
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Example 5. Find the curvature of the parabola y = x2 at the points (0, 0),
(1, 1), and (2, 4).

866 CHAPTER 13  Vector Functions

EXAMPLE 5 Find the curvature of the parabola y − x 2 at the points s0, 0d, s1, 1d,  
and s2, 4d.

SOLUTION Since y9 − 2x and y0 − 2, Formula 11 gives

!sxd − | y0 |
f1 1 sy9d2 g3y2 −

2
s1 1 4x 2 d3y2

The curvature at s0, 0d is !s0d − 2. At s1, 1d it is !s1d − 2y53y2 < 0.18. At s2, 4d it is 
!s2d − 2y173y2 < 0.03. Observe from the expression for !sxd or the graph of ! in 
Figure 5 that !sxd l 0 as x l 6`. This corresponds to the fact that the parabola 
appears to become flatter as x l 6`. n

The Normal and Binormal Vectors
At a given point on a smooth space curve rstd, there are many vectors that are orthogonal 
to the unit tangent vector Tstd. We single out one by observing that, because | Tstd | − 1 
for all t, we have Tstd ? T9std − 0 by Example 13.2.4, so T9std is orthogonal to Tstd. Note 
that, typically, T9std is itself not a unit vector. But at any point where ! ± 0 we can define 
the principal unit normal vector Nstd (or simply unit normal) as

Nstd −
T9std

| T9std |
We can think of the unit normal vector as indicating the direction in which the curve is 
turning at each point. The vector Bstd − Tstd 3 Nstd is called the binormal vector. It is 
perpendicular to both T and N and is also a unit vector. (See Figure 6.)

EXAMPLE 6 Find the unit normal and binormal vectors for the circular helix

rstd − cos t i 1 sin t j1 t k

SOLUTION We first compute the ingredients needed for the unit normal vector:

  r9std − 2 sin t i 1 cos t j1 k      | r9std | − s2 

  Tstd −
r9std

| r9std | −
1

s2 
 s2 sin t i 1 cos t j1 kd

  T9std −
1

s2 
 s2 cos t i 2 sin t jd      | T9std | −

1

s2 

 Nstd −
T9std

| T9std | − 2 cos t i 2 sin t j− k2 cos t, 2 sin t, 0l

This shows that the normal vector at any point on the helix is horizontal and points 
toward the z-axis. The binormal vector is

Bstd − Tstd 3 Nstd −
1

s2
 F i

2 sin t
2 cos t

j
cos t

2 sin t

k
1
0
G

 −
1

s2  ksin t, 2 cos t, 1l n

2

1 x0

y
y=≈

y=k(x)

FIGURE 5  
The parabola y − x 2 and its curvature 
function

N(t)

T(t)
B(t)

FIGURE 6

Figure 7 illustrates Example 6 by 
showing the vectors T, N, and B at 
two locations on the helix. In general, 
the vectors T, N, and B, start  ing at 
the various points on a curve, form a 
set of orthogonal vectors, called the 
TNB frame, that moves along the 
curve as t varies. This TNB frame 
plays an important role in the branch 
of mathematics known as differential 
geometry and in its applications to the 
motion of spacecraft.

N

N

B

T

TB

x
y

z

FIGURE 7
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Definition 13.3.4. For any point where κ ̸= 0, the principal
unit normal vector N(t) (or simply unit normal) is defined
to be

N(t) =
T′(t)

|T′(t)|
,

and so it is orthogonal to the unit tangent vector T(t). The
vector B(t) = T(t) × N(t) is called the binormal vector. It is perpendicular
to both T and N and is also a unit vector. (See the figure.)

Example 6. Find the unit normal and binormal vectors for the circular helix

r(t) = cos ti+ sin tj+ tk.
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Definition 13.3.5. The plane determined by the normal and binormal vectors
N and B at point P on a curve C is called the normal plane of C at P . It
consists of all lines that are orthogonal to the tangent vector T. The plane
determined by the vectors T and N is called the osculating plane of C at P .
It is the plane that comes closest to containing the part of the curve near P .

Definition 13.3.6. The circle that lies in the osculating plane of C at P , has
the same tangent as C at P , lies on the concave side of C (toward which N
points), and has radius ρ = 1/κ (the reciprocal of the curvature) is called the
osculating circle (or the circle of curvature) of C at P . It is the circle that
best describes how C behaves near P ; it shares the same tangent, normal, and
curvature at P .

Example 7. Find equations of the normal plane and osculating plane of the
helix in Example 6 at the point P (0, 1, π/2).
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Example 8. Find and graph the osculating circle of the parabola y = x2 at
the origin.
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13.4 Motion in Space

Definition 13.4.1. Suppose a particle moves through space so that its posi-
tion vector at time t is r(t). Then the velocity vector v(t) at time t is given
by

v(t) = lim
h→0

r(t+ h)− r(t)

h
= r′(t).

The speed of the particle at time t is the magnitude of the velocity vector,
that is, |v(t)|. As in the case of one-dimensional motion, the acceleration of
the particle is defined as the derivative of the velocity:

a(t) = v′(t) = r′′(t).

Example 1. The position vector of an object moving in a plane is given by
r(t) = t3i + t2j. Find its velocity, speed, and acceleration when t = 1 and
illustrate geometrically.

445



Calculus - 13.4 Motion in Space

Example 2. Find the velocity, acceleration, and speed of a particle with
position vector r(t) = ⟨t2, et, tet⟩.

Example 3. A moving particle starts at an initial position r(0) = ⟨1, 0, 0⟩
with initial velocity v(0) = i − j + k. Its acceleration is a(t) = 4ti + 6tj + k.
Find its velocity and position at time t.
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Remark 1. In general, vector integrals allow us to recover velocity when ac-
celeration is known and position when velocity is known:

v(t) = v(t0) +

ˆ t

t0

a(u)du r(t) = r(t0) +

ˆ t

t0

v(u)du.

If the force that acts on a particle is known, then the acceleration can be found
from Newton’s Second Law of Motion. The vector version of this law states
that if, at any time t, a force F(t) acts on an object of mass m producing an
acceleration a(t), then

F(t) = ma(t).

Example 4. An object with mass m that moves in a circular path with con-
stant angular speed ω has position vector r(t) = a cosωti+ a sinωtj. Find the
force acting on the object and show that it is directed toward the origin.
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872 CHAPTER 13  Vector Functions

Since vstd − r9std, we have

 rstd − y vstd dt

 − y fs2t 2 1 1d i 1 s3t 2 2 1d j1 st 1 1d kg dt

 − (2
3 t 3 1 t) i 1 st 3 2 td j1 (1

2 t 2 1 t) k 1 D

Putting t − 0, we find that D − rs0d − i, so the position at time t is given by

 rstd − (2
3 t 3 1 t 1 1) i 1 st 3 2 td j1 (1

2 t 2 1 t) k n

In general, vector integrals allow us to recover velocity when acceleration is known 
and position when velocity is known:

vstd − vst0d 1 y t

t0

 asud du      rstd − rst0d 1 y t

t0

 vsud du

If the force that acts on a particle is known, then the acceleration can be found from 
Newton’s Second Law of Motion. The vector version of this law states that if, at any 
time t, a force Fstd acts on an object of mass m producing an acceleration astd, then

Fstd − mastd

EXAMPLE 4 An object with mass m that moves in a circular path with constant angular 
speed ! has position vector rstd − a cos !t i 1 a sin !t j. Find the force acting on the 
object and show that it is directed toward the origin.

SOLUTION To find the force, we first need to know the acceleration:

 vstd − r9std − 2a! sin !t i 1 a! cos !t j

 astd − v9std − 2a!2 cos !t i 2 a!2 sin !t j

Therefore Newton’s Second Law gives the force as

Fstd − mastd − 2m!2sa cos !t i 1 a sin !t jd

Notice that Fstd − 2m!2 rstd. This shows that the force acts in the direction opposite  
to the radius vector rstd and therefore points toward the origin (see Figure 5). Such a 
force is called a centripetal (center-seeking) force. n

Projectile Motion

EXAMPLE 5 A projectile is fired with angle of elevation " and initial velocity v0. (See 
Figure 6.) Assuming that air resistance is negligible and the only external force is due to 
gravity, find the position function rstd of the projectile. What value of " maximizes the 
range (the horizontal distance traveled)?

SOLUTION We set up the axes so that the projectile starts at the origin. Since the force 
due to gravity acts downward, we have

F − ma − 2mt j

The expression for rstd that we obtained 
in Example 3 was used to plot the path 
of the particle in Figure 4 for 0 < t < 3.

(1, 0, 0) 0

20 x0 20y
0

4z

6

2

5 10 15

FIGURE 4

0

y

x
a

d

v¸

FIGURE 6

The object moving with position P has 
angular speed ! − d#ydt, where # is 
the angle shown in Figure 5.

P

¨
0

y

x
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Example 5. A projectile is fired with angle of elevation α
and initial velocity v0. (See the figure.) Assuming that air
resistance is negligible and the only external force is due
to gravity, find the position function r(t) of the projectile.
What value of αmaximizes the range (the horizontal distance
traveled)?
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Example 6. A projectile is fired with muzzle speed 150 m/s and angle of ele-
vation 45◦ from a position 10 m above ground level. Where does the projectile
hit the ground, and with what speed?
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The velocity of the projectile is

vstd − r9std − 75s2  i 1 s75s2 2 9.8td j
So its speed at impact is

 |vs21.74d| − s(75s2 )2 1 (75s2 2 9.8 ? 21.74)2 < 151 mys Q

Tangential and Normal Components of Acceleration
When we study the motion of a particle, it is often useful to resolve the acceleration into 
two components, one in the direction of the tangent and the other in the direction of the 
normal. If we write v − | v | for the speed of the particle, then

Tstd −
r9std

| r9std | −
vstd

| vstd | −
v
v

and so v − vT

If we differentiate both sides of this equation with respect to t, we get

5  a − v9 − v9T 1 vT9 

If we use the expression for the curvature given by Equation 13.3.9, then we have

6  ! − | T9|
| r9| − | T9|

v
    so    | T9| − !v 

The unit normal vector was de!ned in the preceding section as N − T9y| T9|, so (6) gives

T9 − | T9|N − !vN

and Equation 5 becomes

7  a − v9T 1 !v2 N 

Writing aT and aN for the tangential and normal components of acceleration, we have

a − aT T 1 aN N
where

8  aT − v9    and    aN − !v2 

This resolution is illustrated in Figure 7.
Let’s look at what Formula 7 says. The !rst thing to notice is that the binormal vector 

B is absent. No matter how an object moves through space, its acceleration always lies in 
the plane of T and N (the osculating plane). (Recall that T gives the direction of motion 
and N points in the direction the curve is turning.) Next we notice that the tangential 
component of acceleration is v9, the rate of change of speed, and the normal component 
of acceleration is !v2, the curvature times the square of the speed. This makes sense if we 
think of a passenger in a car—a sharp turn in a road means a large value of the curvature 
!, so the component of the acceleration perpendicular to the motion is large and the pas-
senger is thrown against a car door. High speed around the turn has the same effect; in 
fact, if you double your speed, aN is increased by a factor of 4.

aT

aN

N
a

T

FIGURE 7
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Theorem 13.4.1. If v = |v| is the speed of a particle in
motion, then

a = aTT+ aNN

where aT = v′ and aN = κv2.

Proof.

T(t) =
r′(t)

|r′(t)|
=

v(t)

|v(t)|
=

v

v
,

so

v = vT

a = v′ = v′T+ vT′.

By our expression for curvature,

κ =
|T′|
|r′|

=
|T′|
v

,

so |T′| = κv. Since N = T′/|T′|,

T′ = |T′|N = κvN,

and thus

a = v′T+ κv2N

Theorem 13.4.2.

aT =
r′(t) · r′′(t)

|r′(t)|
aN =

|r′(t)× r′′(t)|
|r′(t)|

.

Proof.

v · a = vT · (v′T+ κv2N)

= vv′T ·T+ κv3T ·N
= vv′,

so

aT = v′ =
v · a
v

=
r′(t) · r′′(t)

|r′(t)|

aN = κv2 =
|r′(t)× r′′(t)|

|r′(t)|3
|r′(t)|2 = |r′(t)× r′′(t)|

|r′(t)|
.
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Example 7. A particle moves with position function r(t) = ⟨t2, t2, t3⟩. Find
the tangential and normal components of acceleration.
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Chapter 14

Partial Derivatives

14.1 Functions of Several Variables

Definition 14.1.1. A function f of two variables is a rule that assigns to each
ordered pair of real numbers (x, y) in a set D a unique real number denoted
by f(x, y). The set D is the domain of f and its range is the set of values that
f takes on, that is, {f(x, y) | (x, y) ∈ D}.

Remark 1. We often write z = f(x, y) to make explicit the value taken on by
f at the general point (x, y). The variables x and y are independent variables
and z is the dependent variable.

Example 1. For each of the following functions, evaluate f(3, 2) and find and
sketch the domain.

(a) f(x, y) =

√
x+ y + 1

x− 1
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(b) f(x, y) = x ln(y2 − x)

Example 2. In regions with severe winter weather, the wind-chill index is
often used to describe the apparent severity of the cold. This index W is a
subjective temperature that depends on the actual temperature T and the
wind speed v. So W is a function of T and v, and we can write W = f(T, v).
The table records values of W compiled by the US National Weather Service
and the Meteorological Service of Canada.

Wind-chill index as a function of air temperature and wind speed

T
v

5 10 15 20 25 30 40 50 60 70 80

5 4 3 2 1 1 0 −1 −1 −2 −2 −3
0 −2 −3 −4 −5 −6 −6 −7 −8 −9 −9 −10

−5 −7 −9 −11 −12 −12 −13 −14 −15 −16 −16 −17
−10 −13 −15 −17 −18 −19 −20 −21 −22 −23 −23 −24
−15 −19 −21 −23 −24 −25 −26 −27 −29 −30 −30 −31
−20 −24 −27 −29 −30 −32 −33 −34 −35 −36 −37 −38
−25 −30 −33 −35 −37 −38 −39 −41 −42 −43 −44 −45
−30 −36 −39 −41 −43 −44 −46 −48 −49 −50 −51 −52
−35 −41 −45 −48 −49 −51 −52 −54 −56 −57 −58 −60
−40 −47 −51 −54 −56 −57 −59 −61 −63 −64 −65 −67

Wind speed (km/h)
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ct
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(◦
C
)

Find f(−5, 50) and interpret its meaning in context.
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Year P L K
1899 100 100 100
1900 101 105 107
1901 112 110 114
1902 122 117 122
1903 124 122 131
1904 122 121 138
1905 143 125 149
1906 152 134 163
1907 151 140 176
1908 126 123 185
1909 155 143 198
1910 159 147 208
1911 153 148 216
1912 177 155 226
1913 184 156 236
1914 169 152 244
1915 189 156 246
1916 225 183 298
1917 227 198 335
1918 223 201 366
1919 218 196 387
1920 231 194 407
1921 179 146 417
1922 240 161 431

Example 3. In 1928 Charles Cobb and Paul Douglas published
a study in which they modeled the growth of the American econ-
omy during the period 1899-1922. They considered a simplified
view of the economy in which production output is determined
by the amount of labor involved and the amount of capital in-
vested. While there are many other factors affecting economic
performance, their model proved to be remarkably accurate. The
function they used to model production was of the form

P (L,K) = bLαK1−α,

known as the Cobb-Douglas production function, where P is the
total production (the monetary value of all goods produced in a
year), L is the amount of labor (the total number of person-hours
worked in a year), and K is the amount of capital invested (the
monetary worth of all machinery, equipment, and buildings).
Cobb and Douglas used economic data published by the govern-
ment to obtain the table on the right. They took the year 1899
as a baseline and P , L, and K for 1899 were each assigned the
value 100. The values for other years were expressed as percent-
ages of the 1899 figures.
Cobb and Douglas used the method of least squares to fit the
data of the table to the function

P (L,K) = 1.01L0.75K0.25.

Use this function to compute the production in the years 1910
and 1920, and compare your results with the actual values for these years.
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Example 4. Find the domain and range of g(x, y) =
√

9− x2 − y2.

Definition 14.1.2. If f is a function of two variables with domain D, then
the graph of f is the set of all points (x, y, z) in R3 such that z = f(x, y) and
(x, y) is in D.

Definition 14.1.3. The level curves of a function f of two variables are the
curves with equations f(x, y) = k, where k is a constant (in the range of f).

Example 5. Sketch the graph of the function f(x, y) = 6− 3x− 2y.
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Definition 14.1.4. The function

f(x, y) = ax+ by + c

is called a linear function. The graph of such a function has the equation

z = ax+ by + c or ax+ by − z + c = 0,

so it is a plane.

Example 6. Sketch the graph of g(x, y) =
√
9− x2 − y2.

Example 7. Use a computer to draw the graph of the Cobb-Douglas produc-
tion function P (L,K) = 1.01L0.75K0.25.

Example 8. Find the domain and range and sketch the graph of h(x, y) =
4x2 + y2.
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 SECTION 14.1  Functions of Several Variables 895

tions with the same temperature. Figure 13 shows a weather map of the world indicating 
the average July temperatures. The isothermals are the curves that separate the colored 
bands.

In weather maps of atmospheric pressure at a given time as a function of longitude 
and latitude, the level curves are called isobars and join locations with the same pres-
sure. (See Exercise 34.) Surface winds tend to flow from areas of high pressure across the 
isobars toward areas of low pressure, and are strongest where the isobars are tightly 
packed.

A contour map of world-wide precipitation is shown in Figure 14. Here the level 
curves are not labeled but they separate the colored regions and the amount of precipita-
tion in each region is indicated in the color key.

EXAMPLE 9 A contour map for a function f  is shown in Figure 15. Use it to estimate 
the values of f s1, 3d and f s4, 5d.

SOLUTION The point (1, 3) lies partway between the level curves with z-values 70 
and 80. We estimate that

f s1, 3d < 73

Similarly, we estimate that f s4, 5d < 56  ■

EXAMPLE 10 Sketch the level curves of the function f sx, yd − 6 2 3x 2 2y for the  
values k − 26, 0, 6, 12.

SOLUTION The level curves are

6 2 3x 2 2y − k    or    3x 1 2y 1 sk 2 6d − 0

This is a family of lines with slope 2 3
2. The four particular level curves with  

k − 26, 0, 6, and 12 are 3x 1 2y 2 12 − 0, 3x 1 2y 2 6 − 0, 3x 1 2y − 0, and 
3x 1 2y 1 6 − 0. They are sketched in Figure 16. The level curves are equally spaced 
parallel lines because the graph of f  is a plane (see Figure 6).
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EXAMPLE 11 Sketch the level curves of the function

tsx, yd − s9 2 x 2 2 y 2     for  k − 0, 1, 2, 3

SOLUTION The level curves are

s9 2 x 2 2 y 2 − k    or    x 2 1 y 2 − 9 2 k 2

This is a family of concentric circles with center s0, 0d and radius s9 2 k 2 . The cases 
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Example 9. A contour map for a function f is shown in the
figure. Use it to estimate the values of f(1, 3) and f(4, 5).

Example 10. Sketch the level curves of the function f(x, y) = 6 − 3x − 2y
for the values k = −6, 0, 6, 12.

Example 11. Sketch the level curves of the function

g(x, y) =
√

9− x2 − y2 for k = 0, 1, 2, 3.
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Example 12. Sketch some level curves of the function h(x, y) = 4x2+ y2+1.

Example 13. Plot level curves for the Cobb-Douglas production function of
Example 3.

Definition 14.1.5. A function of three variables, f , is a rule that assigns to
each ordered triple (x, y, z) in a domain D ⊂ R3 a unique real number denoted
by f(x, y, z).

Example 14. Find the domain of f if

f(x, y, z) = ln(z − y) + xy sin z.
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Definition 14.1.6. The level surfaces of a function f of three variables are
the curves with equations f(x, y, z) = k, where k is a constant.

Example 15. Find the level surfaces of the function

f(x, y, z) = x2 + y2 + z2.

Definition 14.1.7. A function of n variables is a rule that assigns a number
z = f(x1, x2, . . . , xn) to an n-tuple (x1, x2, . . . , xn) of real numbers. We denote
by Rn the set of all such n-tuples.

Remark 2. Sometimes we will use vector notation to write such functions
more compactly: If x = ⟨x1, x2, . . . , xn⟩, we will often write f(x) in place of
f(x1, x2, . . . , xn).
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14.2 Limits and Continuity

 SECTION 14.2  Limits and Continuity 905

making the distance from sx, yd to sa, bd suf!ciently small (but not 0). Figure 1 illustrates 
De!nition 1 by means of an arrow diagram. If any small interval sL 2 «, L 1 «d is given 
around L, then we can !nd a disk D! with center sa, bd and radius ! . 0 such that f  maps 
all the points in D! [except possibly sa, bd] into the interval sL 2 «, L 1 «d.
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Another illustration of De!nition 1 is given in Figure 2 where the surface S is the 
graph of f. If « . 0 is given, we can !nd ! . 0 such that if sx, yd is restricted to lie in the 
disk D! and sx, yd ± sa, bd, then the corresponding part of S lies between the horizontal 
planes z − L 2 « and z − L 1 «.

For functions of a single variable, when we let x approach a, there are only two pos-
sible directions of approach, from the left or from the right. We recall from Chap ter 2 that 
if limx l a2 f sxd ± limx l a1 f sxd, then limx l a f sxd 

 does not exist.
For functions of two variables the situation is not as simple because we can let sx, yd 

approach sa, bd from an in!nite number of directions in any manner whatsoever (see 
Figure 3) as long as sx, yd stays within the domain of f.

De!nition 1 says that the distance between f sx, yd and L can be made arbitrarily small 
by making the distance from sx, yd to sa, bd suf!ciently small (but not 0). The de!nition 
refers only to the distance between sx, yd and sa, bd. It does not refer to the direction of 
approach. Therefore, if the limit exists, then f sx, yd must approach the same limit no 
matter how sx, yd approaches sa, bd. Thus, if we can !nd two different paths of approach 
along which the function f sx, yd has different limits, then it follows that limsx, yd l sa, bd f sx, yd 
does not exist.

If f sx, yd l L1 as sx, yd l sa, bd along a path C1 and f sx, yd l L2 as 
sx, yd l sa, bd along a path C2, where L1 ± L2, then limsx, yd l sa, bd f sx, yd does  
not exist.

EXAMPLE 1  Show that lim
s x, yd l s0, 0d

 
x 2 2 y 2

x 2 1 y 2  does not exist.

SOLUTION Let f sx, yd − sx 2 2 y 2 dysx 2 1 y 2 d. First let’s approach s0, 0d along the  
x-axis. Then y − 0 gives f sx, 0d − x 2yx 2 − 1 for all x ± 0, so

f sx, yd l 1    as    sx, yd l s0, 0d along the x-axis

We now approach along the y-axis by putting x − 0. Then f s0, yd −
2y 2

y 2 − 21 for all 
y ± 0, so

f sx, yd l 21    as    sx, yd l s0, 0d along the y-axis

(See Figure 4.) Since f  has two different limits along two different lines, the given limit 
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Definition 14.2.1. Let f be a function of two variables
whose domain D includes points arbitrarily close to (a, b).
Then we say the limit of f(x, y) as (x, y) approaches (a, b) is
L and we write

lim
(x,y)→(a,b)

f(x, y) = L

if for every number ε > 0 there is a corresponding number
δ > 0 such that if (x, y) ∈ D and 0 <

√
(x− a)2 + (y − b)2 <

δ then |f(x, y)− L| < ε.

Remark 1. If f(x, y) → L1 as (x, y) → (a, b) along a path C1 and f(x, y) → L2

as (x, y) → (a, b) along a path C2, where L1 ̸= L2, then lim(x,y)→(a,b) f(x, y)
does not exist.

Example 1. Show that lim
(x,y)→(0,0)

x2 − y2

x2 + y2
does not exist.
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Example 2. If f(x, y) = xy/(x2 + y2), does lim
(x,y)→(0,0)

f(x, y) exist?
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Example 3. If f(x, y) =
xy2

x2 + y4
, does lim

(x,y)→(0,0)
f(x, y) exist?

Remark 2. The Limit Laws listed in section 2.3 can be extended to functions
of two variables: the limit of a sum is the sum of the limits, the limit of a
product is the product of the limits, and so on. In particular, the following
equations are true.

lim
(x,y)→(a,b)

x = a lim
(x,y)→(a,b)

y = b lim
(x,y)→(a,b)

c = c.

The Squeeze Theorem also holds.
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Example 4. Find lim
(x,y)→(0,0)

3x2y

x2 + y2
if it exists.

Definition 14.2.2. A function f of two variables is called continuous at (a, b)
if

lim
(x,y)→(a,b)

f(x, y) = f(a, b).

We say that f is continuous on D if f is continuous at every point (a, b) in D.

Definition 14.2.3. A polynomial of two variables (or polynomial, for short)
is a sum of terms of the form cxmyn, where c is a constant and m and n are
nonnegative integers. A rational function is a ratio of polynomials.

Remark 3. The limits in Remark 2 show that the functions f(x, y) = x,
g(x, y) = y, and h(x, y) = c are continuous. Since any polynomial can be built
up out of the simple functions f , g, and h by multiplication and addition,
it follows that all polynomials are continuous on R2. Likewise, any rational
function is continuous on its domain because it is a quotient of continuous
functions.
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Example 5. Evaluate lim
(x,y)→(1,2)

(x2y3 − x3y2 + 3x+ 2y).

Example 6. Where is the function f(x, y) =
x2 − y2

x2 + y2
continuous?

Example 7. Where is the function

g(x, y) =


x2 − y2

x2 + y2
if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0)

continuous?

Remark 4. If f is a continuous function of two variables and g is a continuous
function of a single variable that is defined on the range of f , then the com-
posite function h = g ◦ f defined by h(x, y) = g(f(x, y)) is also a continuous
function.
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Example 8. Where is the function

f(x, y) =


3x2y

x2 + y2
if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0)

continuous?

Example 9. Where is the function h(x, y) = arctan(y/x) continuous?

Definition 14.2.4. The notation

lim
(x,y,z)→(a,b,c)

f(x, y, z) = L

means that the values of f(x, y, z) approach the number L as the point (x, y, z)
approaches the point (a, b, c) along any path in the domain of f . Precisely, for
every number ε > 0 there is a corresponding δ > 0 such that if f(x, y, z) is in
the domain of f and 0 <

√
(x− a)2 + (y − b)2 + (z − c)2 < δ then |f(x, y, z)−

L| < ε. The function is continuous at (a, b, c) if

lim
(x,y,z)→(a,b,c)

f(x, y, z) = f(a, b, c).

Definition 14.2.5. If f is defined on a subset D of Rn, then limx→a f(x) = L
means that for every number ε > 0 there is a corresponding number δ > 0
such that if x ∈ D and 0 < |x − a| < δ then |f(x) − L| < ε. The function is
continuous at a if

lim
x→a

f(x) = f(a).
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14.3 Partial Derivatives

Definition 14.3.1. In general, if f is a function of two variables x and y,
suppose we only let x vary while keeping y fixed, say y = b, where b is a
constant. Then we are considering a function of a single variable x, say g(x) =
f(x, b). If g has a derivative at a, then we call it the partial derivative of f
with respect to x at (a, b) and denote it by fx(a, b). Thus

fx(a, b) = g′(a) = lim
h→0

g(a+ h)− g(a)

h
= lim

h→0

f(a+ h, b)− f(a, b)

h
.

Similarly, the partial derivative of f with respect to y at (a, b), denoted by
fy(a, b), is obtained by keeping x fixed (x = a) and finding the ordinary
derivative at b of the function G(y) = f(a, y):

fy(a, b) = lim
h→0

f(a, b+ h)− f(a, b)

h
.

 SeCtION� 14.3  Partial Derivatives 915

Interpretations of partial Derivatives
To give a geometric interpretation of partial derivatives, we recall that the equation 
z − f sx, yd represents a surface S (the graph of f ). If f sa, bd − c, then the point Psa, b, cd 
lies on S. By fixing y − b, we are restricting our attention to the curve C1 in which the 
ver tical plane y − b intersects S. (In other words, C1 is the trace of S in the plane y − b.d 
Likewise, the vertical plane x − a intersects S in a curve C2. Both of the curves C1 and 
C2 pass through the point P. (See Figure 1.)

Note that the curve C1 is the graph of the function tsxd − f sx, bd, so the slope of its tan- 
gent T1 at P is t9sad − fxsa, bd. The curve C2 is the graph of the function Gsyd − f sa, yd, 
so the slope of its tangent T2 at P is G9sbd − fysa, bd.

Thus the partial derivatives fxsa, bd and fy sa, bd can be interpreted geometrically as 
the slopes of the tangent lines at Psa, b, cd to the traces C1 and C2 of S in the planes y − b 
and x − a.

As we have seen in the case of the heat index function, partial derivatives can also be 
interpreted as rates of change. If z − f sx, yd, then −zy−x represents the rate of change of 
z with respect to x when y is fixed. Similarly, −zy−y represents the rate of change of z with 
respect to y when x is fixed.

EXAMPLE 2 If f sx, yd − 4 2 x 2 2 2y 2, find fxs1, 1d and fys1, 1d and interpret these 
numbers as slopes.

SOLUtION� We have

 fxsx, yd − 22x       fysx, yd − 24y

  fxs1, 1d − 22        fys1, 1d − 24

The graph of f  is the paraboloid z − 4 2 x 2 2 2y 2 and the vertical plane y − 1 inter- 
sects it in the parabola z − 2 2 x 2, y − 1. (As in the preceding discussion, we label it 
C1 in Figure 2.) The slope of the tangent line to this parabola at the point s1, 1, 1d is 
fxs1, 1d − 22. Similarly, the curve C2 in which the plane x − 1 intersects the parabo-
loid is the parabola z − 3 2 2y 2, x − 1, and the slope of the tangent line at s1, 1, 1d is 
fys1, 1d − 24. (See Figure 3.) 
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Definition 14.3.2. If f is a function of two variables, its
partial derivatives are the functions fx and fy defined by

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h

fy(x, y) = lim
h→0

f(x, y + h)− f(x, y)

h
.

Definition 14.3.3 (Notations for Partial Derivatives). If z = f(x, y), we write

fx(x, y) = fx =
∂f

∂x
=

∂

∂x
f(x, y) =

∂z

∂x
= f1 = D1f = Dxf

fy(x, y) = fy =
∂f

∂y
=

∂

∂y
f(x, y) =

∂z

∂y
= f2 = D2f = Dyf.

Remark 1 (Rule for Finding Partial Derivatives of z = f(x, y)).

1. To find fx, regard y as a constant and differentiate f(x, y) with respect
to x.

2. To find fy, regard x as a constant and differentiate f(x, y) with respect
to y.
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Example 1. If f(x, y) = x3 + x2y3 − 2y2, find fx(2, 1) and fy(2, 1).

Example 2. If f(x, y) = 4− x2 − 2y2, find fx(1, 1) and fy(1, 1) and interpret
these numbers as slopes.
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Example 3. The body mass index of a person is defined by

B(m,h) =
m

h2
.

Calculate the partial derivatives of B for a young man with m = 64 kg and
h = 1.68 m and interpret them.
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Example 4. If f(x, y) = sin

(
x

1 + y

)
, calculate

∂f

∂x
and

∂f

∂y
.

Example 5. Find ∂z/∂x and ∂z/∂y if z is defined implicitly as a function of
x and y by the equation

x3 + y3 + z3 + 6xyz = 1.
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Definition 14.3.4. If f is a function of three variables x, y and z, then its
partial derivative with respect to x is defined as

fx(x, y, z) = lim
h→0

f(x+ h, y, z)− f(x, y, z)

h

and it is found by regarding y and z as constants and differentiating f(x, y, z)
with respect to x.

Definition 14.3.5. In general, if u is a function of n variables,
u = f(x1, x2, . . . , xn), its partial derivative with respect to the ith variable xi

is

∂u

∂xi

= lim
h→0

f(x1, . . . , xi−1, xi + h, xi+1, . . . , xn)− f(x1, . . . , xi, . . . , xn)

h

and we also write
∂u

∂xi

=
∂f

∂xi

= fxi
= fi = Dif.

Example 6. Find fx, fy, and fz if f(x, y, z) = exy ln z.
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Definition 14.3.6. If f is a function of two variables, then its partial deriva-
tives fx and fy are also functions of two variables, so we can consider their
partial derivatives (fx)x, (fx)y, (fy)x, and (fy)y, which are called the second
partial derivatives of f . If z = f(x, y), we use the following notation:

(fx)x = fxx = f11 =
∂

∂x

(
∂f

∂x

)
=

∂2f

∂x2
=

∂2z

∂x2

(fx)y = fxy = f12 =
∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x
=

∂2z

∂y∂x

(fy)x = fyx = f21 =
∂

∂x

(
∂f

∂y

)
=

∂2f

∂x∂y
=

∂2z

∂x∂y

(fy)y = fyy = f22 =
∂

∂y

(
∂f

∂y

)
=

∂2f

∂y2
=

∂2z

∂y2
.

Thus the notation fxy (or ∂2f/∂y∂x) means that we first differentiate with
respect to x and then with respect to y, whereas in computing fyx the order
is reversed.

Example 7. Find the second partial derivatives of

f(x, y) = x3 + x2y3 − 2y2.
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Theorem 14.3.1 (Clairaut’s Theorem). Suppose f is defined on a disk D that
contains the point (a, b). If the functions fxy and fyx are both continuous on
D, then

fxy(a, b) = fyx(a, b).

Remark 2. Partial derivatives of order 3 or higher can also be defined. For
instance,

fxyy = (fxy)y =
∂

∂y

(
∂2f

∂y∂x

)
=

∂3f

∂y2∂x

and using Clairaut’s Theorem it can be shown that fxyy = fyxy = fyyx if these
functions are continuous.

Example 8. Calculate fxxyz if f(x, y, z) = sin(3x+ yz).

Definition 14.3.7. The partial differential equation

∂2u

∂x2
+

∂2u

∂y2
= 0

is called Laplace’s equation. Solutions of this equation are called harmonic
functions.
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Example 9. Show that the function u(x, y) = ex sin y is a solution of Laplace’s
equation.

Definition 14.3.8. The wave equation

∂2u

∂t2
= a2

∂2u

∂x2

describes the motion of a waveform, which could be an ocean wave, a sound
wave, a light wave, or a wave traveling along a vibration string.

Example 10. Verify that the function u(x, t) = sin(x− at) satisfies the wave
equation.
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14.4 Tangent Planes & Linear Approximations

928 CHAPTER 14  Partial Derivatives

Tangent Planes
Suppose a surface S has equation z − f sx, yd, where f  has continuous first partial deriva-
tives, and let Psx0, y0, z0 d be a point on S. As in the preceding section, let C1 and C2 be  
the curves obtained by intersecting the vertical planes y − y0 and x − x0 with the sur-
face S. Then the point P lies on both C1 and C2. Let T1 and T2 be the tangent lines to the 
curves C1 and C2 at the point P. Then the tangent plane to the surface S at the point P is 
defined to be the plane that contains both tangent lines T1 and T2. (See Figure 1.)

We will see in Section 14.6 that if C is any other curve that lies on the surface S and 
passes through P, then its tangent line at P also lies in the tangent plane. Therefore you 
can think of the tangent plane to S at P as consisting of all possible tangent lines at P to 
curves that lie on S and pass through P. The tangent plane at P is the plane that most 
closely approx imates the surface S near the point P.

We know from Equation 12.5.7 that any plane passing through the point Psx0, y0, z0 d 
has an equation of the form

Asx 2 x0 d 1 Bsy 2 y0 d 1 Csz 2 z0 d − 0

By dividing this equation by C and letting a − 2AyC and b − 2ByC, we can write it in 
the form

1   z 2 z0 − asx 2 x0d 1 bsy 2 y0 d 

If Equation 1 represents the tangent plane at P, then its intersection with the plane y − y0 
must be the tangent line T1. Setting y − y0 in Equation 1 gives

z 2 z0 − asx 2 x0 d      where y − y0

and we recognize this as the equation (in point-slope form) of a line with slope a. But 
from Section 14.3 we know that the slope of the tangent T1 is fxsx0, y0 d. Therefore 
a − fxsx0, y0 d.

Similarly, putting x − x0 in Equation 1, we get z 2 z0 − bsy 2 y0 d, which must rep-
resent the tangent line T2, so b − fysx0, y0 d.

2   Suppose f  has continuous partial derivatives. An equation of the tangent 
plane to the surface z − f sx, yd at the point Psx0, y0, z0 d is

z 2 z0 − fxsx0, y0 dsx 2 x0 d 1 fysx0, y0 dsy 2 y0 d

EXAMPLE 1 Find the tangent plane to the elliptic paraboloid z − 2x 2 1 y 2 at the  
point s1, 1, 3d.

SOLUTION Let f sx, yd − 2x 2 1 y 2. Then

  fxsx, yd − 4x fysx, yd − 2y

  fxs1, 1d − 4  fys1, 1d − 2

Then (2) gives the equation of the tangent plane at s1, 1, 3d as

 z 2 3 − 4sx 2 1d 1 2sy 2 1d

or  z − 4x 1 2y 2 3  ■

Figure 2(a) shows the elliptic paraboloid and its tangent plane at (1, 1, 3) that we 
found in Example 1. In parts (b) and (c) we zoom in toward the point (1, 1, 3) by restrict-

Note the similarity between the equa-
tion of a tangent plane and the equation 
of a tangent line:

y 2 y0 − f 9sx0 dsx 2 x0 d

FIGURE 1  
The tangent plane contains the  
tangent lines T1 and T2.
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Definition 14.4.1. Suppose a surface S has equation z =
f(x, y), where f has continuous first partial derivatives, and
let P (x0, y0, z0) be a point on S. Let C1 and C2 be the
curves obtained by intersecting the vertical planes y = y0
and x = x0 with the surface S, so that P lies on both C1 and
C2. Let T1 and T2 be the tangent lines to the curves C1 and
C2 at the point P . Then the tangent plane to the surface S
at the point P is defined to be the plane that contains both
tangent lines T1 and T2. (See the figure.)

Theorem 14.4.1. Suppose f has continuous partial derivatives. An equation
of the tangent plane to the surface z = f(x, y) at the point P (x0, y0, z0) is

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

Proof. Any line passing through P has an equation of the form

A(x− x0) +B(y − y0) + C(z − z0) = 0.

By dividing this equation by C and letting a = −A/C and b = −B/C, we can
write it in the form

z − z0 = a(x− x0) + b(y − y0).

If this equation represents the tangent plane at P , then its intersection with
the tangent line y = y0 must be T1, so by letting y = y0 we get

z − z0 = a(x− x0)

as the equation of T1, and since T1 has slope fx(x0, y0), we have a = fx(x0, y0).
Similarly, by letting x = x0, we get z − z0 = b(y − y0) as the equation of T2,
so b = fy(x0, y0).

Example 1. Find the tangent plane to the elliptic paraboloid z = 2x2 + y2

at the point (1, 1, 3).
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Definition 14.4.2. The linear function whose graph is the tangent plane at
the point to the graph of a function f of two variables at the point (a, b, f(a, b))
is called the linearization of f at (a, b) and is given by

L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

The approximation

f(x, y) ≈ f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

is called the linear approximation or the tangent line approximation of f at
(a, b).

Definition 14.4.3. Suppose z = f(x, y) is a function of two variables where
x changes from a to a + ∆x and y changes from b to b + ∆y. Then the
corresponding increment of z is

∆z = f(a+∆x, b+∆y)− f(a, b).

Definition 14.4.4. If z = f(x, y), then f is differentiable at (a, b) if ∆z can
be expressed in the form

∆z = fx(a, b)∆x+ fy(a, b)∆y + ε1∆x+ ε2∆y

where ε1 and ε2 → 0 as (∆x,∆y) → (0, 0).

Theorem 14.4.2. If the partial derivatives fx and fy exist near (a, b) and are
continuous at (a, b), then f is differentiable at (a, b).

Example 2. Show that f(x, y) = xexy is differentiable at (1, 0) and find its
linearization there. Then use it to approximate f(1.1,−0.1).
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Example 3. On a hot day, extreme humidity makes us think the temperature
is higher than it really is, whereas in very dry air we perceive the temperature
to be lower than the thermometer indicates. The National Weather Service
has devised the heat index (also called the temperature-humidity index, or
humidex, in some countries) to describe the combined effects of temperature
and humidity. The heat index I is the perceived air temperature when the
actual temperature is T and the relative humidity is H. So I is a function of
T and H and we can write I = f(T,H). The following table of values of I is
an excerpt from a table compiled by the National Weather Service.

Heat index I as a function of temperature and humidity

T
H 50 55 60 65 70 75 80 85 90

90 96 98 100 103 106 109 112 115 119

92 100 103 105 108 112 115 119 123 128

94 104 107 111 114 118 122 127 132 137

96 109 113 116 121 125 130 135 141 146

98 114 118 123 127 133 138 144 150 157

100 119 124 129 135 141 147 154 161 168

Relative humidity (%)

Actual
temperature

(◦F)

Find a linear approximation for the heat index I = f(T,H) when T is near
96◦F and H is near 70%. Use it to estimate the heat index when the temper-
ature is 97◦F and the relative humidity is 72%.
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Definition 14.4.5. For a differentiable function of two variables, z = f(x, y),
we define the differentials dx and dy to be independent variables; that is,
they can be given any values. Then the differential dz, also called the total
differential, is defined by

dz = fx(x, y)dx+ fy(x, y)dy =
∂z

∂x
dx+

∂z

∂y
dy.

Example 4.

(a) If z = f(x, y) = x2 + 3xy − y2, find the differential dz.

(b) If x changes from from 2 to 2.05 and y changes from 3 to 2.96, compare
the values of ∆z and dz.

Example 5. The base radius and height of a right circular cone are measured
as 10 cm and 25 cm, respectively, with a possible error in measurement of as
much as 0.1 cm in each. Use differentials to estimate the maximum error in
the calculated volume of the cone.
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Remark 1. Linear approximations, differentiability, and differentials can be
defined in a similar manner for functions of more than two variables. A differ-
entiable function is defined by an expression similar to the one in Definition
14.4.4. For such functions the linear approximation is

f(x, y, z) ≈ f(a, b, c) + fx(a, b, c)(x− a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c)

and the linearization L(x, y, z) is the right side of this expression.
If w = f(x, y, z) then the increment of w is

∆w = f(x+∆x, y +∆y, z +∆z)− f(x, y, z).

The differential dw is defined in terms of the differentials dx, dy, and dz of the
independent variables by

dw =
∂w

∂x
dx+

∂w

∂y
dy +

∂w

∂z
dz.

Example 6. The dimensions of a rectangular box are measured to be 75 cm,
60 cm, and 40 cm, and each measurement is correct to within 0.2 cm. Use
differentials to estimate the largest possible error when the volume of the box
is calculated from these measurements.
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14.5 The Chain Rule

Theorem 14.5.1 (The Chain Rule (Case 1)). Suppose that z = f(x, y) is a
differentiable function of x and y, where x = g(t) and y = h(t) are differen-
tiable functions of t. Then z is a differentiable function of t and

dz

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.

Proof.

∆z =
∂f

∂x
∆x+

∂f

∂y
∆y + ε1∆x+ ε2∆y

where ε1 and ε2 → 0 as (∆x,∆y) → (0, 0). Dividing both sides of this equation
by ∆t, we have

∆z

∆t
=

∂f

∂x

∆x

∆t
+

∂f

∂y

∆y

∆t
+ ε1

∆x

∆t
+ ε2

∆y

∆t
.

If we now let ∆t → 0, then ∆x = g(t+∆t)−g(t) → 0 because g is differentiable
and therefore continuous. Similarly, ∆y → 0. This, in turn, means that ε1 → 0
and ε2 → 0, so

dz

dt
= lim

∆t→0

∆z

∆t

=
∂f

∂x
lim
∆t→0

∆x

∆t
+

∂f

∂y
lim
∆t→0

∆y

∆t
+

(
lim
∆t→0

ε1

)
lim
∆t→0

∆x

∆t
+

(
lim
∆t→0

ε2

)
lim
∆t→0

∆y

∆t

=
∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+ 0 · dx

dt
+ 0 · dy

dt

=
∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.

Example 1. If z = x2y + 3xy4, where x = sin 2t and y = cos t, find dz/dt
when t = 0.
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Example 2. The pressure P (in kilopascals), volume V (in liters), and tem-
perature T (in kelvins) of a mole of an ideal gas are related by the equation
PV = 8.31T . Find the rate at which the pressure is changing when the tem-
perature is 300 K and increasing at a rate of 0.1 K/s and the volume is 100 L
and increasing at a rate of 0.2 L/s.

Theorem 14.5.2 (The Chain Rule (Case 2)). Suppose that z = f(x, y) is
a differentiable function of x and y, where x = g(s, t) and y = h(s, t) are
differentiable functions of s and t. Then

∂z

∂s
=

∂z

∂x

∂x

∂s
+

∂z

∂y

∂y

∂s

∂z

∂t
=

∂z

∂x

∂x

∂t
+

∂z

∂y

∂y

∂t
.

Example 3. If z = ex sin y, where x = st2 and y = s2t, find ∂z/∂s and ∂z/∂t.
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Theorem 14.5.3 (The Chain Rule (General Version)). Suppose that u is a
differentiable function of the n variables x1, x2, . . . , xn and each xj is a dif-
ferentiable function of the m variables t1, t2, . . . , tm. Then u is a function of
t1, t2, . . . , tm and

∂u

∂ti
=

∂u

∂x1

∂x1

∂ti
+

∂u

∂x2

∂x2

∂ti
+ · · ·+ ∂u

∂xn

∂xn

∂ti

for each i = 1, 2, . . . ,m.

Example 4. Write out the Chain Rule for the case where w = f(x, y, z, t)
and x = x(u, v), y = y(u, v), z = z(u, v), and t = t(u, v).

Example 5. If u = x4y + y2z3, where x = rset, y = rs2e−t, and z = r2s sin t,
find the value of ∂u/∂s when r = 2, s = 1, t = 0.

481



Calculus - 14.5 The Chain Rule

Example 6. If g(s, t) = f(s2 − t2, t2 − s2) and f is differentiable, show that g
satisfies the equation

t
∂g

∂s
+ s

∂g

∂t
= 0.

Example 7. If z = f(x, y) has continuous second-order partial derivatives
and x = r2 + s2 and y = 2rs, find

(a) ∂z/∂r
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(b) ∂2z/∂r2

Theorem 14.5.4 (Implicit Differentiation). Suppose that an equation of the
form F (x, y) = 0 defines y implicitly as a differentiable function of x, that
is, y = f(x), where F (x, f(x)) = 0 for all x in the domain of f . If F is
differentiable,

dy

dx
= −

∂F

∂x
∂F

∂y

= −Fx

Fy

.

Proof. If F is differentiable, we can apply Case 1 of the Chain Rule to differ-
entiate both sides of the equation F (x, y) = 0 with respect to x to get

∂F

∂x

dx

dx
+

∂F

∂y

dy

dx
= 0.

But dx/dx = 1, so if ∂F/∂y ̸= 0 we can solve for dy/dx and obtain the desired
result.
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Example 8. Find y′ if x3 + y3 = 6xy.

Theorem 14.5.5. Suppose that z is given implicitly as a function z = f(x, y)
by an equation of the form F (x, y, z) = 0. This means that F (x, y, f(x, y)) = 0
for all (x, y) in the domain of f . If F and f are differentiable,

∂z

∂x
= −

∂F

∂x
∂F

∂z

∂z

∂y
= −

∂F

∂y
∂F

∂z

.

Example 9. Find
∂z

∂x
and

∂z

∂y
if x3 + y3 + z3 + 6xyz = 1.
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14.6 Directional Derivatives and the Gradient

Definition 14.6.1. The directional derivative of f at (x0, y0) in the direction
of a unit vector u = ⟨a, b⟩ is

Duf(x0, y0) = lim
h→0

f(x0 + ha, y0 + hb)− f(x0, y0)

h
,

if this limit exists.

 Section 14.6  Directional Derivatives and the Gradient Vector 947

sects S in a curve C. (See Figure 3.) The slope of the tangent line T  to C at the point P is 
the rate of change of z in the direction of u.

Q(x, y, z) 

P(x¸, y¸, z¸) 

Pª (x ̧ , y ̧ , 0) 

Qª (x, y , 0 ) 
hb 

ha 
h 

u 

C 

T 

S 

y 

x 

z 

If Qsx, y, zd is another point on C and P9, Q9 are the projections of P, Q onto the 

xy-plane, then the vector P9Q9B is parallel to u and so

P9Q9B − hu − kha, hb l

for some scalar h. Therefore x 2 x0 − ha, y 2 y0 − hb, so x − x0 1 ha, y − y0 1 hb, 
and

Dz

h
−

z 2 z0

h
−

 f sx0 1 ha, y0 1 hbd 2 f sx0, y0 d
h

If we take the limit as h l 0, we obtain the rate of change of z (with respect to distance) 
in the direction of u, which is called the directional derivative of f  in the direction of u.

2    Definition The directional derivative of f  at sx0, y0 d in the direction of a 
unit vector u − ka, bl is

Du f sx0, y0 d − lim
h l 0

 
 f sx0 1 ha, y0 1 hbd 2 f sx0, y0 d

h

if this limit exists.

By comparing Definition 2 with Equations 1, we see that if u − i − k1, 0 l, then 
Di f − fx and if u − j − k0, 1 l, then Dj f − fy. In other words, the partial derivatives of f  
with respect to x and y are just special cases of the directional derivative.

FIGURE 3� 

TEC Visual 14.6A animates Figure 3 
by rotating u and therefore T.
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 57.  If f  is homogeneous of degree n, show that 

fxst x, t yd − t n21fxsx, yd

 58.  Suppose that the equation Fsx, y, zd − 0 implicitly defines each 
of the three variables x, y, and z as functions of the other two: 
z − f sx, yd, y − tsx, zd, x − h sy, zd. If F is differentiable and 
Fx, Fy, and Fz are all nonzero, show that

−z
−x

 
−x
−y

 
−y
−z

− 21

 59.  Equation 6 is a formula for the derivative dyydx of a function 
defined implicitly by an equation F sx, yd − 0, provided that F  
is differentiable and Fy ± 0. Prove that if F has continuous sec-
ond derivatives, then a formula for the second derivative of y is

d 2 y
dx 2 − 2

FxxFy
2 2 2FxyFxFy 1 FyyFx

2

Fy
3  

 55.  A function f  is called homogeneous of degree n if it satisfies 
the equation 

f st x, t yd − t nf sx, yd 

   for all t, where n is a positive integer and f  has continuous 
second-order partial derivatives.

 (a)  Verify that f sx, yd − x 2y 1 2xy 2 1 5y 3 is homogeneous  
of degree 3.

 (b)  Show that if f  is homogeneous of degree n, then

x 
−f
−x

1 y 
−f
−y

− n f sx, yd

   [Hint: Use the Chain Rule to differentiate f stx, t yd with 
respect to t.]

 56. If f  is homogeneous of degree n, show that

x2 
−2f
−x 2 1 2xy 

−2f
−x −y

1 y 2 
−2f
−y 2 − nsn 2 1d f sx, yd

The weather map in Figure 1 shows a contour map of the temperature function Tsx, yd for 
the states of California and Nevada at 3:00 pm on a day in October. The level curves, or 
isothermals, join locations with the same temperature. The partial derivative Tx at a loca-
tion such as Reno is the rate of change of temperature with respect to distance if we travel 
east from Reno; Ty is the rate of change of temperature if we travel north. But what if we 
want to know the rate of change of temperature when we travel southeast (toward Las 
Vegas), or in some other direction? In this section we introduce a type of derivative, 
called a directional derivative, that enables us to find the rate of change of a function of 
two or more variables in any direction.

Directional Derivatives
Recall that if z − f sx, yd, then the partial derivatives fx and fy are defined as

1  

  fxsx0, y0 d − lim
h  l 0

 
 f sx0 1 h , y0 d 2 f sx0, y0 d

h
 

 fysx0, y0 d − lim
h  l 0

 
 f sx0, y0 1 h d 2 f sx0, y0 d

h

and represent the rates of change of z in the x- and y-directions, that is, in the directions 
of the unit vectors i and j.

Suppose that we now wish to find the rate of change of z at sx0, y0 d in the direction of 
an arbitrary unit vector u − ka, bl. (See Figure 2.) To do this we consider the surface S 
with the equation z − f sx, yd (the graph of f ) and we let z0 − f sx0, y0 d. Then the point 
Psx0, y0, z0 d lies on S. The vertical plane that passes through P in the direction of u inter-
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80
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0
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FIGURE 1
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u

FIGURE 2 
A unit vector  
u − ka, bl − kcos u , sin u l

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Example 1. Use the weather map in the right figure to
estimate the value of the directional derivative of the tem-
perature function at Reno in the southeasterly direction.
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Theorem 14.6.1. If f is a differentiable function of x and y, then f has a
directional derivative in the direction of any unit vector u = ⟨a, b⟩ and

Duf(x, y) = fx(x, y)a+ fy(x, y)b.

Proof. If we define a function g of the single variable h by

g(h) = f(x0 + ha, y0 + hb)

then, by the definition of the derivative, we have

g′(0) = lim
h→0

g(h)− g(0)

h
= lim

h→0

f(x0 + ha, y0 + hb)− f(x0, y0)

h
= Duf(x0, y0).

On the other hand, we can write g(h) = f(x, y), where x = x0+ha, y = y0+hb,
so the Chain Rule gives

g′(h) =
∂f

∂x

dx

dh
+

∂f

∂y

dy

dh
= fx(x, y)a+ fy(x, y)b.

If we now put h = 0, then x = x0, y = y0, and

g′(0) = fx(x0, y0)a+ fy(x0, y0)b.

Thus

Duf(x0, y0) = fx(x0, y0)a+ fy(x0, y0)b.
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 57.  If f  is homogeneous of degree n, show that 

fxst x, t yd − t n21fxsx, yd

 58.  Suppose that the equation Fsx, y, zd − 0 implicitly de!nes each 
of the three variables x, y, and z as functions of the other two: 
z − f sx, yd, y − tsx, zd, x − hsy, zd. If F is differentiable and 
Fx, Fy, and Fz are all nonzero, show that

−z
−x

 
−x
−y

 
−y
−z

− 21

 59.  Equation 6 is a formula for the derivative dyydx of a function 
de!ned implicitly by an equation F sx, yd − 0, provided that F  
is differentiable and Fy ± 0. Prove that if F has continuous sec-
ond derivatives, then a formula for the second derivative of y is

d 2 y
dx 2 − 2

FxxFy
2 2 2FxyFxFy 1 FyyFx

2

Fy
3  

 55.  A function f  is called homogeneous of degree n if it satis!es 
the equation 

f st x, t yd − t nf sx, yd 

   for all t, where n is a positive integer and f  has continuous 
second-order partial derivatives.

 (a)  Verify that f sx, yd − x 2y 1 2xy 2 1 5y 3 is homogeneous  
of degree 3.

 (b)  Show that if f  is homogeneous of degree n, then

x 
−f
−x

1 y 
−f
−y

− n f sx, yd

   [Hint: Use the Chain Rule to differentiate f stx, t yd with 
respect to t.]

 56. If f  is homogeneous of degree n, show that

x2 
−2f
−x 2 1 2xy 

−2f
−x −y

1 y 2 
−2f
−y 2 − nsn 2 1d f sx, yd

The weather map in Figure 1 shows a contour map of the temperature function Tsx, yd for 
the states of California and Nevada at 3:00 pm on a day in October. The level curves, or 
isothermals, join locations with the same temperature. The partial derivative Tx at a loca-
tion such as Reno is the rate of change of temperature with respect to distance if we travel 
east from Reno; Ty is the rate of change of temperature if we travel north. But what if we 
want to know the rate of change of temperature when we travel southeast (toward Las 
Vegas), or in some other direction? In this section we introduce a type of derivative, 
called a directional derivative, that enables us to !nd the rate of change of a function of 
two or more variables in any direction.

Directional Derivatives
Recall that if z − f sx, yd, then the partial derivatives fx and fy are de!ned as

1  

  fxsx0, y0 d − lim
h l 0

 
 f sx0 1 h, y0 d 2 f sx0, y0 d

h
 

 fysx0, y0 d − lim
h l 0

 
 f sx0, y0 1 hd 2 f sx0, y0 d

h

and represent the rates of change of z in the x- and y-directions, that is, in the directions 
of the unit vectors i and j.

Suppose that we now wish to !nd the rate of change of z at sx0, y0 d in the direction of 
an arbitrary unit vector u − ka, bl. (See Figure 2.) To do this we consider the surface S 
with the equation z − f sx, yd (the graph of f ) and we let z0 − f sx0, y0 d. Then the point 
Psx0, y0, z0 d lies on S. The vertical plane that passes through P in the direction of u inter-
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Remark 1. If the unit vector u makes an angle θ with the
positive x-axis (as in the figure), then we can write u =
⟨cos θ, sin θ⟩ and the formula in Theorem 14.6.1 becomes

Duf(x, y) = fx(x, y) cos θ + fy(x, y) sin θ.
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Example 2. Find the directional derivative Duf(x, y) if

f(x, y) = x3 − 3xy + 4y2

and u is the unit vector given by angle θ = π/6. What is Duf(1, 2)?

Definition 14.6.2. If f is a function of two variables x and y, then the gra-
dient of f is the vector function ∇f (or gradf) defined by

∇f(x, y) = ⟨fx(x, y), fy(x, y)⟩ =
∂f

∂x
i+

∂f

∂y
j.

Example 3. If f(x, y) = sin x+ exy, then find ∇f(x, y) and ∇f(0, 1).

Remark 2. With this notation for the gradient vector, we can rewrite the
equation for the directional derivative of a differentiable function as

Duf(x, y) = ∇f(x, y) · u.

This expresses the directional derivative in the direction of a unit vector u as
the scalar projection of the gradient vector onto u.
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Example 4. Find the directional derivative of the function f(x, y) = x2y3−4y
at the point (2,−1) in the direction of the vector v = 2i+ 5j.

Definition 14.6.3. The directional derivative of f at (x0, y0, z0) in the direc-
tion of a unit vector u = ⟨a, b, c⟩ is

Duf(x0, y0, z0) = lim
h→0

f(x0 + ha, y0 + hb, z0 + hc)− f(x0, y0, z0)

h

if this limit exists. More compactly,

Duf(x0) = lim
h→0

f(x0 + hu)− f(x0)

h

where x0 = ⟨x0, y0⟩ if n = 2 and x0 = ⟨x0, y0, z0⟩ if n = 3.

Remark 3. If f(x, y, z) is differentiable and u = ⟨a, b, c⟩, then the same method
that was used to prove Theorem 14.6.1 can be used to show that

Duf(x, y, z) = fx(x, y, z)a+ fy(x, y, z)b+ fz(x, y, z)c.

For a function of three variables, the gradient vector, denoted by∇f or gradf ,
is

∇f(x, y, z) = ⟨fx(x, y, z), fy(x, y, z), fz(x, y, z)⟩,
or, for short,

∇f = ⟨fx, fy, fz⟩ =
∂f

∂x
i+

∂f

∂y
j+

∂f

∂z
k.

Just as with functions of two variables, the directional derivative can be rewrit-
ten as

Duf(x, y, z) = ∇f(x, y, z) · u.
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Example 5. If f(x, y, z) = x sin yz,

(a) find the gradient of f

(b) find the directional derivative of f at (1, 3, 0) in the direction of v =
i+ 2j− k.

Theorem 14.6.2. Suppose f is a differentiable function of two or three vari-
ables. The maximum value of the directional derivative Duf(x) is |∇f(x)| and
it occurs when u has the same direction as the gradient vector ∇f(x).

Proof.
Duf = ∇f · u = |∇f ||u| cos θ = |∇f | cos θ

where θ is the angle between ∇f and u. The maximum value of cos θ is 1 and
this occurs when θ = 0. Therefore the maximum value of Duf is |∇f | and it
occurs when θ = 0, that is, when u has the same direction as ∇f .
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Example 6.

(a) If f(x, y) = xey, find the rate of change of f at the point P (2, 0) in the
direction from P to Q

(
1
2
, 2
)
.

(b) In what direction does f have the maximum rate of change? What is this
maximum rate of change?
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Example 7. Suppose that the temperature at a point (x, y, z) in space is given
by T (x, y, z) = 80/(1+x2+2y2+3z2), where T is measured in degrees Celsius
and x, y, z, in meters. In which direction does the temperature increase fastest
at the point (1, 1,−2)? What is the maximum rate of increase?
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Tangent Planes to Level Surfaces
Suppose S is a surface with equation Fsx, y, zd − k, that is, it is a level surface of a func-
tion F of three variables, and let Psx0, y0, z0 d be a point on S. Let C be any curve that lies 
on the surface S and passes through the point P. Recall from Section 13.1 that the  
curve C is described by a continuous vector function rstd − kxstd, ystd, zstd l. Let t0 be the 
parameter value corresponding to P; that is, rst0d − kx0, y0, z0 l. Since C lies on S, any 
point sxstd, ystd, zstdd must satisfy the equation of S, that is,

16  Fsxstd, ystd, zstdd − k 

If x, y, and z are differentiable functions of t and F is also differentiable, then we can use 
the Chain Rule to differentiate both sides of Equation 16 as follows:

17  
−F
−x

 
dx
dt

1
−F
−y

 
dy
dt

1
−F
−z

 
dz
dt

− 0 

But, since =F − kFx , Fy , Fz l and r9std − kx9std, y9std, z9std l, Equation 17 can be written in 
terms of a dot product as

=F ? r9std − 0

In particular, when t − t0 we have rst0d − kx0, y0, z0 l, so

18  =Fsx0, y0, z0 d ? r9st0 d − 0 

Equation 18 says that the gradient vector at P, =Fsx0, y0, z0 d, is perpendicular to the  
tangent vector r9st0 d to any curve C on S that passes through P. (See Figure 9.) If 
=Fsx0, y0, z0 d ± 0, it is therefore natural to define the tangent plane to the level surface 
Fsx, y, zd − k at Psx0, y0, z0 d as the plane that passes through P and has normal vector 
=Fsx0, y0, z0 d. Using the standard equation of a plane (Equation 12.5.7), we can write the 
equation of this tangent plane as

19  Fxsx0, y0, z0 dsx 2 x0 d 1 Fysx0, y0, z0 dsy 2 y0 d 1 Fzsx0, y0, z0 dsz 2 z0 d − 0

The normal line to S at P is the line passing through P and perpendicular to the tan- 
gent plane. The direction of the normal line is therefore given by the gradient vector 
=Fsx0, y0, z0 d and so, by Equation 12.5.3, its symmetric equations are

20  
x 2 x0

Fxsx0, y0, z0 d
−

y 2 y0

Fysx0, y0, z0 d
−

z 2 z0

Fzsx0, y0, z0 d
 

In the special case in which the equation of a surface S is of the form z − f sx, yd 
(that is, S is the graph of a function f  of two variables), we can rewrite the equation as

Fsx, y, zd − f sx, yd 2 z − 0

and regard S as a level surface (with k − 0) of F. Then

 Fxsx0, y0, z0 d − fxsx0, y0 d

 Fysx0, y0, z0 d − fysx0, y0 d

 Fzsx0, y0, z0 d − 21 

0 
S C 

±F (x ̧ , y ̧,  z¸) 
tangent plane 

P r ª(t¸ ) 

x 

z 

y 

FIGURE 9
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Definition 14.6.4. If ∇F (x0, y0, z0) ̸= 0, the tangent plane
to the level surface F (x, y, z) = k at P (x0, y0, z0) is the plane
that passes through P and has normal vector ∇F (x0, y0, z0).
(See the figure.) Using the standard equation of a plane, we
can write the equation of this tangent plane as

Fx(x0, y0, z0)(x−x0)+Fy(x0, y0, z0)(y−y0)+Fz(x0, y0, z0)(x−x0).

491



Calculus - 14.6 Directional Derivatives and the Gradient

Definition 14.6.5. The normal line to the level surface F (x, y, z) = k at
P (x0, y0, z0) is the line passing through P and perpendicular to the tangent
plane. The direction of the normal line is therefore given by the gradient vector
∇F (x0, y0, z0) and so its symmetric equations are

x− x0

Fx(x0, y0, z0)
=

y − y0
Fy(x0, y0, z0)

=
z − z0

Fz(x0, y0, z0)
.

Example 8. Find the equations of the tangent plane and normal line at the
point (−2, 1,−3) to the ellipsoid

x2

4
+ y2 +

z2

9
= 3.
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14.7 Maximum and Minimum Values

Definition 14.7.1. A function of two variables has a local maximum at (a, b)
if f(x, y) ≤ f(a, b) when (x, y) is near (a, b). The number f(a, b) is called a
local maximum value. If f(x, y) ≥ f(a, b) when (x, y) is near (a, b), then f
has a local minimum at (a, b) and f(a, b) is a local minimum value. If these
inequalities hold for all points (x, y) in the domain of f , then f has an absolute
maximum (or absolute minimum) at (a, b).

Theorem 14.7.1. If f has a local maximum or minimum at (a, b) and the
first-order partial derivatives of f exist there, then fx(a, b) = 0 and fy(a, b) =
0.

Proof. Let g(x) = f(x, b). If f has a local maximum (or minimum) at (a, b),
then g has a local maximum (or minimum) at a, so g′(a) = 0 by Fermat’s
Theorem. But g′(a) = fx(a, b) and so fx(a, b) = 0. Similarly, by applying
Fermat’s Theorem to the function G(y) = f(a, y), we obtain fy(a, b) = 0.

Definition 14.7.2. A point (a, b) is called a critical point (or stationary point)
of f if fx(a, b) = 0 and fy(a, b) = 0, or if one of these partial derivatives does
not exist.

Example 1. Find the extreme values of f(x, y) = x2 + y2 − 2x− 6y + 14.
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Example 2. Find the extreme values of f(x, y) = y2 − x2.

Theorem 14.7.2 (Second Derivatives Test). Suppose the second partial deriva-
tives of f are continuous on a disk with center (a, b), and suppose that fx(a, b) =
0 and fy(a, b) = 0. Let

D = D(a, b) = fxx(a, b)fyy(a, b)− [fxy(a, b)]
2.

(a) If D > 0 and fxx(a, b) > 0, then f(a, b) is a local minimum.

(b) If D > 0 and fxx(a, b) < 0, then f(a, b) is a local maximum.

(c) If D < 0, then f(a, b) is not a local maximum or minimum.

Remark 1. In case (c) the point (a, b) is called a saddle point of f and the
graph of f crosses its tangent plane at (a, b).

Remark 2. If D = 0, the test gives no information: f could have a local
maximum or local minimum at (a, b), or (a, b) could be a saddle point of f .

Remark 3. To remember the formula for D, it’s helpful to write it as a deter-
minant:

D =

∣∣∣∣∣fxx fxy
fyx fyy

∣∣∣∣∣ = fxxfyy − (fxy)
2.
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Example 3. Find the local maximum and minimum values and saddle points
of f(x, y) = x4 + y4 − 4xy + 1.
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Example 4. Find and classify the critical points of the function

f(x, y) = 10x2y − 5x2 − 4y2 − x4 − 2y4.
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Example 5. Find the shortest distance from the point (1, 0,−2) to the plane
x+ 2y + z = 4.
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Example 6. A rectangular box without a lid is to be made from 12 m2 of
cardboard. Find the maximum volume of such a box.
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Definition 14.7.3. A closed set in R2 is one that contains all its boundary
points. [A boundary point of D is a point (a, b) such that every disk with
center (a, b) contains points in D and also points not in D.]
A bounded set in R2 is one that is contained within some disk.

 SECTION 14.7  Maximum and Minimum Values 965

Solving this equation for z, we get z − s12 2 xydyf2sx 1 ydg, so the expression for V  
becomes

V − xy 
12 2 xy
2sx 1 yd

−
12xy 2 x 2 y 2

2sx 1 yd

We compute the partial derivatives:

−V
−x

−
y 2s12 2 2xy 2 x 2 d

2sx 1 yd2       
−V
−y

−
x 2s12 2 2xy 2 y 2 d

2sx 1 yd2

If V  is a maximum, then −Vy−x − −Vy−y − 0, but x − 0 or y − 0 gives V − 0, so we 
must solve the equations

12 2 2xy 2 x 2 − 0      12 2 2xy 2 y 2 − 0

These imply that x 2 − y 2 and so x − y. (Note that x and y must both be positive in this 
problem.) If we put x − y in either equation we get 12 2 3x 2 − 0, which gives x − 2, 
y − 2, and z − s12 2 2 ? 2dyf2s2 1 2dg − 1.

We could use the Second Derivatives Test to show that this gives a local maximum  
of V, or we could simply argue from the physical nature of this problem that there must 
be an absolute maximum volume, which has to occur at a critical point of V, so it must 
occur when x − 2, y − 2, z − 1. Then V − 2 ? 2 ? 1 − 4, so the maximum volume of 
the box is 4 m3. ■

Absolute Maximum and Minimum Values
For a function f  of one variable, the Extreme Value Theorem says that if f  is continuous 
on a closed interval fa, bg, then f  has an absolute minimum value and an absolute maxi-
mum value. According to the Closed Interval Method in Section 4.1, we found these by 
evaluating f  not only at the critical numbers but also at the endpoints a and b.

There is a similar situation for functions of two variables. Just as a closed interval 
contains its endpoints, a closed set in R 2 is one that contains all its boundary points. [A 
boundary point of D is a point sa, bd such that every disk with center sa, bd contains 
points in D and also points not in D.] For instance, the disk

D − hsx, yd | x 2 1 y 2 < 1j

which consists of all points on or inside the circle x 2 1 y 2 − 1, is a closed set because  
it contains all of its boundary points (which are the points on the circle x 2 1 y 2 − 1). 
But if even one point on the boundary curve were omitted, the set would not be closed. 
(See Figure 11.)

A bounded set in R 2 is one that is contained within some disk. In other words, it is 
finite in extent. Then, in terms of closed and bounded sets, we can state the following 
counterpart of the Extreme Value Theorem in two dimensions.

8  Extreme Value Theorem for Functions of Two Variables If f  is continu-
ous on a closed, bounded set D in R 2, then f  attains an absolute maximum value 
f sx1, y1d and an absolute minimum value f sx2, y2 d at some points sx1, y1d and 
sx2, y2d in D.
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Closed sets

 SECTION 14.7  Maximum and Minimum Values 965

Solving this equation for z, we get z − s12 2 xydyf2sx 1 ydg, so the expression for V  
becomes

V − xy 
12 2 xy
2sx 1 yd

−
12xy 2 x 2 y 2

2sx 1 yd

We compute the partial derivatives:

−V
−x

−
y 2s12 2 2xy 2 x 2 d

2sx 1 yd2       
−V
−y

−
x 2s12 2 2xy 2 y 2 d

2sx 1 yd2

If V  is a maximum, then −Vy−x − −Vy−y − 0, but x − 0 or y − 0 gives V − 0, so we 
must solve the equations

12 2 2xy 2 x 2 − 0      12 2 2xy 2 y 2 − 0

These imply that x 2 − y 2 and so x − y. (Note that x and y must both be positive in this 
problem.) If we put x − y in either equation we get 12 2 3x 2 − 0, which gives x − 2, 
y − 2, and z − s12 2 2 ? 2dyf2s2 1 2dg − 1.

We could use the Second Derivatives Test to show that this gives a local maximum  
of V, or we could simply argue from the physical nature of this problem that there must 
be an absolute maximum volume, which has to occur at a critical point of V, so it must 
occur when x − 2, y − 2, z − 1. Then V − 2 ? 2 ? 1 − 4, so the maximum volume of 
the box is 4 m3. Q

Absolute Maximum and Minimum Values
For a function f  of one variable, the Extreme Value Theorem says that if f  is continuous 
on a closed interval fa, bg, then f  has an absolute minimum value and an absolute maxi-
mum value. According to the Closed Interval Method in Section 4.1, we found these by 
evaluating f  not only at the critical numbers but also at the endpoints a and b.

There is a similar situation for functions of two variables. Just as a closed interval 
contains its endpoints, a closed set in R 2 is one that contains all its boundary points. [A 
boundary point of D is a point sa, bd such that every disk with center sa, bd contains 
points in D and also points not in D.] For instance, the disk

D − hsx, yd | x 2 1 y 2 < 1j

which consists of all points on or inside the circle x 2 1 y 2 − 1, is a closed set because  
it contains all of its boundary points (which are the points on the circle x 2 1 y 2 − 1). 
But if even one point on the boundary curve were omitted, the set would not be closed. 
(See Figure 11.)

A bounded set in R 2 is one that is contained within some disk. In other words, it is 
"nite in extent. Then, in terms of closed and bounded sets, we can state the following 
counterpart of the Extreme Value Theorem in two dimensions.

8  Extreme Value Theorem for Functions of Two Variables If f  is continu-
ous on a closed, bounded set D in R 2, then f  attains an absolute maximum value 
f sx1, y1d and an absolute minimum value f sx2, y2 d at some points sx1, y1d and 
sx2, y2d in D.

7et140711
05/05/10
MasterID: 01629

(a) Closed sets

(b) Sets that are not closed

FIGURE 11FIGURE 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sets that are not closed

Theorem 14.7.3 (Extreme Value Theorem for Functions of Two Variables).
If f is continuous on a closed, bounded set D in R2, then f attains an absolute
maximum value f(x1, y1) and an absolute minimum value f(x2, y2) at some
points (x1, y1) and (x2, y2) in D.

Remark 4. To find the absolute maximum and minimum values of a continuous
function f on a closed, bounded set D:

1. Find the values of f at the critical points of f in D.

2. Find the extreme values of f on the boundary of D.

3. The largest of the values from steps 1 and 2 is the absolute maximum
value; the smallest of these values is the absolute minimum value.
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Example 7. Find the absolute maximum and minimum values of the function
f(x, y) = x2 − 2xy + 2y on the rectangle D = {(x, y) | 0 ≤ x ≤ 3, 0 ≤ y ≤ 2}.
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14.8 Lagrange Multipliers

Theorem 14.8.1 (Method of Lagrange Multipliers). To find the maximum
and minimum values of f(x, y, z) subject to the constraint g(x, y, z) = k [as-
suming that these extreme values exist and ∇g ̸= 0 on the surface g(x, y, z) =
k]:

(a) Find all values of x, y, z, and λ such that

∇f(x, y, z) = λ∇g(x, y, z)

and
g(x, y, z) = k.

The number λ is called a Lagrange multiplier.

(b) Evaluate f at the points (x, y, z) that result from step (a). The largest of
these values is the maximum value of f ; the smallest is the minimum value
of f .
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Example 1. A rectangular box without a lid is to be made from 12 m2 of
cardboard. Find the maximum volume of such a box.
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Example 2. Find the extreme values of the function f(x, y) = x2 + 2y2 on
the circle x2 + y2 = 1.

Example 3. Find the extreme values of f(x, y) = x2+2y2 on the disk x2+y2 ≤
1.
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Example 4. Find the points on the sphere x2 + y2 + z2 = 4 that are closest
to and farthest from the point (3, 1,−1).
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976 CHAPTER 14  Partial Derivatives

Two Constraints
Suppose now that we want to !nd the maximum and minimum values of a function 
f sx, y, zd subject to two constraints (side conditions) of the form tsx, y, zd − k and 
hsx, y, zd − c. Geometrically, this means that we are looking for the extreme values of f  
when sx, y, zd  is restricted to lie on the curve of intersection C of the level surfaces 
tsx, y, zd − k and hsx, y, zd − c. (See Figure 5.) Suppose f  has such an extreme value at 
a point Psx0, y0, z0d. We know from the beginning of this section that = f  is orthogonal to 
C at P. But we also know that =t is orthogonal to tsx, y, zd − k and =h is orthogonal  
to hsx, y, zd − c, so =t and =h are both orthogonal to C. This means that the gradient 
vector = f sx0, y0, z0 d is in the plane determined by =tsx0, y0, z0 d and =hsx0, y0, z0 d. (We 
assume that these gradient vectors are not zero and not parallel.) So there are numbers ! 
and " (called Lagrange multi pliers) such that

16  = f sx0, y0, z0 d − ! =tsx0, y0, z0 d 1 " =hsx0, y0, z0 d 

In this case Lagrange’s method is to look for extreme values by solving !ve equations in 
the !ve unknowns x, y, z, !, and ". These equations are obtained by writing Equa tion 16 
in terms of its components and using the constraint equations:

 fx − !tx 1 "hx

 fy − !ty 1 "hy

 fz − !tz 1 "hz

 tsx, y, zd − k

 hsx, y, zd − c

EXAMPLE 5 Find the maximum value of the function f sx, y, zd − x 1 2y 1 3z on the 
curve of intersection of the plane x 2 y 1 z − 1 and the cylinder x 2 1 y 2 − 1.

SOLUTION We maximize the function f sx, y, zd − x 1 2y 1 3z subject to the con-
straints tsx, y, zd − x 2 y 1 z − 1 and hsx, y, zd − x 2 1 y 2 − 1. The Lagrange condi-
tion is = f − ! =t 1 " =h, so we solve the equations

17   1 − ! 1 2x"  

18   2 − 2! 1 2y" 

19   3 − !  

20   x 2 y 1 z − 1  

21   x 2 1 y 2 − 1  

Putting ! − 3 [from (19) ] in (17), we get 2x" − 22, so x − 21y". Similarly, (18) 
gives y − 5ys2"d. Substitution in (21) then gives

1
"2 1

25
4"2 − 1

7et1470805
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The cylinder x 2 1 y 2 − 1 intersects 
the plane x 2 y 1 z − 1 in an ellipse 
(Figure 6). Example 5 asks for the 
maximum value of f  when sx, y, zd is 
restricted to lie on the ellipse.
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Theorem 14.8.2 (Method of Lagrange Multipliers for Two
Constraints). To find the maximum and minimum values
of f(x, y, z) subject to the constraints g(x, y, z) = k and
h(x, y, z) = c [assuming that these extreme values exist and
∇g ̸= 0, ∇h ̸= 0, and ∇g is not parallel to ∇h]:
(a) Find all values of x, y, z, λ, and µ such that

∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z)

and
g(x, y, z) = k h(x, y, z) = c.

The numbers λ and µ are called Lagrange multipliers.

(b) Evaluate f at the points (x, y, z) that result from step
(a). The largest of these values is the maximum value of
f ; the smallest is the minimum value of f .

Example 5. Find the maximum value of the function f(x, y, z) = x+2y+3z
on the curve of intersection of the plane x − y + z = 1 and the cylinder
x2 + y2 = 1.
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Chapter 15

Multiple Integrals

15.1 Double Integrals over Rectangles

Definition 15.1.1. The double integral of f over the rectangle R is

¨
R

f(x, y) dA = lim
m,n→∞

m∑
i=1

n∑
j=1

f(x∗
ij, y

∗
ij)∆A

if this limit exists. The points (x∗
ij, y

∗
ij) are called sample points, ∆A = ∆x∆y

is the area of the subrectangle Rij formed by the subintervals [xi−1, xi] and
[yj−1, yj], and the sum is called a double Riemann sum.

SeCtIon 15.1  Double Integrals over Rectangles 989

as in Figure 3, we form the subrectangles

Rij − fxi21, xig 3 fyj21, yjg − hsx, yd | xi21 < x < xi, yj21 < y < yjj

each with area DA − Dx Dy.

yj-1

(x*£™, y*£™)

y
yj

y

x

d

c
›

0 ⁄ ¤

Rij

a b

(x*ij , y*ij)

(xi, yj)

Îx

Îy

xi-1 xi

If we choose a sample point sxij*, yij*d in each Rij, then we can approximate the part of 
S that lies above each Rij by a thin rectangular box (or “column”) with base Rij and height 
f sxij*, yij*d as shown in Figure 4. (Compare with Figure 1.) The volume of this box is the 
height of the box times the area of the base rectangle:

f sxij*, yij*d DA

If we follow this procedure for all the rectangles and add the volumes of the correspond-
ing boxes, we get an approximation to the total volume of S:

3 V < o
m

i−1
o

n

j−1
 f sxij*, yij*d DA 

(See Figure 5.) This double sum means that for each subrectangle we evaluate f  at the 
chosen point and multiply by the area of the subrectangle, and then we add the results.

0 

FIGURE 4 FIGURE 5

z 

y 

c 
d 

a 

b 
x 

f(x*ij y*ij ) 

x 

y 

0 

z 

,

Rij

FIGURE 3  
Dividing R into subrectangles
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Calculus - 15.1 Double Integrals over Rectangles

Definition 15.1.2. If f(x, y) ≥ 0, then the volume V of the solid that lies
above the rectangle R and below the surface z = f(x, y) is

V =

¨
R

f(x, y) dA.

Example 1. Estimate the volume of the solid that lies above the square
R = [0, 2]× [0, 2] and below the elliptic paraboloid z = 16− x2 − 2y2. Divide
R into four equal squares and choose the sample point to be the upper right
corner of each square Rij. Sketch the solid and the approximating rectangular
boxes.

Example 2. If R = {(x, y) | −1 ≤ x ≤ 1,−2 ≤ y ≤ 2}, evaluate the integral

¨
R

√
1− x2 dA.
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Calculus - 15.1 Double Integrals over Rectangles

Theorem 15.1.1 (Midpoint Rule for Double Integrals).

¨
R

f(x, y) dA ≈
m∑
i=1

n∑
j=1

f(x̄i, ȳj)∆A

where x̄i is the midpoint of [xi−1, xi] and ȳi is the midpoint of [yj−1, yj].

Example 3. Use the Midpoint Rule with m = n = 2 to estimate the value of
the integral

˜
R
(x− 3y2) dA, where R = {(x, y) | 0 ≤ x ≤ 2, 1 ≤ y ≤ 2}.

Definition 15.1.3. Suppose that f is a function of two variables that is in-
tegrable on the rectangle R = [a, b]× [c, d]. We use the notation

´ b
a
f(x, y)dx

to mean that y is held fixed and f(x, y) is integrated with respect to x from
x = a to x = b. This procedure is called partial integration with respect to x.
Integrating this function gives us an iterated integral

ˆ d

c

ˆ b

a

f(x, y) dx dy =

ˆ d

c

[ˆ b

a

f(x, y) dx

]
dy

where we first integrate with respect to x (holding y fixed) from x = a to x = b
and then we integrate the resulting function of y with respect to y from y = c
to y = d.
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Calculus - 15.1 Double Integrals over Rectangles

Example 4. Evaluate the iterated integrals.

(a)

ˆ 3

0

ˆ 2

1

x2y dy dx

(b)

ˆ 2

1

ˆ 3

0

x2y dx dy

Theorem 15.1.2 (Fubini’s Theorem). If f is continuous on the rectangle
R = {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d}, then

¨
R

f(x, y) dA =

ˆ b

a

ˆ d

c

f(x, y) dy dx =

ˆ d

c

ˆ b

a

f(x, y) dx dy.

More generally, this is true if we assume that f is bounded on R, f is discon-
tinuous only on a finite number of smooth curves, and the iterated integrals
exist.
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Calculus - 15.1 Double Integrals over Rectangles

Example 5. Evaluate the double integral
˜

R
(x−3y2) dA, where R = {(x, y) |

0 ≤ x ≤ 2, 1 ≤ y ≤ 2}.

Example 6. Evaluate
˜

R
y sin(xy) dA, where R = [1, 2]× [0, π].

Example 7. Find the volume of the solid S that is bounded by the elliptic
paraboloid x2 + 2y2 + z = 16, the planes x = 2 and y = 2, and the three
coordinate planes.
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Calculus - 15.1 Double Integrals over Rectangles

Theorem 15.1.3.

¨
R

g(x)h(y) dA =

ˆ b

a

g(x) dx

ˆ d

c

h(y) dy where R = [a, b]× [c, d].

Proof. By Fubini’s Theorem,

¨
R

g(x)h(y) dA =

ˆ d

c

ˆ b

a

g(x)h(y) dx dy =

ˆ d

c

[ˆ b

a

g(x)h(y) dx

]
dy.

In the inner integral, y is a constant, so h(y) is a constant and we can write

ˆ d

c

[ˆ b

a

g(x)h(y) dx

]
dy =

ˆ d

c

h(y)(ˆ b

a

g(x) dx

) dy =

ˆ b

a

g(x) dx

ˆ d

c

h(y) dy

since
´ b
a
g(x) dx is a constant.

Example 8. Find
˜

R
sin x cos y dA if R = [0, π/2]× [0, π/2].

Definition 15.1.4. The average value of a function f of two variables defined
on a rectangle R is

fave =
1

A(R)

¨
R

f(x, y) dA

where A(R) is the area of R.
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Calculus - 15.1 Double Integrals over Rectangles

Example 9. The contour map in the figure shows the snowfall, in inches, that
fell on the state of Colorado on December 20 and 21, 2006. (The state is in
the shape of a rectangle that measures 388 mi west to east and 276 mi south
to north.) Use the contour map to estimate the average snowfall for the entire
state of Colorado on those days.

 SECTION 15.1  Double Integrals over Rectangles 997

Average Value
Recall from Section 6.5 that the average value of a function f  of one variable defined on 
an interval fa, bg is

fave −
1

b 2 a
 yb

a
 f sxd dx

In a similar fashion we define the average value of a function f  of two variables defined 
on a rectangle R to be

fave −
1

AsRd
 yy

R

  f sx, yd dA

where AsRd is the area of R.
If f sx, yd > 0, the equation

AsRd 3 fave − y
R

y  f sx, yd dA

says that the box with base R and height fave has the same volume as the solid that lies 
under the graph of f . [If z − f sx, yd describes a mountainous region and you chop off the 
tops of the mountains at height fave, then you can use them to fill in the valleys so that the 
region becomes completely flat. See Figure 17.]

EXAMPLE 9 The contour map in Figure 18 shows the snowfall, in inches, that fell on the 
state of Colorado on December 20 and 21, 2006. (The state is in the shape of a rectangle 
that measures 388 mi west to east and 276 mi south to north.) Use the contour map to 
estimate the average snowfall for the entire state of Colorado on those days.
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SOLUTION Let’s place the origin at the southwest corner of the state. Then 0 < x < 388, 
0 < y < 276, and f sx, yd is the snowfall, in inches, at a location x miles to the east and 
y miles to the north of the origin. If R is the rectangle that represents Colorado, then the 
average snowfall for the state on December 20–21 was

fave −
1

AsRd
 y

R

y f sx, yd dA  

FIGURE 17

FIGURE 18
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Calculus - 15.2 Double Integrals over General Regions

15.2 Double Integrals over General Regions

Definition 15.2.1. If F is integrable over R and D is a bounded region then
we define the double integral of f over D by

¨
D

f(x, y) dA =

¨
R

F (x, y) dA

where F is given by

F (x, y) =

{
f(x, y) if (x, y) is in D,

0 if (x, y) is in R but not in D.

SeCtIon 15.2  Double Integrals over General Regions  1001

For single integrals, the region over which we integrate is always an interval. But for  
double integrals, we want to be able to integrate a function f  not just over rectangles but 
also over regions D of more general shape, such as the one illustrated in Figure 1. We sup-
pose that D is a bounded region, which means that D can be enclosed in a rectangular 
region R as in Figure 2. Then we define a new function F with domain R by

1 Fsx, yd − H0

f sx, yd if

if

sx, yd is in D

sx, yd is in R but not in D

0

y

x

D

y

0 x

D
R

FIGURE 2FIGURE 1

If F is integrable over R, then we define the double integral of f  over D by

2 y
D

y f sx, yd dA − y
R

y Fsx, yd dA    where F is given by Equation 1

Definition 2 makes sense because R is a rectangle and so yyR Fsx, yd dA has been previ-
ously defined in Section 15.1. The procedure that we have used is reasonable because the 
values of Fsx, yd are 0 when sx, yd lies outside D and so they contribute nothing to 
the integral. This means that it doesn’t matter what rectangle R we use as long as it con-
tains D.

In the case where f sx, yd > 0, we can still interpret yyD  f sx, yd dA as the volume of the
solid that lies above D and under the surface z − f sx, yd (the graph of f ). You can see that 
this is reasonable by comparing the graphs of f  and F in Figures 3 and 4 and remember-
ing that yyR Fsx, yd dA is the volume under the graph of F.

y 

0 

z 

x 
D 

graph of f 

FIGURE 4

y

0

z

x
D

graph of F

FIGURE 3

Figure 4 also shows that F is likely to have discontinuities at the boundary points  
of D. Nonetheless, if f  is continuous on D and the boundary curve of D is “well behaved”  
(in a sense outside the scope of this book), then it can be shown that yyR Fsx, yd dA exists
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Definition 15.2.2. A plane region D is said to be of type I if it lies between
the graphs of two continuous functions of x, that is,

D = {(x, y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}

where g1 and g2 are continuous on [a, b]. Some examples of type I regions are
shown in the figure.

1002 CHAPTER 15  Multiple Integrals

and therefore yyD f sx, yd dA exists. In particular, this is the case for the following two 
types of regions.

A plane region D is said to be of type I if it lies between the graphs of two continuous 
functions of x, that is,

D − hsx, yd | a < x < b, t1sxd < y < t2sxdj

where t1 and t2 are continuous on fa, bg. Some examples of type I regions are shown in 
Figure 5.

 

0

y

xba

D

y=g™(x)

y=g¡(x)
0

y

xba

D

y=g™(x)

y=g¡(x)

0

y

xba

D

y=g™(x)

y=g¡(x)

In order to evaluate yyD f sx, yd dA when D is a region of type I, we choose a rect- 
angle R − fa, bg 3 fc, dg that contains D, as in Figure 6, and we let F be the function 
given by Equation 1; that is, F agrees with f  on D and F is 0 outside D. Then, by Fubini’s 
Theorem,

y
D

y f sx, yd dA − y
R

y Fsx, yd dA − yb

a
 yd

c
 Fsx, yd dy dx

Observe that Fsx, yd − 0 if y , t1sxd or y . t2sxd because sx, yd then lies outside D. 
Therefore

yd

c
 Fsx, yd dy − yt2sxd

t1sxd
 Fsx, yd dy − yt2sxd

t1sxd
 f sx, yd dy

because Fsx, yd − f sx, yd when t1sxd < y < t2sxd. Thus we have the following formula 
that enables us to evaluate the double integral as an iterated integral.

3   If f  is continuous on a type I region D such that

D − hsx, yd | a < x < b, t1sxd < y < t2sxdj

then y
D

y f sx, yd dA − yb

a
 yt2sxd

t1sxd
  f sx, yd dy dx

The integral on the right side of (3) is an iterated integral that is similar to the ones we 
considered in the preceding section, except that in the inner integral we regard x as being 
constant not only in f sx, yd but also in the limits of integration, t1sxd and t2sxd.

We also consider plane regions of type II, which can be expressed as 

4   D − hsx, yd | c < y < d, h 1syd < x < h 2sydj 
where h 1 and h 2 are continuous. Two such regions are illustrated in Figure 7.

FIGURE 5  
Some type I regions
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FIGURE 7  
 Some type II regions
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Calculus - 15.2 Double Integrals over General Regions

Theorem 15.2.1. If f is continuous on a type I region D such that

D = {(x, y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}

then ¨
D

f(x, y) dA =

ˆ b

a

ˆ g2(x)

g1(x)

f(x, y) dy dx.

Definition 15.2.3. A plane region D is said to be of type II if it lies between
the graphs of two continuous functions of y, that is,

D = {(x, y) | c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y)}

where h1 and h2 are continuous on [c, d]. Some examples of type II regions are
shown in the figure.

1002 CHAPTER 15  Multiple Integrals

and therefore yyD f sx, yd dA exists. In particular, this is the case for the following two 
types of regions.

A plane region D is said to be of type I if it lies between the graphs of two continuous 
functions of x, that is,

D − hsx, yd | a < x < b, t1sxd < y < t2sxdj

where t1 and t2 are continuous on fa, bg. Some examples of type I regions are shown in 
Figure 5.
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In order to evaluate yyD f sx, yd dA when D is a region of type I, we choose a rect- 
angle R − fa, bg 3 fc, dg that contains D, as in Figure 6, and we let F be the function 
given by Equation 1; that is, F agrees with f on D and F is 0 outside D. Then, by Fubini’s 
Theorem,

y
D

y f sx, yd dA − y
R

y Fsx, yd dA − yb

a
yd

c
Fsx, yd dy dx

Observe that Fsx, yd − 0 if y , t1sxd or y . t2sxd because sx, yd then lies outside D. 
Therefore

yd

c
Fsx, yd dy − yt2sxd

t1sxd
Fsx, yd dy − yt2sxd

t1sxd
f sx, yd dy

because Fsx, yd − f sx, yd when t1sxd < y < t2sxd. Thus we have the following formula 
that enables us to evaluate the double integral as an iterated integral.

where h 1 and h 2 are continuous. Two such regions are illustrated in Figure 7.

FIGURE 5 
Some type I regions
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Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Theorem 15.2.2. If f is continuous on a type II region D such that

D = {(x, y) | c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y)}

then ¨
D

f(x, y) dA =

ˆ d

c

ˆ h2(y)

h1(y)

f(x, y) dx dy.
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Calculus - 15.2 Double Integrals over General Regions

Example 1. Evaluate
˜

D
(x+ 2y) dA, where D is the region bounded by the

parabolas y = 2x2 and y = 1 + x2.
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Calculus - 15.2 Double Integrals over General Regions

Example 2. Find the volume of the solid that lies under the paraboloid
z = x2 + y2 and above the region D in the xy-plane bounded by the line
y = 2x and the parabola y = x2.
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Calculus - 15.2 Double Integrals over General Regions

Example 3. Evaluate
˜

D
xy dA, where D is the region bounded by the line

y = x− 1 and the parabola y2 = 2x+ 6.
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Calculus - 15.2 Double Integrals over General Regions

Example 4. Find the volume of the tetrahedron bounded by the planes x+
2y + z = 2, x = 2y, x = 0, and z = 0.

Example 5. Evaluate the iterated integral
´ 1
0

´ 1
x
sin(y2) dy dx.
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Calculus - 15.2 Double Integrals over General Regions

Theorem 15.2.3 (Properties of Double Integrals).

1.

¨
D

[f(x, y) + g(x, y)] dA =

¨
D

f(x, y) dA+

¨
D

g(x, y) dA.

2.

¨
D

cf(x, y) dA = c

¨
D

f(x, y) dA where c is a constant.

3. If f(x, y) ≥ g(x, y) for all (x, y) in D, then

¨
D

f(x, y) dA ≥
¨

D

g(x, y) dA.

4. If D = D1 ∪D2, where D1 and D2 don’t overlap except perhaps on their
boundaries, then

¨
D

f(x, y) dA =

¨
D1

f(x, y) dA+

¨
D2

f(x, y) dA

This property can be used to evaluate double integrals over regions D that
are neither type I nor type II but can be expressed as a union of regions
of type I or type II, as illustrated by the figure.
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Property 9 can be used to evaluate double integrals over regions D that are neither 
type I nor type II but can be expressed as a union of regions of type I or type II. Figure 18 
illustrates this procedure. (See Exercises 57 and 58.)

x0

y

D

(a) D is neither type I nor type II.

x0

y

D¡

D™

(b) D=D¡ ! D™, D¡ is type I, D™ is type II.

 

The next property of integrals says that if we integrate the constant function f sx, yd − 1 
over a region D, we get the area of D:

10  y
D

y 1 dA − AsDd 

Figure 19 illustrates why Equation 10 is true: A solid cylinder whose base is D and 
whose height is 1 has volume AsDd " 1 − AsDd, but we know that we can also write its 
volume as yyD 1 dA.

Finally, we can combine Properties 7, 8, and 10 to prove the following property. (See 
Exercise 63.)

11   If m < f sx, yd < M for all sx, yd in D, then

mAsDd < y
D

y f sx, yd dA < MAsDd

EXAMPLE 6 Use Property 11 to estimate the integral yyD e sin x cos y dA, where D is the 
disk with center the origin and radius 2.

SOLUTION Since 21 < sin x < 1 and 21 < cos y < 1, we have 
21 < sin x cos y < 1 and therefore

e21 < e sin x cos y < e 1 − e

Thus, using m − e21 − 1ye, M − e, and AsDd − !s2d2 in Property 11, we obtain

 
4!

e
< y

D

y e sin x cos y dA < 4!e  ■

FIGURE 18

D y 

0 

z 

x 

z=1 

FIGURE 19   
Cylinder with base D and height 1
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5.

¨
D

1 dA = A(D) where A(D) is the area of D.

6. If m ≤ f(x, y) ≤ M for all (x, y) in D, then

mA(D) ≤
¨

D

f(x, y) dA ≤ MA(D).
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Example 6. Use Property 6 to estimate the integral
˜

D
esinx cos y dA, where

D is the disk with center the origin and radius 2.
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15.3 Double Integrals in Polar Coordinates

Definition 15.3.1. The region given by

R = {(r, θ) | a ≤ r ≤ b, α ≤ θ ≤ β}

is called a polar rectangle, as shown in the figure.
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r=ri-1

O

∫
å

r=a ¨=å

¨=∫
r=b

R
Î¨

¨=¨j

(ri*, ̈ j*)

r=ri

Rij

O

¨=¨j-1

FIGURE 3 Polar rectangle FIGURE 4 Dividing R into polar subrectangles

The “center” of the polar subrectangle

Rij − hsr, !d | ri21 < r < ri, !j21 < ! < !jj
has polar coordinates

ri* − 1
2 sri21 1 rid      !j* − 1

2 s!j21 1 !jd

We compute the area of Rij using the fact that the area of a sector of a circle with radius 
r and central angle ! is 1

2 r 2!. Subtracting the areas of two such sectors, each of which 
has central angle D! − !j 2 !j21, we find that the area of Rij is

 DAi − 1
2 ri

2 D! 2 1
2 ri21

2 D! − 1
2 sri

2 2 ri21
2 d D!

 − 1
2 sri 1 ri21 dsri 2 ri21 d D! − ri* Dr D!

Although we have defined the double integral yyR f sx, yd dA in terms of ordinary rect-
angles, it can be shown that, for continuous functions f, we always obtain the same  
answer using polar rectangles. The rectangular coordinates of the center of Rij are 
sri* cos !j*, ri* sin !j*d, so a typical Riemann sum is

1  o
m

i−1
 o

n

j−1
 f sri* cos !j*, ri* sin !j*d DAi − o

m

i−1
 o

n

j−1
 f sri* cos !j*, ri* sin !j*d ri* Dr D!

If we write tsr, !d − r f sr cos !, r sin !d, then the Riemann sum in Equation 1 can be 
written as

o
m

i−1
 o

n

j−1
 tsri*, !j*d Dr D!

which is a Riemann sum for the double integral

y"

#
 yb

a
 tsr, !d dr d!

Therefore we have

 y
R

y f sx, yd dA − lim
m, nl `

 o
m

i−1
 o

n

j−1
 f sri* cos !j*, ri* sin !j*d DAi

 − lim
m, nl `

 o
m

i−1
 o

n

j−1
 tsri*, !j*d Dr D! − y"

#
yb

a
 tsr, !d dr d!

 − y"

#
 yb

a
 f sr cos !, r sin !d r dr d!
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Theorem 15.3.1 (Change to Polar Coordinates in a Double Integral). If f is
continuous on a polar rectangle R given by 0 ≤ a ≤ r ≤ b, α ≤ θ ≤ β, where
0 ≤ β − α ≤ 2π, then

¨
R

f(x, y) dA =

ˆ β

α

ˆ b

a

f(r cos θ, r sin θ) r dr dθ.

Proof. The “center” of the polar subrectangle

Rij = {(r, θ) | ri−1 ≤ r ≤ ri, θj−1 ≤ θ ≤ θj}

has polar coordinates

r∗i =
1

2
(ri−1 + ri) θ∗j =

1

2
(θj−1 + θj).

Since the area of a sector of a circle with radius r and central angle θ is 1
2
r2θ,

the area of Rij is

∆Ai =
1

2
r2i∆θ − 1

2
r2i−1∆θ =

1

2
(r2i − r2i−1)∆θ

=
1

2
(ri + ri−1)(ri − ri−1)∆θ = r∗i∆r∆θ.
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Therefore we have

¨
R

f(x, y) dA = lim
m,n→∞

m∑
i=1

n∑
j=1

f(r∗i cos θ
∗
j , r

∗
i sin θ

∗
j )∆Ai

=

ˆ β

α

ˆ b

a

f(r cos θ, r sin θ) r dr dθ.

Example 1. Evaluate
˜

R
(3x + 4y2) dA, where R is the region in the upper

half-plane bounded by the circles x2 + y2 = 1 and x2 + y2 = 4.

Example 2. Find the volume of the solid bounded by the plane z = 0 and
the paraboloid z = 1− x2 − y2.
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Theorem 15.3.2. If f is continuous on a polar region of the form

D = {(r, θ) | α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ)}
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If we had used rectangular coordinates instead of polar coordinates, then we would 
have obtained

V − y
D

y s1 2 x 2 2 y 2 d dA − y1

21
 ys12x2

2s12x2
 s1 2 x 2 2 y 2 d dy dx

which is not easy to evaluate because it involves finding y s1 2 x 2 d3y2 dx. ■

What we have done so far can be extended to the more complicated type of region  
shown in Figure 7. It’s similar to the type II rectangular regions considered in Sec-
tion 15.2. In fact, by combining Formula 2 in this section with Formula 15.2.5, we obtain 
the following formula.

3   If f  is continuous on a polar region of the form

D − hsr, !d | " < ! < #, h 1s!d < r < h 2s!dj

then y
D

y f sx, yd dA − y#

"
 y h 2s!d

h
1
s!d

 f sr cos !, r sin !d r dr d!

In particular, taking f sx, yd − 1, h 1s!d − 0, and h 2s!d − h s!d in this formula, we see 
that the area of the region D bounded by ! − ", ! − #, and r − h s!d is

 AsDd − y
D

y 1 dA − y#

"
 y h s!d

0
 r dr d!

 − y#

"
 F r 2

2 G0

h s!d

d! − y#

"
 12 fh s!dg2 d!

and this agrees with Formula 10.4.3.

EXAMPLE 3 Use a double integral to find the area enclosed by one loop of the four-
leaved rose r − cos 2!.

SOLUTION From the sketch of the curve in Figure 8, we see that a loop is given by the 
region

D − hsr, !d |  2$y4 < ! < $y4, 0 < r < cos 2!j
So the area is

 AsDd − y
D

y dA − y$y4

2$y4
 ycos

 
2!

0
 r dr d!

 − y$y4

2$y4
 f1

2 r 2g0

cos 2!
 d! − 1

2 y$y4

2$y4
 cos2 2! d!

  − 1
4 y$y4

2$y4
 s1 1 cos 4!d d! − 1

4 f! 1 1
4 sin 4!g2$y4

$y4
−

$

8
 ■

O

∫
å

r=h¡(¨)

¨=å

¨=∫ r=h™(¨)

D

FIGURE 7
D=s(r, ¨) | å¯¨¯∫, h¡(¨)¯r¯h™(¨)d

¨=π
4

¨=_π
4

FIGURE 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

then ¨
D

f(x, y) dA =

ˆ β

α

ˆ h2(θ)

h1(θ)

f(r cos θ, r sin θ) r dr dθ.

Example 3. Use a double integral to find the area enclosed by one loop of
the four-leaved rose r = cos 2θ.
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Example 4. Find the volume of the solid that lies under the paraboloid
z = x2 + y2, above the xy-plane, and inside the cylinder x2 + y2 = 2x.
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15.4 Applications of Double Integrals

Definition 15.4.1. Suppose a lamina occupies a region D of the xy-plane
and its density (in units of mass per unit area) at a point (x, y) in D is given
by ρ(x, y), where ρ is a continuous function on D. Then the total mass of the
lamina is given by

m = lim
k,l→∞

k∑
i=1

l∑
j=1

ρ(x∗
ij, y

∗
ij)∆A =

¨
D

ρ(x, y) dA.

Similarly, if an electric charge is distributed over a region D and the charge
density (in units of charge per unit area) is given by σ(x, y) at a point (x, y)
in D, then the total charge Q is given by

Q =

¨
D

σ(x, y) dA.
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(in units of charge per unit area) is given by !sx, yd at a point sx, yd in D, then the total 
charge Q is given by

2  Q − y
D

y !sx, yd dA 

EXAMPLE 1 Charge is distributed over the triangular region D in Figure 3 so that the 
charge density at sx, yd is !sx, yd − xy, measured in coulombs per square meter (Cym2). 
Find the total charge.

SOLUTION From Equation 2 and Figure 3 we have

 Q − y
D

y !sx, yd dA − y1

0
 y1

12x
 xy dy dx

 − y1

0
 Fx 

y 2

2 G
y−12x

y−1 

dx − y1

0
 
x
2

 f12 2 s1 2 xd2 g dx

 − 1
2 y1

0
 s2x 2 2 x 3 d dx −

1
2

 F 2x 3

3
2

x 4

 4 G0

1

−
5
24

Thus the total charge is 5
24 C. ■

Moments and Centers of Mass
In Section 8.3 we found the center of mass of a lamina with constant density; here we 
consider a lamina with variable density. Suppose the lamina occupies a region D and 
has density function "sx, yd. Recall from Chapter 8 that we defined the moment of a 
particle about an axis as the product of its mass and its directed distance from the axis. 
We divide D into small rectangles as in Figure 2. Then the mass of Rij is approximately 
"sxij*, yij*d DA, so we can approximate the moment of Rij with respect to the x-axis by

f"sxij*, yij*d DAg yij*

If we now add these quantities and take the limit as the number of subrectangles be comes  
large, we obtain the moment of the entire lamina about the x-axis:

3  Mx − lim
m, n l `

  o
m

i−1
 o

n

j−1
 yij* "sxij*, yij*d DA − y

D

y y "sx, yd dA 

Similarly, the moment about the y-axis is 

4  My − lim
m, n l `

  o
m

i−1
 o

n

j−1
 xij* "sxij*, yij*d DA − y

D

y x "sx, yd dA 

As before, we define the center of mass sx, yd so that mx − My and my − Mx. The physi-
cal significance is that the lamina behaves as if its entire mass is concentrated at its center 
of mass. Thus the lamina balances horizontally when supported at its center of mass (see 
Figure 4).

1

y

0 x

(1, 1)y=1

y=1-x

D

FIGURE 3

D 
(x, y) 

FIGURE 4
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Example 1. Charge is distributed over the triangular region
D in the figure so that the charge density at (x, y) is σ(x, y) =
xy, measured in coulombs per square meter (C/m2). Find
the total charge.
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Definition 15.4.2. Suppose a lamina occupies a region D and has density
function ρ(x, y). The moment of the lamina about the x-axis is

Mx = lim
m,n→∞

m∑
i=1

n∑
j=1

y∗ijρ(x
∗
ij, y

∗
ij)∆A =

¨
D

yρ(x, y) dA.

Similarly, moment about the y-axis is

My = lim
m,n→∞

m∑
i=1

n∑
j=1

x∗
ijρ(x

∗
ij, y

∗
ij)∆A =

¨
D

xρ(x, y) dA.

Definition 15.4.3. The coordinates (x̄, ȳ) of the center of mass of a lamina
occupying the region D and having density function ρ(x, y) are

x̄ =
My

m
=

1

m

¨
D

xρ(x, y) dA ȳ =
Mx

m
=

1

m

¨
D

yρ(x, y) dA

where the mass m is given by

m =

¨
D

ρ(x, y) dA.

The lamina balances horizontally when supported at its center of mass (see
the figure).
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(in units of charge per unit area) is given by !sx, yd at a point sx, yd in D, then the total 
charge Q is given by

2  Q − y
D

y !sx, yd dA 

EXAMPLE 1 Charge is distributed over the triangular region D in Figure 3 so that the 
charge density at sx, yd is !sx, yd − xy, measured in coulombs per square meter (Cym2). 
Find the total charge.

SOLUTION From Equation 2 and Figure 3 we have

 Q − y
D

y !sx, yd dA − y1

0
 y1

12x
 xy dy dx

 − y1

0
 Fx 

y 2

2 G
y−12x

y−1 

dx − y1

0
 
x
2

 f12 2 s1 2 xd2 g dx

 − 1
2 y1

0
 s2x 2 2 x 3 d dx −

1
2

 F 2x 3

3
2

x 4

 4 G0

1

−
5

24

Thus the total charge is 5
24 C. ■

Moments and Centers of Mass
In Section 8.3 we found the center of mass of a lamina with constant density; here we 
consider a lamina with variable density. Suppose the lamina occupies a region D and 
has density function "sx, yd. Recall from Chapter 8 that we defined the moment of a 
particle about an axis as the product of its mass and its directed distance from the axis. 
We divide D into small rectangles as in Figure 2. Then the mass of Rij is approximately 
"sxij*, yij*d DA, so we can approximate the moment of Rij with respect to the x-axis by

f"sxij*, yij*d DAg yij*

If we now add these quantities and take the limit as the number of subrectangles be comes  
large, we obtain the moment of the entire lamina about the x-axis:

3  Mx − lim
m, n l `

  o
m

i−1
 o

n

j−1
 yij* "sxij*, yij*d DA − y

D

y y "sx, yd dA 

Similarly, the moment about the y-axis is 

4  My − lim
m, n l `

  o
m

i−1
 o

n

j−1
 xij* "sxij*, yij*d DA − y

D

y x "sx, yd dA 

As before, we define the center of mass sx, yd so that mx − My and my − Mx. The physi-
cal significance is that the lamina behaves as if its entire mass is concentrated at its center 
of mass. Thus the lamina balances horizontally when supported at its center of mass (see 
Figure 4).
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Example 2. Find the mass and center of mass of a triangular lamina with
vertices (0, 0), (1, 0), and (0, 2) if the density function is ρ(x, y) = 1 + 3x+ y.
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Example 3. The density at any point on a semicircular lamina is proportional
to the distance from the center of the circle. Find the center of mass of the
lamina.
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Definition 15.4.4. The moment of inertia (also called the second moment)
of a particle of mass m about an axis is defined to be mr2, where r is the
distance from the particle to the axis. The moment of inertia of the lamina
about the x-axis is defined to be

Ix = lim
m,n→∞

m∑
i=1

n∑
j=1

(y∗ij)
2ρ(x∗

ij, y
∗
ij)∆A =

¨
D

y2ρ(x, y) dA.

Similarly, the moment of inertia about the y-axis is defined to be

Iy = lim
m,n→∞

m∑
i=1

n∑
j=1

(x∗
ij)

2ρ(x∗
ij, y

∗
ij)∆A =

¨
D

x2ρ(x, y) dA.

The moment of inertia about the origin, also called the polar moment of inertia
is defined to be

I0 = lim
m,n→∞

m∑
i=1

n∑
j=1

[
(x∗

ij)
2 + (y∗ij)

2
]
ρ(x∗

ij, y
∗
ij)∆A =

¨
D

(x2 + y2)ρ(x, y) dA.

Example 4. Find the moments of inertia Ix, Iy, and I0 of a homogeneous disk
D with density ρ(x, y) = ρ, center the origin, and radius a.
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Definition 15.4.5. The radius of gyration of a lamina about an axis is the
number R such that

mR2 = I

where m is the mass of the lamina and I is the moment of inertia about the
given axis. In particular, the radius of gyration ¯̄y with respect to the x-axis and
the radius of gyration ¯̄x with respect to the y-axis are given by the equations

m¯̄y2 = Ix m¯̄x2 = Iy.

Example 5. Find the radius of gyration about the x-axis of the disk in Ex-
ample 4.

Definition 15.4.6. The joint density function of two continuous random vari-
ables X and Y is a function f of two variables such that the probability that
(X, Y ) lies in a region D is

P ((X, Y ) ∈ D) =

¨
D

f(x, y) dA.

In particular, if the region is a rectangle, the probability that X lies between
a and b and Y lies between c and d is

P (a ≤ X ≤ b, c ≤ Y ≤ d) =

ˆ b

a

ˆ d

c

f(x, y) dy dx.

(See the figure.)

SeCtION 15.4  Applications of Double Integrals 1021

Thus sx, yd is the point at which the mass of the lamina can be concentrated without 
changing the moments of inertia with respect to the coordinate axes. (Note the analogy 
with the center of mass.)

ExamplE 5 Find the radius of gyration about the x-axis of the disk in Example 4.

SOLUtION As noted, the mass of the disk is m − ��a 2, so from Equations 10 we have

y 2 −
Ix

m
−

1
4 ��a 4

��a 2 −
a 2

4

Therefore the radius of gyration about the x-axis is y − 1
2 a, which is half the radius of the 

disk. ■

probability
In Section 8.5 we considered the probability density function f  of a continuous random 
variable X. This means that f sxd > 0 for all x, y`

2` f sxd dx − 1, and the probability that 
X lies between a and b is found by integrating f  from a to b:

Psa < X < bd − yb

a
 f sxd dx

Now we consider a pair of continuous random variables X and Y, such as the lifetimes 
of two components of a machine or the height and weight of an adult female chosen 
at random. The joint density function of X and Y  is a function f  of two variables such 
that the probability that sX, Y d lies in a region D is

PssX, Y d [ Dd − y
D

y f sx, yd dA

In particular, if the region is a rectangle, the probability that X lies between a and b and  
Y  lies between c and d is

Psa < X < b, c < Y < dd − yb

a
yd

c
 f sx, yd dy dx

(See Figure 7.)

c 

D 

z=f(x, y) 

d 

y x 

z 

a 

b FIGURE 7
The probability that X lies between a and b

and Y lies between c and d is the volume that
lies above the rectangle D=[a, b]x[c, d ] and

below the graph of the joint density function.
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Remark 1. Because probabilities aren’t negative and are measured on a scale
from 0 to 1, the joint density function has the following properties:

f(x, y) ≥ 0

¨
R2

f(x, y) dA = 1

for ¨
R2

f(x, y) dA =

ˆ ∞

−∞

ˆ ∞

−∞
f(x, y) dy dx = lim

a→∞

¨
Da

f(x, y) dA

where Da is the disk with radius a and center the origin.

Example 6. If the joint density function for X and Y is given by

f(x, y) =

{
C(x+ 2y) if 0 ≤ x ≤ 10, 0 ≤ y ≤ 10

0 otherwise

find the value of the constant C. Then find P (X ≤ 7, Y ≥ 2).

Definition 15.4.7. Suppose X is a random variable with probability density
function f1(x) and Y is a random variable with density function f2(y). ThenX
and Y are called independent random variables if their joint density function
is the product of their individual density functions:

f(x, y) = f1(x)f2(y).
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Example 7. The manager of a movie theater determines that the average
time moviegoers wait in line to buy a ticket for this week’s film is 10 minutes
and the average time they wait to buy popcorn is 5 minutes. Assuming that
the waiting times are independent, find the probability that a moviegoer waits
a total of less than 20 minutes before taking his or her seat.
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Definition 15.4.8. If X and Y are random variables with joint density func-
tion f , we define the X-mean and Y -mean, also called the expected values of
X and Y , to be

µ1 =

¨
R2

xf(x, y) dA µ2 =

¨
R2

yf(x, y) dA.

Example 8. A factory produces (cylindrically shaped) roller bearings that
are sold as having diameter 4.0 cm and length 6.0 cm. In fact, the diameters
X are normally distributed with mean 4.0 cm and standard deviation 0.01 cm
while the lengths Y are normally distributed with mean 6.0 cm and standard
deviation 0.01 cm. Assuming that X and Y are independent, write the joint
density function and graph it. Find the probability that a bearing randomly
chosen from the production line has either length or diameter that differs from
the mean by more than 0.02 cm.
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15.5 Surface Area

1026 CHAPTER 15  Multiple Integrals

 33.  When studying the spread of an epidemic, we assume that 
the probability that an infected individual will spread the 
disease to an uninfected individual is a function of the dis-
tance between them. Consider a circular city of radius 
10 miles in which the population is uniformly distributed. 
For an uninfected individual at a fixed point Asx0, y0 d, 
assume that the probability function is given by

f sPd − 1
20 f20 2 dsP, Adg

  where dsP, Ad denotes the distance between points P and A.
 (a)  Suppose the exposure of a person to the disease is the  

sum of the probabilities of catching the disease from all 
members of the population. Assume that the infected  
people are uniformly distributed throughout the city, 
with k infected individuals per square mile. Find a  
double integral that represents the exposure of a person 
residing at A.

 (b)  Evaluate the integral for the case in which A is the cen-
ter of the city and for the case in which A is located on 
the edge of the city. Where would you prefer to live?

 31.  Suppose that X and Y are independent random variables, 
where X is normally distributed with mean 45 and standard 
deviation 0.5 and Y is normally distributed with mean 20 
and standard deviation 0.1.

 (a) Find Ps40 < X < 50, 20 < Y < 25d.
 (b) Find Ps4sX 2 45d2 1 100sY 2 20d2 < 2d.

 32.  Xavier and Yolanda both have classes that end at noon and 
they agree to meet every day after class. They arrive at the 
coffee shop independently. Xavier’s arrival time is X and 
Yolanda’s arrival time is Y, where X and Y are measured in 
minutes after noon. The individual density functions are

f1sxd − He2x

0
if x > 0
if x , 0

  f2syd − H 1
50 y
0

if 0 < y < 10
otherwise

   (Xavier arrives sometime after noon and is more likely  
to arrive promptly than late. Yolanda always arrives by  
12:10 pm and is more likely to arrive late than promptly.) 
After Yolanda arrives, she’ll wait for up to half an hour for 
Xavier, but he won’t wait for her. Find the probability that 
they meet.

CAS

In this section we apply double integrals to the problem of computing the area of a 
surface. In Section 8.2 we found the area of a very special type of surface––a surface of 
revolution––by the methods of single-variable calculus. Here we compute the area of a 
surface with equation z − f sx, yd, the graph of a function of two variables.

Let S be a surface with equation z − f sx, yd, where f  has continuous partial deriva-
tives. For simplicity in deriving the surface area formula, we assume that f sx, yd > 0 and 
the domain D of f  is a rectangle. We divide D into small rectangles Rij with area 
DA − Dx Dy. If sxi, yjd is the corner of Rij closest to the origin, let Pijsxi, yj, f sxi, yjdd be 
the point on S directly above it (see Figure 1). The tangent plane to S at Pij is an approx-
imation to S near Pij. So the area DTij of the part of this tangent plane (a parallelogram) 
that lies directly above Rij is an approximation to the area DSij of the part of S that lies 
directly above Rij. Thus the sum o o  DTij is an approximation to the total area of S, and 
this approximation appears to improve as the number of rectangles increases. Therefore 
we define the surface area of S to be

1  AsSd − lim
m, nl`

 o
m

i−1
 o

n

j−1
 DTij 

To find a formula that is more convenient than Equation 1 for computational purposes, 
we let a and b be the vectors that start at Pij and lie along the sides of the parallelogram  
with area DTij. (See Figure 2.) Then DTij − | a 3 b |. Recall from Section 14.3 that 
fxsxi, yjd and fysxi, yjd are the slopes of the tangent lines through Pij in the directions of a 
and b. Therefore

 a − Dx i 1 fxsxi, yjd Dx k

 b − Dy j 1 fysxi, yjd Dy k

In Section 16.6 we will deal with 
areas of more general surfaces, called 
parametric surfaces, and so this section 
need not be covered if that later section 
will be covered.

FIGURE 1 
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Definition 15.5.1. Let S be a surface with equation z =
f(x, y), where f has continuous partial derivatives. We de-
fine the surface area of S to be

A(S) = lim
m,n→∞

m∑
i=1

n∑
j=1

∆Tij

where ∆Tij is the part of the tangent plane to S at the point
Pij on the surface corresponding to a rectangle Rij in the
domain D of f .

Theorem 15.5.1. The area of the surface with equation z = f(x, y), (x, y) ∈
D, where fx and fy are continuous, is

A(S) =

¨
D

√
[fx(x, y)]2 + [fy(x, y)]2 + 1 dA.

Proof. Let a and b be the vectors that start at Pij and lie along the sides of
the parallelogram with area ∆Tij. Then ∆Tij = |a × b|. Since fx(xi, yj) and
fy(xi, yj) are the slopes of the tangent lines through Pij in the directions of a
and b, we have

a = ∆x i+ fx(xi, yj)∆xk

b = ∆y j+ fy(xi, yj)∆y k.

and

a× b =

∣∣∣∣∣∣∣
i j k

∆x 0 fx(xi, yj)∆x
0 ∆y fy(xi, yj)∆y

∣∣∣∣∣∣∣
= −fx(xi, yj)∆x∆y i− fy(xi, yj)∆x∆y j+∆x∆y k

= [−fx(xi, yj)i− fy(xi, yj)j+ k] ∆A.

Thus

A(S) = lim
m,n→∞

m∑
i=1

n∑
j=1

∆Tij = lim
m,n→∞

m∑
i=1

n∑
j=1

|a× b|

= lim
m,n→∞

m∑
i=1

n∑
j=1

√
[fx(xi, yj)]2 + [fy(xi, yj)]2 + 1∆A.
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Example 1. Find the surface area of the part of the surface z = x2 +2y that
lies above the triangular region T in the xy-plane with vertices (0, 0), (1, 0),
and (1, 1).

Example 2. Find the area of the part of the paraboloid z = x2 + y2 that lies
under the plane z = 9.

535



Calculus - 15.6 Triple Integrals

15.6 Triple Integrals
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 21.  Show that the area of the part of the plane z − ax 1 by 1 c 
that projects onto a region D in the xy-plane with area AsDd 

  is sa 2 1 b 2 1 1 AsDd.

 22.  If you attempt to use Formula 2 to find the area of the top 
half of the sphere x 2 1 y 2 1 z2 − a 2, you have a slight 
problem because the double integral is improper. In fact, the 
integrand has an infinite discontinuity at every point of the 
boundary circle x 2 1 y 2 − a 2. However, the integral can  
be computed as the limit of the integral over the disk 
x 2 1 y 2 < t 2 as t l a 2. Use this method to show that the 
area of a sphere of radius a is 4!a 2.

 23.  Find the area of the finite part of the paraboloid y − x 2 1 z 2 
cut off by the plane y − 25. [Hint: Project the surface onto 
the xz-plane.]

 24.  The figure shows the surface created when the cylinder 
y 2 1 z 2 − 1 intersects the cylinder x 2 1 z 2 − 1. Find the  
area of this surface.

z 

y 
x 

 15. (a)  Use the Midpoint Rule for double integrals (see Sec-
tion 15.1) with four squares to estimate the surface area  
of the portion of the paraboloid z − x 2 1 y 2 that lies 
above the square f0, 1g 3 f0, 1g.

 (b)  Use a computer algebra system to approximate the sur-
face area in part (a) to four decimal places. Compare 
with the answer to part (a).

 16. (a)  Use the Midpoint Rule for double integrals with 
m − n − 2 to estimate the area of the surface 
z − xy 1 x 2 1 y 2, 0 < x < 2, 0 < y < 2.

 (b)  Use a computer algebra system to approximate the sur-
face area in part (a) to four decimal places. Compare 
with the answer to part (a).

 17.  Find the exact area of the surface z − 1 1 2x 1 3y 1 4y 2, 
1 < x < 4, 0 < y < 1.

 18.  Find the exact area of the surface

z − 1 1 x 1 y 1 x 2     22 < x < 1  21 < y < 1

  Illustrate by graphing the surface.

 19.  Find, to four decimal places, the area of the part of the 
surface z − 1 1 x 2 y 2 that lies above the disk x 2 1 y 2 < 1.

 20.  Find, to four decimal places, the area of the part of the  
surface z − s1 1 x 2 dys1 1 y 2 d that lies above the square 
| x | 1 | y | < 1. Illustrate by graphing this part of the 
surface.

CAS

CAS

CAS

CAS

CAS

CAS

Just as we defined single integrals for functions of one variable and double integrals 
for functions of two variables, so we can define triple integrals for functions of three 
variables. Let’s first deal with the simplest case where f  is defined on a rectangular box:

1  B − hsx, y, zd  |  a < x < b, c < y < d, r < z < s j  

The first step is to divide B into sub-boxes. We do this by dividing the interval fa, bg into 
l subintervals fxi21, xig of equal width Dx, dividing fc, d g into m subintervals of width Dy, 
and dividing fr, sg into n subintervals of width Dz. The planes through the endpoints of 
these subintervals parallel to the coordinate planes divide the box B into lmn sub-boxes

Bi jk − fxi21, xig 3 fyj21, yjg 3 fzk21, zk g

which are shown in Figure 1. Each sub-box has volume DV − Dx Dy Dz.
Then we form the triple Riemann sum

2  o
l

i−1
 o

m

j−1
 o

n

k−1
 f sxij k* , yij k* , zij k* d DV  

where the sample point sxi jk* , yi jk* , zi jk* d is in Bi jk. By analogy with the definition of a 
double integral (15.1.5), we define the triple integral as the limit of the triple Riemann 
sums in (2).

B

Bijk

ÎxÎy

Îz

z

yx

z

yx

FIGURE 1
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Definition 15.6.1. The triple integral of f over the box B
is

˚
B

f(x, y, z) dV = lim
l,m,n→∞

l∑
i=1

m∑
j=1

n∑
k=1

f(x∗
ijk, y

∗
ijk, z

∗
ijk)∆V

if this limit exists. The points (x∗
ijk, y

∗
ijk, z

∗
ijk) are called sam-

ple points, ∆V = ∆x∆y∆z is the volume of the sub-box
Bijk = [xi−1, xi]× [yj−1, yj]× [zk−1, zk], and the sum is called
a triple Riemann sum.

Theorem 15.6.1 (Fubini’s Theorem for Triple Integrals). If f is continuous
on the rectangular box B = [a, b]× [c, d]× [r, s], then

˚
B

f(x, y, z) dV =

ˆ s

r

ˆ d

c

ˆ b

a

f(x, y, z) dx dy dz.

Example 1. Evaluate the triple integral
˝

R
xyz2 dV where B is the rectan-

gular box given by

B = {(x, y, z) | 0 ≤ x ≤ 1,−1 ≤ y ≤ 2, 0 ≤ z ≤ 3}.
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Definition 15.6.2. If F is integrable over B and E is a bounded region then
we define the triple integral of f over E by

˚
E

f(x, y, z) dV =

˚
B

F (x, y, z) dV

where F is defined so that it agrees with f on E but is 0 for points in B that
are outside E.

 SECTION 15.6  Triple Integrals 1031

Now we define the triple integral over a general bounded region E in three- 
dimensional space (a solid) by much the same procedure that we used for double inte-
grals (15.2.2). We enclose E in a box B of the type given by Equation 1. Then we define 
F so that it agrees with f  on E but is 0 for points in B that are outside E. By definition,

 y y
E

y f sx, y, zd dV − y y
B

y Fsx, y, zd dV

This integral exists if f  is continuous and the boundary of E is “reasonably smooth.” The 
triple integral has essentially the same properties as the double integral (Properties 6–9 
in Section 15.2).

We restrict our attention to continuous functions f  and to certain simple types of 
regions. A solid region E is said to be of type 1 if it lies between the graphs of two con-
tinuous functions of x and y, that is,

5  E − hsx, y, zd | sx, yd [ D, u 1sx, yd < z < u 2sx, ydj  

where D is the projection of E onto the xy-plane as shown in Figure 2. Notice that the 
upper boundary of the solid E is the surface with equation z − u 2sx, yd, while the lower 
boundary is the surface z − u 1sx, yd.

By the same sort of argument that led to (15.2.3), it can be shown that if E is a type 1 
region given by Equation 5, then

6  y y
E

y f sx, y, zd dV − y
D

y Fy u 2sx, yd

u 1sx, yd
 f sx, y, zd dzG dA 

The meaning of the inner integral on the right side of Equation 6 is that x and y are held 
fixed, and therefore u 1sx, yd and u 2sx, yd are regarded as constants, while f sx, y, zd is 
integrated with respect to z.

In particular, if the projection D of E onto the xy-plane is a type I plane region (as in 
Figure 3), then

E − hsx, y, zd | a < x < b, t1sxd < y < t2sxd, u 1sx, yd < z < u 2sx, ydj
and Equation 6 becomes

7  y y
E

y f sx, y, zd dV − yb

a
 yt2sxd

t1sxd
y u 2sx, yd

u 1sx, yd
 f sx, y, zd dz dy dx 

If, on the other hand, D is a type II plane region (as in Figure 4), then

E − hsx, y, zd | c < y < d, h 1syd < x < h 2syd, u 1sx, yd < z < u 2sx, ydj
and Equation 6 becomes

8   y y
E

y f sx, y, zd dV − yd

c
 y h 2syd

h 1syd
y u 2sx, yd

u 1sx, yd
 f sx, y, zd dz dx dy 

FIGURE 2
A type 1 solid region
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Definition 15.6.3. A solid region E is said to be of type 1
if it lies between the graphs of two continuous functions of x
and y, that is

E = {(x, y, z) | (x, y) ∈ D, u1(x, y) ≤ z ≤ u2(x, y)}

where D is the projection of E onto the xy-plane as shown
in the figure.

Theorem 15.6.2. If f is continuous on a type 1 region E such that

E = {(x, y, z) | (x, y) ∈ D, u1(x, y) ≤ z ≤ u2(x, y)}

then ˚
E

f(x, y, z) dV =

¨
D

[ˆ u2(x,y)

u1(x,y)

f(x, y, z) dz

]
dA.

 SECTION 15.6  Triple Integrals 1031

Now we define the triple integral over a general bounded region E in three- 
dimensional space (a solid) by much the same procedure that we used for double inte-
grals (15.2.2). We enclose E in a box B of the type given by Equation 1. Then we define 
F so that it agrees with f  on E but is 0 for points in B that are outside E. By definition,

 y y
E

y f sx, y, zd dV − y y
B

y Fsx, y, zd dV

This integral exists if f  is continuous and the boundary of E is “reasonably smooth.” The 
triple integral has essentially the same properties as the double integral (Properties 6–9 
in Section 15.2).

We restrict our attention to continuous functions f  and to certain simple types of 
regions. A solid region E is said to be of type 1 if it lies between the graphs of two con-
tinuous functions of x and y, that is,

5  E − hsx, y, zd | sx, yd [ D, u 1sx, yd < z < u 2sx, ydj  

where D is the projection of E onto the xy-plane as shown in Figure 2. Notice that the 
upper boundary of the solid E is the surface with equation z − u 2sx, yd, while the lower 
boundary is the surface z − u 1sx, yd.

By the same sort of argument that led to (15.2.3), it can be shown that if E is a type 1 
region given by Equation 5, then

6  y y
E

y f sx, y, zd dV − y
D

y Fy u 2sx, yd

u 1sx, yd
 f sx, y, zd dzG dA 

The meaning of the inner integral on the right side of Equation 6 is that x and y are held 
fixed, and therefore u 1sx, yd and u 2sx, yd are regarded as constants, while f sx, y, zd is 
integrated with respect to z.

In particular, if the projection D of E onto the xy-plane is a type I plane region (as in 
Figure 3), then

E − hsx, y, zd | a < x < b, t1sxd < y < t2sxd, u 1sx, yd < z < u 2sx, ydj
and Equation 6 becomes

7  y y
E

y f sx, y, zd dV − yb

a
 yt2sxd

t1sxd
y u 2sx, yd

u 1sx, yd
 f sx, y, zd dz dy dx 

If, on the other hand, D is a type II plane region (as in Figure 4), then

E − hsx, y, zd | c < y < d, h 1syd < x < h 2syd, u 1sx, yd < z < u 2sx, ydj
and Equation 6 becomes

8   y y
E

y f sx, y, zd dV − yd

c
 y h 2syd

h 1syd
y u 2sx, yd

u 1sx, yd
 f sx, y, zd dz dx dy 

FIGURE 2
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Now we define the triple integral over a general bounded region E in three- 
dimensional space (a solid) by much the same procedure that we used for double inte-
grals (15.2.2). We enclose E in a box B of the type given by Equation 1. Then we define 
F so that it agrees with f  on E but is 0 for points in B that are outside E. By definition,

y y
E

y f sx, y, zd dV − y y
B

y Fsx, y, zd dV

This integral exists if f  is continuous and the boundary of E is “reasonably smooth.” The 
triple integral has essentially the same properties as the double integral (Properties 6–9 
in Section 15.2).

We restrict our attention to continuous functions f  and to certain simple types of 
regions. A solid region E is said to be of type 1 if it lies between the graphs of two con-
tinuous functions of x and y, that is,

5 E − hsx, y, zd | sx, yd [ D, u1sx, yd < z < u2sx, ydj

where D is the projection of E onto the xy-plane as shown in Figure 2. Notice that the 
upper boundary of the solid E is the surface with equation z − u2sx, yd, while the lower 
boundary is the surface z − u1sx, yd.

By the same sort of argument that led to (15.2.3), it can be shown that if E is a type 1 
region given by Equation 5, then

6 y y
E

y f sx, y, zd dV − y
D

y Fyu2sx, yd

u1sx, yd
 f sx, y, zd dzG dA 

The meaning of the inner integral on the right side of Equation 6 is that x and y are held 
fixed, and therefore u1sx, yd and u2sx, yd are regarded as constants, while f sx, y, zd is 
integrated with respect to z.

In particular, if the projection D of E onto the xy-plane is a type I plane region (as in 
Figure 3), then

E − hsx, y, zd | a < x < b, t1sxd < y < t2sxd, u1sx, yd < z < u2sx, ydj

and Equation 6 becomes

7 y y
E

y f sx, y, zd dV − yb

a
yt2sxd

t1sxd
yu2sx, yd

u1sx, yd
 f sx, y, zd dz dy dx 

If, on the other hand, D is a type II plane region (as in Figure 4), then

E − hsx, y, zd | c < y < d, h1syd < x < h2syd, u1sx, yd < z < u2sx, ydj

and Equation 6 becomes

8 y y
E

y f sx, y, zd dV − yd

c
yh2syd

h1syd
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Remark 1. If the projection D of E onto the xy-plane is a type
I plane region (as in the figure), then

E = {(x, y, z) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), u1(x, y) ≤ z ≤ u2(x, y)},

so

˚
E

f(x, y, z) dV =

ˆ b

a

ˆ g2(x)

g1(x)

ˆ u2(x,y)

u1(x,y)

f(x, y, z) dz dy dx.

If, on the other hand, D is a type II plane region (as in the
figure), then

E = {(x, y, z) | c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y), u1(x, y) ≤ z ≤ u2(x, y)},

so

˚
E

f(x, y, z) dV =

ˆ d

c

ˆ h2(y)

h1(y)

ˆ u2(x,y)

u1(x,y)

f(x, y, z) dz dx dy.
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Example 2. Evaluate
˝

E
z dV , where E is the solid tetrahedron bounded

by the four planes x = 0, y = 0, z = 0, and x+ y + z = 1. 1032 CHAPTER 15  Multiple Integrals

EXAMPLE 2 Evaluate yyyE z dV, where E is the solid tetrahedron bounded by the four 
planes x − 0, y − 0, z − 0, and x 1 y 1 z − 1.

SOLUTION When we set up a triple integral it’s wise to draw two  diagrams: one of  
the solid region E (see Figure 5) and one of its projection D onto the xy-plane (see  
Fig ure 6). The lower boundary of the tetrahedron is the plane z − 0 and the upper 
boundary is the plane x 1 y 1 z − 1 (or z − 1 2 x 2 y), so we use u 1sx, yd − 0 and 
u 2sx, yd − 1 2 x 2 y in Formula 7. Notice that the planes x 1 y 1 z − 1 and z − 0 
intersect in the line x 1 y − 1 (or y − 1 2 x) in the xy-plane. So the projection of E is 
the triangular region shown in Figure 6, and we have

9  E − hsx, y, zd | 0 < x < 1, 0 < y < 1 2 x, 0 < z < 1 2 x 2 yj  

This description of E as a type 1 region enables us to evaluate the integral as follows:

 y y
E

y z dV − y1

0
 y12x

0
 y12x2y

0
 z dz dy dx − y1

0
 y12x

0
 F z2

2 Gz−0

z−12x2y

 dy dx

 − 1
2 y1

0
 y12x

0
 s1 2 x 2 yd2 dy dx − 1

2 y1

0
 F2

s1 2 x 2 yd3

3 G
y−0

y−12x

 dx

  − 1
6 y1

0
 s1 2 xd3 dx −

1
6

 F2
s1 2 xd4

4 G
0

1

−
1
24
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A solid region E is of type 2 if it is of the form

E − hsx, y, zd | sy, zd [ D, u 1sy, zd < x < u 2sy, zdj

where, this time, D is the projection of E onto the yz-plane (see Figure 7). The back sur-
face is x − u 1sy, zd, the front surface is x − u 2sy, zd, and we have

10  y y
E

y f sx, y, zd dV − y
D

y Fy u 2sy, zd

u 1sy, zd
 f sx, y, zd dxG dA 

Finally, a type 3 region is of the form

E − hsx, y, zd | sx, zd [ D, u 1sx, zd < y < u 2sx, zdj

where D is the projection of E onto the xz-plane, y − u 1sx, zd is the left surface, and 
y − u 2sx, zd is the right surface (see Figure 8). For this type of region we have

11  y y
E

y f sx, y, zd dV − y
D

y Fy u 2sx, zd

u 1sx, zd
 f sx, y, zd dyG dA 

In each of Equations 10 and 11 there may be two possible expressions for the integral 
depending on whether D is a type I or type II plane region (and corresponding to Equa-
tions 7 and 8).

EXAMPLE 3 Evaluate yyyE sx 2 1 z 2  dV, where E is the region bounded by the parabo-
loid y − x 2 1 z2 and the plane y − 4.
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z
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Definition 15.6.4. A solid region E is of type 2 if it is of
the form

E = {(x, y, z) | (y, z) ∈ D, u1(y, z) ≤ x ≤ u2(y, z)}

where D is the projection of E onto the yz-plane as shown
in the figure.

Theorem 15.6.3. If f is continuous on a type 2 region E
such that

E = {(x, y, z) | (y, z) ∈ D, u1(y, z) ≤ x ≤ u2(y, z)}

then ˚
E

f(x, y, z) dV =

¨
D

[ˆ u2(y,z)

u1(y,z)

f(x, y, z) dx

]
dA.
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ExamplE 2 Evaluate yyyE z dV, where E is the solid tetrahedron bounded by the four
planes x − 0, y − 0, z − 0, and x 1 y 1 z − 1.

SOLUtION When we set up a triple integral it’s wise to draw two diagrams: one of  
the solid region E (see Figure 5) and one of its projection D onto the xy-plane (see  
Fig ure 6). The lower boundary of the tetrahedron is the plane z − 0 and the upper 
boundary is the plane x 1 y 1 z − 1 (or z − 1 2 x 2 y), so we use u1sx, yd − 0 and 
u2sx, yd − 1 2 x 2 y in Formula 7. Notice that the planes x 1 y 1 z − 1 and z − 0 
intersect in the line x 1 y − 1 (or y − 1 2 x) in the xy-plane. So the projection of E is 
the triangular region shown in Figure 6, and we have

9�  E − hsx, y, zd | 0 < x < 1, 0 < y < 1 2 x, 0 < z < 1 2 x 2 yj

This description of E as a type 1 region enables us to evaluate the integral as follows:

y y
E

y z dV − y1

0
y12x

0
y12x2y

0
 z dz dy dx − y1

0
y12x

0
F z2

2 Gz−0

z−12x2y

 dy dx

− 1
2 y1

0
y12x

0
 s1 2 x 2 yd2 dy dx − 1

2 y1

0
F2

s1 2 x 2 yd3

3 G
y−0

y−12x

dx

− 1
6 y1

0
s1 2 xd3 dx −

1

6 F2
s1 2 xd4

4 G
0

1

−
1

24
■

A solid region E is of type 2 if it is of the form

E − hsx, y, zd | sy, zd [ D, u1sy, zd < x < u2sy, zdj

where, this time, D is the projection of E onto the yz-plane (see Figure 7). The back sur-
face is x − u1sy, zd, the front surface is x − u2sy, zd, and we have

10  y y
E

y f sx, y, zd dV − y
D

y Fyu2sy, zd

u1sy, zd
 f sx, y, zd dxG dA 

Finally, a type 3 region is of the form

E − hsx, y, zd | sx, zd [ D, u1sx, zd < y < u2sx, zdj

where D is the projection of E onto the xz-plane, y − u1sx, zd is the left surface, and 
y − u2sx, zd is the right surface (see Figure 8). For this type of region we have

11  y y
E

y f sx, y, zd dV − y
D

y Fyu2sx, zd

u1sx, zd
 f sx, y, zd dyG dA 

In each of Equations 10 and 11 there may be two possible expressions for the integral 
depending on whether D is a type I or type II plane region (and corresponding to Equa-
tions 7 and 8).

ExamplE 3 Evaluate yyyE sx 2 1 z 2  dV, where E is the region bounded by the parabo-
loid y − x 2 1 z2 and the plane y − 4.
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FIGURE 6

0

1

x1y=0

y=1-x

D

y

FIGURE 8
A type 3 region 

z 

y=u™(x, z) 

y=u¡(x, z) 
x 

0 

y 

D 
E 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Definition 15.6.5. A solid region E is of type 3 if it is of
the form

E = {(x, y, z) | (x, z) ∈ D, u1(x, z) ≤ y ≤ u2(x, z)}

where D is the projection of E onto the xz-plane as shown
in the figure.

Theorem 15.6.4. If f is continuous on a type 3 region E
such that

E = {(x, y, z) | (x, z) ∈ D, u1(x, z) ≤ y ≤ u2(x, z)}

then ˚
E

f(x, y, z) dV =

¨
D

[ˆ u2(x,z)

u1(x,z)

f(x, y, z) dy

]
dA.

Example 3. Evaluate
˝

E

√
x2 + z2 dV , where E is the region bounded by

the paraboloid y = x2 + z2 and the plane y = 4.
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Example 4. Express the iterated integral
´ 1
0

´ x2

0

´ y
0
f(x, y, z) dz dy dx as a

triple integral and then rewrite it as an iterated integral in a different order,
integrating first with respect to x, then z, and then y.

Theorem 15.6.5.

V (E) =

˚
E

dV.

Example 5. Use a triple integral to find the volume of the tetrahedron T
bounded by the planes x+ 2y + z = 2, x = 2y, x = 0, and z = 0.
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Definition 15.6.6. If the density function of a solid object that occupies the
region E is ρ(x, y, z), in units of mass per unit volume, at any given point
(x, y, z), then its mass is

m =

˚
E

ρ(x, y, z) dV

and its moments about the three coordinate planes are

Myz =

˚
E

xρ(x, y, z) dV Mxz =

˚
E

yρ(x, y, z) dV

Mxy =

˚
E

zρ(x, y, z) dV.

The center of mass is located at the point (x̄, ȳ, z̄), where

x̄ =
Myz

m
ȳ =

Mxz

m
z̄ =

Mxy

m
.

If the density is constant, the center of mass of the solid is called the centroid
of E. The moments of inertia about the three coordinate axes are

Ix =

˚
E

(y2 + z2)ρ(x, y, z) dV Iy =

˚
E

(x2 + z2)ρ(x, y, z) dV

Iz =

˚
E

(x2 + y2)ρ(x, y, z) dV.

Definition 15.6.7. The total electric charge on a solid object occupying a
region E and having charge density σ(x, y, z) is

Q =

˚
E

σ(x, y, z) dV.

Definition 15.6.8. If we have three continuous random variables X, Y , and
Z, their joint density function is a function of three variables such that the
probability that (X,Y, Z) lies in E is

P ((X, Y, Z) ∈ E) =

˚
E

f(x, y, z) dV.

In particular,

P (a ≤ X ≤ b, c ≤ Y ≤ d, r ≤ Z ≤ s) =

ˆ b

a

ˆ d

c

ˆ s

r

f(x, y, z) dz dy dx.

The joint density function satisfies

f(x, y, z) ≥ 0

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
f(x, y, z) dz dy dx = 1.
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Example 6. Find the center of mass of a solid of constant density that is
bounded by the parabolic cylinder x = y2 and the planes x = z, z = 0, and
x = 1.
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15.7 Integrals in Cylindrical Coordinates

1040 CHAPTER 15  Multiple Integrals

In plane geometry the polar coordinate system is used to give a convenient description of 
certain curves and regions. (See Section 10.3.) Figure 1 enables us to recall the connec-
tion between polar and Cartesian coordinates. If the point P has Cartesian coordinates 
sx, yd and polar coordinates sr, !d, then, from the figure,

 x − r cos ! y − r sin !

r 2 − x 2 1 y 2        tan ! −
y
x

In three dimensions there is a coordinate system, called cylindrical coordinates, that 
is similar to polar coordinates and gives convenient descriptions of some commonly 
occurring surfaces and solids. As we will see, some triple integrals are much easier to 
evaluate in cylindrical coordinates.

Cylindrical Coordinates
In the cylindrical coordinate system, a point P in three-dimensional space is represented 
by the ordered triple sr, !, zd, where r and ! are polar coordinates of the projection of P 
onto the xy-plane and z is the directed distance from the xy-plane to P. (See Figure 2.)

To convert from cylindrical to rectangular coordinates, we use the equations

1  x − r cos !    y − r sin !    z − z 

whereas to convert from rectangular to cylindrical coordinates, we use

2  r 2 − x 2 1 y 2    tan ! −
y
x

    z − z 

O

y

x
¨

x

yr

P(r, ̈ )=P(x, y)

FIGURE 1

In this project we find formulas for the volume enclosed by a hypersphere in n-dimensional 
space.

1.  Use a double integral and trigonometric substitution, together with Formula 64 in the Table of 
Integrals, to find the area of a circle with radius r.

2.  Use a triple integral and trigonometric substitution to find the volume of a sphere with  
radius r.

3.  Use a quadruple integral to find the (4-dimensional) volume enclosed by the hypersphere 
x 2 1 y 2 1 z 2 1 w 2 − r 2 in R4. (Use only trigonometric substitution and the reduction  
formulas for y sinnx dx or y cosnx dx.)

4.  Use an n-tuple integral to find the volume enclosed by a hypersphere of radius r in  
n-dimensional space Rn.  [Hint: The formulas are different for n even and n odd.]

DISCOVERY PROJECT VOLUMES OF HYPERSPHERES

O
r

z

¨

(r, ̈ , 0)

P(r, ̈ , z)

FIGURE 2
The cylindrical coordinates of a point

x

z

y
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Definition 15.7.1. In the cylindrical coordinate system, a
point P in three-dimensional space is represented by the or-
dered triple (r, θ, z), where r and θ are polar coordinates of
the projection of P onto the xy-plane and z is the directed
distance from the xy-plane to P . (See the figure.)

Theorem 15.7.1. To convert from cylindrical to rectangular
coordinates, we use the equations

x = r cos θ y = r sin θ z = z

whereas to convert from rectangular to cylindrical coordinates, we use

r2 = x2 + y2 tan θ =
y

x
z = z.

Example 1. (a) Plot the point with cylindrical coordinates (2, 2π/3, 1) and
find its rectangular coordinates.

(b) Find cylindrical coordinates of the point with rectangular coordinates
(3,−3,−7).
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Example 2. Describe the surface whose equation in cylindrical coordinates is
z = r.

1042 Chapter 15  Multiple Integrals

evaluating triple Integrals with Cylindrical Coordinates
Suppose that E is a type 1 region whose projection D onto the xy-plane is conveniently 
described in polar coordinates (see Figure 6). In particular, suppose that f  is continuous 
and

E − 5sx, y, zd | sx, yd [ D, u1sx, yd < z < u2sx, yd6
where D is given in polar coordinates by

D − 5sr, �d | � < � < �, h1s�d < r < h2s�d6
We know from Equation 15.6.6 that

3 y y
E

y f sx, y, zd dV − y
D

y Fyu2sx, yd

u1sx, yd
 f sx, y, zd dzG dA 

But we also know how to evaluate double integrals in polar coordinates. In fact, combin-
ing Equation 3 with Equation 15.3.3, we obtain

4  y y
E

y f sx, y, zd dV − y�

�
yh2s�d

h1s�d yu2sr cos �, r sin �d

u1sr cos �, r sin �d
 f sr cos �, r sin �, zd r dz dr d� 

Formula 4 is the formula for triple integration in cylindrical coordinates. It says that 
we convert a triple integral from rectangular to cylindrical coordinates by writing 
x − r cos �, y − r sin �, leaving z as it is, using the appropriate limits of integration for z,  
r, and �, and replacing dV  by r dz dr d�. (Figure 7 shows how to remember this.) It is  
worthwhile to use this formula when E is a solid region easily described in cylindrical  
coordinates, and especially when the function f sx, y, zd involves the expression x 2 1 y2.

ExamplE 3 A solid E lies within the cylinder x 2 1 y 2 − 1, below the plane z − 4, and 
above the paraboloid z − 1 2 x 2 2 y 2. (See Figure 8.) The density at any point is 
proportional to its distance from the axis of the cylinder. Find the mass of E.

SOLUtION In cylindrical coordinates the cylinder is r − 1 and the paraboloid is 
z − 1 2 r 2, so we can write

E − 5sr, �, zd | 0 < � < 2�, 0 < r < 1, 1 2 r 2 < z < 46
Since the density at sx, y, zd is proportional to the distance from the z-axis, the density 
function is

f sx, y, zd − Ksx 2 1 y 2 − Kr

where K is the proportionality constant. Therefore, from Formula 15.6.13, the mass of 
E is

 m − y y
E

y Ksx 2 1 y 2  dV − y2�

0
y1

0
y4

12r2

 sKrd r dz dr d�

 − y2�

0
y1

0
Kr 2 f4 2 s1 2 r 2 dg dr d� − K y2�

0
 d� y1

0
 s3r 2 1 r 4 d dr

 − 2�KFr 3 1
r 5

5 G0

1

−
12�K

5
■

z

x

y

0

D

r=h™(¨)

¨=b

¨=a

r=h¡(¨)

z=u™(x, y)

z=u¡(x, y)

FIGURE 6
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Theorem 15.7.2. Suppose that E is a type 1 region whose
projection D onto the xy-plane is described in polar coordi-
nates (see the figure). In particular, suppose that f is con-
tinuous and

E = {(x, y, z) | (x, y) ∈ D, u1(x, y) ≤ z ≤ u2(x, y)}

where D is given in polar coordinates by

D = {(r, θ) | α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ)}.

Then the formula for triple integration in cylindrical coordi-
nates is

˚
E

f(x, y, z) dV =

ˆ β

α

ˆ h2(θ)

h1(θ)

ˆ u2(r cos θ,r sin θ)

u1(r cos θ,r sin θ)

f(r cos θ, r sin θ, z) r dz dr dθ.
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Evaluating Triple Integrals with Cylindrical Coordinates
Suppose that E is a type 1 region whose projection D onto the xy-plane is conveniently 
described in polar coordinates (see Figure 6). In particular, suppose that f  is continuous 
and

E − 5sx, y, zd | sx, yd [ D, u 1sx, yd < z < u 2sx, yd6
where D is given in polar coordinates by

D − 5sr, !d | " < ! < #, h 1s!d < r < h 2s!d6
We know from Equation 15.6.6 that

3  y y
E

y f sx, y, zd dV − y
D

y Fyu 2sx, yd

u 1sx, yd
 f sx, y, zd dzG dA 

But we also know how to evaluate double integrals in polar coordinates. In fact, combin-
ing Equation 3 with Equation 15.3.3, we obtain

4  y y
E

y f sx, y, zd dV − y#

"
 y h 2s!d

h 1s!d
 yu 2sr cos !, r sin !d

u 1sr cos !, r sin !d
 f sr cos !, r sin !, zd r dz dr d! 

Formula 4 is the formula for triple integration in cylindrical coordinates. It says that 
we convert a triple integral from rectangular to cylindrical coordinates by writing 
x − r cos !, y − r sin !, leaving z as it is, using the appropriate limits of integration for z,  
r, and !, and replacing dV  by r dz dr d!. (Figure 7 shows how to remember this.) It is  
worthwhile to use this formula when E is a solid region easily described in cylindrical  
coordinates, and especially when the function f sx, y, zd involves the expression x 2 1 y2.

EXAMPLE 3 A solid E lies within the cylinder x 2 1 y 2 − 1, below the plane z − 4, and 
above the paraboloid z − 1 2 x 2 2 y 2. (See Figure 8.) The density at any point is 
proportional to its distance from the axis of the cylinder. Find the mass of E.

SOLUTION In cylindrical coordinates the cylinder is r − 1 and the paraboloid is 
z − 1 2 r 2, so we can write

E − 5sr, !, zd | 0 < ! < 2$, 0 < r < 1, 1 2 r 2 < z < 46
Since the density at sx, y, zd is proportional to the distance from the z-axis, the density 
function is

f sx, y, zd − Ksx 2 1 y 2 − Kr

where K is the proportionality constant. Therefore, from Formula 15.6.13, the mass of 
E is

 m − y y
E

y Ksx 2 1 y 2  dV − y2$

0
 y1

0
 y4

12r2

 sKrd r dz dr d!

 − y2$

0
 y1

0
 Kr 2 f4 2 s1 2 r 2 dg dr d! − K y2$

0
 d! y1

0
 s3r 2 1 r 4 d dr

  − 2$KFr 3 1
r 5

5 G0

1

−
12$K

5
 ■
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0 
(1,  0,  0 ) 

(0 ,  0,  1 ) 

(0 ,  0,  4 ) 
z=4 

z=1-r @ 

z 

x 
y 

FIGURE 8

FIGURE 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Example 3. A solid E lies within the cylinder x2 + y2 = 1,
below the plane z = 4, and above the paraboloid z = 1−x2−
y2. (See the figure.) The density at any point is proportional
to its distance from the axis of the cylinder. Find the mass
of E.

Example 4. Evaluate

ˆ 2

−2

ˆ √
4−x2

−
√
4−x2

ˆ 2

√
x2+y2

(x2 + y2) dz dy dx.
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15.8 Integrals in Spherical Coordinates1046 CHAPTER 15  Multiple Integrals

The relationship between rectangular and spherical coordinates can be seen from Fig-
ure 5. From triangles OPQ and OPP9 we have

z − ! cos "      r − ! sin "

But x − r cos # and y − r sin #, so to convert from spherical to rectangular coordinates, 
we use the equations

1  x − ! sin " cos #    y − ! sin " sin #    z − ! cos " 

Also, the distance formula shows that

2  !2 − x 2 1 y 2 1 z2 

We use this equation in converting from rectangular to spherical coordinates.

EXAMPLE 1 The point s2, $y4, $y3d is given in spherical coordinates. Plot the point 
and find its rectangular coordinates.

SOLUTION We plot the point in Figure 6. From Equations 1 we have

 x − ! sin "  cos # − 2 sin 
$

3
 cos 

$

4
− 2Ss3 

2 DS 1

s2 D − Î3
2

 

 y − ! sin " sin # − 2 sin 
$

3
 sin 

$

4
− 2Ss3 

2 DS 1

s2 D − Î3
2

 

 z − ! cos " − 2 cos 
$

3
− 2(1

2) − 1

Thus the point s2, $y4, $y3d is ss3y2 , s3y2 , 1d in rectangular coordinates. ■

EXAMPLE 2 The point s0, 2s3 , 22d is given in rectangular coordinates. Find spherical 
coordinates for this point.

SOLUTION From Equation 2 we have

! − sx 2 1 y 2 1 z 2 − s0 1 12 1 4 − 4

and so Equations 1 give

 cos " −
z
!

−
22
4

− 2
1
2

    " −
2$

3

  cos # −
x

! sin "
− 0 # −

$

2

(Note that # ± 3$y2 because y − 2s3 . 0.) Therefore spherical coordinates of the 
given point are s4, $y2, 2$y3d. ■

P(x, y, z)
P(∏, ̈ , ̇ )

P ª(x, y, 0)

O

¨

y

x

z
˙

r

∏

x
y

z

˙

Q

FIGURE 5

0
2

π
3

π
4

(2, π/4, π/3)

z

x
y

FIGURE 6

 WARNING There is not universal 
agreement on the notation for spherical 
coordinates. Most books on physics 
reverse the meanings of # and " and use 
r in place of !.

TEC In Module 15.8 you can investi-
gate families of surfaces in cylindrical 
and spherical coordinates.
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Definition 15.8.1. The spherical coordinates (ρ, θ, ϕ) of a
point P in space are shown in the figure, where ρ = |OP |
is the distance from the origin to P , θ is the same angle as
in cylindrical coordinates, and ϕ is the angle between the
positive z-axis and the line segment OP . Note that

ρ ≥ 0 0 ≤ ϕ ≤ π.

Theorem 15.8.1. The relationship between rectangular and
spherical coordinates can be seen from the figure. To convert
from spherical to rectangular coordinates, we use the equa-
tions

x = ρ sinϕ cos θ y = ρ sinϕ sin θ z = ρ cosϕ.

To convert from rectangular to spherical coordinates, we use the equation

ρ2 = x2 + y2 + z2.

Example 1. The point (2, π/4, π/3) is given in spherical coordinates. Plot
the point and find its rectangular coordinates.
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Calculus - 15.8 Integrals in Spherical Coordinates

Example 2. The point
(
0, 2

√
3,−2

)
is given in rectangular coordinates. Find

spherical coordinates for this point.

Theorem 15.8.2. The formula for triple integration in spherical coordinates
is ˚

E

f(x, y, z) dV

=

ˆ d

c

ˆ β

α

ˆ b

a

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) ρ2 sinϕ dρ dθ dϕ.

where E is a spherical wedge given by

E = {(ρ, θ, ϕ) | a ≤ ρ ≤ b, α ≤ θ ≤ β, c ≤ ϕ ≤ d}.

Section 15.8  Triple Integrals in Spherical Coordinates 1047

evaluating triple integrals with Spherical coordinates
In the spherical coordinate system the counterpart of a rectangular box is a spherical 
wedge

E − hs�, �, �d | a < � < b, � < � < �, c < � < d j

where a > 0 and � 2 � < 2�, and d 2 c < �. Although we defined triple integrals 
by dividing solids into small boxes, it can be shown that dividing a solid into small 
spherical wedges always gives the same result. So we divide E into smaller spherical 
wedges Eijk by means of equally spaced spheres � − �i, half­planes � − �j, and half­
cones � − �k. Figure 7 shows that Eijk is approximately a rectangular box with dimen­
sions D�, �i D� (arc of a circle with radius �i, angle D�), and �i sin �k D� (arc of a circle 
with radius �i sin �k, angle D�). So an approximation to the volume of Eijk is given by

DVijk <  sD�ds�i D�ds�i sin �k D�d − �i
2 sin �k D� D� D�

In fact, it can be shown, with the aid of the Mean Value Theorem (Exercise 49), that the 
volume of Eijk is given exactly by

DVijk − �
~

i
2 sin �

~

k D� D� D�

where s�
~

i, �
~

j, �
~

k d is some point in Eijk. Let sx ijk* , y ijk* , z ijk* d be the rectangular coordinates 
of this point. Then

y y
E

y f sx, y, zd dV − lim
l, m, n l `

o
l

i−1
o
m

j−1
o

n

k−1
 f sxijk* , yijk* , z ijk* d DVijk

− lim
l, m, n l `

o
l

i−1
o
m

j−1
o

n

k−1
 f s�

~

i sin �
~

k cos �
~

j, �
~

i sin �
~

k sin �
~

j, �
~

i cos �
~

k d �~ i
2 sin �

~

k D�D�D�

But this sum is a Riemann sum for the function

Fs�, �, �d − f s� sin � cos �, � sin � sin �, � cos �d �2 sin �

Consequently, we have arrived at the following formula for triple integration in spher-
ical coordinates.

3   y y
E

y f sx, y, zd dV

− yd

c
y�

�
yb

a
 f s� sin � cos �, � sin � sin �, � cos �d �2 sin � d� d� d�

where E is a spherical wedge given by

E − hs�, �, �d | a < � < b, � < � < �, c < � < d j

Formula 3 says that we convert a triple integral from rectangular coordinates to spheri­
cal coordinates by writing

x − � sin � cos �      y − � sin � sin �      z − � cos �

using the appropriate limits of integration, and replacing dV  by �2 sin � d� d� d�. This 
is illustrated in Figure 8.

z

0

x
y

ri=∏i sin ˙k

ri Î¨=∏i sin ˙k Î¨

∏i Î˙

∏i sin ˙k Î¨ Î∏

Î˙
˙k

Î¨

fiGUre 7

Volume element in spherical
coordinates: dV=∏@ sin  ̇d∏ d  ̈d˙

z

0

x
yd¨

∏ d˙

˙

∏ sin ˙ d¨

∏

d∏

d˙

fiGUre 8
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Calculus - 15.8 Integrals in Spherical Coordinates

Example 3. Evaluate
˝

B
e(x

2+y2+z2)3/2 dV , where B is the unit ball:

B = {(x, y, z) | x2 + y2 + z2 ≤ 1}.
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Calculus - 15.8 Integrals in Spherical Coordinates

Example 4. Use spherical coordinates to find the volume of the solid that
lies above the cone z =

√
x2 + y2 and below the sphere x2 + y2 + z2 = z. (See

the figure.)

1048 CHAPTER 15  Multiple Integrals

This formula can be extended to include more general spherical regions such as

E − hs!, ", #d | $ < " < %, c < # < d, t1s", #d < ! < t2s", #dj

In this case the formula is the same as in (3) except that the limits of integration for ! are 
t1s", #d and t2s", #d.

Usually, spherical coordinates are used in triple integrals when surfaces such as cones 
and spheres form the boundary of the region of integration.

EXAMPLE 3 Evaluate yyyB e
sx21y21z2d3y2 dV, where B is the unit ball:

B − hsx, y, zd | x 2 1 y 2 1 z2 < 1j

SOLUTION Since the boundary of B is a sphere, we use spherical coordinates:

B − hs!, ", #d | 0 < ! < 1, 0 < " < 2&, 0 < # < & j

In addition, spherical coordinates are appropriate because

x 2 1 y 2 1 z2 − !2

Thus (3) gives

 y y
B

y e sx21y21z2d3y2 dV − y&

0
 y2&

0
 y1

0
 es!2d3y2

!2 sin # d! d" d#

  − y&

0
 sin # d#  y2&

0
 d"  y1

0
 !2e !3 d!

  − f2cos #g0

&
 s2&d f1

3e !3g0

1
− 4

3& se 2 1d ■

NOTE It would have been extremely awkward to evaluate the integral in Example 3 
without spherical coordinates. In rectangular coordinates the iterated integral would have 
been

y1

21
 ys12x2

 

2s12x2 
 ys12x22y2

 

2s12x22y2  
 e sx21y21z2d3y2 dz dy dx

EXAMPLE 4 Use spherical coordinates to find the volume of the solid that lies above the 
cone z − sx 2 1 y 2  and below the sphere x 2 1 y 2 1 z2 − z. (See Figure 9.)

(0, 0, 1) 
≈+¥+z@=z 

z=œ„„„„„ ≈+¥ 
π 
4 

y 
x 

z 

FIGURE 9
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15.9 Change of Variables in Multiple Integrals

Definition 15.9.1. A change of variables is given by a transformation T from
the uv-plane to the xy-plane:

T (u, v) = (x, y)

where x and y are related to u and v by the equations

x = g(u, v) y = h(u, v).

We usually assume that T is a C1 transformation, which means that g and h
have continuous first-order partial derivatives.

Remark 1. A transformation T is really just a function whose domain and
range are both subsets of R2. If T (u1, v1) = (x1, y1), then the point (x1, y1) is
called the image of the point (u1, v1). If no two points have the same image,
T is called one-to-one. The figure shows the effect of a transformation T on
a region S in the uv-plane. T transforms S into a region R in the xy-plane
called the image of S, consisting of the images of all points in S.

 SECTION 15.9  Change of Variables in Multiple Integrals 1053

A change of variables can also be useful in double integrals. We have already seen one 
example of this: conversion to polar coordinates. The new variables r and ! are related to 
the old variables x and y by the equations

x − r cos !    y − r sin !

and the change of variables formula (15.3.2) can be written as

y
R

y f sx, yd dA − y
S

y f sr cos !, r sin !d r dr d!

where S is the region in the r!-plane that corresponds to the region R in the xy-plane.
More generally, we consider a change of variables that is given by a transformation 

T  from the uv-plane to the xy-plane:

Tsu , vd − sx, yd

where x and y are related to u  and v by the equations

3  x − tsu , vd    y − h su , vd 

or, as we sometimes write,

x − xsu , vd    y − ysu , vd

We usually assume that T  is a C 1 transformation, which means that t and h  have contin-
uous first-order partial derivatives.

A transformation T  is really just a function whose domain and range are both sub- 
sets of R 2. If Tsu 1, v1d − sx1, y1d, then the point sx1, y1d is called the image of the point 
su 1, v1d. If no two points have the same image, T  is called one-to-one. Figure 1 shows the 
effect of a transformation T  on a region S in the uv-plane. T  transforms S into a region R 
in the xy-plane called the image of S, consisting of the images of all points in S.

0

√

0

y

u x

(u¡, √¡)
(x¡, y¡)

S R
T –!

T

If T  is a one-to-one transformation, then it has an inverse transformation T 21 from 
the xy-plane to the uv-plane and it may be possible to solve Equations 3 for u  and v in 
terms of x and y:

u − Gsx, yd    v − Hsx, yd

EXAMPLE 1 A transformation is defined by the equations

x − u 2 2 v2     y − 2uv

Find the image of the square S − hsu , vd | 0 < u < 1,  0 < v < 1j.

SOLUTION The transformation maps the boundary of S into the boundary of the image. 
So we begin by finding the images of the sides of S. The first side, S1, is given by v − 0 

FIGURE 1
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If T is a one-to-one transformation, then it has an inverse transformation T−1

from the xy-plane to the uv-plane and it may be possible to solve for u and v
in terms of x and y:

u = G(x, y) v = H(x, y).
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Calculus - 15.9 Change of Variables in Multiple Integrals

Example 1. A transformation is defined by the equations

x = u2 − v2 y = 2uv.

Find the image of the square S = {(u, v) | 0 ≤ u ≤ 1, 0 ≤ v ≤ 1}.

Definition 15.9.2. The Jacobian of the transformation T given by x = g(u, v)
and y = h(u, v) is

∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣ =
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
.

Remark 2. This notation can be used to show that the area ∆A of the image
R in the xy-plane of a rectangle in the uv-plane is approximately

∆A ≈
∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣∆u∆v.

Theorem 15.9.1 (Change of Variables in a Double Integral). Suppose that T
is a C1 transformation whose Jacobian is nonzero and that T maps a region S
in the uv-plane onto a region R in the xy-plane. Suppose that f is continuous
on R and that R and S are type I or type II plane regions. Suppose also that
T is one-to-one, except perhaps on the boundary of S. Then

¨
R

f(x, y) dA =

¨
S

f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ du dv.
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Example 2. Use the change of variables x = u2 − v2, y = 2uv to evaluate
the integral

˜
R
y dA, where R is the region bounded by the x-axis and the

parabolas y2 = 4− 4x and y2 = 4 + 4x, y ≥ 0.
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Example 3. Evaluate the integral
˜

R
e(x+y)/(x−y) dA where R is the trape-

zoidal region with vertices (1, 0), (2, 0), (0,−2), and (0,−1).
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Definition 15.9.3. The Jacobian of the transformation T given by x =
g(u, v, w), y = h(u, v, w), and z = k(u, v, w) is

∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂x

∂w
∂y

∂u

∂y

∂v

∂y

∂w
∂z

∂u

∂z

∂v

∂z

∂w

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Theorem 15.9.2 (Change of Variables in a Triple Integral). Under hypotheses
similar to those in Theorem 15.9.1,

˚
R

f(x, y, z) dV =

˚
S

f(x(u, v, w), y(u, v, w), z(u, v, w))

∣∣∣∣ ∂(x, y, z)∂(u, v, w)

∣∣∣∣ du dv dw.
Example 4. Use Theorem 15.9.2 to derive the formula for triple integration
in spherical coordinates.
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Chapter 16

Vector Calculus

16.1 Vector Fields

 SECTION 16.1  Vector Fields 1069

In general, a vector field is a function whose domain is a set of points in R 2 (or R 3) 
and whose range is a set of vectors in V2 (or V3).

1   Definition Let D be a set in R 2 (a plane region). A vector field on R 2 is a 
function F that assigns to each point sx, yd in D a two-dimensional vector Fsx, yd.

The best way to picture a vector field is to draw the arrow representing the vector 
Fsx, yd starting at the point sx, yd. Of course, it’s impossible to do this for all points sx, yd, 
but we can gain a reasonable impression of F by doing it for a few representative points in 
D as in Figure 3. Since Fsx, yd is a two-dimensional vector, we can write it in terms of its 
component functions P and Q as follows:

Fsx, yd − Psx, yd i 1 Qsx, yd j− kPsx, yd, Qsx, ydl

or, for short, F − P i 1 Q j

Notice that P and Q are scalar functions of two variables and are sometimes called scalar 
fields to distinguish them from vector fields.

2   Definition Let E be a subset of R 3. A vector field on R 3 is a function F 
that assigns to each point sx, y, zd in E a three-dimensional vector Fsx, y, zd.

A vector field F on R 3 is pictured in Figure 4. We can express it in terms of its com-
ponent functions P, Q, and R as

Fsx, y, zd − Psx, y, zd i 1 Qsx, y, zd j1 Rsx, y, zd k

As with the vector functions in Section 13.1, we can define continuity of vector fields  
and show that F is continuous if and only if its component functions P, Q, and R are  
continuous.

We sometimes identify a point sx, y, zd with its position vector x − kx, y, zl and write 
Fsxd instead of Fsx, y, zd. Then F becomes a function that assigns a vector Fsxd to a vec-
tor x.

EXAMPLE 1 A vector field on R 2 is defined by Fsx, yd − 2y i 1 x j. Describe F by 
sketching some of the vectors Fsx, yd as in Figure 3.

SOLUTION Since Fs1, 0d − j, we draw the vector j− k0, 1l starting at the point s1, 0d 
in Figure 5. Since Fs0, 1d − 2i, we draw the vector k21, 0l with starting point s0, 1d. 
Continuing in this way, we calculate several other representative values of Fsx, yd in the 
table and draw the corresponding vectors to represent the vector field in Figure 5.

sx, yd Fsx, yd sx, yd Fsx, yd

s1, 0d k0, 1d s21, 0d k0, 21l
s2, 2d k22, 2l s22, 22d k2, 22l
s3, 0d k0, 3l s23, 0d k0, 23l
s0, 1d k21, 0l s0, 21d k1, 0)

s22, 2d k22, 22l s2, 22d k2, 2l
s0, 3d k23, 0l s0, 23d k3, 0l

FIGURE 3
Vector field on R@

0

(x, y)

F(x, y)

x

y

FIGURE 4
Vector field on R#

y

0

z

x

(x, y, z)

F (x, y, z)

FIGURE 5
F(x, y)=_y i+x j

F (1, 0)

F (0, 3) F (2, 2)

0 x

y

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Definition 16.1.1. Let D be a set in R2 (a plane region). A
vector field on R2 is a function F that assigns to each point
(x, y) in D a two-dimensional vector F(x, y).

Remark 1. Since F(x, y) is a two-dimensional vector, we can
write it in terms of its component functions P and Q as
follows:

F(x, y) = P (x, y)i+Q(x, y)j = ⟨P (x, y), Q(x, y)⟩

or, for short,
F = P i+Qj.

Note that P and Q are scalar functions of two variables and are sometimes
called scalar fields to distinguish them from vector fields.

Definition 16.1.2. Let E be a subset of R3. A vector field on R3 is a function
F that assigns to each point (x, y, z) in E a three-dimensional vector F(x, y, z).

Remark 2. We can express a vector field F on R3 in terms of its component
functions P , Q, and R as

F(x, y, z) = P (x, y, z)i+Q(x, y, z)j+R(x, y, z)k.
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Calculus - 16.1 Vector Fields

Example 1. A vector field on R2 is defined by F(x, y) = −yi + xj. Describe
F by sketching some of the vectors F(x, y).

Example 2. Sketch the vector field on R3 given by F(x, y, z) = zk.

556



Calculus - 16.1 Vector Fields

Example 3. Imagine a fluid flowing steadily along a pipe and let V(x, y, z)
be the velocity vector at a point (x, y, z). Then V assigns a vector to each
point (x, y, z) in a certain domain E (the interior of the pipe) and so V is a
vector field on R3 called a velocity field. Sketch a possible velocity field in a
fluid flow.

Example 4. Newton’s Law of Gravitation states that the magnitude of the
gravitational force between two objects with masses m and M is

|F| = mMG

r2

where r is the distance between the objects and G is the gravitational constant.
Let’s assume that the object with mass M is located at the origin in R3 and
let the position vector of the object with mass m be x = ⟨x, y, z⟩. Write and
sketch an equation for the gravitational field F.
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Calculus - 16.1 Vector Fields

Example 5. Suppose an electric charge Q is located at the origin. According
to Coulomb’s Law, the magnitude of the electric force F(x) exerted by this
charge on a charge q located at a point (x, y, z) with position vector x =
⟨x, y, z⟩ is

|F| = εqQ

r2

where ε is a constant (that depends on the units used). This vector field and
the one in Example 4 are examples of force fields. Instead of considering the
electric force F, physicists often consider the force per unit charge E(x) =
1
q
F(x), called the electric field of Q. Write equations for F and E.

Definition 16.1.3. If f is a scalar function of two variables, its gradient

∇f(x, y) = fx(x, y)i+ fy(x, y)j

is a vector field on R2 called a gradient vector field. Likewise, if f is a scalar
function of two variables, its gradient is a vector field on R3 given by

∇f(x, y, z) = fx(x, y, z)i+ fy(x, y, z)j+ fz(x, y, z)k.
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Calculus - 16.1 Vector Fields

Example 6. Find the gradient vector field of f(x, y) = x2y − y3. Plot the
gradient vector field together with a contour map of f . How are they related?

Definition 16.1.4. A vector field F is called a conservative vector field if it is
the gradient of some scalar function, that is, if there exists a function f such
that F = ∇f . In this situation f is called a potential function for F.
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16.2 Line Integrals

 SECTION 16.2  Line Integrals 1075

In this section we define an integral that is similar to a single integral except that instead 
of integrating over an interval fa, bg, we integrate over a curve C. Such integrals are 
called line integrals, although “curve integrals” would be better terminology. They were 
invented in the early 19th century to solve problems involving fluid flow, forces, electric-
ity, and magnetism.

We start with a plane curve C given by the parametric equations

1  x − xstd    y − ystd    a < t < b 

or, equivalently, by the vector equation rstd − xstd i 1 ystd j, and we assume that C is a 
smooth curve. [This means that r9 is continuous and r9std ± 0. See Section 13.3.] If we 
divide the parameter interval fa, bg into n subintervals fti21, tig of equal width and we let 
xi − xstid and yi − ystid, then the corresponding points Pi sxi, yi d divide C into n subarcs 
with lengths Ds1, Ds2, . . . , Dsn. (See Figure 1.) We choose any point Pi*sxi*, yi*d in the ith 
subarc. (This corresponds to a point ti* in fti21, tig.) Now if f  is any function of two vari-
ables whose domain includes the curve C, we evaluate f  at the point sxi*, yi*d, multiply 
by the length Dsi of the subarc, and form the sum

o
n

i−1
 f sxi*, yi*d Dsi

which is similar to a Riemann sum. Then we take the limit of these sums and make the 
following definition by analogy with a single integral.

2   Definition If f  is defined on a smooth curve C given by Equations 1, then 
the line integral of f  along C is

y
C
 f sx, yd ds − lim

n l `
 o

n

i−1
 f sxi*, yi*d Dsi

if this limit exists.

In Section 10.2 we found that the length of C is

L − yb

a
 ÎS dx

dt D2

1 S dy
dt D2 

 dt

A similar type of argument can be used to show that if f  is a continuous function, then 
the limit in Definition 2 always exists and the following formula can be used to evaluate 
the line integral:

3  y
C

 fsx, yd ds − yb

a
 f sxstd, ystddÎS dx

dt D2

1 S dy
dt D2

  dt 

The value of the line integral does not depend on the parametrization of the curve, pro-
vided that the curve is traversed exactly once as t increases from a to b.

t i-1

P¸
P¡
P™

C

a b

x0

y

t
t i

t*i

Pi-1 Pi

Pn

P*i (x*i , y*i )

FIGURE 1
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Definition 16.2.1. If f is defined on a smooth curve C given
by the parametric equations

x = x(t) y = y(t) a ≤ t ≤ b,

then the line integral of f along C is

ˆ
C

f(x, y) ds = lim
n→∞

n∑
i=1

f(x∗
i , y

∗
i )∆si

if this limit exists. The lengths ∆si are of subarcs of C and
the points (x∗

i , y
∗
i ) are sample points in the ith subarc.

Remark 1. Using the formula for the length of C we can write

ˆ
C

f(x, y) ds =

ˆ b

a

f(x(t), y(t))

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Example 1. Evaluate
´
C
(2 + x2y) ds, where C is the upper half of the unit

circle x2 + y2 = 1.
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1076 CHAPTER 16  Vector Calculus

If sstd is the length of C between rsad and rstd, then

ds
dt

− ÎS dx
dt D2

1 S dy
dt D2 

So the way to remember Formula 3 is to express everything in terms of the parameter t: 
Use the parametric equations to express x and y in terms of t and write ds as

ds − ÎS dx
dt D2

1 S dy
dt D2

 dt

In the special case where C is the line segment that joins sa, 0d to sb, 0d, using x as the  
parameter, we can write the parametric equations of C as follows: x − x, y − 0,  
a < x < b. Formula 3 then becomes

y
C
 f sx, yd ds − yb

a
 f sx, 0d dx

and so the line integral reduces to an ordinary single integral in this case.
Just as for an ordinary single integral, we can interpret the line integral of a positive 

function as an area. In fact, if f sx, yd > 0, yC f sx, yd ds represents the area of one side of 
the “fence” or “curtain” in Figure 2, whose base is C and whose height above the point 
sx, yd is f sx, yd.

EXAMPLE 1 Evaluate yC s2 1 x 2yd ds, where C is the upper half of the unit circle 
x 2 1 y 2 − 1.

SOLUTION In order to use Formula 3, we first need parametric equations to repre- 
sent C. Recall that the unit circle can be parametrized by means of the equations

x − cos t    y − sin t

and the upper half of the circle is described by the parameter interval 0 < t < !. 
(See Figure 3.) Therefore Formula 3 gives

 y
C
 s2 1 x 2yd ds − y!

0
 s2 1 cos2t sin tdÎS dx

dt D2

1 S dy
dt D2 

 dt

 − y!

0
 s2 1 cos2t sin tdssin2 t 1 cos2 t  dt

 − y!

0
 s2 1 cos2t sin td dt − F2t 2

cos3t
3 G

0

!

  − 2! 1 2
3  ■

Suppose now that C is a piecewise-smooth curve; that is, C is a union of a finite 
number of smooth curves C1, C2, . . . , Cn , where, as illustrated in Figure 4, the initial 
point of Ci11 is the terminal point of Ci . Then we define the integral of f  along C as the 
sum of the integrals of f  along each of the smooth pieces of C:

y
C
 f sx, yd ds − y

C1

 f sx, yd ds 1 y
C2

 f sx, yd ds 1 ∙ ∙ ∙ 1 y
Cn

f sx, yd ds

The arc length function s is discussed in  
Section 13.3.

f(x, y)

(x, y)

C y

z

x

0

FIGURE 2

0

≈+¥=1
(y˘0)
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y
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0

C£C™

C¡

C¢
C∞

x

y

FIGURE 4  
A piecewise-smooth curve
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Definition 16.2.2. Suppose that C is a piecewise-smooth
curve; that is, C is a union of a finite number of smooth
curves C1, C2, . . . , Cn, where, as illustrated in the figure, the
initial point of Ci+1 is the terminal point of Ci. Then we
define the integral of f along C as the sum of the integrals
of f along each of the smooth pieces of C:

ˆ
C

f(x, y) ds =

ˆ
C1

f(x, y) ds+

ˆ
C2

f(x, y) ds+ · · ·+
ˆ
Cn

f(x, y) ds.

Example 2. Evaluate
´
C
2x ds where C consists of the arc C1 of the parabola

y = x2 from (0, 0) to (1, 1) followed by the vertical line segment C2 from (1, 1)
to (1, 2).
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Definition 16.2.3. Suppose that ρ(x, y) represents the linear density at a
point (x, y) of a thin wire shaped like a curve C. Then the mass m of the wire
is given by

m = lim
n→∞

n∑
i=1

ρ(x∗
i , y

∗
i )∆si =

ˆ
C

ρ(x, y) ds.

The center of mass of the wire with density function ρ is located at the point
(x̄, ȳ), where

x̄ =
1

m

ˆ
C

xρ(x, y) ds ȳ =
1

m

ˆ
C

yρ(x, y) ds.

Example 3. A wire takes the shape of the semicircle x2 + y2 = 1, y ≥ 0, and
is thicker near its base than near the top. Find the center of mass of the wire
if the linear density at any point is proportional to its distance from the line
y = 1.
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Definition 16.2.4. The integrals

ˆ
C

f(x, y) dx = lim
n→∞

n∑
i=1

f(x∗
i , y

∗
i )∆xi

ˆ
C

f(x, y) dy = lim
n→∞

n∑
i=1

f(x∗
i , y

∗
i )∆yi

are called the line integrals of f along C with respect to x and y. The original
line integral

´
C
f(x, y) ds is called the line integral with respect to arc length.

Theorem 16.2.1. Line integrals with respect to x and y can also be evaluated
by expressing everything in terms of t:

ˆ
C

f(x, y) dx =

ˆ b

a

f(x(t), y(t))x′(t) dt

ˆ
C

f(x, y) dy =

ˆ b

a

f(x(t), y(t))y′(t) dt.

Remark 2. When line integrals with respect to x and y occur together we
abbreviate by writing

ˆ
C

P (x, y) dx+

ˆ
C

Q(x, y) dy =

ˆ
C

P (x, y)dx+Q(x, y) dy.
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vector representation of the line segment that starts at r0 and ends at r1 is given by

8  rstd − s1 2 tdr0 1 t r1    0 < t < 1 

(See Equation 12.5.4.)

EXAMPLE 4 Evaluate yC y 2 dx 1 x dy, where (a) C − C1 is the line segment from 
s25, 23d to s0, 2d and (b) C − C2 is the arc of the parabola x − 4 2 y 2 from s25, 23d 
to s0, 2d. (See Figure 7.)

SOLUTION
(a) A parametric representation for the line segment is

x − 5t 2 5    y − 5t 2 3    0 < t < 1

(Use Equation 8 with r0 − k25, 23l and r1 − k0, 2l.) Then dx − 5 dt, dy − 5 dt, and 
Formulas 7 give

 y
C1

 y 2 dx 1 x dy − y1

0
 s5t 2 3d2s5 dtd 1 s5t 2 5ds5 dtd

 − 5 y1

0
 s25t 2 2 25t 1 4d dt

 − 5F 25t 3

3
2

25t 2

2
1 4tG

0

1

− 2
5
6

(b) Since the parabola is given as a function of y, let’s take y as the parameter and 
write C2 as

x − 4 2 y 2    y − y    23 < y < 2

Then dx − 22y dy and by Formulas 7 we have

 y  

C2

 y 2 dx 1 x dy − y2

23
 y 2s22yd dy 1 s4 2 y 2 d dy

 − y2

23
 s22y 3 2 y 2 1 4d dy

  − F2
y 4

2
2

y 3

3
1 4yG

23

2

− 40 5
6 ■

Notice that we got different answers in parts (a) and (b) of Example 4 even though the 
two curves had the same endpoints. Thus, in general, the value of a line integral depends 
not just on the endpoints of the curve but also on the path. (But see Section 16.3 for con-
ditions under which the integral is independent of the path.)

Notice also that the answers in Example 4 depend on the direction, or orientation, of 
the curve. If 2C1 denotes the line segment from s0, 2d to s25, 23d, you can verify, using 
the parametrization

x − 25t    y − 2 2 5t    0 < t < 1

that y  

2C1

 y 2 dx 1 x dy − 5
6

0 4

(_5, _3)

(0, 2)

C¡ C™

x=4-¥

x

y

FIGURE 7
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Example 4. Evaluate
´
C
y2 dx+x dy, where (See the figure.)

(a) C = C1 is the line segment from (−5,−3) to (0, 2)

(b) C = C2 is the arc of the parabola x = 4 − y2 from
(−5,−3) to (0, 2).
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Definition 16.2.5. Suppose that C is a smooth space curve given by the
parametric equations

x = x(t) y = y(t) z = z(t) a ≤ t ≤ b,

or by a vector equation r(t) = x(t)i + y(t)j + z(t)k. If f is a function three
variables that is continuous on some region containing C, then the line integral
of f along C (with respect to arc length) is

ˆ
C

f(x, y, z) ds = lim
n→∞

n∑
i=1

f(x∗
i , y

∗
i , z

∗
i )∆si

if this limit exists.

Remark 3. Using the formula for the length of C we can write

ˆ
C

f(x, y, z) ds =

ˆ b

a

f(x(t), y(t), z(t))

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt,

or, more compactly, ˆ b

a

f(r(t))|r′(t)| dt.

For the special case f(x, y, z) = 1, we get

ˆ
C

ds =

ˆ b

a

|r′(t)| dt = L

where L is the length of the curve C.

Definition 16.2.6. The integrals

ˆ
C

f(x, y, z) dx = lim
n→∞

n∑
i=1

f(x∗
i , y

∗
i , z

∗
i )∆xi =

ˆ b

a

f(x(t), y(t), z(t))x′(t) dt

ˆ
C

f(x, y, z) dy = lim
n→∞

n∑
i=1

f(x∗
i , y

∗
i , z

∗
i )∆yi =

ˆ b

a

f(x(t), y(t), z(t))y′(t) dt

ˆ
C

f(x, y, z) dz = lim
n→∞

n∑
i=1

f(x∗
i , y

∗
i , z

∗
i )∆zi =

ˆ b

a

f(x(t), y(t), z(t))z′(t) dt

are called the line integrals of f along C with respect to x, y, and z.

Remark 4. As with line integrals in the plane, we evaluate integrals of the
form ˆ

C

P (x, y, z) dx+Q(x, y, z) dy +R(x, y, z) dz

by expressing everything (x, y, z, dx, dy, dz) in terms of the parameter t.
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Line integrals along C with respect to x, y, and z can also be defined. For example,

 y
C
 f sx, y, zd dz − lim

n  l `
 o

n

i−1
 f sxi*, yi*, zi*d Dzi

 − yb

a
 f sxstd, ystd, zstdd z9std dt

Therefore, as with line integrals in the plane, we evaluate integrals of the form

10  y
C
 Psx, y, zd dx 1 Qsx, y, zd dy 1 Rsx, y, zd dz 

by expressing everything sx, y, z, dx, dy, dzd in terms of the parameter t.

EXAMPLE 5 Evaluate yC y sin z ds, where C is the circular helix given by the equa tions 
x − cos t, y − sin t, z − t, 0 < t < 2!. (See Figure 9.)

SOLUTION Formula 9 gives

 y
C
 y sin z ds − y2!

0
 ssin td sin tÎS dx

dt D2

1 S dy
dt D2

1 S dz
dtD2 

 dt

 − y2!

0
 sin2tssin2t 1 cos 2t 1 1 dt − s2  y2!

0
 12s1 2 cos 2td dt

 − s2 

2
 ft 2 1

2 sin 2tg0

2!
− s2 ! ■

EXAMPLE 6 Evaluate yC y dx 1 z dy 1 x dz, where C consists of the line segment C1 
from s2, 0, 0d to s3, 4, 5d, followed by the vertical line segment C2 from s3, 4, 5d to 
s3, 4, 0d.

SOLUTION The curve C is shown in Figure 10. Using Equation 8, we write C1 as

rstd − s1 2 td k2, 0, 0 l 1 t k3, 4, 5 l − k2 1 t, 4t, 5t l

or, in parametric form, as

x − 2 1 t    y − 4t    z − 5t    0 < t < 1

Thus

 y
C1

 y dx 1 z dy 1 x dz − y1

0
 s4td dt 1 s5td4 dt 1 s2 1 td5 dt

 − y1

0
 s10 1 29td dt − 10t 1 29 

t 2

2 G0

1

− 24.5

Likewise, C2 can be written in the form

rstd − s1 2 td k3, 4, 5 l 1 tk3, 4, 0 l − k3, 4, 5 2 5t l

or x − 3    y − 4    z − 5 2 5t    0 < t < 1

1
x

z

y

C

1

0

_1

0

_1
0

2

4

6

1
x

z

y

C

1

0

_1

0

_1
0

2

4

6

FIGURE 9
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FIGURE 10
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Example 5. Evaluate
´
C
y sin z ds, where C is the circular

helix given by the equations x = cos t, y = sin t, z = t,
0 ≤ t ≤ 2π. (See the figure.)
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Example 6. Evaluate
´
C
y dx + z dy + x dz, where C consists of the line

segment C1 from (2, 0, 0) to (3, 4, 5), followed by the vertical line segment C2

from (3, 4, 5) to (3, 4, 0).
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Then dx − 0 − dy, so

y
C2

 y dx 1 z dy 1 x dz − y1

0
 3s25d dt − 215

Adding the values of these integrals, we obtain

 y
C
 y dx 1 z dy 1 x dz − 24.5 2 15 − 9.5 ■

Line Integrals of Vector Fields
Recall from Section 6.4 that the work done by a variable force f sxd in moving a particle 
from a to b along the x-axis is W − yb

a  f sxd dx. Then in Section 12.3 we found that the 
work done by a constant force F in moving an object from a point P to another point Q in
space is W − F ! D, where D − PQ

l
 is the displacement vector.

Now suppose that F − P i 1 Q j 1 R k is a continuous force field on R 3, such as the 
gravitational field of Example 16.1.4 or the electric force field of Example 16.1.5. (A force 
field on R 2 could be regarded as a special case where R − 0 and P and Q depend only 
on x and y.) We wish to compute the work done by this force in moving a particle along 
a smooth curve C.

We divide C into subarcs Pi21Pi with lengths Dsi by dividing the parameter interval 
fa, bg into subintervals of equal width. (See Figure 1 for the two-dimensional case or  
Figure 11 for the three-dimensional case.) Choose a point Pi*sxi*, yi*, zi*d on the ith sub-
arc corresponding to the parameter value ti*. If Dsi is small, then as the particle moves 
from Pi21 to Pi along the curve, it proceeds approximately in the direction of Tsti*d, the 
unit tangent vector at Pi*. Thus the work done by the force F in moving the particle from 
Pi21 to Pi is approximately

Fsxi*, yi*, zi*d ! fDsi Tsti*dg − fFsxi*, yi*, zi*d ! Tsti*dg Dsi

and the total work done in moving the particle along C is approximately

11  o
n

i−1
 fFsxi*, yi*, zi*d ? Tsxi*, yi*, zi*dg Dsi 

where Tsx, y, zd is the unit tangent vector at the point sx, y, zd on C. Intuitively, we see 
that these approximations ought to become better as n becomes larger. Therefore we 
define the work W  done by the force field F as the limit of the Riemann sums in (11), 
namely,

12  W − y
C
 Fsx, y, zd ! Tsx, y, zd ds − y

C
 F ! T ds 

Equation 12 says that work is the line integral with respect to arc length of the tangen tial 
component of the force.

If the curve C is given by the vector equation rstd − xstd i 1 ystd j 1 zstd k, then 
Tstd − r9stdy| r9std |, so using Equation 9 we can rewrite Equation 12 in the form

 W − yb

a
 FFsrstdd !

r9std
| r9std |G | r9std | dt − yb

a
 Fsrstdd ! r9std dt

0

F(x*i , y*i , z*i )
T(t*i )

Pi

P¸

Pi-1

P*i (x*i , y*i , z*i ) y

z

x

Pn

FIGURE 11
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Definition 16.2.7. Suppose that F = P i + Qj + Rk is a
continuous force field on R3. We define the work W done by
the force field F as the limit of the Riemann sums

n∑
i=1

[F(x∗
i , y

∗
i , z

∗
i ) ·T(x∗

i , y
∗
i , z

∗
i )]∆si

where P ∗
i (x

∗
i , y

∗
i , z

∗
i ) is a point on the ith subarc Pi−1Pi of C,

and T(x, y, z) is the unit tangent vector at the point (x, y, z)
on C. That is,

W =

ˆ
C

F(x, y, z) ·T(x, y, z) ds =

ˆ
C

F ·T ds.

Remark 5. If the curve C is given by the vector equation r(t) = x(t)i+y(t)j+
z(t)k, then T(t) = r′(t)/|r′(t)|, so

W =

ˆ b

a

[
F(r(t)) · r′(t)

|r′(t)|

]
|r′(t)| dt =

ˆ b

a

F(r(t)) · r′(t) dt,

which we abbreviate as
´
C
F · dr.

Definition 16.2.8. Let F be a continuous vector field defined on a smooth
curve C given by a vector function r(t), a ≤ t ≤ b. Then the line integral of
F along C is

ˆ
C

F · dr =
ˆ b

a

F(r(t)) · r′(t)dt =
ˆ
C

F ·T ds.

Example 7. Find the work done by the force field F(x, y) = x2i − xyj in
moving a particle along the quarter-circle r(t) = cos ti+ sin tj, 0 ≤ t ≤ π/2.
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Example 8. Evaluate
´
C
F · dr, where F(x, y, z) = xyi+ yzj+ zxk and C is

the twisted cubic given by

x = t y = t2 z = t3 0 ≤ t ≤ 1.

Theorem 16.2.2. Suppose the vector field F on R3 is given in component
form by F = P i+Qj+Rk. Then

ˆ
C

F · dr =
ˆ
C

P dx+Qdy +Rdz.

Proof.

ˆ
C

F · dr =
ˆ b

a

F(r(t)) · r′(t) dt

=

ˆ b

a

(P i+Qj+Rk) · (x′(t)i+ y′(t)j+ z′(t)k) dt

=

ˆ b

a

[
P (x(t), y(t), z(t))x′(t) +Q(x(t), y(t), z(t))y′(t) +R(x(t), y(t), z(t))z′(t)

]
dt
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16.3 Fundamental Theorem for Line Integrals

Theorem 16.3.1 (Fundamental Theorem for Line Integrals). Let C be a
smooth curve given by the vector function r(t), a ≤ t ≤ b. Let f be a differen-
tiable function of two or three variables whose gradient vector ∇f is continuous
on C. Then ˆ

C

∇f · dr = f(r(b))− f(r(a)).

 SECTION 16.3  The Fundamental Theorem for Line Integrals 1087

B

I  current to its magnetic effects and states that

y
C
 B ! dr − !0 I

   where I is the net current that passes through any surface 
bounded by a closed curve C, and !0 is a constant called the 
permeability of free space. By taking C to be a circle with 
radius r, show that the magnitude B − | B | of the magnetic 
field at a distance r from the center of the wire is

B −
!0 I
2"r

Recall from Section 5.3 that Part 2 of the Fundamental Theorem of Calculus can be 
written as

1  yb

a
 F9sxd dx − Fsb d 2 Fsa d 

where F9 is continuous on fa , b g. We also called Equation 1 the Net Change Theorem: 
The integral of a rate of change is the net change.

If we think of the gradient vector = f  of a function f  of two or three variables as a sort 
of derivative of f , then the following theorem can be regarded as a version of the Funda-
mental Theorem for line integrals.

2   Theorem Let C be a smooth curve given by the vector function rstd,  
a < t < b . Let f  be a differentiable function of two or three variables whose 
gradient vector = f  is continuous on C. Then

y
C
 = f ! dr − f srsb dd 2 f srsa dd

0

A(x¡, y¡) B(x™, y™)

C x

y

(a)

0

A(x¡, y¡, z¡)
B(x™, y™, z™)

C

y

z

x

(b )

FIGURE 1

NOTE Theorem 2 says that we can evaluate the line integral of a conservative vec-
tor field (the gradient vector field of the potential function f ) simply by knowing the 
value of f  at the endpoints of C. In fact, Theorem 2 says that the line integral of = f  is 
the net change in f. If f  is a function of two variables and C is a plane curve with initial 
point Asx1, y1d and terminal point Bsx2, y2d, as in Figure 1(a), then Theorem 2 becomes

y
C
 = f ! dr − f sx2, y2d 2 f sx1, y1d

 If f  is a function of three variables and C is a space curve joining the point Asx1, y1, z1 d 
to the point Bsx2, y2, z2 d, as in Figure 1(b), then we have

y
C
 = f ! dr − f sx2, y2, z2 d 2 f sx1, y1, z1 d

Let’s prove Theorem 2 for this case.
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Proof. If f is a function of three variables and C is a space
curve joining the point A(x1, y1, z1) to the point B(x2, y2, z2),
as in the figure, then the theorem becomes

ˆ
C

∇f · dr = f(x2, y2, z2)− f(x1, y1, z1).

In this case (the case for two variables is similar),

ˆ
C

∇f · dr =
ˆ b

a

∇f(r(t)) · r′(t) dt

=

ˆ b

a

(
∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt

)
dt

=

ˆ b

a

d

dt
f(r(t)) dt

= f(r(b))− f(r(a)).

Example 1. Find the work done by the gravitational field

F(x) = −mMG

|x|3
x

in moving a particle with mass m from the point (3, 4, 12) to the point (2, 2, 0)
along a piecewise-smooth curve C. (See Example 16.1.4.)
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A curve is called closed if its terminal point coincides with its initial point, that is, 
rsbd − rsad. (See Figure 2.) If yC F ! dr is independent of path in D and C is any closed 
path in D, we can choose any two points A and B on C and regard C as being composed 
of the path C1 from A to B followed by the path C2 from B to A. (See Fig ure 3.) Then

y
C
 F ! dr − y  

C1

 F ! dr 1 y  

C2

 F ! dr − y  

C1

 F ! dr 2 y  

2C2

 F ! dr − 0

since C1 and 2C2 have the same initial and terminal points.
Conversely, if it is true that yC F ! dr − 0 whenever C is a closed path in D, then we 

demonstrate independence of path as follows. Take any two paths C1 and C2 from A to B 
in D and define C to be the curve consisting of C1 followed by 2C2. Then

0 − y
C
 F ! dr − y  

C1

 F ! dr 1 y  

2C2

 F ! dr − y  

C1

 F ! dr 2 y  

C2

 F ! dr

and so yC1
 F ! dr − yC2

 F ! dr. Thus we have proved the following theorem.

3   Theorem yC F ! dr is independent of path in D if and only if yC F ! dr − 0 
for every closed path C in D.

Since we know that the line integral of any conservative vector field F is independent 
of path, it follows that yC F ! dr − 0 for any closed path. The physical interpretation is 
that the work done by a conservative force field (such as the gravitational or electric field 
in Section 16.1) as it moves an object around a closed path is 0.

The following theorem says that the only vector fields that are independent of path are 
conservative. It is stated and proved for plane curves, but there is a similar version for 
space curves. We assume that D is open, which means that for every point P in D there is 
a disk with center P that lies entirely in D. (So D doesn’t contain any of its boundary 
points.) In addition, we assume that D is connected: this means that any two points in D 
can be joined by a path that lies in D.

4   Theorem Suppose F is a vector field that is continuous on an open con-
nected region D. If yC F ! dr is independent of path in D, then F is a conservative 
vector field on D; that is, there exists a function f  such that = f − F.

PROOF Let Asa, bd be a fixed point in D. We construct the desired potential function f  
by defining

f sx, yd − ysx, yd

sa, bd
 F ! dr

for any point sx, yd in D. Since yC F ! dr is independent of path, it does not matter  
which path C from sa, bd to sx, yd is used to evaluate f sx, yd. Since D is open, there 
exists a disk contained in D with center sx, yd. Choose any point sx1, yd in the disk with 
x1 , x and let C consist of any path C1 from sa, bd to sx1, yd followed by the horizontal 
line segment C2 from sx1, yd to sx, yd. (See Figure 4.) Then

f sx, yd − y  

C1

 F ! dr 1 y  

C2

 F ! dr − ysx1, yd

sa, bd
 F ! dr 1 y  

C2

 F ! dr

Notice that the first of these integrals does not depend on x, so
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Remark 1. In general, if F is a continuous vector field with
domain D, we say that the line integral

´
C
F · dr is inde-

pendent of path if
´
C1

F · dr =
´
C2

F · dr for any two paths
C1 and C2 in D that have the same initial points and the
same terminal points. By Theorem 16.3.1, line integrals of
conservative vector fields are independent of path. A curve
is called closed if its terminal point coincides with its initial point, that is,
r(b) = r(a). (See the figure.)

Theorem 16.3.2.
´
C
F·dr is independent of path in D if and only if

´
C
F·dr =

0 for every closed path C in D.

 SECTION 16.3  The Fundamental Theorem for Line Integrals 1089

A curve is called closed if its terminal point coincides with its initial point, that is, 
rsbd − rsad. (See Figure 2.) If yC F ! dr is independent of path in D and C is any closed 
path in D, we can choose any two points A and B on C and regard C as being composed 
of the path C1 from A to B followed by the path C2 from B to A. (See Fig ure 3.) Then

y
C
 F ! dr − y  

C1

 F ! dr 1 y  

C2

 F ! dr − y  

C1

 F ! dr 2 y  

2C2

 F ! dr − 0

since C1 and 2C2 have the same initial and terminal points.
Conversely, if it is true that yC F ! dr − 0 whenever C is a closed path in D, then we 

demonstrate independence of path as follows. Take any two paths C1 and C2 from A to B 
in D and define C to be the curve consisting of C1 followed by 2C2. Then

0 − y
C
 F ! dr − y  

C1

 F ! dr 1 y  

2C2

 F ! dr − y  

C1

 F ! dr 2 y  

C2

 F ! dr

and so yC1
 F ! dr − yC2

 F ! dr. Thus we have proved the following theorem.

3   Theorem yC F ! dr is independent of path in D if and only if yC F ! dr − 0 
for every closed path C in D.

Since we know that the line integral of any conservative vector field F is independent 
of path, it follows that yC F ! dr − 0 for any closed path. The physical interpretation is 
that the work done by a conservative force field (such as the gravitational or electric field 
in Section 16.1) as it moves an object around a closed path is 0.

The following theorem says that the only vector fields that are independent of path are 
conservative. It is stated and proved for plane curves, but there is a similar version for 
space curves. We assume that D is open, which means that for every point P in D there is 
a disk with center P that lies entirely in D. (So D doesn’t contain any of its boundary 
points.) In addition, we assume that D is connected: this means that any two points in D 
can be joined by a path that lies in D.

4   Theorem Suppose F is a vector field that is continuous on an open con-
nected region D. If yC F ! dr is independent of path in D, then F is a conservative 
vector field on D; that is, there exists a function f  such that = f − F.

PROOF Let Asa, bd be a fixed point in D. We construct the desired potential function f  
by defining

f sx, yd − ysx, yd

sa, bd
 F ! dr

for any point sx, yd in D. Since yC F ! dr is independent of path, it does not matter  
which path C from sa, bd to sx, yd is used to evaluate f sx, yd. Since D is open, there 
exists a disk contained in D with center sx, yd. Choose any point sx1, yd in the disk with 
x1 , x and let C consist of any path C1 from sa, bd to sx1, yd followed by the horizontal 
line segment C2 from sx1, yd to sx, yd. (See Figure 4.) Then

f sx, yd − y  
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 F ! dr 1 y  
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Proof. If
´
C
F · dr is independent of path in D and C is any

closed path in D, we can choose any two points A and B on
C as being composed of the path C1 from A to B followed
by the path C2 from B to A. (See the figure.) Then

ˆ
C

F ·dr =
ˆ
C1

F ·dr+
ˆ
C2

F ·dr =
ˆ
C1

F ·dr−
ˆ
−C2

F ·dr = 0

since C1 and −C2 have the same initial and terminal points.
Conversely, if it is true that

´
C
F · dr = 0 whenever C is a closed path in D,

then we demonstrate independence of path as follows. Take any two paths
C1 and C2 from A to B in D and define C to be the curve consisting of C1

followed by −C2. Then

0 =

ˆ
C

F · dr =
ˆ
C1

F · dr+
ˆ
−C2

F · dr =
ˆ
C1

F · dr−
ˆ
C2

F · dr

and so
´
C1

F · dr =
´
C2

F · dr.

Theorem 16.3.3. Suppose F is a vector field that is continuous on an open
connected region D. (By open we mean that for every point P in D there is
a disk with center P that lies entirely in D, and by connected we mean that
any two points in D can be joined by a path that lies in D.) If

´
C
F · dr is

independent of path in D, then F is a conservative vector field on D; that is,
there exists a function f such that ∇f = F.

Theorem 16.3.4. If F(x, y) = P (x, y)i+Q(x, y)j is a conservative vector field,
where P and Q have continuous first-order partial derivatives on a domain D,
then throughout D we have

∂P

∂y
=

∂Q

∂x
.
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Calculus - 16.3 Fundamental Theorem for Line Integrals

Definition 16.3.1. A simple curve is a curve that does not intersect itself
anywhere between its endpoints. [See the figure; r(a) = r(b) for a simple
closed curve, but r(t1) ̸= r(t2) when a < t2 < t2 < b.]

1090 CHAPTER 16  Vector Calculus

If we write F − P i 1 Q j, then

y  

C2

 F ! dr − y  

C2

 P dx 1 Q dy

On C2, y is constant, so dy − 0. Using t as the parameter, where x1 < t < x, we have

 
−

−x
 f sx, yd −

−

−x
 y

C
2

 P dx 1 Q dy −
−

−x
 y x

x1

 Pst, yd dt − Psx, yd

by Part 1 of the Fundamental Theorem of Calculus (see Section 5.3). A similar argu-
ment, using a vertical line segment (see Figure 5), shows that

−

−y
 f sx, yd −

−

−y
 y  

C2

 P dx 1 Q dy −
−

−y
 yy

y1

 Qsx, td dt − Qsx, yd

Thus F − P i 1 Q j−
−f
−x

 i 1
−f
−y

 j− = f  

which says that F is conservative. ■

The question remains: how is it possible to determine whether or not a vector field  
F is conservative? Suppose it is known that F − P i 1 Q j is conservative, where P and  
Q have continuous first-order partial derivatives. Then there is a function f  such that  
F − = f , that is,

P −
−f
−x

    and    Q −
−f
−y

Therefore, by Clairaut’s Theorem,

−P
−y

−
−2 f

−y −x
−

−2 f
−x −y

−
−Q
−x

5   Theorem If Fsx, yd − Psx, yd i 1 Qsx, yd j is a conservative vector field, 
where P and Q have continuous first-order partial derivatives on a domain D, 
then throughout D we have

−P
−y

−
−Q
−x

The converse of Theorem 5 is true only for a special type of region. To explain this, 
we first need the concept of a simple curve, which is a curve that doesn’t intersect itself 
anywhere between its endpoints. [See Figure 6; rsad − rsbd for a simple closed curve, 
but rst1 d ± rst2 d when a, t1 , t2 , b.]

In Theorem 4 we needed an open connected region. For the next theorem we need a 
stronger condition. A simply-connected region in the plane is a connected region D 
such that every simple closed curve in D encloses only points that are in D. Notice from 
Figure 7 that, intuitively speaking, a simply-connected region contains no hole and can’t 
consist of two separate pieces.

In terms of simply-connected regions, we can now state a partial converse to Theo-
rem 5 that gives a convenient method for verifying that a vector field on R 2 is conserva-
tive. The proof will be sketched in the next section as a consequence of Green’s Theorem.
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Definition 16.3.2. A simply-connected region in the plane is a connected
region D such that every simple closed curve in D encloses only points that
are in D. [See the figure; a simply-connected region contains no hole and
cannot consist of two separate pieces.]

1090 CHAPTER 16  Vector Calculus

If we write F − P i 1 Q j, then

y  

C2

 F ! dr − y  

C2

 P dx 1 Q dy

On C2, y is constant, so dy − 0. Using t as the parameter, where x1 < t < x, we have
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−x
 f sx, yd −

−

−x
 y

C
2

 P dx 1 Q dy −
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 y x

x1

 Pst, yd dt − Psx, yd

by Part 1 of the Fundamental Theorem of Calculus (see Section 5.3). A similar argu-
ment, using a vertical line segment (see Figure 5), shows that

−

−y
 f sx, yd −

−

−y
 y  

C2

 P dx 1 Q dy −
−

−y
 yy

y1

 Qsx, td dt − Qsx, yd

Thus F − P i 1 Q j−
−f
−x

 i 1
−f
−y

 j− = f  

which says that F is conservative. ■

The question remains: how is it possible to determine whether or not a vector field  
F is conservative? Suppose it is known that F − P i 1 Q j is conservative, where P and  
Q have continuous first-order partial derivatives. Then there is a function f  such that  
F − = f , that is,

P −
−f
−x

    and    Q −
−f
−y

Therefore, by Clairaut’s Theorem,

−P
−y

−
−2 f

−y −x
−

−2 f
−x −y

−
−Q
−x

5   Theorem If Fsx, yd − Psx, yd i 1 Qsx, yd j is a conservative vector field, 
where P and Q have continuous first-order partial derivatives on a domain D, 
then throughout D we have

−P
−y

−
−Q
−x

The converse of Theorem 5 is true only for a special type of region. To explain this, 
we first need the concept of a simple curve, which is a curve that doesn’t intersect itself 
anywhere between its endpoints. [See Figure 6; rsad − rsbd for a simple closed curve, 
but rst1 d ± rst2 d when a, t1 , t2 , b.]

In Theorem 4 we needed an open connected region. For the next theorem we need a 
stronger condition. A simply-connected region in the plane is a connected region D 
such that every simple closed curve in D encloses only points that are in D. Notice from 
Figure 7 that, intuitively speaking, a simply-connected region contains no hole and can’t 
consist of two separate pieces.

In terms of simply-connected regions, we can now state a partial converse to Theo-
rem 5 that gives a convenient method for verifying that a vector field on R 2 is conserva-
tive. The proof will be sketched in the next section as a consequence of Green’s Theorem.
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Theorem 16.3.5. Let F = P i + Qj be a vector field on an open simply-
connected region D. Suppose that P and Q have continuous first-order partial
derivatives

∂P

∂y
=

∂Q

∂x
throughout D.

Then F is conservative.
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Calculus - 16.3 Fundamental Theorem for Line Integrals

Example 2. Determine whether or not the vector field

F(x, y) = (x− y)i+ (x− 2)j

is conservative.

Example 3. Determine whether or not the vector field

F(x, y) = (3 + 2xy)i+ (x2 − 3y2)j

is conservative.
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Calculus - 16.3 Fundamental Theorem for Line Integrals

Example 4. (a) If F(x, y) = (3 + 2xy)i+ (x2 − 3y2)j, find a function f such
that F = ∇f .

(b) Evaluate the line integral
´
C
F · dr, where C is the curve given by

r(t) = et sin ti+ et cos tj 0 ≤ t ≤ π.
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Calculus - 16.3 Fundamental Theorem for Line Integrals

Example 5. If F(x, y, z) = y2i+(2xy+ e3z)j+3ye3zk, find a function f such
that ∇f = F.

575



Calculus - 16.4 Green’s Theorem

16.4 Green’s Theorem

Definition 16.4.1. The positive orientation of a simple closed curve C refers
to a single counterclockwise traversal of C. Thus if C is given by the vector
function r(t), a ≤ t ≤ b, then the region D is always on the left as the point
r(t) traverses C. (See the figure.)

1096 CHAPTER 16  Vector Calculus

Green’s Theorem gives the relationship between a line integral around a simple closed 
curve C and a double integral over the plane region D bounded by C. (See Figure 1. We 
assume that D consists of all points inside C as well as all points on C.) In stating Green’s 
Theorem we use the convention that the positive orientation of a simple closed curve C 
refers to a single counterclockwise traversal of C. Thus if C is given by the vector func-
tion rstd, a < t < b, then the region D is always on the left as the point rstd traverses C.  
(See Figure 2.)

(a) Positive orientation

y

x0

D

C

(b) Negative orientation

y

x0

D

C

Green’s Theorem Let C be a positively oriented, piecewise-smooth, simple 
closed curve in the plane and let D be the region bounded by C. If P and Q have 
continuous partial derivatives on an open region that contains D, then

y
C
 P dx 1 Q dy − y

D

y S −Q
−x

2
−P
−y D dA

Recall that the left side of this equation  
is another way of writing yC F ! dr, 
where F − P i 1 Q j.

NOTE The notation

!y
C
 P dx 1 Q dy    or    g

C
P dx 1 Q dy

is sometimes used to indicate that the line integral is calculated using the positive orien-
tation of the closed curve C. Another notation for the positively oriented boundary curve 
of D is −D, so the equation in Green’s Theorem can be written as

1  y
D

y S −Q
−x

2
−P
−y D dA − y

−D
 P dx 1 Q dy 

Green’s Theorem should be regarded as the counterpart of the Fundamental Theorem 
of Calculus for double integrals. Compare Equation 1 with the statement of the Funda-
mental Theorem of Calculus, Part 2, in the following equation:

yb

a
 F9sxd dx − Fsbd 2 Fsad

In both cases there is an integral involving derivatives (F9, −Qy−x, and −Py−y) on the left 
side of the equation. And in both cases the right side involves the values of the original 
functions (F, Q, and P) only on the boundary of the domain. (In the one-dimensional case, 
the domain is an interval fa, bg whose boundary consists of just two points, a and b.)

y

x0

D

C

FIGURE 1

FIGURE 2
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Theorem 16.4.1 (Green’s Theorem). Let C be a positively oriented, piecewise-
smooth, simple closed curve in the plane and let D be the region bounded by C.
If P and Q have continuous partial derivatives on an open region that contains
D, then ˆ

C

P dx+Qdy =

¨
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

Remark 1. The notation˛
P dx+Qdy or

ffi
P dx+Qdy

is sometimes used to indicate that the line integral is calculated using the
positive orientation of the closed curve C. Another notation for the positively
oriented boundary curve of D is ∂D, so the equation in Green’s Theorem can
be written as ¨

D

(
∂Q

∂x
− ∂P

∂y

)
dA =

ˆ
∂D

P dx+Qdy.
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Calculus - 16.4 Green’s Theorem

Example 1. Evaluate
´
C
x4 dx+ xy dy, where C is the triangular curve con-

sisting of the line segments from (0, 0) to (1, 0), from (1, 0) to (0, 1), and from
(0, 1) to (0, 0).

Example 2. Evaluate
¸
C
(3y − esinx) dx+ (7x+

√
y4 + 1) dy, where C is the

circle x2 + y2 = 9.
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Calculus - 16.4 Green’s Theorem

Theorem 16.4.2. The area of a region D is

A =

˛
C

x dy = −
˛
C

y dx =
1

2

˛
C

x dy − y dx.

Proof. Since the area of D is
˜

D
1 dA, we wish to choose P and Q so that

∂Q

∂x
− ∂P

∂y
= 1.

There are several possibilities:

P (x, y) = 0 P (x, y) = −y P (x, y) = −1

2
y

Q(x, y) = x Q(x, y) = 0 Q(x, y) =
1

2
x.

Then the result follows by Green’s Theorem.

Example 3. Find the area enclosed by the ellipse
x2

a2
+

y2

b2
= 1.
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Calculus - 16.4 Green’s Theorem

Example 4. Evaluate
¸
C
y2 dx + 3xy dy, where C is the boundary of the

semiannular region D in the upper half-plane between the circles x2 + y2 = 1
and x2 + y2 = 4.

1100 CHAPTER 16  Vector Calculus

If we add these two equations, the line integrals along C3 and 2C3 cancel, so we get

y
C1øC2

P dx 1 Q dy − y
D

y S −Q
−x

2
−P
−y D dA

which is Green’s Theorem for D − D1 ø D2, since its boundary is C − C1 ø C2.
The same sort of argument allows us to establish Green’s Theorem for any !nite union 

of nonoverlapping simple regions (see Figure 7).

EXAMPLE 4 Evaluate !yC y 2 dx 1 3xy dy, where C is the boundary of the semiannular 
region D in the upper half-plane between the circles x 2 1 y 2 − 1 and x 2 1 y 2 − 4.

SOLUTION Notice that although D is not simple, the y-axis divides it into two simple 
regions (see Figure 8). In polar coordinates we can write

D − hsr, !d | 1 < r < 2, 0 < ! < "j
Therefore Green’s Theorem gives

!y
C

y 2 dx 1 3xy dy − y
D

y F −

−x
s3xyd 2

−

−y
sy 2 dG dA

− y
D

y y dA − y"

0
y2

1
sr sin !d r dr d!

− y"

0
 sin ! d! y2

1
r 2 dr − f2cos !g0

" f1
3 r 3 g1

2
−

14
3

Q

Green’s Theorem can be extended to apply to regions with holes, that is, regions that 
are not simply-connected. Observe that the boundary C of the region D in Figure 9 con-
sists of two simple closed curves C1 and C2. We assume that these boundary curves are  
oriented so that the region D is always on the left as the curve C is traversed. Thus the  
positive direction is counterclockwise for the outer curve C1 but clockwise for the inner 
curve C2. If we divide D into two regions D9 and D 0 by means of the lines shown in  
Figure 10 and then apply Green’s Theorem to each of D9 and D 0, we get

y
D

y S −Q
−x

2
−P
−y D dA − y

D9

y S −Q
−x

2
−P
−y D dA 1 y

D0

y S −Q
−x

2
−P
−y D dA

− y
−D9

P dx 1 Q dy 1 y
−D0

P dx 1 Q dy

Since the line integrals along the common boundary lines are in opposite directions, they 
cancel and we get

y
D

y S −Q
−x

2
−P
−y D dA − y

C1

P dx 1 Q dy 1 y
C2

P dx 1 Q dy − y
C

P dx 1 Q dy

which is Green’s Theorem for the region D.

EXAMPLE 5 If Fsx, yd − s2y i 1 x jdysx 2 1 y 2 d, show that yC F ! dr − 2" for every 
positively oriented simple closed path that encloses the origin.

SOLUTION Since C is an arbitrary closed path that encloses the origin, it’s dif!cult to 
compute the given integral directly. So let’s consider a counterclockwise-oriented circle C9

C

FIGURE 7
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Remark 2. Green’s Theorem can be extended to apply to
regions with holes, that is, regions that are not simply-
connected. Observe that the boundary C of the region D
in the top figure consists of two simple closed curves C1 and
C2. By dividing the region D into two regions D′ and D′′

by means of the lines shown in the bottom figure, and then
applying Green’s Theorem to each of D′ and D′′, we get

¨
D

(
∂Q

∂x
− ∂P

∂y

)
dA =

¨
D′

(
∂Q

∂x
− ∂P

∂y

)
dA+

¨
D′′

(
∂Q

∂x
− ∂P

∂y

)
dA

=

ˆ
∂D′

P dx+Qdy +

ˆ
∂D′′

P dx+Qdy

=

ˆ
C1

P dx+Qdy +

ˆ
C2

P dx+Qdy

=

ˆ
C

P dx+Qdy.
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Calculus - 16.4 Green’s Theorem

Example 5. If F(x, y) = (−yi + xj)/(x2 + y2), show that
´
C
F · dr = 2π for

every positively oriented simple closed path that encloses the origin.
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Calculus - 16.5 Curl and Divergence

16.5 Curl and Divergence

Definition 16.5.1. If F = P i+Qj+Rk is a vector field on R3 and the partial
derivatives of P , Q, and R all exist, then the curl of F is the vector field on
R3 defined by

curlF =

(
∂R

∂y
− ∂Q

∂z

)
i+

(
∂P

∂z
− ∂R

∂x

)
j+

(
∂Q

∂x
− ∂P

∂y

)
k.

Remark 1. The equation for curl can be rewritten using operator notation by
introducing the vector differential operator ∇ (“del”) as

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
.

It has meaning when it operates on a scalar function to produce the gradient
of f :

∇f =

(
i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
f =

∂f

∂x
i+

∂f

∂y
j+

∂f

∂z
k.

If we think of ∇ as a vector with components ∂/∂x, ∂/∂y, and ∂/∂z, we can
also consider the formal cross product of ∇ with the vector field F as follows:

∇× F =

∣∣∣∣∣∣∣∣∣∣
i j k

∂

∂x

∂

∂y

∂

∂z

P Q R

∣∣∣∣∣∣∣∣∣∣
=

(
∂R

∂y
− ∂Q

∂z

)
i+

(
∂P

∂z
− ∂R

∂x

)
j+

(
∂Q

∂x
− ∂P

∂y

)
k

= curlF.

Example 1. If F(x, y, z) = xzi+ xyzj− y2k, find curlF.
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Theorem 16.5.1. If f is a function of three variables that has continuous
second-order partial derivatives, then

curl(∇f) = 0.

Proof.

curl(∇f) = ∇× (∇f) =

∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z
∂f

∂x

∂f

∂y

∂f

∂z

∣∣∣∣∣∣∣∣∣∣∣
=

(
∂2f

∂y∂z
− ∂2f

∂z∂y

)
i+

(
∂2f

∂z∂x
− ∂2f

∂x∂z

)
j+

(
∂2f

∂x∂y
− ∂2f

∂y∂x

)
k

= 0i+ 0j+ 0k = 0

by Clairaut’s Theorem.

Example 2. Show that the vector field F(x, y, z) = xzi + xyzj − y2k is not
conservative.

Theorem 16.5.2. If F is a vector field defined on all of R3 whose component
functions have continuous partial derivatives and curlF = 0, then F is a
conservative vector field.

Example 3. (a) Show that

F(x, y, z) = y2z3i+ 2xyz3j+ 3xy2z2k

is a conservative vector field.
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(b) Find a function f such that F = ∇f .

Definition 16.5.2. If F = P i +Qj + Rk is a vector field on R3 and ∂P/∂x,
∂Q/∂y, and ∂R/∂z exist, then the divergence of F is the function of three
variables defined by

divF =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z
.

Remark 2. In terms of the gradient operator ∇ = (∂/∂x)i+(∂/∂y)j+(∂/∂z)k,
the divergence of F can be written symbolically as the dot product of ∇ and
F:

divF = ∇ · F.
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Example 4. If F(x, y, z) = xzi+ xyzj− y2k, find divF.

Theorem 16.5.3. If F = P i+Qj+Rk is a vector field on R3 and P , Q, and
R have continuous second-order partial derivatives, then

div curlF = 0.

Proof.

div curlF = ∇ · (∇× F)

=
∂

∂x

(
∂R

∂y
− ∂Q

∂z

)
+

∂

∂y

(
∂P

∂z
− ∂R

∂x

)
+

∂

∂z

(
∂Q

∂x
− ∂P

∂y

)
=

∂2R

∂x∂y
− ∂2Q

∂x∂z
+

∂2P

∂y∂z
− ∂2R

∂y∂x
+

∂2Q

∂z∂x
− ∂2P

∂z∂y

= 0.

Example 5. Show that the vector field F(x, y, z) = xzi+xyzj− y2k can’t be
written as the curl of another vector field, that is, F ̸= curlG.
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Theorem 16.5.4. Suppose a plane region D, its boundary curve C, and the
functions P and Q satisfy the hypotheses of Green’s Theorem where F = P i+
Qj. Then ˛

C

F · dr =
¨

D

(curlF) · k dA.

Proof. Regarding F as a vector field on R3 with third component 0, we have

˛
C

F · dr =
˛
C

P dx+Qdy

and

curlF =

∣∣∣∣∣∣∣∣∣∣
i j k

∂

∂x

∂

∂y

∂

∂z

P (x, y) Q(x, y) 0

∣∣∣∣∣∣∣∣∣∣
=

(
∂Q

∂x
− ∂P

∂y

)
k.

Therefore

(curlF) · k =

(
∂Q

∂x
− ∂P

∂y

)
k · k =

∂Q

∂x
− ∂P

∂y
,

and the result follows by Green’s Theorem.
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Theorem 16.5.5. Suppose a plane region D, its boundary curve C, and the
functions P and Q satisfy the hypotheses of Green’s Theorem where F = P i+
Qj. Then ˛

C

F · n ds =

¨
D

divF(x, y) dA.

Proof. If C is given by the vector equation

r(t) = x(t)i+ y(t)j a ≤ t ≤ b

then the unit tangent vector is

T(t) =
x′(t)

|r′(t)|
i+

y′(t)

|r′(t)|
j

and the outward unit normal vector to C is given by

n(t) =
y′(t)

|r′(t)|
i− x′(t)

|r′(t)|
j.

Thus

˛
C

F · n ds =

ˆ b

a

(F · n)(t)|r′(t)| dt

=

ˆ b

a

[
P (x(t), y(t))y′(t)

|r′(t)|
− Q(x(t), y(t))x′(t)

|r′(t)|

]
|r′(t)| dt

=

ˆ b

a

P (x(t), y(t))y′(t) dt−Q(x(t), y(t)) x′(t) dt

=

ˆ
C

P dy −Qdx =

¨
D

(
∂P

∂x
+

∂Q

∂y

)
dA

by Green’s Theorem.
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16.6 Parametric Surfaces and Their Areas

Definition 16.6.1. Suppose that

r(u, v) = x(u, v)i+ y(u, v)j+ z(u, v)k

is a vector-valued function defined on a region D in the uv-plane. So x, y,
and z, the component functions of r, are functions of the two variables u and
v with domain D. The set of all points (x, y, z) in R3 such that

x = x(u, v) y = y(u, v) z = z(u, v)

and (u, v) varies throughout D, is called a parametric surface S and the equa-
tions are called parametric equations of S. The surface S is traced out by the
tip of the position vector r(u, v) as (u, v) moves throughout the region D. (See
the figure.)

 seCtion 16.6  Parametric Surfaces and Their Areas 1111

So far we have considered special types of surfaces: cylinders, quadric surfaces, graphs 
of functions of two variables, and level surfaces of functions of three variables. Here we 
use vector functions to describe more general surfaces, called parametric surfaces, and 
compute their areas. Then we take the general surface area formula and see how it applies 
to special surfaces.

parametric surfaces
In much the same way that we describe a space curve by a vector function rstd of a single 
parameter t, we can describe a surface by a vector function rsu, vd of two param  eters u  
and v. We suppose that

1 rsu, vd − xsu, vd i 1 ysu, vd j 1 zsu, vd k 

is a vector-valued function defined on a region D in the uv-plane. So x, y, and z, the com-
ponent functions of r, are functions of the two variables u and v with domain D. The set 
of all points sx, y, zd in R 3 such that

2 x − xsu, vd    y − ysu, vd    z − zsu, vd 

and su, vd varies throughout D, is called a parametric surface S and Equations 2 are 
called parametric equations of S. Each choice of u and v gives a point on S; by making 
all choices, we get all of S. In other words, the surface S is traced out by the tip of the 
position vector rsu, vd as su, vd moves throughout the region D. (See Figure 1.)

0

z

x y

S

r(u, √)
0

√

u

D (u, √)
r

ExamplE 1 Identify and sketch the surface with vector equation

rsu, vd − 2 cos u i 1 v j 1 2 sin u k

soLUtion The parametric equations for this surface are

x − 2 cos u    y − v    z − 2 sin u

FIGURE 1  
A parametric surface

39.  We have seen that all vector fields of the form F − =t
satisfy the equation curl F − 0 and that all vector fields of the
form F − curl G satisfy the equation div F − 0 (assuming
continuity of the appropriate partial derivatives). This suggests
the question: are there any equations that all functions of the

  form f − div G must satisfy? Show that the answer to this 
question is “No” by proving that every continuous func- 
tion f  on R 3 is the divergence of some vector field.

[Hint: Let Gsx, y, zd − ktsx, y, zd, 0, 0l, where
tsx, y, zd − yx

0 f st, y, zd dt.]
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Example 1. Identify and sketch the surface with vector equation

r(u, v) = 2 cosui+ vj+ 2 sinuk.
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Definition 16.6.2. If a parametric surface S is given by a vector function
r(u, v) and we keep u constant by putting u = u0, then r(u0, v) becomes a
vector function of the single parameter v and defines a curve C1 lying on S.
(See the figure.)

1112 Chapter 16  Vector Calculus

So for any point sx, y, zd on the surface, we have

x 2 1 z2 − 4 cos2u 1 4 sin2u − 4

This means that vertical cross-sections parallel to the xz-plane (that is, with y constant) 
are all circles with radius 2. Since y − v and no restriction is placed on v, the surface  
is a circular cylinder with radius 2 whose axis is the y-axis (see Figure 2). ■

In Example 1 we placed no restrictions on the parameters u and v and so we obtained 
the entire cylinder. If, for instance, we restrict u and v by writing the parameter domain 
as

0 < u < �y2    0 < v < 3

then x > 0, z > 0, 0 < y < 3, and we get the quarter-cylinder with length 3 illustrated 
in Figure 3.

If a parametric surface S is given by a vector function rsu, vd, then there are two useful 
families of curves that lie on S, one family with u constant and the other with v constant. 
These families correspond to vertical and horizontal lines in the uv-plane. If we keep u 
constant by putting u − u0, then rsu0, vd becomes a vector function of the single param-
eter v and defines a curve C1 lying on S. (See Figure 4.)

r 

0 

z 

y 
x 

C¡  
C™

0 

D 

√=√ ̧  
(u     ¸, √¸)

u=u ̧  

u 

√ 

Similarly, if we keep v constant by putting v − v0, we get a curve C2 given by rsu, v0 d 
that lies on S. We call these curves grid curves. (In Example 1, for instance, the grid 
curves obtained by letting u be constant are horizontal lines whereas the grid curves with 
v constant are circles.) In fact, when a computer graphs a parametric surface, it usually 
depicts the surface by plotting these grid curves, as we see in the following example.

ExamplE 2 Use a computer algebra system to graph the surface

rsu, vd − ks2 1 sin vd cos u, s2 1 sin vd sin u, u 1 cos vl

Which grid curves have u constant? Which have v constant?

soLUtion We graph the portion of the surface with parameter domain 0 < u < 4�,
0 < v < 2� in Figure 5. It has the appearance of a spiral tube. To identify the grid 
curves, we write the corresponding parametric equations:

x − s2 1 sin vd cos u    y − s2 1 sin vd sin u    z − u 1 cos v

If v is constant, then sin v and cos v are constant, so the parametric equations resemble 
those of the helix in Example 13.1.4. Thus the grid curves with v constant are the spiral 
curves in Figure 5. We deduce that the grid curves with u constant must be the curves 

0 

(0, 0, 2)

(2, 0, 0)

x y 

z 

FIGURE 2

0 

(0 , 3, 2) 

x y 

z 

FIGURE 3

TEC Visual 16.6 shows animated ver-
sions of Figures 4 and 5, with moving 
grid curves, for several parametric 
surfaces.

FIGURE 4
z

y
x

u constant

√ constant

FIGURE 5
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Similarly, if we keep v constant by putting v = v0, we get a curve C2 given by
r(u, v0) that lies on S. We call these curves grid curves.

Example 2. Use a computer algebra system to graph the surface

r(u, v) = ⟨(2 + sin v) cosu, (2 + sin v) sinu, u+ cos v⟩.

Which grid curves have u constant? Which have v constant?
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Example 3. Find a vector function that represents the plane that passes
through the point P0 with position vector r0 and that contains two nonparallel
vectors a and b.

Example 4. Find a parametric representation of the sphere

x2 + y2 + z2 = a2.
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Example 5. Find a parametric representation for the cylinder

x2 + y2 = 4 0 ≤ z ≤ 1.

Example 6. Find a vector function that represents the elliptic paraboloid
z = x2 + 2y2.

Example 7. Find a parametric representation for the surface z = 2
√
x2 + y2,

that is, the top half the cone z2 = 4x2 + 4y2.

590



Calculus - 16.6 Parametric Surfaces and Their Areas

 seCtion 16.6  Parametric Surfaces and Their Areas 1115

z − 2sx 2 1 y 2 − 2r. So a vector equation for the cone is

rsr, �d − r cos � i 1 r sin � j 1 2r k

where r > 0 and 0 < � < 2�. ■

surfaces of revolution
Surfaces of revolution can be represented parametrically and thus graphed using a com-
puter. For instance, let’s consider the surface S obtained by rotating the curve y − f sxd,  
a < x < b, about the x-axis, where f sxd > 0. Let � be the angle of rotation as shown 
in Figure 10. If sx, y, zd is a point on S, then

3  x − x    y − f sxd cos �    z − f sxd sin � 

Therefore we take x and � as parameters and regard Equations 3 as parametric equations 
of S. The parameter domain is given by a < x < b, 0 < � < 2�.

ExamplE 8 Find parametric equations for the surface generated by rotating the curve 
y − sin x, 0 < x < 2�, about the x-axis. Use these equations to graph the surface of 
revolution.

soLUtion From Equations 3, the parametric equations are

x − x    y − sin x cos �    z − sin x sin �

and the parameter domain is 0 < x < 2�, 0 < � < 2�. Using a computer to plot these 
equations and and then rotating the image, we obtain the graph in Figure 11. ■

We can adapt Equations 3 to represent a surface obtained through revolution about the 
y- or z-axis (see Exercise 30).

tangent planes
We now find the tangent plane to a parametric surface S traced out by a vector function

rsu, vd − xsu, vd i 1 ysu, vd j 1 zsu, vd k

at a point P0 with position vector rsu0, v0 d. If we keep u constant by putting u − u0, then 
rsu0, vd becomes a vector function of the single parameter v and defines a grid curve C1 
lying on S. (See Figure 12.) The tangent vector to C1 at P0 is obtained by taking the par-
tial derivative of r with respect to v:

4  rv −
−x

−v
 su0, v0 d i 1

−y

−v
 su0, v0 d j 1

−z

−v
 su0, v0 d k 

0 u 

D 

√=√¸ 
(u ̧ , √ ̧ ) 

u=u ̧  

√ 

0 

z 

y x 

C¡  

C™ 

r u 
r √ 

P¸ 

r 

0 

z 

y 

x 

¨ z 
x 

(x, y , z) 

y=ƒ 

ƒ 

ƒ 

FIGURE 10

z y

x

FIGURE 11

For some purposes the parametric 
representations in Solutions 1 and 2 are 
equally good, but Solution 2 might be 
preferable in certain situations. If we 
are interested only in the part of the 
cone that lies below the plane z − 1, for 
instance, all we have to do in Solution 2 
is change the parameter domain to

0 < r < 1
2    0 < � < 2�

FIGURE 12
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Remark 1. Surfaces of revolution can be represented
parametrically and thus graphed using a computer. For
instance, let’s consider the surface S obtained by rotat-
ing the curve y = f(x), a ≤ x ≤ b, about the x-axis,
where f(x) ≥ 0. Let θ be the angle of rotation as shown
in the figure. If (x, y, z) is a point on S, then

x = x y = f(x) cos θ z = f(x) sin θ.

Therefore we take x and θ as parameters and regard these
equations as parametric equations of S. The parameter
domain is given by a ≤ x ≤ b, 0 ≤ θ ≤ 2π.

Example 8. Find parametric equations for the surface generated by rotating
the curve y = sinx, 0 ≤ x ≤ 2π, about the x-axis. Use these equations to
graph the surface of revolution.
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Definition 16.6.3. If S is a parametric surface traced out by a vector function

r(u, v) = x(u, v)i+ y(u, v)j+ z(u, v)k

at a point P0 with position vector r(u0, v0), and if we keep u constant by putting
u = u0, then r(u0, v) becomes a vector function of the single parameter v and
defines a grid curve C1 lying on S. The tangent vector to C1 at P0 is obtained
by taking the partial derivative of r with respect to v:

rv =
∂x

∂v
(u0, v0)i+

∂y

∂v
(u0, v0)j+

∂z

∂v
(u0, v0)k.

Similarly, if we keep v constant by putting v = v0, we get a grid curve C2 given
by r(u, v0) that lies on S, and its tangent vector at P0 is

ru =
∂x

∂u
(u0, v0)i+

∂y

∂u
(u0, v0)j+

∂z

∂u
(u0, v0)k.

 seCtion 16.6  Parametric Surfaces and Their Areas 1115

z − 2sx 2 1 y 2 − 2r. So a vector equation for the cone is

rsr, �d − r cos � i 1 r sin � j 1 2r k

where r > 0 and 0 < � < 2�. ■

surfaces of revolution
Surfaces of revolution can be represented parametrically and thus graphed using a com-
puter. For instance, let’s consider the surface S obtained by rotating the curve y − f sxd,  
a < x < b, about the x-axis, where f sxd > 0. Let � be the angle of rotation as shown 
in Figure 10. If sx, y, zd is a point on S, then

3  x − x    y − f sxd cos �    z − f sxd sin � 

Therefore we take x and � as parameters and regard Equations 3 as parametric equations 
of S. The parameter domain is given by a < x < b, 0 < � < 2�.

ExamplE 8 Find parametric equations for the surface generated by rotating the curve 
y − sin x, 0 < x < 2�, about the x-axis. Use these equations to graph the surface of 
revolution.

soLUtion From Equations 3, the parametric equations are

x − x    y − sin x cos �    z − sin x sin �

and the parameter domain is 0 < x < 2�, 0 < � < 2�. Using a computer to plot these 
equations and and then rotating the image, we obtain the graph in Figure 11. ■

We can adapt Equations 3 to represent a surface obtained through revolution about the 
y- or z-axis (see Exercise 30).

tangent planes
We now find the tangent plane to a parametric surface S traced out by a vector function

rsu, vd − xsu, vd i 1 ysu, vd j 1 zsu, vd k

at a point P0 with position vector rsu0, v0 d. If we keep u constant by putting u − u0, then 
rsu0, vd becomes a vector function of the single parameter v and defines a grid curve C1 
lying on S. (See Figure 12.) The tangent vector to C1 at P0 is obtained by taking the par-
tial derivative of r with respect to v:

4  rv −
−x

−v
 su0, v0 d i 1

−y

−v
 su0, v0 d j 1

−z

−v
 su0, v0 d k 

0 u 
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FIGURE 10
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FIGURE 11

For some purposes the parametric 
representations in Solutions 1 and 2 are 
equally good, but Solution 2 might be 
preferable in certain situations. If we 
are interested only in the part of the 
cone that lies below the plane z − 1, for 
instance, all we have to do in Solution 2 
is change the parameter domain to

0 < r < 1
2    0 < � < 2�

FIGURE 12
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If ru × rv is not 0, then the surface S is called smooth (it has no “corners”).
For a smooth surface, the tangent plane is the plane that contains the tangent
vectors ru and rv, and the vector ru × rv is a normal vector to the tangent
plane.
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Example 9. Find the tangent plane to the surface with parametric equations
x = u2, y = v2, z = u+ 2v at the point (1, 1, 3).

Definition 16.6.4. If a smooth parametric surface S is given by the equation

r(u, v) = x(u, v)i+ y(u, v)j+ z(u, v)k (u, v) ∈ D

and S is covered just once as (u, v) ranges throughout the parameter domain
D, then the surface area of S is

A(S) =

¨
D

|ru × rv| dA

where

ru =
∂x

∂u
i+

∂y

∂u
j+

∂z

∂u
k rv =

∂x

∂v
i+

∂y

∂v
j+

∂z

∂v
k.

1116 CHAPTER 16  Vector Calculus

Similarly, if we keep v constant by putting v − v0, we get a grid curve C2 given by 
rsu , v0 d that lies on S, and its tangent vector at P0 is

5  ru −
−x
−u

 su 0, v0 d i 1
−y
−u

 su 0, v0 d j 1
−z
−u

 su 0, v0 d k 

If ru 3 rv is not 0, then the surface S is called smooth (it has no “corners”). For a smooth 
surface, the tangent plane is the plane that contains the tangent vectors ru  and rv, and the 
vector ru 3 rv is a normal vector to the tangent plane.

EXAMPLE 9 Find the tangent plane to the surface with parametric equations x − u 2, 
y − v2, z − u 1 2v at the point s1, 1, 3d.

SOLUTION We first compute the tangent vectors:

 ru −
−x
−u

 i 1
−y
−u

 j 1
−z
−u

 k − 2u  i 1 k

 rv −
−x
−v

 i 1
−y
−v

 j 1
−z
−v

 k − 2v j 1 2 k

Thus a normal vector to the tangent plane is

ru 3 rv − Z i
2u
0

j
0
2v

k
1
2

Z − 22v i 2 4u  j 1 4u v k

Notice that the point s1, 1, 3d corresponds to the parameter values u − 1 and v − 1, so 
the normal vector there is

22 i 2 4 j 1 4 k

Therefore an equation of the tangent plane at s1, 1, 3d is

 22sx 2 1d 2 4sy 2 1d 1 4sz 2 3d − 0

or  x 1 2y 2 2z 1 3 − 0 ■

Surface Area
Now we define the surface area of a general parametric surface given by Equation 1. For 
simplicity we start by considering a surface whose parameter domain D is a rectangle, 
and we divide it into subrectangles Rij. Let’s choose su i*, vj*d to be the lower left corner 
of Rij. (See Figure 14.)

0
y

z

x

Pij
Sijr

(u*i , √*j )
0 u

√

Îu

Rij

Î√

Figure 13 shows the self-intersecting  
surface in Example 9 and its tangent 
plane at s1, 1, 3d.

z

x

y

(1, 1, 3)

FIGURE 13

FIGURE 14  
The image of the  

subrectangle Rij is the patch Sij.
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Example 10. Find the surface area of a sphere of radius a.

594



Calculus - 16.6 Parametric Surfaces and Their Areas

Theorem 16.6.1. If a surface S has equation z = f(x, y), where (x, y) lies
in D and f has continuous partial derivatives, then the surface areas of S is

A(S) =

¨
D

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dA.

Proof. We take x and y as parameters. The parametric equations are

x = x y = y z = f(x, y)

so

rx = i+

(
∂f

∂x

)
k ry = j+

(
∂f

∂y

)
k

and

rx × ry =

∣∣∣∣∣∣∣∣∣∣∣

i j k

1 0
∂f

∂x

0 1
∂f

∂y

∣∣∣∣∣∣∣∣∣∣∣
= −∂f

∂x
i− ∂f

∂y
j+ k.

Thus we have

|rx × ry| =

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

+ 1 =

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

.

Example 11. Find the area of the part of the paraboloid z = x2 + y2 that
lies under the plane z = 9.
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16.7 Surface Integrals
SeCtION 16.7  Surface Integrals 1123

angles Rij with dimensions Du and Dv. Then the surface S is divided into corresponding 
patches Sij as in Figure 1. We evaluate f  at a point Pij* in each patch, multiply by the area 
DSij of the patch, and form the Riemann sum

o
m

i−1
o

n

j−1
 f sPij*d DSij

Then we take the limit as the number of patches increases and define the surface inte-
gral of f  over the surface S as

1 y
S

y f sx, y, zd dS − lim 
m, n l `

o
m

i−1
o

n

j−1
 f sPij*d DSij 

Notice the analogy with the definition of a line integral (16.2.2) and also the analogy with 
the definition of a double integral (15.1.5).

To evaluate the surface integral in Equation 1 we approximate the patch area DSij by 
the area of an approximating parallelogram in the tangent plane. In our discussion of 
surface area in Section 16.6 we made the approximation

DSij < | ru 3 rv | Du Dv

where ru −
−x

−u
i 1

−y

−u
j 1

−z

−u
 k      rv −

−x

−v
i 1

−y

−v
j 1

−z

−v
 k

are the tangent vectors at a corner of Sij. If the components are continuous and ru and rv 
are nonzero and nonparallel in the interior of D, it can be shown from Definition 1, even 
when D is not a rectangle, that

2 y
S

y f sx, y, zd dS − y
D

y f srsu, vdd | ru 3 rv | dA

This should be compared with the formula for a line integral:

y
C

f sx, y, zd ds − yb

a
f srstdd | r9std | dt

Observe also that

y
S

y 1 dS − y
D

y | ru 3 rv | dA − AsSd

Formula 2 allows us to compute a surface integral by converting it into a double inte-
gral over the parameter domain D. When using this formula, remember that f srsu, vdd is 
evaluated by writing x − xsu, vd, y − ysu, vd, and z − zsu, vd in the formula for f sx, y, zd.

ExamplE 1 Compute the surface integral yyS x
2 dS, where S is the unit sphere

x 2 1 y 2 1 z2 − 1.

SOLUtION As in Example 16.6.4, we use the parametric representation

x − sin � cos �   y − sin � sin �   z − cos �   0 < � < �   0 < � < 2�

0

√

u

Rij

Î√
Îu

0

z

y
x

P*ij
S

Sij

D

r

FIGURE 1

We assume that the surface is covered 
only once as su, vd ranges throughout  
D. The value of the surface integral
does not depend on the parametrization 
that is used.
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Definition 16.7.1. Suppose that a surface S has a vector
equation

r(u, v) = x(u, v)i+ y(u, v)j+ z(u, v)k (u, v) ∈ D.

Then the surface integral of f over the surface S is

¨
S

f(x, y, z) dS = lim
m,n→∞

m∑
i=1

n∑
j=1

f(P ∗
ij)∆Sij

where the areas ∆Sij are of patches of S that correspond
to subrectangles Rij with dimensions ∆u and ∆v, and the
points P ∗

ij are sample points in each patch.

Remark 1. It can be shown, even when the parameter domain
D is not a rectangle, that

¨
S

f(x, y, z) dS =

¨
D

f(r(u, v))|ru × rv| dA,

and thus ¨
S

1 dS =

¨
D

|ru × rv| dA = A(S).

Example 1. Compute the surface integral
˜

S
x2 dS, where S is the unit sphere

x2 + y2 + z2 = 1.
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Theorem 16.7.1. If S is a surface with equation z = g(x, y), then

¨
S

f(x, y, z) dS =

¨
D

f(x, y, g(x, y))

√(
∂z

∂x

)2

+

(
∂z

∂y

)2

+ 1 dA.

Proof. Any surface S with equation z = g(x, y) can be regarded as a paramet-
ric surface with parametric equations

x = x y = y z = g(x, y)

and so we have

rx = i+

(
∂g

∂x

)
k ry = j+

(
∂g

∂y

)
k.

Thus

rx × ry = −∂g

∂x
i− ∂g

∂y
j+ k

and

|rx × ry| =

√(
∂z

∂x

)2

+

(
∂z

∂y

)2

+ 1.

 SECTION 16.7  Surface Integrals 1125

Therefore, in this case, Formula 2 becomes

4  y
S

y fsx, y, zd dS− y
D

y f sx, y, tsx, yddÎS −z
−xD2

1 S −z
−yD2

1 1 dA 

Similar formulas apply when it is more convenient to project S onto the yz-plane or  
xz-plane. For instance, if S is a surface with equation y − h sx, zd and D is its projection 
onto the xz-plane, then

y
S

y f sx, y, zd dS− y
D

y f sx, h sx, zd, zdÎS −y
−xD2

1 S −y
−zD2

1 1 dA

EXAMPLE 2 Evaluate yyS y dS, where S is the surface z − x 1 y 2, 0 < x < 1, 
0 < y < 2. (See Figure 2.)

SOLUTION Since
−z
−x

− 1    and    
−z
−y

− 2y

Formula 4 gives

 y
S

y y dS− y
D

y yÎ1 1 S −z
−xD2

1 S −z
−yD2 

 dA

 − y1

0
 y2

0
 ys1 1 1 1 4y 2  dy dx

 − y1

0
 dx s2  y2

0
 ys1 1 2y 2  dy

  − s2 (1
4)2

3 s1 1 2y 2 d3y2g0

2
−

13s2 

3
 ■

If S is a piecewise-smooth surface, that is, a finite union of smooth surfaces S1, S2, . . . , 
Sn  that intersect only along their boundaries, then the surface integral of f  over S is 
defined by

y
S

y f sx, y, zd dS− y
S1

y f sx, y, zd dS1 ∙ ∙ ∙ 1 y
Sn

y f sx, y, zd dS

EXAMPLE 3 Evaluate yyS z dS, where S is the surface whose sides S1 are given by the 
cylinder x 2 1 y 2 − 1, whose bottom S2 is the disk x 2 1 y 2 < 1 in the plane z − 0, and 
whose top S3 is the part of the plane z − 1 1 x that lies above S2.

SOLUTION The surface S is shown in Figure 3. (We have changed the usual position  
of the axes to get a better look at S.) For S1 we use ! and z as parameters (see Exam- 
ple 16.6.5) and write its parametric equations as

x − cos !    y − sin !    z − z
where

0 < ! < 2"    and    0 < z < 1 1 x − 1 1 cos !

y

x

z

FIGURE 2

0 

S¡ (≈+¥=1) 

S™ 

S£ (z=1+x ) 

x 

z 

y 

FIGURE 3
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Example 2. Evaluate
˜

S
y dS, where S is the surface z =

x+ y2, 0 ≤ x ≤ 1, 0 ≤ y ≤ 2. (See the figure.)
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Definition 16.7.2. If S is a piecewise-smooth surface, that is, a finite union
of smooth surfaces S1, S2, . . . , Sn that intersect only along their boundaries,
then the surface integral of f over S is defined by

¨
S

f(x, y, z) dS =

¨
S1

f(x, y, z) dS + · · ·+
¨

Sn

f(x, y, z) dS.

Example 3. Evaluate
˜

S
z dS, where S is the surface whose sides S1 are given

by the cylinder x2 + y2 = 1, whose bottom S2 is the disk x2 + y2 ≤ 1 in the
plane z = 0, and whose top S3 is the part of the plane z = 1 + x that lies
above S2.
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Definition 16.7.3. If S is a surface that has a tangent plane at every point
(x, y, z) (except at any boundary point), and if it is possible to choose a unit
normal vector n at every such point so that n varies continuously over S, then
S is called an oriented surface and the given choice of n provides S with an
orientation. There are two possible orientations for any orientable surface (see
the figure).

SeCtION 16.7  Surface Integrals 1127

Oriented Surfaces
To define surface integrals of vector fields, we need to rule out nonorientable surfaces such 
as the Möbius strip shown in Figure 4. [It is named after the German geometer August 
Möbius (1790–1868).] You can construct one for yourself by taking a long rectangular 
strip of paper, giving it a half-twist, and taping the short edges together as in Fig ure 5. 
If an ant were to crawl along the Möbius strip starting at a point P, it would end up on  
the “other side” of the strip (that is, with its upper side pointing in the opposite direction). 
Then, if the ant continued to crawl in the same direction, it would end up back at the same 
point P without ever having crossed an edge. (If you have constructed a Möbius strip, 
try drawing a pencil line down the middle.) Therefore a Möbius strip really has only one 
side. You can graph the Möbius strip using the parametric equations in Exercise 16.6.32.

A 

B 

D 

C 

A 

B

C 

D

From now on we consider only orientable (two-sided) surfaces. We start with a sur-
face S that has a tangent plane at every point sx, y, zd on S (except at any boundary point). 
There are two unit normal vectors n1 and n2 − 2n1 at sx, y, zd. (See Figure 6.) 

If it is possible to choose a unit normal vector n at every such point sx, y, zd so that n 
varies con tinuously over S, then S is called an oriented surface and the given choice of 
n provides S with an orientation. There are two possible orientations for any orient-
able surface (see Figure 7).

n 
n 

n 

n 
n 

n n 
n 

n n 

For a surface z − tsx, yd given as the graph of t, we use Equation 3 to associate with
the surface a natural orientation given by the unit normal vector

5 n −

2
−t
−x

i 2
−t
−y

 j 1 k

Î1 1 S −t
−xD2

1 S −t
−yD2 

Since the k-component is positive, this gives the upward orientation of the surface.
If S is a smooth orientable surface given in parametric form by a vector function  

rsu, vd, then it is automatically supplied with the orientation of the unit normal vector

6 n −
ru 3 rv

| ru 3 rv |
and the opposite orientation is given by 2n. For instance, in Example 16.6.4 we found 

A Möbius strip

P 

FIGURE 4  

TEC Visual 16.7 shows a Möbius 
strip with a normal vector that can be 
moved along the surface.

n¡

n™

0 

y 

z 

x 

FIGURE 6

FIGURE 5 
Constructing a Möbius strip

FIGURE 7  
The two orientations  
of an orientable surface
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Remark 2. For a closed surface, that is, a surface that is the boundary of a
solid region E, the convention is that the positive orientation is the one for
which the normal vectors point outward from E, and inward-pointing normals
give the negative orientation (see the figure).

1128 CHAPTER 16  Vector Calculus

the parametric representation

rs!, "d − a sin ! cos " i 1 a sin ! sin " j 1 a cos ! k

for the sphere x 2 1 y 2 1 z2 − a 2. Then in Example 16.6.10 we found that

r! 3 r" − a 2 sin2! cos " i 1 a 2 sin2! sin " j 1 a 2 sin ! cos ! k

and | r! 3 r" | − a 2 sin !

So the orientation induced by rs!, "d is defined by the unit normal vector

n −
r! 3 r"

| r! 3 r" | − sin ! cos " i 1 sin ! sin " j 1 cos ! k −
1
a

 rs!, "d

Observe that n points in the same direction as the position vector, that is, outward from the 
sphere (see Figure 8). The opposite (inward) orientation would have been obtained (see 
Figure 9) if we had reversed the order of the parameters because r" 3 r! − 2r! 3 r".

0 

y

z

x
y 

z 

x 

FIGURE 8  
Positive orientation

FIGURE 9  
Negative orientation

For a closed surface, that is, a surface that is the boundary of a solid region E, the  
convention is that the positive orientation is the one for which the normal vectors point  
outward from E, and inward-pointing normals give the negative orientation (see Fig-
ures 8 and 9).

Surface Integrals of Vector Fields
Suppose that S is an oriented surface with unit normal vector n, and imagine a fluid with 
density #sx, y, zd and velocity field vsx, y, zd flowing through S. (Think of S as an imagi-
nary surface that doesn’t impede the fluid flow, like a fishing net across a stream.) Then the 
rate of flow (mass per unit time) per unit area is #v. If we divide S into small patches Sij,  
as in Figure 10 (compare with Figure 1), then Sij is nearly planar and so we can approxi-
mate the mass of fluid per unit time crossing Sij in the direction of the normal n by the 
quantity

s#v ! ndAsSijd

where #, v, and n are evaluated at some point on Sij. (Recall that the component of 
the vector #v in the direction of the unit vector n is #v ! n.) By summing these quantities 
and taking the limit we get, according to Definition 1, the surface integral of the function 
#v ! n over S:

7  y
S

y #v ! n dS − y
S

y #sx, y, zdvsx, y, zd ! nsx, y, zd dS 

and this is interpreted physically as the rate of flow through S.

0 

y 

z 

x 

n 
F=∏v

S 
Sij

FIGURE 10
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Positive orientation Negative Orientation

Definition 16.7.4. If F is a continuous vector field defined on an oriented
surface S with unit normal vector n, then the surface integral of F over S is

¨
S

F · dS =

¨
S

F · n dS.

This integral is also called the flux of F across S.

Theorem 16.7.2. If S is given by a vector function r(u, v), then

¨
S

F · dS =

¨
D

F · (ru × rv) dA

where D is the parameter domain.
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Proof. If S is given by a vector function r(u, v), then n is given by

n =
ru × rv
|ru × rv|

and thus we have¨
S

F · dS =

¨
S

F · ru × rv
|ru × rv|

dS

=

¨
D

[
F(r(u, v)) · ru × rv

|ru × rv|

]
|ru × rv| dA.

Example 4. Find the flux of the vector field F(x, y, z) = zi+ yj+ xk across
the unit sphere x2 + y2 + z2 = 1.
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Remark 3. In the case of a surface S given by a graph z = g(x, y), we can
think of x and y as parameters and write

F · (rx × ry) = (P i+Qj+Rk) ·
(
−∂g

∂x
i− ∂g

∂y
j+ k

)
.

Thus ¨
S

F · dS =

¨
D

(
−P

∂g

∂x
−Q

∂g

∂y
+R

)
dA.

Example 5. Evaluate
˜

S
F · dS, where F(x, y, z) = yi+ xj+ zk and S is the

boundary of the solid region E enclosed by the paraboloid z = 1−x2− y2 and
the plane z = 0.
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Definition 16.7.5. If E is an electric field, then the surface integral

¨
S

E · dS

is called the electric flux of E through the surface S. Gauss’s Law says that
the net charge enclosed by a closed surface S is

Q = ε0

¨
S

E · dS

where ε0 is a constant (called the permittivity of free space) that depends on
the units used.

Definition 16.7.6. Suppose the temperature at a point (x, y, z) in a body is
u(x, y, z). Then the heat flow is defined as the vector field

F = −K∇u

where K is an experimentally determined constant called the conductivity of
the substance. The rate of heat flow across the surface S in the body is then
given by the surface integral

¨
S

F · dS = −K

¨
S

∇u · dS.

Example 6. The temperature u in a metal ball is proportional to the square
of the distance from the center of the ball. Find the rate of heat flow across a
sphere S of radius a with center at the center of the ball.
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16.8 Stokes’ Theorem

1134 Chapter 16  Vector Calculus

 4�4�.  Seawater has density 1025 kgym3 and flows in a velocity field 
v − y i 1 x j, where x, y, and z are measured in meters and the 
components of v in meters per second. Find the rate of flow 
outward through the hemisphere x 2 1 y 2 1 z 2 − 9, z > 0.

 4�5�.  Use Gauss’s Law to find the charge contained in the solid 
hemisphere x 2 1 y 2 1 z2 < a 2, z > 0, if the electric field is 

Esx, y, zd − x i 1 y j 1 2z k

 4�6�.  Use Gauss’s Law to find the charge enclosed by the cube  
with vertices s61, 61, 61d if the electric field is 

Esx, y, zd − x i 1 y j 1 z k

 4�7.  The temperature at the point sx, y, zd in a substance with
conductivity K − 6.5 is usx, y, zd − 2y 2 1 2z2. Find the rate
of heat flow inward across the cylindrical surface y 2 1 z2 − 6,
0 < x < 4.

 4�8.  The temperature at a point in a ball with conductivity K is 
inversely proportional to the distance from the center of the 
ball. Find the rate of heat flow across a sphere S of radius a 
with center at the center of the ball.

 4�9.  Let F be an inverse square field, that is, Fsrd − cry| r |3 for
some constant c, where r − x i 1 y j 1 z k. Show that the flux 
of F across a sphere S with center the origin is independent of 
the radius of S.

38.  Find a formula for yyS F � dS similar to Formula 10 for the case
where S is given by x − ksy, zd and n is the unit normal that
points forward (that is, toward the viewer when the axes are
drawn in the usual way).

 39.  Find the center of mass of the hemisphere x 2 1 y 2 1 z2 − a 2,
z > 0, if it has constant density.

 4�0.  Find the mass of a thin funnel in the shape of a cone 
z − sx 2 1 y 2 , 1 < z < 4, if its density function is
�sx, y, zd − 10 2 z.

 4�1. (a)  Give an integral expression for the moment of inertia Iz 
about the z-axis of a thin sheet in the shape of a surface S if 
the density function is �.

(b)  Find the moment of inertia about the z-axis of the funnel in
Exercise 40.

 4�2.  Let S be the part of the sphere x 2 1 y2 1 z2 − 25 that lies 
above the plane z − 4. If S has constant density k, find  
(a) the center of mass and (b) the moment of inertia about
the z-axis.

 4�3.  A fluid has density 870 kgym3 and flows with velocity 
v − z i 1 y 2 j 1 x 2 k, where x, y, and z are measured in 
meters and the components of v in meters per second. Find the 
rate of flow outward through the cylinder x 2 1 y 2 − 4, 
0 < z < 1.

Stokes’ Theorem can be regarded as a higher-dimensional version of Green’s Theo rem. 
Whereas Green’s Theorem relates a double integral over a plane region D to a line inte-
gral around its plane boundary curve, Stokes’ Theorem relates a surface integral over a 
surface S to a line integral around the boundary curve of S (which is a space curve). Fig-
ure 1 shows an oriented surface with unit normal vector n. The orientation of S induces 
the positive orientation of the boundary curve C shown in the figure. This means that 
if you walk in the positive direction around C with your head pointing in the direction of 
n, then the surface will always be on your left.

Stokes’ Theorem Let S be an oriented piecewise-smooth surface that is 
bounded by a simple, closed, piecewise-smooth boundary curve C with positive 
orientation. Let F be a vector field whose components have continuous partial 
derivatives on an open region in R 3 that contains S. Then

y
C
 F � dr − y

S

y curl F � dS

Since

y
C
 F � dr − y

C
 F � T ds    and    y

S

y curl F � dS − y
S

y curl F � n dS

S 

y 

z 

x 

C 
0 

n 

n 

FIGURE 1
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Definition 16.8.1. The figure shows an oriented surface
with unit normal vector n. The orientation of S induces
the positive orientation of the boundary curve C shown in
the figure. This means that if you walk in the positive direc-
tion around C with your head pointing in the direction of n,
then the surface will always be on your left.

Theorem 16.8.1 (Stokes’ Theorem). Let S be an oriented
piecewise-smooth surface that is bounded by a simple, closed,
piecewise-smooth boundary curve C with positive orientation.
Let F be a vector field whose components have continuous partial derivatives
on an open region in R3 that contains S. Then

ˆ
C

F · dr =
¨

S

curlF · dS.

Example 1. Evaluate
´
C
F · dr, where F(x, y, z) = −y2i+ xj+ z2k and C is

the curve of intersection of the plane y + z = 2 and the cylinder x2 + y2 = 1.
(Orient C to be counterclockwise when viewed from above).
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SeCtIon 16.8  Stokes’ Theorem 1137

the disk x 2 1 y 2 < 1 and so using Equation 16.7.10 with z − tsx, yd − 2 2 y, we have

 y
C
 F � dr − y

S

y curl F � dS − y
D

y s1 1 2yd dA

 − y2�

0
y1

0
 s1 1 2r sin �d r dr d�

− y2�

0
F r 2

2
1 2 

r 3

3
 sin �G

0

1

d� − y2�

0
(1

2 1 2
3 sin �) d�

 − 1
2 s2�d 1 0 − � ■

ExamplE 2 Use Stokes’ Theorem to compute the integral yyS curl F � dS, where
Fsx, y, zd − xz i 1 yz j 1 xy k and S is the part of the sphere x 2 1 y 2 1 z2 − 4 that  
lies inside the cylinder x 2 1 y 2 − 1 and above the xy-plane. (See Figure 4.)

SoLUtIon To find the boundary curve C we solve the equations x 2 1 y 2 1 z2 − 4 and 
 x 2 1 y 2 − 1. Subtracting, we get z2 − 3 and so z − s3  (since z . 0). Thus C is the
circle given by the equations x 2 1 y 2 − 1, z − s3 . A vector equation of C is

rstd − cos t i 1 sin t j 1 s3  k    0 < t < 2�

so r9std − 2sin t i 1 cos t j

Also, we have

Fsrstdd − s3  cos t i 1 s3  sin t j 1 cos t sin t k

Therefore, by Stokes’ Theorem,

 y
S

y curl F � dS − y
C
 F � dr − y2�

0
 Fsrstdd � r9std dt

 − y2�

0
(2s3  cos t sin t 1 s3  sin t cos t) dt

− s3  y2�

0
 0 dt − 0 ■

Note that in Example 2 we computed a surface integral simply by knowing the values 
of F on the boundary curve C. This means that if we have another oriented surface with 
the same boundary curve C, then we get exactly the same value for the surface integral!

In general, if S1 and S2 are oriented surfaces with the same oriented boundary curve C 
and both satisfy the hypotheses of Stokes’ Theorem, then

3 y
S1

y curl F � dS − y
C
 F � dr − y

S2

y curl F � dS 

This fact is useful when it is difficult to integrate over one surface but easy to integrate 
over the other.

We now use Stokes’ Theorem to throw some light on the meaning of the curl vector. 
Suppose that C is an oriented closed curve and v represents the velocity field in fluid 
flow. Consider the line integral

y
C
 v � dr − y

C
 v � T ds

0 

S 

≈+¥+z@=4 

C 

≈+¥=1 
y 

z 

x 

FIGURE 4
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Example 2. Use Stokes’ Theorem to compute the integral˜
S
curlF · dS, where F(x, y, z) = xzi + yzj + xyk and S is

the part of the sphere x2 + y2 + z2 = 4 that lies inside the
cylinder x2+y2 = 1 and above the xy-plane. (See the figure.)
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16.9 The Divergence Theorem

Definition 16.9.1. Regions E that are simultaneously of types 1, 2, and 3
are called simple solid regions. The boundary of E is a closed surface, and we
use the convention that the positive orientation is outward; that is, the unit
normal vector n is directed outward from E.

Theorem 16.9.1 (The Divergence Theorem). Let E be a simple solid region
and let S be the boundary surface of E, given with positive (outward) orien-
tation. Let F be a vector field whose component functions have continuous
partial derivatives on an open region that contains E. Then

¨
S

F · dS =

˚
E

divF dV.

Example 1. Find the flux of the vector field F(x, y, z) = zi + yj + xk over
the unit sphere x2 + y2 + z2 = 1.
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 SECTION 16.9  The Divergence Theorem 1143

Comparison with Equation 5 shows that

y
S

y R k ! n dS − y y
E

y 
−R
−z

 dV

Equations 2 and 3 are proved in a similar manner using the expressions for E as a  
type 2 or type 3 region, respectively. ■

EXAMPLE 1 Find the flux of the vector field Fsx, y, zd − z i 1 y j 1 x k over the unit 
sphere x 2 1 y 2 1 z2 − 1.

SOLUTION First we compute the divergence of F:

div F −
−

−x
 szd 1

−

−y
 syd 1

−

−z
 sxd − 1

The unit sphere S is the boundary of the unit ball B given by x 2 1 y 2 1 z2 < 1. Thus 
the Divergence Theorem gives the flux as

  y
S

y F ! dS − y y
B

y  div F dV − y y
B

y 1 dV − VsBd − 4
3 !s1d3 −

4!

3
 ■

EXAMPLE 2 Evaluate yyS F ! dS, where

Fsx, y, zd − xy i 1 (y 2 1 exz2) 

j 1 sinsxyd k

and S is the surface of the region E bounded by the parabolic cylinder z − 1 2 x 2 and 
the planes z − 0, y − 0, and y 1 z − 2. (See Figure 2.)

SOLUTION It would be extremely difficult to evaluate the given surface integral  
directly. (We would have to evaluate four surface integrals corresponding to the four 
pieces of S.) Furthermore, the divergence of F is much less complicated than F itself:

 div F −
−

−x
 sxyd 1

−

−y
 (y 2 1 exz2) 1

−

−z
 ssin xyd − y 1 2y − 3y

Therefore we use the Divergence Theorem to transform the given surface integral into a 
triple integral. The easiest way to evaluate the triple integral is to express E as a type 3 
region:

E − hsx, y, zd | 21 < x < 1, 0 < z < 1 2 x 2, 0 < y < 2 2 z j
Then we have

  y
S

y F ! dS − y y
E

y div F dV − y y
E

y 3y dV

 − 3 y1

21
 y12x2

0  y22z

0  y dy dz dx − 3 y1

21
 y12x2

0
 
s2 2 zd2

2
 dz dx

 −
3
2

 y1

21
 F2

s2 2 zd3

3 G
0

12x2

dx − 21
2 y1

21
 fsx 2 1 1d3 2 8g dx

 − 2y1

0
 sx 6 1 3x 4 1 3x 2 2 7d dx −

184
35

 ■

Notice that the method of proof of the  
Divergence Theorem is very similar to 
that of Green’s Theorem.

The solution in Example 1 should  
be compared with the solution in  
Exam ple 16.7.4.

0 

(1, 0, 0) (0, 2, 0)

y=2-z 

z=1-≈ 

y 

z 

(0, 0, 1)

x 

FIGURE 2
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Example 2. Evaluate
˜

S
F · dS, where

F(x, y, z) = xyi+ (y2 + exz
2

)j+ sin(xy)k

and S is the surface of the region E bounded by the parabolic
cylinder z = 1−x2 and the planes z = 0, y = 0, and y+z = 2.
(See the figure.)
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1144 Chapter 16  Vector Calculus

Although we have proved the Divergence Theorem only for simple solid regions, it 
can be proved for regions that are finite unions of simple solid regions. (The procedure is 
sim ilar to the one we used in Section 16.4 to extend Green’s Theorem.)

For example, let’s consider the region E that lies between the closed surfaces S1 and 
S2, where S1 lies inside S2. Let n1 and n2 be outward normals of S1 and S2. Then the 
boundary surface of E is S − S1 ø S2 and its normal n is given by n − 2n1 on S1 and 
n − n2 on S2. (See Figure 3.) Applying the Divergence Theorem to S, we get

7   y y
E

y div F dV − y
S

y  F � dS − y
S

y F � n dS  

 − y
S1

y   F � s2n1d dS 1 y
S2

y F � n2  dS

 − 2y
S1

y F � dS 1 y
S2

y F � dS

ExamplE 3� In Example 16.1.5 we considered the electric field

Esxd −
«Q

| x |3  x

where the electric charge Q is located at the origin and x − kx, y, zl is a position vector. 
Use the Divergence Theorem to show that the electric flux of E through any closed 
surface S2 that encloses the origin is

 y
S2

y E � dS − 4�«Q

SOLUtION The difficulty is that we don’t have an explicit equation for S2 because 
it is any closed surface enclosing the origin. The simplest such surface would be a 
sphere, so we let S1 be a small sphere with radius a and center the origin. You can 
verify that div E − 0. (See Exercise 23.) Therefore Equation 7 gives

 y
S2

y E � dS − y
S1

y E � dS 1 y y
E

y div E dV − y
S1

y E � dS − y
S1

y E � n dS

The point of this calculation is that we can compute the surface integral over S1 because 
S1 is a sphere. The normal vector at x is xy| x |. Therefore

 E � n −
«Q

| x |3  x � S x

| x | D −
«Q

| x |4  x � x −
«Q

| x |2 −
«Q

a 2

since the equation of S1 is | x | − a. Thus we have

y
S2

y E � dS − y
S1

y E � n dS −
«Q

a 2  y
S1

y dS −
«Q

a 2  AsS1d −
«Q

a 2  4�a 2 − 4�«Q

This shows that the electric flux of E is 4�«Q through any closed surface S2 that contains 
the origin. [This is a special case of Gauss’s Law (Equation 16.7.11) for a single charge. 
The relationship between « and «0 is « − 1ys4�«0 d.] ■

n¡

S¡ S™ _n¡

n™

FIGURE 3
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Remark 1. The Divergence Theorem can be extended to ap-
ply to regions that are finite unions of simple solid regions.
For example, let’s consider the region E that lies between
the closed surfaces S1 and S2 where S1 lies inside S2. Let n1

and n2 be outward normals of S1 and S2. Then the bound-
ary surface of E is S = S1 ∪ S2 and its normal n is given by
n = −n1 on S1 and n = n2 on S2. (See the figure.) Applying
the Divergence Theorem to S, we get

˚
E

divF dV =

¨
S

F · dS =

¨
S

F · n dS

=

¨
S1

F · (−n1) dS +

¨
S2

F · n2 dS

= −
¨

S1

F · dS+

¨
S2

F · dS.

Example 3. In Example 16.1.5 we considered the electric field

E(x) =
εQ

|x|3
x

where the electric charge Q is located at the origin and x = ⟨x, y, z⟩ is a
position vector. Use the Divergence Theorem to show that the electric flux of
E through any closed surface S2 that encloses the origin is

¨
S2

E · dS = 4πεQ.
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16.10 Summary

Fundamental Theorem of Calculus

ˆ b

a

F ′(x) dx = F (b)− F (a)

 SECTION 16.10  Summary 1147

The main results of this chapter are all higher-dimensional versions of the Funda mental 
Theorem of Calculus. To help you remember them, we collect them together here (with-
out hypotheses) so that you can see more easily their essential similarity. Notice that in 
each case we have an integral of a “derivative” over a region on the left side, and the right  
side involves the values of the original function only on the boundary of the region.

Fundamental Theorem of Calculus yb

a
 F9sxd dx − Fsbd 2 Fsad a b 

Fundamental Theorem for Line Integrals y
C
 = f ! dr − f srsbdd 2 f srsadd 

r (a) 

r (b) 

C 

Green’s Theorem y
D

y S −Q
−x

2
−P
−y D dA − y

C
 P dx 1 Q dy 

C 

D 

Stokes’ Theorem y
S

y curl F ! dS − y
C
 F ! dr 

C 

S 

n 

Divergence Theorem y y
E

y div F dV − y
S

y F ! dS E 

S 
n 

n 
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Fundamental Theorem for Line Integrals

ˆ
C

∇f · dr = f(r(b))− f(r(a))

 SECTION 16.10  Summary 1147

The main results of this chapter are all higher-dimensional versions of the Funda mental 
Theorem of Calculus. To help you remember them, we collect them together here (with-
out hypotheses) so that you can see more easily their essential similarity. Notice that in 
each case we have an integral of a “derivative” over a region on the left side, and the right  
side involves the values of the original function only on the boundary of the region.

Fundamental Theorem of Calculus yb

a
 F9sxd dx − Fsbd 2 Fsad a b 

Fundamental Theorem for Line Integrals y
C
 = f ! dr − f srsbdd 2 f srsadd 

r (a) 

r (b) 

C 

Green’s Theorem y
D

y S −Q
−x

2
−P
−y D dA − y

C
 P dx 1 Q dy 

C 

D 

Stokes’ Theorem y
S

y curl F ! dS − y
C
 F ! dr 

C 

S 

n 

Divergence Theorem y y
E

y div F dV − y
S

y F ! dS E 

S 
n 

n 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Green’s Theorem

¨
D

(
∂Q

∂x
− ∂P

∂y

)
dA =

ˆ
C

P dx+Qdy

 SECTION 16.10  Summary 1147

The main results of this chapter are all higher-dimensional versions of the Funda mental 
Theorem of Calculus. To help you remember them, we collect them together here (with-
out hypotheses) so that you can see more easily their essential similarity. Notice that in 
each case we have an integral of a “derivative” over a region on the left side, and the right  
side involves the values of the original function only on the boundary of the region.

Fundamental Theorem of Calculus yb
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Stokes’ Theorem

¨
S

curlF · dS =

ˆ
C

F · dr

SeCtion 16.10  Summary 1147

The main results of this chapter are all higher­dimensional versions of the Funda mental 
Theorem of Calculus. To help you remember them, we collect them together here (with­
out hypotheses) so that you can see more easily their essential similarity. Notice that in 
each case we have an integral of a “derivative” over a region on the left side, and the right  
side involves the values of the original function only on the boundary of the region.
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Divergence Theorem

˚
E

divF dV =

¨
S

F · dS
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The main results of this chapter are all higher­dimensional versions of the Funda mental 
Theorem of Calculus. To help you remember them, we collect them together here (with­
out hypotheses) so that you can see more easily their essential similarity. Notice that in 
each case we have an integral of a “derivative” over a region on the left side, and the right  
side involves the values of the original function only on the boundary of the region.
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Chapter 17

Second-Order Differential
Equations

17.1 Second-Order Linear Equations

Definition 17.1.1. A second-order linear differential equation has the form

P (x)
d2y

dx2
+Q(x)

dy

dx
+R(x)y = G(x)

where P , Q, R, and G are continuous functions.

Definition 17.1.2. When G(x) = 0, for all x, in the equation in Definition
17.1.1. it is called a homogeneous linear equation. Thus the form of a second-
order linear homogeneous differential equation

P (x)
d2y

dx2
+Q(x)

dy

dx
+R(x)y = 0.

If G(x) ̸= 0 for some x, the equation is nonhomogeneous.

Theorem 17.1.1. If y1(x) and y2(x) are both solutions of a linear homoge-
neous equation and c1 and c2 are any constants, then the linear combination

y(x) = c1y1(x) + c2y2(x)

is also a solution.
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Proof. Since y1 and y2 are solutions of a linear homogeneous equation, we have

P (x)y′′1 +Q(x)y′1 +R(x)y1 = 0

P (x)y′′2 +Q(x)y′2 +R(x)y2 = 0.

Therefore, using the basic rules for differentiation, we have

P (x)y′′+Q(x)y′ +R(x)y

= P (x)(c1y1 + c2y2)
′′ +Q(x)(c1y1 + c2y2)

′ +R(x)(c1y1 + c2y2)

= P (x)(c1y
′′
1 + c2y

′′
2) +Q(x)(c1y

′
1 + c2y

′
2) +R(x)(c1y1 + c2y2)

= c1[P (x)y′′1 +Q(x)y′1 +R(x)y1] + c2[P (x)y′′2 +Q(x)y′2 +R(x)y2]

= c1(0) + c2(0) = 0.

Definition 17.1.3. Solutions y1 and y2 to a linear homogeneous equation are
linearly independent if neither y1 nor y2 is a constant multiple of the other.
Otherwise, they are linearly dependent.

Theorem 17.1.2. If y1 and y2 are linearly independent solutions of a linear
homogeneous equation on an interval, and P (x) is never 0, then the general
solution is given by

y(x) = c1y1(x) + c2y2(x)

where c1 and c2 are arbitrary constants.

Remark 1. If y = erx then y′ = rerx and y′′ = r2erx, so y = erx is a solution of

ay′′ + by′ + cy = 0

if

ar2erx + brerx + cerx = 0

(ar2 + br + c)erx = 0.

But erx is never 0. Thus y = erx is a solution if r is a root of the equation
ar2 + br + c = 0, called the auxiliary equation (or characteristic equation) of
the differential equation ay′′+by′+cy = 0. The roots r1 and r2 of the auxiliary
equation can be found by factoring or using the quadratic formula:

r1 =
−b+

√
b2 − 4ac

2a
r2 =

−b−
√
b2 − 4ac

2a
.

Theorem 17.1.3 (Case I: b2−4ac > 0). If the roots r1 and r2 of the auxiliary
equation ar2 + br + c = 0 are real and unequal, then the general solution of
ay′′ + by′ + cy = 0 is

y = c1e
r1x + c2e

r2x.

Proof. In this case the roots r1 and r2 of the auxiliary equation are real and
distinct, so y1 = er1x and y2 = er2x are two linearly independent solutions of
ay′′ + by′ + cy = 0.
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Example 1. Solve the equation y′′ + y′ − 6y = 0.

Example 2. Solve 3
d2y

dx2
+

dy

dx
− y = 0.

Theorem 17.1.4 (Case II: b2−4ac = 0). If the auxiliary equation ar2+br+c =
0 has only one real root r, then the general solution of ay′′ + by′ + cy = 0 is

y = c1e
rx + c2xe

rx.

Proof. By the quadratic formula,

r = − b

2a
so 2ar + b = 0.

We know that y1 = erx is one solution of ay′′ + by′ + cy = 0. We now verify
that y2 = xerx is also a solution:

ay′′2 + by′2 + cy2 = a(2rerx + r2xerx) + b(erx + rxerx) + cxerx

= (2ar + b)erx + (ar2 + br + c)xerx

= 0(erx) + 0(xerx) = 0.

Since y1 = erx and y2 = xerx are linearly independent solutions, Theorem
17.1.2 provides us with the general solution.
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Example 3. Solve the equation 4y′′ + 12y′ + 9y = 0.

Theorem 17.1.5 (Case III: b2−4ac < 0). If the roots of the auxiliary equation
ar2 + br + c = 0 are the complex numbers r1 = α + iβ, r2 = α − iβ, then the
general solution of ay′′ + by′ + cy = 0 is

y = eαx(c1 cos βx+ c2 sin βx).

Proof. Using Euler’s equation

eiθ = cos θ + i sin θ,

we write the solution of the differential equation as

y = C1e
r1x + C2e

r2x = C1e
(α+iβ)x + C2e

(α−iβ)x

= C1e
αx(cos βx+ i sin βx) + C2e

αx(cos βx− i sin βx)

= eαx[(C1 + C2) cos βx+ i(C1 − C2) sin βx]

= eαx(c1 cos βx+ c2 sin βx)

where c1 = C1 + C2, c2 = i(C1 − C2).

Example 4. Solve the equation y′′ − 6y′ + 13y = 0.
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Definition 17.1.4. An initial-value problem for a second-order linear differ-
ential equation consists of finding a solution y of the differential equation that
also satisfies initial conditions of the form

y(x0) = y0 y′(x0) = y1

where y0 and y1 are given constants.

Example 5. Solve the initial-value problem

y′′ + y′ − 6y = 0 y(0) = 1 y′(0) = 0.
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Example 6. Solve the initial-value problem

y′′ + y = 0 y(0) = 2 y′(0) = 3.

Definition 17.1.5. A boundary-value problem for a second-order linear dif-
ferential equation consists of finding a solution y of the differential equation
that also satisfies boundary conditions of the form

y(x0) = y0 y(x1) = y1.

Example 7. Solve the boundary problem

y′′ + 2y′ + y = 0 y(0) = 1 y(1) = 3.
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17.2 Nonhomogeneous Linear Equations

Theorem 17.2.1. The general solution of the nonhomogeneous differential
equation ay′′ + by′ + cy = G(x) can be written as

y(x) = yp(x) + yc(x)

where yp is a particular solution of ay′′+ by′+ cy = G(x) and yc is the general
solution of the complementary equation ay′′ + by′ + cy = 0.

Proof. We verify that if y is any solution of ay′′+ by′+ cy = G(x), then y− yp
is a solution of the complementary equation. Indeed

a(y − yp)
′′ + b(y − yp)

′ + c(y − yp) = ay′′ − ay′′p + by′ − by′p + cy − cyp

= (ay′′ + by′ + cy)− (ay′′p + by′p + cyp)

= G(x)−G(x) = 0.

This shows that every solution is of the form y(x) = yp(x) + yc(x). It remains
to show that every function of this form is a solution. Indeed

a(yp + yc)
′′ + b(yp + yc)

′ + c(yp + yc) = ay′′p + ay′′c + by′p + by′c + cyp + cyc

= (ay′′p + by′p + cyp) + (ay′′c + by′c + cyc)

= G(x) + 0 = G(x).

Remark 1 (The Method of Undetermined Coefficients).

1. If G(x) = ekxP (x), where P is a polynomial of degree n, then try yp(x) =
ekxQ(x), where Q(x) is an nth-degree polynomial (whose coefficients are
determined by substituting in the differential equation).

2. If G(x) = ekxP (x) cosmx or G(x) = ekxP (x) sinmx, where P is an
nth-degree polynomial, then try

yp(x) = ekxQ(x) cosmx+ ekxR(x) sinmx

where Q and R are nth-degree polynomials.

Modification: If any term of yp is a solution of the complementary equation,
multiply yp by x (or by x2 if necessary).
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Example 1. Solve the equation y′′ + y′ − 2y = x2.

616



Calculus - 17.2 Nonhomogeneous Linear Equations

Example 2. Solve y′′ + 4y = e3x.

Example 3. Solve y′′ + y′ − 2y = sinx.
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Example 4. Solve y′′ − 4y = xex + cos 2x.
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Example 5. Solve y′′ + y = sinx.
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Example 6. Determine the form of the trial solution for the differential equa-
tion y′′ − 4y′ + 13y = e2x cos 3x.

Remark 2. Suppose we have already solved the homogeneous equation ay′′ +
by′ + cy = 0 and written the solution as

y(x) = c1y1(x) + c2y2(x)

where y1 and y2 are linearly independent solutions. We replace the constants
(or parameters) c1 and c2 by arbitrary functions u1(x) and u2(x). We then look
for a particular solution of the nonhomogeneous equation ay′′+by′+cy = G(x)
of the form

yp(x) = u1(x)y1(x) + u2(x)y2(x).

This method is called variation of parameters because we have varied the
parameters c1 and c2 to make them functions.
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Example 7. Solve the equation y′′ + y = tanx, 0 < x < π/2.
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17.3 Applications of Second-Order Differen-

tial Equations
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 24. y 0 1 y − sec3x, 0 , x , !y2

 25. y 0 2 3y9 1 2y −
1

1 1 e2x

 26. y 0 1 3y9 1 2y − sinse x d

 27. y 0 2 2y9 1 y −
e x

1 1 x 2

 28. y 0 1 4y9 1 4y −
e22x

x 3

19–22 Solve the differential equation using (a) undetermined 
coefficients and (b) variation of parameters.

 19. 4y 0 1 y − cos x 20. y 0 2 2y9 2 3y − x 1 2

 21. y 0 2 2y9 1 y − e2x

 22. y 0 2 y9 − e x

23–28 Solve the differential equation using the method of varia-
tion of parameters.

 23. y 0 1 y − sec2x, 0 , x , !y2

Second-order linear differential equations have a variety of applications in science and 
engineering. In this section we explore two of them: the vibration of springs and electric 
circuits.

Vibrating Springs
We consider the motion of an object with mass m at the end of a spring that is either ver-
tical (as in Figure 1) or horizontal on a level surface (as in Figure 2).

In Section 6.4 we discussed Hooke’s Law, which says that if the spring is stretched (or 
compressed) x units from its natural length, then it exerts a force that is proportional to x:

restoring force − 2kx

where k is a positive constant (called the spring constant). If we ignore any external 
resisting forces (due to air resistance or friction) then, by Newton’s Second Law (force 
equals mass times acceleration), we have

1  m 
d 2x
dt 2 − 2kx    or    m 

d 2x
dt 2 1 kx − 0 

This is a second-order linear differential equation. Its auxiliary equation is mr 2 1 k − 0 
with roots r − 6"i, where  " − skym . Thus the general solution is

xstd − c1 cos "t 1 c2 sin "t

which can also be written as

xstd − A coss"t 1 #d

where  " − skym   (frequency)

  A − sc1
2 1 c2

2   (amplitude)

cos # −
c1

A
      sin # − 2

c2

A
  s# is the phase angled 

(See Exercise 17.) This type of motion is called simple harmonic motion.

x0 x

equilibrium position

m

m

x

0

x m

equilibrium
position

FIGURE 2
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Remark 1. Consider the motion of an object with mass m
at the end of a spring that is either vertical (as in the first
figure) or horizontal on a level surface (as in the second fig-
ure). Hooke’s Law says that if the spring is stretched (or
compressed) x units from its natural length, then it exerts a
force that is proportional to x:

restoring force = −kx

where k is a positive constant (called the spring constant). If
we ignore any external resisting forces (due to air resistance
or friction) then, by Newton’s Second Law (force equals mass
times acceleration), we have

m
d2x

dt2
= −kx or m

d2x

dt2
+ kx = 0.

This is a second-order linear differential equation. Its auxiliary equation is
mr2+k = 0 with roots r = ±ωi, where ω =

√
k/m. Thus the general solution

is
x(t) = c1 cosωt+ c2 sinωt

which can also be written as

x(t) = A cos(ωt+ δ)

where

ω =
√
k/m

A =
√

c21 + c22

cos δ =
c1
A

sin δ = −c2
A
.

This type of motion is called simple harmonic motion.
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Example 1. A spring with a mass of 2 kg has natural length 0.5 m. A force
of 25.6 N is required to maintain it stretched to a length of 0.7 m. If the spring
is stretched to a length of 0.7 m and then released with initial velocity 0, find
the position of the mass at any time t.
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Remark 2. Assume that the damping force is proportional to the velocity of
the mass and acts in the direction opposite to the motion. Thus

damping force = −c
dx

dt

where c is a positive constant, called the damping constant. Thus, in this case,
Newton’s Second Law gives

m
d2x

dt2
= restoring force + damping force = −kx− c

dx

dt

or

m
d2x

dt2
+ c

dx

dt
+ kx = 0.

This is a second-order linear differential equation and its auxiliary equation is
mr2 + cr + k = 0. The roots are

r1 =
−c+

√
c2 − 4mk

2m
r2 =

−c−
√
c2 − 4mk

2m
.
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Equation 3 is a second-order linear differential equation and its auxiliary equation is 
mr 2 1 cr 1 k − 0. The roots are

4  r1 −
2c 1 sc 2 2 4mk

2m
      r2 −

2c 2 sc 2 2 4mk
2m

 

According to Section 17.1 we need to discuss three cases.

CASE I c2 2 4mk . 0 (overdamping)
In this case r1 and r2 are distinct real roots and

x − c1er1 t 1 c2 er2 t

Since c, m, and k are all positive, we have sc 2 2 4mk , c, so the roots r1 and r2 given 
by Equations 4 must both be negative. This shows that x l 0 as t l `. Typical graphs of  
x as a function of t are shown in Figure 4. Notice that oscillations do not occur. (It’s 
possible for the mass to pass through the equilibrium position once, but only once.) This 
is because c 2 . 4mk means that there is a strong damping force (high-viscosity oil or 
grease) compared with a weak spring or small mass.

CASE II c2 2 4mk − 0 (critical damping)
This case corresponds to equal roots

r1 − r2 − 2
c

2m

and the solution is given by

x − sc1 1 c2tde2scy2mdt

It is similar to Case I, and typical graphs resemble those in Figure 4 (see Exercise 12), 
but the damping is just suf!cient to suppress vibrations. Any decrease in the viscosity of 
the "uid leads to the vibrations of the following case.

CASE III c2 2 4mk , 0 (underdamping)
Here the roots are complex:

r1

r2
J − 2

c
2m

6 !i

where ! −
s4mk 2 c 2 

2m

The solution is given by

x − e2scy2mdtsc1 cos !t 1 c2 sin !td

We see that there are oscillations that are damped by the factor e2scy2mdt. Since c . 0 
and m . 0, we have 2scy2md , 0 so e2scy2mdt l 0 as t l `. This implies that x l 0 
as t l `; that is, the motion decays to 0 as time increases. A typical graph is shown in 
Figure 5.
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t0

x

t0

FIGURE 4  
Overdamping
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t0

x=Ae–(c/2m)t

x=_Ae–(c/2m)t

FIGURE 5  
Underdamping
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Case I: c2 − 4mk > 0 (overdamping).
In this case r1 and r2 are distinct real roots and

x = c1e
r1t + c2e

r2t.

Case II: c2 − 4mk = 0 (critical damping).
This case corresponds to equal roots

r1 = r2 = − c

2m

and the solution is given by

x = (c1 + c2t)e
−(c/2m)t.

Case III: c2 − 4mk < 0 (underdamping).
Here the roots are complex:

r1

r2

}
= − c

2m
± ωi

where

ω =

√
4mk − c2

2m
.

The solution is given by

x = e−(c/2m)t(c1 cosωt+ c2 sinωt).
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Example 2. Suppose that the spring of Example 1 is immersed in a fluid with
damping constant c = 40. Find the position of the mass at any time t if it
starts from the equilibrium position and is given a push to start it with an
initial velocity of 0.6 m/s.

Remark 3. Suppose that, in addition to the restoring force and the damping
force, the motion of the spring is affected by an external force F (t). Then
Newton’s Second Law gives

m
d2x

dt2
= restoring force + damping force + external force

= −kx− c
dx

dt
+ F (t).

Thus, instead of the homogeneous equation, the motion of the spring is now
governed by the following nonhomogeneous differential equation:

m
d2x

dt2
+ c

dx

dt
+ kx = F (t).
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1172 CHAPTER 17  Second-Order Di!erential Equations

A commonly occurring type of external force is a periodic force function

Fstd − F0 cos !0t    where !0 ± ! − skym 

In this case, and in the absence of a damping force (c − 0), you are asked in Exercise 9 
to use the method of undetermined coef!cients to show that

6  xstd − c1 cos !t 1 c2 sin !t 1
F0

ms!2 2 ! 0
2 d

 cos !0t  

If !0 − !, then the applied frequency reinforces the natural frequency and the result is 
vibrations of large amplitude. This is the phenomenon of resonance (see Exercise 10).

Electric Circuits
In Sections 9.3 and 9.5 we were able to use !rst-order separable and linear equations to 
analyze electric circuits that contain a resistor and inductor (see Figure 9.3.5 or Fig-
ure 9.5.4) or a resistor and capacitor (see Exercise 9.5.29). Now that we know how 
to solve second-order linear equations, we are in a position to analyze the circuit 
shown in Figure 7. It contains an electromotive force E (supplied by a battery or gen-
erator), a resistor R, an inductor L, and a capacitor C, in series. If the charge on the 
capacitor at time t is Q − Qstd, then the current is the rate of change of Q with respect  
to t: I − dQydt. As in Section 9.5, it is known from physics that the voltage drops across 
the resistor, inductor, and capacitor are

RI      L 
dI
dt

      
Q
C

respectively. Kirchhoff’s voltage law says that the sum of these voltage drops is equal to 
the supplied voltage:

L 
dI
dt

1 RI 1
Q
C

− Estd

Since I − dQydt, this equation becomes

7  L 
d 2Q
dt 2 1 R 

dQ
dt

1
1
C

 Q − Estd 

which is a second-order linear differential equation with constant coef!cients. If the 
charge Q0 and the current I0 are known at time 0, then we have the initial conditions

Qs0d − Q0      Q9s0d − Is0d − I0

and the initial-value problem can be solved by the methods of Section 17.2.

C

E

R

L
switch

FIGURE 7
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Remark 4. The circuit shown in the figure contains an elec-
tromotive force E (supplied by a battery or generator), a re-
sistor R, an indicator L, and a capacitor C, in series. If the
charge on the capacitor at time t is Q = Q(t), then the cur-
rent is the rate of change of Q with respect to t: I = dQ/dt.
It is known from physics that the voltage drops across the
resistor, inductor and capacitor are

RI L
dI

dt

Q

C

respectively. Kirchhoff’s voltage law says that the sum of these voltage drops
is equal to the supplied voltage:

L
dI

dt
+RI +

Q

C
= E(t).

Since I = dQ/dt, this equation becomes

L
d2Q

dt2
+R

dQ

dt
+

1

C
Q = E(t)

which is a second-order linear differential equation with constant coefficients.
If the charge Q0 and the current I0 are known at time 0, then we have the
initial conditions

Q(0) = Q0 Q′(0) = I(0) = I0.

A differential equation for the current can be obtained by differentiating with
respect to t and remembering that I = dQ/dt:

L
d2I

dt2
+R

dI

dt
+

1

C
I = E ′(t).

Example 3. Find the charge and current at time t in the circuit of the figure
if R = 40 Ω, L = 1 H, C = 16 × 10−4 F, E(t) = 100 cos 10t, and the initial
charge and current are both 0.
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17.4 Series Solutions

Example 1. Use power series to solve the equation y′′ + y = 0.
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Example 2. Solve y′′ − 2xy′ + y = 0.
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Index

absolute maximum, 114
absolute minimum, 114
absolute value, 5
absolutely convergent, 367
acceleration, 63
acceleration vector, 445
algebraic function, 12
alternating series, 363
alternating series test, 363
antiderivative, 155
aphelion, 334
arc length, 258, 437
arc length function, 438
arccosine function, 24
arcsine function, 24
arctangent function, 24
area, 162
asymptote

horizontal, 48
slant, 140
vertical, 32

auxiliary equation, 610
average rate of change, 58
average value, 511
average value of a function, 210

binomial coefficients, 389
binormal vector, 442
boundary-value problem, 614
bounded above, 344
bounded below, 344
bounded sequence, 344
bounded set, 499

cancellation equations, 21

cardiac output, 274
carrying capacity, 291
center of mass, 268, 541, 562
centroid, 269, 541
chain rule, 76, 479
change of variables, 551, 554
characteristic equation, 610
closed

curve, 571
surface, 599

closed set, 499
common ratio, 346
comparison test, 359
complementary equation, 615
component functions, 429, 555
composite function, 17
composition, 17
concave downward, 125
concave upward, 125
conditionally convergent, 368
conductivity, 602
conic sections, 327
conics, 327
connected, 571
conservative vector field, 559
consumer surplus, 273
continuous, 463, 465

at a point, 42
from the left, 43
from the right, 43
on an interval, 43
vector function, 430

continuous random variable, 275
convergent, 250

absolutely, 367
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conditionally, 368
integral, 254
sequence, 338
series, 345

coordinate axes
three-dimensional, 397

coordinate planes
three-dimensional, 397

coordinates
three-dimensional, 397

coplanar, 415
critical number, 116
critical point, 493
cross product, 412
cubic function, 10
curl, 581
curvature, 439
cycloid, 307
cylinder, 424
cylindrical coordinate system, 543

damping constant, 624
decreasing sequence, 343
definite integral, 165, 436
demand function, 151
density, 525
dependent variable, 1, 452
derivative

at a point, 57
as a function, 60
of a parametric curve, 309
of an inverse function, 85
second, 63
third, 64

determinant, 412
differentiable, 61, 475
differential, 109, 477, 478
differential equation, 99, 280

equilibrium solutions, 301
linear, 296
logistic, 291
order, 280

second order, 609
separable, 286
solution, 280

differentiation operators, 61
direction angles, 409
direction cosines, 409
direction field, 282
direction numbers, 417
directional derivative, 485, 488
discontinuity, 42
disk method for volume, 198
displacement vector, 401, 411
distance in three dimensions, 399
divergence, 583
divergence theorem, 605
divergent, 250

integral, 254
sequence, 338
series, 345

domain, 1, 452
dot product, 407
double integral, 506, 513
double Riemann sum, 506

eccentricity, 332
electric charge, 541
electric field, 558
electric flux, 602
ellipse, 328

foci, 328
major axis, 328
minor axis, 328
vertices, 328

empirical model, 9
equivalent vectors, 401
Euler’s method, 284
even function, 6
expected value, 533
exponential function, 13
extreme value theorem, 115, 499
extreme values, 114

Fermat’s theorem, 115

633



Calculus - 17.4 Index

Fibonacci sequence, 338
first derivative test, 124
first octant, 397
flux, 599
force, 206
force field, 558
Fresnel function, 176
Fubini’s Theorem, 509, 536
function, 1

algebraic, 12
arccosine, 24
arcsine, 24
arctangent, 24
composition, 17
cubic, 10
even, 6
exponential, 13
hyperbolic, 111
inverse, 21
inverse cosine, 24
inverse sine, 24
inverse tangent, 24
linear, 8
logarithmic, 13, 22
natural exponential, 20
odd, 6
of n variables, 459
of three variables, 458
of two variables, 452
one-to-one, 21
piecewise, 4
power, 11
quadratic, 10
rational, 11
reciprocal, 11
root, 11
step, 6
trigonometric, 12
vector, 429

fundamental theorem
for line integrals, 570

fundamental theorem of calculus, 174

Gauss’s Law, 602
geometric series, 346
gradient, 487, 488, 558
graph, 455
gravitational field, 557
greatest integer function, 37
Green’s Theorem, 576
grid curves, 588

half-life, 100
harmonic functions, 472
harmonic series, 351
heat flow, 602
homogeneous, 609
horizontal asymptote, 48
horizontal line test, 21
hyperbolic functions, 111

image, 550
implicit differentiation, 80, 483
increasing sequence, 343
increment, 58, 475, 478
indefinite integral, 180
independent of path, 571
independent variable, 1, 452
infinite series, 345
initial point, 305, 401
initial-value problem, 613
instantaneous rate of change, 58
integrable, 165
integral

definite, 165
improper, 250
indefinite, 180
symmetric function, 188

integral sign, 165
integral test, 354
integrand, 165
integrating factor, 296
integration, 165

error bounds, 244
integration by parts, 212
intermediate value theorem, 47
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interval of convergence, 376
inverse cosine function, 24
inverse function, 21
inverse sine function, 24
inverse tangent function, 24
inverse transformation, 550
iterated integral, 508

Jacobian, 551, 554
jerk, 64
joint density function, 530, 541

L’Hospital’s rule, 130
Lagrange multiplier, 501, 505
Laplace’s equation, 472
law of natural decay, 99
law of natural growth, 99, 291
length, 258
level curves, 455
level surfaces, 459
limaçon, 322
limit, 29, 460

at infinity, 48
infinite, 31
laws, 33
of a sequence, 338
precise definition, 38
vector function, 429

limit comparison test, 360
limits of integration, 165
line

vector equation, 417
line integral, 560, 563, 565, 568
linear approximation, 108, 475, 478
linear combination, 609
linear differential equation, 296
linear equation, 420
linear function, 8, 456
linearization, 108, 475
linearly dependent, 610
linearly independent, 610
local extreme, 114
local maximum, 114

local minimum, 114
logarithmic differentiation, 88
logarithmic function, 13, 22
logistic differential equation, 291
Lotka-Volterra equations, 301
lower limit, 165
lower sum, 162

Maclaurin series, 383
magnitude of a vector, 403
marginal profit function, 151
marginal revenue function, 151
mass, 541, 562
maximum, 114

absolute, 493
local, 493

mean, 277
mean value theorem, 120

for integrals, 210
midpoint rule, 171, 243, 508
minimum, 114

absolute, 493
local, 493

moment, 268, 526, 541
of inertia, 529, 541

monotonic, 343

natural exponential function, 20
natural logarithm, 23
net area, 166
Newton’s method, 152
Newton’s Second Law of Motion, 447
nonhomogeneous, 609
normal line, 66, 492
normal plane, 443
normal vector, 419

octacts, 397
odd function, 6
one-to-one, 550
one-to-one function, 21
open, 571
orientation, 599
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oriented surface, 599
orthogonal trajectory, 289
orthogonal vectors, 408
osculating circle, 443
osculating plane, 443

p-series, 355
parabola, 327

axis, 327
directrix, 327
focus, 327
vertex, 327

parameter, 304
parametric equations, 304, 430, 587
parametric surface, 587
parametrizations, 437
partial derivative, 466
partial sum, 345
perihelion, 334
piecewise function, 4
piecewise-smooth curve, 561
plane

parallel, 421
scalar equation, 419
vector equation, 419

polar axis, 316
polar coordinates, 316

directrix, 332
focus, 332

polar rectangle, 521
polynomial, 10, 463
position function, 56
position vector, 402
positive orientation, 576, 599, 603
potential function, 559
power function, 11
power rule, 65, 88
power series, 374
preator-prey equations, 301
pressure, 266
price function, 151
probability density function, 275

product rule, 70
profit function, 151
projections, 397

quadratic function, 10
quadric surface, 425
quotient rule, 71

radius of convergence, 376
radius of gyration, 530
range, 1, 452
ratio test, 369
rational function, 11, 463
rearrangement, 371
reciprocal function, 11
relative growth rate, 99
remainder, 357

Taylor series, 384
reparametrization, 438
resultant force, 406
revenue function, 151
Riemann sum, 165
right-hand rule, 397
Rolle’s theorem, 119
root function, 11
root test, 370
rulings, 424

saddle point, 494
sample points, 162, 506, 536
scalar fields, 555
scalar projection, 410
scalar triple product, 415
second derivative, 63, 434
second derivative test, 126, 494
second partial derivative, 471
sequence, 336
series, 345

alternating, 363
coefficients, 374
geometric, 346
harmonic, 351
Maclaurin, 383
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p-series, 355
power, 374
sum, 345
Taylor, 383

shell method for volume, 203
sigma notation, 162
simple curve, 572
simple harmonic motion, 622
simple solid region, 605
simply-connected region, 572
Simpson’s rule, 246
skew lines, 419
slant asymptote, 140
slope field, 282
smooth

curve, 439
reparametrization, 439
surface, 592

space curve, 430
speed, 445
spherical coordinates, 546
spring constant, 207
squeeze theorem, 37

for sequences, 339
standard basis vectors, 404
step function, 6
Stokes’ theorem, 603
substitution rule, 184
surface area, 263, 534, 593
surface integral, 596, 599
symmetric equations, 417
symmetry principle, 269

tangent line, 55, 433
tangent line approximation, 108
tangent plane, 474, 491, 592
tangent vector, 433
Taylor polynomial, 384
Taylor series, 383
terminal point, 305, 401
test for divergence, 352
third derivative, 64

three-dimensional coordinates, 397
torque, 416
traces, 424
transformation, 550

inverse, 550
trapezoidal rule, 243
trigonometric function, 12
triple integral, 536
triple Riemann sum, 536
twisted cubic, 432
type 1 region, 537
type 2 region, 538
type 3 region, 539
type I region, 513
type II region, 514

unit normal vector, 442
unit tangent vector, 433
unit vector, 405
upper limit, 165
upper sum, 162

value of a function, 1
variation of parameters, 620
vector, 401

addition, 401
components, 402
difference, 401
magnitude, 403
negative, 401
orthogonal, 408
parallel, 401
properties, 404
representation, 402
scalar multiplication, 401

vector field, 555
vector function, 429
vector projection, 410
velocity, 56
velocity field, 557
velocity vector, 445
vertical asymptote, 32
vertical line test, 4
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volume, 198

washer method for volume, 200
wave equation, 473
wind-chill index, 453
work, 206, 411, 568

zero vector, 401
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