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Chapter 1

Functions and Models

1.1 Four Ways to Represent a Function

Definition 1.1.1. A function f is a rule that assigns to each element x in a
set D exactly one element, called f(x), in a set E. The set D is called the
domain of the function. The number f(z) is the value of f at x. The set of all
possible values of f(z) as x varies throughout the domain is called the range.
A symbol that represents a number in the domain of a function f is called an
independent variable. A symbol that represents a number in the range of f is
called a dependent variable.

Definition 1.1.2. If f is a function with domain D, then its graph is the set
of ordered pairs

{(z, f(z)) | = € D}.

Example 1. The graph of a function f is shown in the figure. y

(a) Find the values of f(1) and f(5).

(b) What are the domain and range of f7 0
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Example 2. Sketch the graph and find the domain and range of each function.

(a) f(r) =201

Example 3. If f(z) = 222 — 52 + 1 and h # 0, evaluate

fla+h) = f(a)
- :
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Example 4. When you turn on a hot-water faucet, the temperature 7' of the
water depends on how long the water has been running. Draw a rough graph
of T as a function of the time t that has elapsed since the faucet was turned
on.

Example 5. A rectangular storage container with an open top has a volume
of 10 m?. The length of its base is twice its width. Material for the base costs
$10 per square meter; material for the sides costs $6 per square meter. Express
the cost of materials as a function of the width of the base.
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Example 6. Find the domain of each function.

(a) f(z) = va+2

Theorem 1.1.1 (Vertical Line Test). A curve in the xy-plane is the graph of
a function of x if and only if no vertical line intersects the curve more than
once.

Definition 1.1.3. Piecewise defined functions are defined by different formu-
las in different parts of their domains.

Example 7. A function f is defined by

flz) = {12—x if v < —1,

T ifz>—1.

Evaluate f(—2), f(—1), and f(0) and sketch the graph.
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Definition 1.1.4. The absolute value of a number a, denoted by |al, is the
distance from a to 0 on the real number line.

a if a >0,
la| =

—a ifa<O.

Example 8. Sketch the graph of the absolute value function f(z) = |z|.

Example 9. Find a formula for the function f graphed in the y
figure.

A
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Example 10. The cost C'(w) of mailing a large envelope with c
weight w is a piecewise defined function because, from the table
of values representing the function, 1.50 ¢
w (ounces) | C(w) (dollars) 100 |
0<w<1 0.98
l<w<?2 1.19 .
2<w<3 1.40
3<w<A4 1.61
. . 0 1

we have )
098 if0<w<1,

119 ifl<w<2,
Clw)=4{140 if2<w<3,
1.61 if 3 <w <4,

\

The graph is shown in the figure.

Remark 1. Functions similar to the one in the previous example
are called step functions.

Definition 1.1.5. If a function f satisfies f(—x) = f(x) for every number z
in its domain, then f is called an even function.

Remark 2. The function f(z) = 22 is even because

Definition 1.1.6. If a function f satisfies f(—z) = —f(x) for every number
x in its domain, then f is called an odd function.

Remark 3. The function f(z) = 23 is odd because
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Example 11. Determine whether each of the following functions is even, odd,
or neither even nor odd.

(a) f(z)=2+x

(c) h(z) =2z — 2*

Definition 1.1.7. A function f is called increasing on an interval I if
flz1) < f(xq) whenever x; < x9 in .
It is called decreasing on [ if

flz1) > f(xq) whenever x; < x in .
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1.2 Mathematical Models

Definition 1.2.1. We say vy is a linear function of x if the graph of the function
is a line. The slope-intercept form of the equation of a line can be used to
write a formula for the function as

y= () = ma+b
where m is the slope of the line and b is the y-intercept.

Example 1. (a) Asdry air moves upward, it expands and cools. If the ground
temperature is 20°C and the temperature at a height of 1 km is 10°C,
express the temperature 7' (in °C) as a function of the height h (in kilo-
meters), assuming that a linear model is appropriate.

(b) Draw the graph of the function in part (a). What does the slope represent?

(c) What is the temperature at a height of 2.5 km?
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Definition 1.2.2. An empirical model is a model based entirely on collected

data.

Example 2. The table lists the average carbon dioxide
level in the atmosphere, measured in parts per million
at Mauna Loa Observatory from 1980 to 2012. Use the
data in the table to find a model for the carbon dioxide
level.

Year QOQ level Year QOQ level

(in ppm) (in ppm)
1980 338.7 1998 366.5
1982 341.2 2000 369.4
1984 344.4 2002 373.2
1986 347.2 2004 377.5
1988 351.5 2006 381.9
1990 354.2 2008 385.6
1992 356.3 2010 389.9
1994 358.6 2012 393.8
1996 362.4
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Example 3. Use the linear model from the previous example to estimate the
average COs level for 1987 and to predict the level for the year 2020. According
to this model, when will the CO, level exceed 420 parts per million?

Definition 1.2.3. A function P is called a polynomial if
P(2) = ap™ + ap12™ 4 - 4 ag2® + a17 + ag

where n is a nonnegative integer and the numbers ag, a1, as, ..., a, are con-
stants called the coefficients of the polynomial. If the leading coefficient a,, # 0,
then the degree of the polynomial is n.

Remark 1. The function

2
P(z) = 22" —x4+5x3+\/§

is a polynomial of degree 6.

Remark 2. A polynomial of degree 1 is of the form P(x) = mx + b and so it is
a linear function. A polynomial of degree 2 is of the form P(x) = az? +bx + ¢
and is called a quadratic function. A polynomial of degree 3 is of the form
P(x) = ax® + bx® + cx + d and is called a cubic function.

10
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Example 4. A ball is dropped from the upper observation deck
of the CN Tower, 450 m above the ground, and its height h above
the ground is recorded at 1-second intervals in the table. Find a
model to fit the data and use the model to predict the time at
which the ball hits the ground.

Definition 1.2.4. A function of the form f(z) = x%, where a
is a constant, is called a power function. If a = n, where n is a
positive integer, f(x) = 2™ is a polynomial. If a = 1/n, where
n is a positive integer, f(x) = z'/™ = {/z is a root function. If
a=—1, f(z) = 27! = 1/x is a reciprocal function, as shown in
the figure.

Time
(seconds)

Height
(meters)

0

450

445

431

408

375

332

279

216

143

OO | O O W= W DN —

61

Definition 1.2.5. A rational function f is a ratio of two polynomials:

P(x)
f(x) =
)= 3)
where P and () are polynomials.
Remark 3. The function
20t — 22+ 1

fz) =

2 —4

is a rational function with domain {x | z # £2} and is graphed
in the figure.

11

\J

20+

(=)

_————— ot —-——————
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Definition 1.2.6. A function f is called an algebraic function if it can be
constructed using algebraic operations (such as addition, subtraction, multi-
plication, division, and taking roots) starting with polynomials.

Remark 4. The functions

fla)=va2+1

xt — 1622

S — ) 1
o) = e+ =2V
are algebraic.

Definition 1.2.7. Trigonometric functions are functions of an angle that re-
late the angles of a triangle to the lengths of its sides.

Remark 5. The sine, cosine, and tangent functions are the most familiar
trigonometric functions. The convention in calculus is that radian measure
is always used, unless otherwise indicated.

Remark 6. For all values of x, we have
—1<sinx <1 —1<cosz <1,

or equivalently,
|sinz| <1 |cosz| < 1.

Also, the periodic nature of these functions implies that
sin(x + 27) = sinx cos(x + 2m) = cosx

for all values of z.
1 ?

Example 5. What is the domain of the function f(x) = T 200sa’
—2cosx

12
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Definition 1.2.8. Exponential functions are functions of the form f(z) = 0",
where the base b is a positive constant.

Definition 1.2.9. Logarithmic functions are functions of the form f(z) =
log, x, where the base b is a positive constant.

Remark 7. Logarithmic functions are inverse functions of exponential func-
tions.

Example 6. Classify the following functions as one of the types of functions
that we have discussed.

(a) flz) =5"
(b) glz) = 2°
1+a

(d) u(t)=1—1t+ 5t

13
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1.3 New Functions from Old Functions

Remark 1 (Vertical and Horizontal Shifts). Suppose ¢ > 0. To obtain the

(x f(z) a distance ¢ units upward

( f(x) a distance ¢ units downward
= f(z — ¢), shift the graph of y = f(:v) a distance ¢ units to the right
y = f(x + ¢), shift the graph of y = f(z) a distance ¢ units to the left

Remark 2 (Vertical and Horizontal Stretching and Reflecting). Suppose ¢ > 1.
To obtain the graph of
y = cf(x), stretch the graph of y = f(x) vertically by a factor of ¢
y = (1/¢) f(x), shrink the graph of y = f(x) vertically by a factor of ¢
y = f(cx), shrink the graph of y = f(x) horizontally by a factor of ¢
= f(z/c), stretch the graph of y = f(x) horizontally by a factor of ¢
y = —f(x), reflect the graph of y = f(z) about the z-axis
y = f(—=), reflect the graph of y = f(x) about the y-axis

Example 1. Given the graph of y = \/x, use transformations to graph y =

\/_—Z,y:vx—?,yz—ﬁ,y:2ﬁ,andyzv—x.

14
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Example 2. Sketch the graph of the function f(z) = z? + 6x + 10.

Example 3. Sketch the graphs of the following functions.

(a) y =sin2zx

(b) y=1—sinz

15
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Example 4. The figure shows graphs of the number of hours of daylight as
functions of time of the year at several latitudes. Given that Philadelphia is
located at approximately 40°N latitude, find a function that models the length
of daylight at Philadelphia.

20
18 \c\
O \
16 / ~ \\
14 paed \0\\\
V=
12
—o—o  20°N
Hours 10 \k\ﬁy 30°N
° | 40°N
8 \\O o
50°N
6 60°N
4
2
0

Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

16
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Example 5. Sketch the graph of the function y = |22 — 1.

Definition 1.3.1. The sum and difference functions are defined by

(f+9)@) = flx) +9(z)  (f —9)(=) = f(x) - g(z).

Similarly, the product and quotient functions are defined by

(o)) = Fla)g(a) (g) <x>=%, o(z) £0.

Definition 1.3.2. Given two functions f and g, the composite function f o g
(also called the composition of f and g) is defined by

(fog)(x) = flg(x)).

Example 6. If f(z) = z? and g(x) = x — 3, find the composite functions fog
and go f.

17
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Example 7. If f(z) = /= and g(z) = /2 — x, find each of the following
functions and their domains.

(a) fog

(b) gof

(d) gog

Example 8. Find fogohif f(z) =z/(z+1), g(z) = 2'° and h(z) = x + 3.

Example 9. Given F(z) = cos?(z + 9), find functions f, g, and h such that
F=fogoh.

18
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1.4 Exponential Functions

Theorem 1.4.1 (Laws of Exponents). If a and b are positive numbers and x
and y are any real numbers, then
bx
L™ =b"0Y 2.7V = o 3= 4 (ah)” = et
Example 1. Sketch the graph of the function y = 3 — 2” and determine its
domain and range.

Example 2. Use a graphing calculator to compare the exponential function
f(x) = 2% and the power function g(x) = z?. Which function grows more
quickly when z is large?

Example 3. The half-life of strontium-90, %°Sr, is 25 years. This means that
half of any given quantity of °Sr will disintegrate in 25 years.

(a) If a sample of PSr has a mass of 24 mg, find an expression for the mass
m(t) that remains after ¢ years.

19
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(b) Find the mass remaining after 40 years, correct to the nearest milligram.

(c) Use a graphing calculator to graph m(t) and use the graph to estimate
the time required for the mass to be reduced to 5 mg.

Definition 1.4.1. We call the function f(z) = e” the natural exponential
function where e is the value of b in y = b” resulting in a tangent line at (0, 1)
with slope 1.

Example 4. Graph the function y = %e ¥ — 1 and state the domain and

range.

Example 5. Use a graphing device to find the values of x for which e* >
1,000, 000.

20
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1.5 Inverse Functions and Logarithms

Definition 1.5.1. A function is a one-to-one function if it never takes on the
same value twice; that is,

f(z1) # f(xs) whenever x; # xs.

Theorem 1.5.1 (Horizontal Line Test). A function is one-to-one if and only
if no horizontal line intersects its graph more than once.
3

Example 1. Is the function f(z) = x* one-to-one?

Example 2. Is the function g(x) = 2 one-to-one?

Definition 1.5.2. Let f be a one-to-one function with domain A and range
B. Then its inverse function f~! has domain B and range A and is defined by

Ty =z f(z)=y

for any y in B.
Example 3. If f(1) =5, f(3) =7, and f(8) = —10, find f~1(7), f~(5), and
f=H(=10).

Remark 1. The letter z is traditionally used as the independent variable, so
when we concentrate on f~! we usually reverse the roles of x and y to get

fTla)=y s fly) ==
By substituting for = and y, we get the following cancellation equations:

f(f(x)) =2 forevery zin A
f(fY(x)) =2 forevery x in B

21
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Example 4. Find the inverse function of f(z) = 23 + 2.

Remark 2. The graph of f~! is obtained by reflecting the graph of f about
the line y = .

Example 5. Sketch the graphs of f(z) = v/—1 — = and its inverse function
using the same coordinate axes.

Definition 1.5.3. The logarithmic function with base b, denoted by log,, is

the inverse function of the exponential function f(z) = b* with b > 0 and
b+#1,ie.,

logyr =y & b = .
Remark 3. By the cancellation equations,

log,(b*) =z for every z € R

blosr® — ¢ for every z > 0.

Theorem 1.5.2 (Laws of Logarithms). If x and y are positive numbers, then

1. logy(zy) = log, = + log, y
x

2. log, (—) = log, v — log, vy
Y

3. log,(x") = rlog, x (where 1 is any real number)

Example 6. Use the laws of logarithms to evaluate log, 80 — log, 5.

22
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Definition 1.5.4. The logarithm with base e is called the natural logarithm
and is denoted by

log,z =1nux.

Example 7. Find z if Inx = 5.

Example 8. Solve the equation e*~3% = 10.

Example 9. Express Ina + %ln b as a single logarithm.

Theorem 1.5.3 (Change of Base Formula). For any positive numberb (b # 1),
we have

| Inx
0g, T = —.
8o Inb
Proof. Let y =log, x. Then
b =x
ylnb=1Inz
Inx
= —. O
Y Inb

Example 10. Evaluate logg 5 correct to six decimal places.

23
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Example 11. Sketch the graph of the function y = In(x — 2) — 1.

Definition 1.5.5. The inverse sine function or arcsine function, denoted by
sin~!, is the inverse of the sine function on the restricted domain [—m/2, 7 /2].

Remark 4. By the cancellation equations,

Example 12. Evaluate (a) sin™'(3) and (b) tan (arcsin g).

Definition 1.5.6. The inverse cosine function or arccosine function, denoted
by cos™!, is the inverse of the cosine function on the restricted domain [0, 7).

Remark 5. By the cancellation equations,

cos '(cosw) =2 for0<z<m

cos(cos 'x) =2 for —1 <z <1,

Definition 1.5.7. The inverse tangent function or arctangent function, de-
noted by tan—!, is the inverse of the tangent function on the restricted domain

[—7/2,7/2].

24
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Example 13. Simplify the expression cos(tan™! z).

Remark 6. The remaining inverse trigonometric functions are

y=csc 'z (Jz|>1) <= cscy=z2 and ye€ (0,7/2]U(rm,37/2
y=sec 'z (Jz|>1) <= secy=2 and y€[0,7/2)U]n,37/2)
y=cot 'x (|z]€R) <= coty=x and ye€(0,7).
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Chapter 2

Limits and Derivatives

2.1 The Tangent and Velocity Problems

Remark 1. A tangent to a curve is a line that that touches the curve. A secant
is a line that cuts a curve more than once.

Example 1. Find an equation of the tangent line to the parabola y = 2?2 at
the point P(1,1).
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Calculus - 2.1 The Tangent and Velocity Problems

Example 2. The flash unit on a camera operates by storing
charge on a capacitor and releasing it suddenly when the flash is
set off. The data in the table describe the charge () remaining on
the capacitor (measured in microcoulombs) at time ¢ (measured
in seconds after the flash goes off). Use the data to draw the
graph of this function and estimate the slope of the tangent line
at the point where t = 0.04. [Note: The slope of the tangent line
represents the electric current flowing from the capacitor to the
flash bulb (measured in microamperes).]

27

t Q
0.00 | 100.0
0.02 | 81.87
0.04 | 67.03
0.06 | 54.88
0.08 | 44.93
0.10 | 36.76




Calculus - 2.1 The Tangent and Velocity Problems

Example 3. Suppose that a ball is dropped from the upper observation deck
of the CN Tower in Toronto, 450 m above the ground. Find the velocity of
the ball after 5 seconds. [If the distance fallen after ¢ seconds is denoted by
s(t) and measured in meters, then Galileo’s law that the distance fallen by any
freely falling body is proportional to the square of the time it has been falling
is expressed by the equation s(t) = 4.9¢2.]
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Calculus - 2.2 The Limit of a Function

2.2 The Limit of a Function

Definition 2.2.1. Suppose f(z) is defined when x is near the number a. Then
we write

lim f(z) =L

r—ra

if we can make the values of f(x) arbitrarily close to L by restricting x to be
sufficiently close to a but not equal to a.

-1
Example 1. Guess the value of lim — )
rx—1 4 — 1

V249 -3
Example 2. Estimate the value of lir% —2—2
—

sinx

Example 3. Guess the value of lim
z—=0 T
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Calculus - 2.2 The Limit of a Function

s
Example 4. Investigate lim sin —.
z—0 xX

Cos 5T
E le 5. Find li 3 .
xample mn wlg(l) (:L‘ + 10,000)

Definition 2.2.2. We write

lim f(z)=1L

Tr—a—

if we can make the values of f(x) arbitrarily close to L by taking = to be
sufficiently close to a with x less than a. Similarly, if we require that = be
greater than a, we write

lim f(z) = L.

z—at

Example 6. Investigate the limit as ¢ approaches 0 of the Heaviside function

H, defined by
if t
Hp={" T
1 ift>0.
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Calculus - 2.2 The Limit of a Function

Remark 1. lim f(z) = L if and only if lim f(z) =L and lim f(x)= L.

T—a T—a~ z—at

Example 7. Use the graph of g to state the values (if they exist)

,
of the following: 4t
3<>
(a) lim g(x) (b) lim g(x) -
T2~ r—2T T
1<>
(U
(c) lim () (d) lim g(x)
T— z—5~
(e) lim g(z) (f) lim g()

Definition 2.2.3. Let f be a function defined on both sides of a, except
possibly at a itself. Then
lim f(z) = o0

T—a

means that the values of f(x) can be made arbitrarily large by taking = suffi-
ciently close to a, but not equal to a. Similarly,

li_r)n f(z) = -0

means that the values of f(z) can be made arbitrarily large negative by taking
x sufficiently close to a, but not equal to a.

1
Example 8. Find lim — if it exists.
z—0
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Calculus - 2.2 The Limit of a Function

Definition 2.2.4. The vertical line x = a is called a vertical asymptote of
the curve y = f(z) if at least one of the following statements is true:

lim f(z) = o0 lim f(x) =00 lim f(x) = o0
z—a T—a~ z—at
lim f(z) = —o0 lim f(z) = —o0 lim f(z) = —o0
T—a T—a~ r—a™t
2 2
Example 9. Find lim Y and lim —=2_.
=3t — 3 z—3- T — 3

Example 10. Find the vertical asymptotes of f(z) = tanz.
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Calculus - 2.3 Calculating Limits Using the Limit Laws

2.3 Calculating Limits Using the Limit Laws

Theorem 2.3.1 (Limit Laws). Suppose that c is a constant and the limits

lim f(x) and lim g(z)

T—ra T—ra

exist. Then

1. lim[f(z) 4+ g(x)] = 1irri f(z) + lim g(x)

Tr—ra r—r T—ra

2. lim[f(z) — g(z)] = lim f(z) — lim g(z)

Tr—ra r—a r—a

3. lim[cf(x)] = 69101_1)1611 f(z)

r—a

4. lim[f(z)g(x)] = lim f(z) - lim g(z)

r—a Tr—a T—ra

lim f(z)
I~ gy lma) £0

Example 1. Use the Limit Laws and the graphs of f and g to
evaluate the following limits, if they exist.

() lim [f(x) + 59(x)

(b) lim[f(z)g(z)]

z—1

()

z)

=
(g

—~
o
~—
Ju—
—

‘

r—2 g
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Calculus - 2.3 Calculating Limits Using the Limit Laws

Theorem 2.3.2 (Power and Root Laws). By repeatedly applying the Product
Law and using some basic intuition we obtain the following:

6. im|[f(x)]" = {lim f(m)} where n is a positive integer
Tr—a r—a

7. limec=c
r—a

8 limz=a
r—a

n

9. limz" =a where n 1s a positive integer

Tr—ra

10. lim /z = {/a where n is a positive integer

Tr—a
(If n is even, we assume that a > 0.)

11. lim {/f(z) = »/lim f(z where n is a positive integer
Tr—a

r—ra

[]fn is even, we assume that lim f(z) > 0.

T—ra

Example 2. Evaluate the following limits and justify each step.

(a) lim (222 — 3z +4)

r—5
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Calculus - 2.3 Calculating Limits Using the Limit Laws

Theorem 2.3.3 (Direct Substitution Property). If f is a polynomial or a
rational function and a is in the domain of f, then

lim f(z) = f(a).

r—a

o1t —1
Example 3. Find lim T

x—1 1 —

Remark 1. If f(z) = g(x) when x # a, then lim f(x) = lim g(z), provided the
Tr—a

r—a
limits exist.

Example 4. Find lilr% g(x) where
T—

g(x):{x—i—l if o £ 1,

T if x =1.

3+h)?-9
Example 5. Evaluate lim %
h—0
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Calculus - 2.3 Calculating Limits Using the Limit Laws

Example 6. Find lim t+—9_3

t—0 12

Example 7. Show that liH(l) |z| = 0.
T—

x
Example 8. Prove that lim u does not exist.
z—0 I

Example 9. If

f(x):{\/x—él if o > 4,

8 —2¢ ifx<4.

determine whether lim f(z) exists.
T—4
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Calculus - 2.3 Calculating Limits Using the Limit Laws

Example 10. The greatest integer function is defined by [x] = the largest
integer that is less than or equal to z. (For instance, [4] = 4, [4.8] = 4,
[7] =3, [V2] =1, [-3] = —1.) Show that lirrzl]’[[a:]] does not exist.

z—

Theorem 2.3.4. If f(z) < g(x) when x is near a (except possibly at a) and
the limits of f and g both exist as x approaches a, then

lim f(x) < lim g(z).

r—a T—ra

Theorem 2.3.5 (The Squeeze Theorem). If f(z) < g(z) < h(x) when z is
near a (except possibly at a) and

lim f(z) = limh(z) = L

r—a r—a

then
lim g(z) = L.

Tr—a

1
Example 11. Show that lim 22 sin — = 0.

x—0 x
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Calculus - 2.4 The Precise Definition of a Limit

2.4 The Precise Definition of a Limit

Definition 2.4.1. Let f be a function defined on some open interval that
contains the number a, except possibly at a itself. Then we write

lim f(x) =L

r—a
if for every number € > 0 there is a number § > 0 such that
if 0<|z—a|l<d  then |f(z) — L] <e.

Example 1. Use a graph to find a number  such that if x is within ¢ of 1,
then f(z) = 2® — 5x + 6 is within 0.2 of 2.
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Calculus - 2.4 The Precise Definition of a Limit

Example 2. Prove that lir%(4x —-5)="T.
T—

Definition 2.4.2.
lim f(x) =1L

Tr—a~
if for every number € > 0 there is a number § > 0 such that
if a—d<xr<a  then |f(z) = L| <e.
Similarly,
lim f(z) =1L
z—at

if for every number € > 0 there is a number § > 0 such that

if a<z<a+d  then |f(z) — L| <e.
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Calculus - 2.4 The Precise Definition of a Limit

Example 3. Prove that lim /x = 0.

z—0t

Example 4. Prove that lirré 22 =09.
T—
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Calculus - 2.4 The Precise Definition of a Limit

Definition 2.4.3. Let f be a function defined on some open interval that
contains the number a, except possibly at a itself. Then

lim f(z) = o0

T—a
means that for every positive number M there is a positive number § such

that
if 0<|r—al<é then f(z) > M.

Similarly,
lim f(z) = —o0

r—a

means that for every negative number N there is a positive number § such
that
if 0<|z—a|l<d  then f(z) < N.

1
Example 5. Prove that lim — = oco.
z—0
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Calculus - 2.5 Continuity

2.5 Continuity

Definition 2.5.1. A function f is continuous at a number a if

lim f(x) = f(a).

We say that f is discontinuous at a (or f has a discontinuity at a) if f is not

continuous at a.

Example 1. Use the graph of the function f to determine the
numbers at which f is discontinuous.

Example 2. Where are each of the following functions discontinuous?

(@) fla) = S22
1 . 0
b) flo) =42 "°7
1 ifxz=0
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Calculus - 2.5 Continuity

2 —x—2

© f)={ z-z 1r7?2
1 ifx=2

Definition 2.5.2. A function f is continuous from the right at a number a if
lim_f(z) = f(a)
T—a
and f is continuous from the left at a if
lim f(z) = f(a).
r—a

Example 3. In which direction(s) is the function f(z) = [z] continuous?

Definition 2.5.3. A function f is continuous on an interval if it is continuous
at every number in the interval. (If f is defined only on one side of an endpoint
of the interval, we understand continuous at the endpoint to mean continuous
from the right or continuous from the left.)
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Calculus - 2.5 Continuity

Example 4. Show that the function f(z) =1—+/1 — 22 is continuous on the
interval [—1, 1].

Theorem 2.5.1. If f and g are continuous at a and c is a constant, then the
following functions are also continuous at a:

1. f+g 2. f—g 3. cf
4 fg 5.§'fg<a>7éo

Proof. All of these results follow from the Limit Laws. For example, f + g is
continuous at a because

lim (f + g)(z) = lim[f(z) + g(z)]
= lim f(z) + lim g(z)

= f(a) + g(a)
= (f+9)(a). O

Theorem 2.5.2. (a) Any polynomial is continuous everywhere; that is, it is
continuous on R = (—o0, 00).

(b) Any rational function is continuous wherever it is defined; that is, it is
continuous on its domain.

Proof. (a) Let
P(z) = cp2™ + cp1z™ -+ 1z + co

be a polynomial where cg, ¢y, ..., ¢, are constants. Then
0> ) )
lim 2™ = a™ m=12,....n
r—a

implies that the function f(x) = 2™ is continuous. Since

lim Co = Cp,
z—a
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Calculus - 2.5 Continuity

the constant function is continuous as well, and therefore the product
function g(x) = ca™ is continuous. Since P is a sum of functions of this
form, it is continuous as well.

(b) Rational functions are quotients of polynomials, i.e.,

P(z)

f(z) = ;

=%
where P and () are polynomials. Thus the above result implies that they
are continuous on their domains. O

3 2 2 1
Example 5. Find lim e
z——2 5—3x

Theorem 2.5.3. The following types of functions are continuous at every
number in their domains:

e polynomials e rational functions e 7100t functions

e trigonometric functions e inverse trigonometric functions

e cxponential functions e logarithmic functions

_ Inz+ tan~! z

Example 6. Where is the function f(z) = — continuous?
x —

Example 7. Evaluate lim ﬂ.
z—m 2 + Ccosx

45



Calculus - 2.5 Continuity

Theorem 2.5.4. If f is continuous at b and lim g(x) = b, then lim f(g(z)) =

r—a r—ra
f(b), i.e.,

i £(9()) = £ (1 g(0)).

r—a r—a

Proof. Let € > 0. Since f is continuous at b, we have lim,_;, f(y) = f(b) and
so there exists d; > 0 such that

if 0<|y—10] <o then |f(y) — f(b)] <e.
Since lim,_,, g(z) = b, there exists § > 0 such that
if 0<|z—a|l<d  then lg(z) — b] < 4.

By letting y = g(z) in the first statement, we get that 0 < |z — a| < ¢ implies
that | F(9(2) — F(B)] < &, ie., Tanaa flg(2)) = F(B). 0

rx—1 — X

1 —
Example 8. Evaluate lim arcsin ( ] \/E)

Theorem 2.5.5. If g is continuous at a and f is continuous at g(a), then the
composite function f o g given by (f o g)(x) = f(g(x)) is continuous at a.

Proof. Since g is continuous at a, we have
lim g(z) = g(a).

Since f is continuous at g(a), we have

lim f(g(x)) = f (lim g(:E)) = f(g(a)),

T—a T—ra

which means f o ¢ is continuous. O
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Calculus - 2.5 Continuity

Example 9. Where are the following functions continuous?

(a) h(x) = sin(a?)

(b) F(x)=In(1+ cosx)

Theorem 2.5.6 (Intermediate Value Theorem). Suppose that f is continuous
on the closed interval |a,b] and let N be any number between f(a) and f(b),
where f(a) # f(b). Then there exists a number c in (a,b) such that f(c) = N.

Example 10. Show that there is a root of the equation 423 — 62%+ 32z —2 =0
between 1 and 2.
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Calculus - 2.6 Limits at Infinity

2.6 Limits at Infinity

Definition 2.6.1. Let f be a function defined on some interval (a, o). Then

lim f(x) =1L

T—00

means that the values of f(x) can be made arbitrarily close to L by requiring
x to be sufficiently large.

Definition 2.6.2. Let f be a function defined on some interval (—o0o, a). Then

lim f(z)=1L

T—r—00

means that the values of f(x) can be made arbitrarily close to L by requiring
x to be sufficiently large negative.

Definition 2.6.3. The line y = L is called a horizontal asymptote of the
curve y = f(z) if either

lim f(z) =L or lim f(x)=L.

T—00 T—r—00
Example 1. Find the infinite limits, limits at infinity, and &
asymptotes for the function f whose graph is shown. |
) \\
I 2
\

1
Example 2. Find lim — and lim -.
Tx—00 I r——00 I
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Calculus - 2.6 Limits at Infinity

Theorem 2.6.1. Ifr > 0 is a rational number, then

) 1 ) 11" 17"
lim — = lim {—} :{hm —} =0"=0
rz—oo T r—00 | T

r—00 I
1 11" 11"
lim — = lim {—} = [ lim —] =0"=0.
rz——oo T r——00 | I T——00 I
Example 3. Evaluate
32 —x—2

lim ——.

49



Calculus - 2.6 Limits at Infinity

Example 4. Find the horizontal and vertical asymptotes of the graph of the
function
202 4+ 1

fla) =7 —F
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Calculus - 2.6 Limits at Infinity

Example 5. Compute lim (v22 41— x).

T—00

1
Example 6. Evaluate lim arctan( 2).
x _

r—2+

Example 7. Evaluate lim e/®.
z—0~

Example 8. Evaluate lim sinz.
Tr—00
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Calculus - 2.6 Limits at Infinity

Example 9. Find lim 23 and lim 23

T—r00 T—r—00

Example 10. Find lim (z* — ).

T—00

2
Example 11. Find lim T

T—00 — X

Example 12. Sketch the graph of y = (z — 2)*(z + 1)3(x — 1) by finding its
intercepts and its limits as * — oo and as x — —o0.
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Calculus - 2.6 Limits at Infinity

Definition 2.6.4. Let f be a function defined on some interval (a,c0). Then

lim f(z) =L

T—r00

means that for every € > 0 there is a corresponding number N such that
if >N  then |f(z) - L| <e.
Definition 2.6.5. Let f be a function defined on some interval (—oo, a). Then

lim f(x)=1L

T—r—00

means that for every € > 0 there is a corresponding number N such that
if <N  then |f(z)—L| <e.
Example 13. Use a graph to find a number N such that

32— —2

—— — 0.6
52 +4x +1

if >N then < 0.1.

1
Example 14. Prove that lim — = 0.

T—0o0 U
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Calculus - 2.6 Limits at Infinity

Definition 2.6.6. Let f be a function defined on some interval (a,c0). Then

ILm f(z) =00

means that for every positive number M there is a corresponding positive
number N such that

if >N  then  f(z)> M.
Definition 2.6.7. Let f be a function defined on some interval (a,o0). Then

ILm fz) = -0

means that for every negative number M there is a corresponding positive
number N such that

if >N  then f(z) < M.
Definition 2.6.8. Let f be a function defined on some interval (—oo, a). Then

lim f(z)= o0

T——00

means that for every positive number M there is a corresponding negative
number N such that

if <N  then  f(zx)> M.
Definition 2.6.9. Let f be a function defined on some interval (—oo, a). Then

lim f(x)=—oc0

T—r—00

means that for every negative number M there is a corresponding negative
number N such that

if <N  then  f(z) <M.
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Calculus - 2.7 Derivatives and Rates of Change

2.7 Derivatives and Rates of Change

Definition 2.7.1. The tangent line to the curve y = f(z) at the point
P(a, f(a)) is the line through P with slope

@)= f@

r—ra Tr—a
provided that this limit exists.

Example 1. Find an equation of the tangent line to the parabola y = 22 at
the point P(1,1).

Example 2. Use the alternative expression for the slope of a tangent line

e fat k) f(a)
h—0 h

to find an equation of the tangent line to the hyperbola y = 3/z at the point
(3,1).
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Calculus - 2.7 Derivatives and Rates of Change

Definition 2.7.2. A function f describing the motion of an object along a
straight line is called a position function and has velocity

fla+h) = f(a)
h

o) = iy

at time ¢ = a.

Example 3. Suppose that a ball is dropped from the upper observation deck
of the CN Tower, 450 m above the ground. Recall that the distance (in meters)
fallen after ¢ seconds is 4.9¢%.

(a) What is the velocity of the ball after 5 seconds?

(b) How fast is the ball traveling when it hits the ground?
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Calculus - 2.7 Derivatives and Rates of Change

Definition 2.7.3. The derivative of a function f at a number a, denoted by

f'(a) is
ey = i [N =@
or equivalently @ @
/ _ f r)— f a
f(a) = lim ——"—

if this limit exists.

Example 4. Find the derivative of the function f(z) = 2? — 8z + 9 at the
number a.

Example 5. Find an equation of the tangent line to the parabola y = 22 —

8z + 9 at the point (3, —6).
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Calculus - 2.7 Derivatives and Rates of Change

Definition 2.7.4. Suppose y is a quantity that depends on another quantity
x. Then y is a function of x and we write y = f(x). If  changes from z; to
Tg, then the change in = (also called the increment of z) is

Ar = a9 — 17
and the corresponding change in vy is
Ay = f(x2) — f(21).
The average rate of change of y with respect x over the interval [z, 25| is

Ay flx2) — f(z1)

Az To — T

and the instantaneous rate of change of y with respect to x is

lim 22 — Jim fx2) — fla1)
Az—0 Ax To—T1 To — X1

= f'(z).

Example 6. A manufacturer produces bolts of a fabric with a fixed width.
The cost of producing x yards of this fabric is C' = f(z) dollars.
(a) What is the meaning of the derivative of f’(x)? What are its units?

(b) In practical terms, what does it mean to say that f’(1000) = 97

C 1ch do you think 1s greater, or { at about {
Which d hink i /(50 £'(500)? Wh b £'(5000)7
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Calculus - 2.7 Derivatives and Rates of Change

Example 7. Let D(t) be the US national debt at time ¢. The

table gives approximate values of this function by providing end t D(t)
: R 1985 | 1945.9

of year estimates, in billions of dollars, from 1985 to 2010. In-

terpret and estimate the value of D’(2000). 1990 | 3364.8
1995 | 4988.7
2000 | 5662.2
2005 | 8170.4
2010 | 14,025.2

Source: US Dept. of the Treasury
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Calculus - 2.8 The Derivative as a Function

2.8 The Derivative as a Function

Definition 2.8.1. The derivative of a function f is the function

e — i L) =)

h—0 h

if this limit exists.

Example 1. The graph of a function f is given. Use it to sketch
the graph of the derivative f’.

Example 2. (a) If f(x) = 23 — z, find a formula for f'(x).

(b) Illustrate this formula by comparing the graphs of f and f’.
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Calculus - 2.8 The Derivative as a Function

Example 3. If f(z) = \/x, find the derivative of f. State the domain of f’.

1—=x
2+

Example 4. Find f’if f(x) =

Definition 2.8.2. The symbols D and d/dx are called differentiation opera-
tors and are used as follows:

Ay dy df d
/ —q = _—— = — = — = =
fe) =y = e &~ &~ &’ =PI = Daf (@)
For fixed a, we use the notation
dy
dr],_

dy

dr|,_

a a

Definition 2.8.3. A function f is differentiable at a if f'(a) exists. It is dif-
ferentiable on an open interval (a,b) [or (a,00) or (—o00,a) or (—oo,00)] if it
is differentiable at every number in the interval.
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Calculus - 2.8 The Derivative as a Function

Example 5. Where is the function f(x) = |z| differentiable?
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Calculus - 2.8 The Derivative as a Function

Theorem 2.8.1. If f is differentiable at a, then f is continuous at a.

Proof. 1f f is differentiable at a, we have

tinlf ) — o)) = 1 L= g
gl Gl
= f'(a)-0=0

Therefore,

lim f(z) = lim[f(a) + (f(2) — f(a))]
= lim f(a) + lim[f(2) — f(a)]
= f(a) + 0= f(a). -

Definition 2.8.4. If the derivative [’ of a function f has a derivative of its
own we call it the second derivative of f and denote it by

(f/)/ _ f// d (d_y) d Y

~de \dz ) da?

Example 6. If f(z) = 2® — z, find and interpret f”(z).

Definition 2.8.5. The instantaneous rate of change of velocity with respect
to time is called the acceleration a(t) of an object. It is the derivative of the
velocity function, and therefore the second derivative of the position function:

a(t) ='(t) = s"(t).

63



Calculus - 2.8 The Derivative as a Function

Definition 2.8.6. The third derivative f” is the derivative of the second
derivative, denoted by

(f//)/ — fl//.

Definition 2.8.7. The instantaneous rate of change of acceleration with re-
spect to time is called the jerk j(t) of an object. It is the derivative of the
acceleration function, and therefore the third derivative of the position func-
tion:

Jt) = d'(t) = v"(t) = "(t).

Definition 2.8.8. The fourth derivative f”” is usually denoted by f®). In
general, the nth derivative of f is denoted by f™ and is obtained from f by
differentiating n times. If y = f(x), we write

d™y
(n) — fn) - J
y frz) = -3

Example 7. If f(z) = 2% — z, find f”(2) and f@(z).
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Chapter 3

Differentiation Rules

3.1 Derivatives of Polynomials and Exponen-

tials

Theorem 3.1.1. The derivative of a constant function f(z) = c is 0, i.e.,

%(C) = 0.
Proof.
o) = i JEED =) ey
Theorem 3.1.2.
%(:ﬁ) =1 %(:{:2) = 2r %(:c?’) = 322 dilx(x‘l) = 42°

Proof. All of these follow directly from the definition of the derivative, as

above.

Theorem 3.1.3 (The Power Rule). If n is a positive integer, then

a
dz

(") = na™ !

Proof. Since

xn_an _ (x_a)(xn—l+$n—2a+‘__+$ajn—2+an—1)’
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we have
fla) = im 1@y 27
r—a r—a T—=a T — @
= lim(x”_l + " 2q S R 2 + an—l)
r—a

:anfl+an72a+..'+aanf2+anfl

— gn—l + an—l 4o +&n—1 + an—i

ER

= na" L. O]

Example 1. Find the derivative of each of the following:

(a) f(z) = a®

(b) y = 21000
(c)y=t'
(d) f(r)=r?

Theorem 3.1.4 (The Power Rule (General Version)). If n is any real number,

then
d

%(13”) =na" !,

Example 2. Differentiate:

Definition 3.1.1. The normal line to a curve C at a point P is the line
through P that is perpendicular to the tangent line at P.
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Example 3. Find equations of the tangent line and normal line to the curve
= z+/z at the point (1,1).

Theorem 3.1.5 (The Constant Multiple Rule). If ¢ is a constant and f is a
differentiable function, then

d d
L fef(@)] = e (@)

Proof. Let g(z) = c¢f(z). Then

oy o glet+h)—gl@) o cf(x+h)—cf(r)
A A
L flx+h)— f(z)
_}L%C[ h }
i L@ ) — f(2)
h—0 h
= cf'(x). O

Example 4. Find:
d
— (3%

(a) o (32%)

Theorem 3.1.6 (The Sum Rule). If f and g are both differentiable, then

L 11@) + g(@)] = (@) + ().
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Proof. Let F(x) = f(x) 4+ g(x). Then
F(x+h) — F(x)

P = iy
_ i L@ R) + gz + b)) — [f(2) + g(2)]
h—0 h
[ f@+h) = f(x)  glxz+h)—g(z)
= Jimy I + h
o fla+h) = flx) . glz+h)—g(v)
= Jim h +m b
= f'(x) + (). O

Theorem 3.1.7 (The Difference Rule). If f and g are both differentiable, then

1)~ gla)) = - f@) — ~gla).

d
Example 5. Find d—(xS + 1225 — 42* + 1023 — 62 + 5).
X

Example 6. Find the points on the curve y = 2* — 622 + 4 where the tangent
line is horizontal.
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Example 7. The equation of motion of a particle is s = 2t — 5t% + 3t + 4,
where s is measured in centimeters and ¢ in seconds. Find the acceleration as
a function of time. What is the acceleration after 2 seconds?

h
—1
Definition 3.1.2. e is the number such that }llirr(l) ¢ =1.
H
Theorem 3.1.8 d (%) = e”
1.8, —(e%) = e*.
dx
Example 8. If f(z) = ¢” — z, find f" and f”.

Example 9. At what point on the curve y = e” is the tangent line parallel to
the line y = 2x7?
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3.2 The Product and Quotient Rules

Theorem 3.2.1 (The Product Rule). If f and g are both differentiable, then

d

L gt = £ fg(@)] + gla)

- /@)

Proof. By the definition of the derivative on the product,

L b o)g(e)] — tim LT M9+ P) = F(@)g(a)

% h—0 h
fx+h)glx+h) = fle+h)g(x) + flz+h)g(x) — f(x)g(x)

= lim
h—0

_ iy J@ gl + h) — fx + h)g(2) lim flx+h)g(z) — f(x)g(z)

h—0 h h—0 h
o JE gt k) —g@)] gl b~ ()

h—0 h h—0 h
=i o+ i 2D 1 ) S5 =
= fa) - lgla)] + o(x) ()] =

Example 1. (a) If f(z) = ze”, find f'(x).

(b) Find the nth derivative, f™(z).
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Example 2. Differentiate the function f(t) = v/t(a + bt).

Example 3. If f(z) = \/zg(z), where g(4) = 2 and ¢'(4) = 3, find f'(4).

Theorem 3.2.2 (The Quotient Rule). If f and g are differentiable, then

4 (1) ()7 ()] - f(:v)d%[g(x)]‘

N [g(2)]2

Proof. Similar to the Product Rule, except we add and subtract f(z)g(z) in
the numerator when applying the definition of the derivative. O]
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2 +x—2

516 Find o'

Example 4. Let y =

Example 5. Find an equation of the tangent line to the curve y = e*/(1+2?)
at the point (1, 1e).
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3.3 Derivatives of Trigonometric Functions

Theorem 3.3.1. The derivative of the sine function is the cosine function,
1.€.,

i(sim x) = CoS .

dx

Example 1. Differentiate y = 22 sin z.

Theorem 3.3.2. The derivative of the cosine function is the negative sine
function, 1i.e.,

i(cos xr) = —sinz.

dz

Theorem 3.3.3. The derivative of the tangent function is the square of the
secant function, i.e.,

— (tan ) = sec’ z.

dx

Proof. By the Quotient Rule,

i(tanx) = i sinz
dz ~ dx \cosx

cos T (sinz) — sin S (cosx)

cos? x
cosx - cos T — sinz(—sin x)

cos? x
2 )
COS“ T + sin“x
cos? x
1 2
= 5— = sec” x. L]
cos?x
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Theorem 3.3.4. The derivatives of the trigonometric functions are

L (sin) = cos ? (esca) t

—(sinx) = cosx —(escx) = —cscx cot x

dz dz

! (cosa) = —s ! (sec) = secrt

—(cosx) = —sinx —(secxr) = secx tan x

dz dx

%(tan r) = sec’x %<C0t r) = —csc’x.

Example 2. Differentiate f(z) = 1_?_%. For what values of x does the

an x

graph of f have a horizontal tangent?

Example 3. An object at the end of a vertical spring is stretched to
4 cm beyond its reset position and released at time ¢t = 0. (See the
figure and note that the downward direction is positive.) Its position

at time t is
s = f(t) =4cost.

Find the velocity and acceleration at time ¢ and use them to analyze the motion
of the object.
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Example 4. Find the 27th derivative of cos x.

in7
Example 5. Find lim o x.

z—0 Adx

Example 6. Calculate liH(l) xcotx.
T

5



Calculus - 3.4 The Chain Rule

3.4 The Chain Rule

Theorem 3.4.1 (The Chain Rule). If g is differentiable at x and f is differen-
tiable at g(x), then the composite function F' = fog defined by F(z) = f(g(x))
is differentiable at x and F' is given by the product

F'(z) = f'(g(x)) - g'(x).
Example 1. Find F'(z) if F(z) = va? + 1.

Example 2. Differentiate (a) y = sin(z?) and (b) y = sin® z.
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Theorem 3.4.2 (The Power Rule Combined with the Chain Rule). If n is
any real number and uw = g(x) is differentiable, then

d oy du

Example 3. Differentiate y = (2% — 1),

1

Example 4. Find f'(z) if f(z) = ———.
Vel

Example 5. Find the derivative of the function

g(t) = (%)9
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Calculus - 3.4 The Chain Rule

Example 6. Differentiate y = (22 + 1)%(2® — 2 + 1)%.

sin x

Example 7. Differentiate y = e

Theorem 3.4.3. The derivative of the exponential function is

d
—(b") = b"Inb.
d:c( ) "

Proof. Since
- (elnb>r _ e(lnb)z

)

the Chain Rule gives

d d
L (pY — (Inb)x
7o (b)) = (™)
d
= e(lnb)x%(ln b)x
=™ Inp
=0b"Inb.
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d
E le 8. Find —(2%).
xample in dz:( )

Example 9. Find f'(z) if f(z) = sin(cos(tanz)).

Example 10. Differentiate y = %°¢3.
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3.5 Implicit Differentiation

Definition 3.5.1. Implicit differentiation is the method of differentiation both
sides of an equation with respect to x, and then solving the equation for ¢’
when y = f(x).

d
Example 1. (a) If 2% + y* = 25, find d_y
x

(b) Find an equation of the tangent to the circle 2% 4+ y*> = 25 at the point
(3,4).
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Example 2. (a) Find 3/ if 2* + 3* = 6xy.

(b) Find the tangent to the folium of Descartes x® + y> = 6xy at the point
(3,3).

(c) At what point in the first quadrant is the tangent line horizontal?
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Example 3. Find ¢/ if sin(z + y) = y? cos z.

Example 4. Find y” if 2* + y* = 16.
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Calculus - 3.5 Implicit Differentiation

Theorem 3.5.1. The derivative of the arcsine function is

i(sin_1 x) = !

dx V1—22

Proof. Since y = sin"'z means siny =  and —7/2 < y < 7/2, we have
cosy > 0. Thus we can differentiate to obtain

siny = x
dy 1
cosy—— =
yd:c
dy
dr — cosy
B 1
1 —sin?y
1
= —. O
V1—2a?
Theorem 3.5.2. The derivative of the arctangent function is
1
—(tan"t2) = .
dx( an_ 1) e
Proof. If y = tan~! z, then tany = z. Differentiating then gives us
tany = x
dy
2
-7 9
sec”y
dy 1
de  secty
B 1
~ 1+tan’y
1
= ) O
1+ 22
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Example 5. Differentiate

(b) f(z) = xarctan/x.

Theorem 3.5.3. The derivatives of the Inverse Trigonometric Functions are

! (sin™' ) ! d (csc™' z) L
—(sin™' 7)) = — — = —

dx V1— 22 dx vt —1
d _ 1 d _ 1
Y e B T
d -1 ]- —1 ]'
el — — (cot _
dx (tan™" ) 1+ 22 dx (cot™" ) 1+ 22
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Theorem 3.5.4. Suppose f is a one-to-one differentiable function and its
inverse function f~! is also differentiable. Then f~' has derivative

provided that the denominator is not 0.

Proof. Since (f o f~')(x) = x, we have, by the chain rule,

(fof ()

(fo )’(96)
i ))(f (@)
(f 7)) =

Il
— =8

M)
Example 6. If f(4) =5 and f'(4) = 2, find (f~')'(5).
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3.6 Derivatives of Logarithmic Functions

Theorem 3.6.1. The derivative of the logarithm function is

1
xlnbd

d
%(logb r) =

Proof. Let y = log, x. Then bY = x, so by differentiating we get

W=z
by(lnb)g—yzl
i
dy 1
der  blnb
B 1
xlnb

Theorem 3.6.2. The derivative of the natural logarithm is

d 1
— (1 = —.
dx(nm) T

Example 1. Differentiate y = In(2® + 1).

Example 2. Find diln(sin x).
x
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Example 3. Differentiate f(z) = vInzx.

Example 4. Differentiate f(z) = log;o(2 + sin ).

1
Example 5. Find iln T

dv  Jr—2

Example 6. Find f'(z) if f(z) = In|z|.
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Definition 3.6.1. Logarithmic differentiation is the method of calculating
derivatives of functions by taking logarithms, differentiating implicitly, and
then solving the resulting equation for the derivative.
234 r? + 1

(3z+2)5

Example 7. Differentiate y =

Theorem 3.6.3 (The Power Rule). If n is any real number and f(x) = 2",
then
f'(x) = na" ',

Proof. Let y = 2™. By logarithmic differentiation we get
y=a"
In Jy] = In Jz]"
=nln|z| r#0
n

y/
y
y/



Calculus - 3.7 Derivatives of Logarithmic Functions

Example 8. Differentiate y = zV?.

Theorem 3.6.4. The number e can be defined as the limit

) \"
e = lim (1 + —) .
n—o00 n

Proof. 1t f(x) =Inz, then f'(1) =1, so

f(+h) = f(1) f(+x) - f(1)

! _ . _ .
F=m=— =M
In(1 —Inl 1
= lim al+a)—ln = lim — In(1 + z)
x—0 €T z—0

= limIn(1 + z)"/* = 1.
z—0

Thus

lim ln(1+ac)1/z) . 1/ .
e=¢e' = e(“ﬁo = lim ™+ = Tim (1 4 2)"/~.
z—0 z—0

Then if we let n = 1/2, n — oo as © — 0T, so we are done.
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3.7 Rates of Change in the Sciences

Example 1. The position of a particle is given by the equation
s=f(t) =t —6t> + 9t

where ¢ is measured in seconds and s in meters.

(a) Find the velocity at time ¢.

(b) What is the velocity after 2 s? After 4 s?

(c) When is the particle at rest?

(d) When is the particle moving forward (that is, in the positive direction)?
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(e) Draw a diagram to represent the motion of the particle.

(f) Find the total distance traveled by the particle during the first five seconds.

(g) Find the acceleration at time ¢ and after 4 s.

(h) Graph the position, velocity, and acceleration functions for 0 < ¢ < 5.
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(i) When is the particle speeding up? When is it slowing down?

Example 2. If a rod or piece of wire is homogeneous, then its linear density is
uniform and is defined as the mass per unit length (p = m/l) and measured in
kilograms per meter. Suppose, however, that the rod is not homogeneous but
that its mass measured from its left end to a point z is m = f(x), as shown

in the figure.

| x |

I I I
N J Xl _X2
This part of the rod has mass f(x).

In this case the average density is the average rate of change over a given
interval, and the linear density is the limit of these average densities.

If m = f(z) = /x, where z is measured in meters and m in kilograms, find
the average density of the part of the rod given by 1 < x < 1.2 and the density
at z = 1.
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Example 3. The average current during a time interval is the average rate
of change of the net charge over that interval, and the current at a given time
is the limit of the average current (the rate at which charge flows through a
surface, measured in units of charge per unit time). The quantity of charge
@ in coulombs (C) that has passed through a point in a wire up to time ¢
(measured in seconds) is given by Q(t) = > — 2t>+ 6t +2. [The unit of current
is an ampere (1 A =1 C/s).] Find the current when

(a) t=0.5s

(b)t=1s.

At what time is the current lowest?
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Example 4. The concentration of a reactant A is the number of moles (1
mole = 6.022 x 10%* molecules) per liter and is denoted by [A] for a chemical
reaction

A+B—C.

The average rate of reaction during a time interval is the average rate of
change of the concentration of the product [C] over that interval, and the rate
of reaction at a given time is the limit of the average rate of reaction.

If one molecule of a product C is formed from one molecule of a reactant A
and one molecule of a reactant B, and the initial concentrations of A and B
have a common value [A] = [B] = a moles/L, then

a’kt
akt +1

[C] =

where k is a constant.

(a) Find the rate of reaction at time t.

(b) Show that if x = [C], then
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(c) What happens to the concentration as t — 0o?

(d) What happens to the rate of reaction as t — co?

(e) What do the results of parts (c¢) and (d) mean in practical terms?
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Example 5. If a given substance is kept a constant temperature, then the
rate of change of its volume V' with respect to its pressure P is the derivative
dV/dP. The compressibility is defined by

1dV
isoth 1 ibility = 8 = ——=——.
isothermal compressibility = v dp
The volume V' (in cubic meters) of a sample of air at 25°C was found to be

related to the pressure P (in kilopascals) by the equation

5.3
V=—.
P

Determine the compressibility when P = 50 kPa.

Example 6. Let n = f(t) be the number of individuals in an animal or plant
population at time ¢t. The average rate of growth during a time period is the
average rate of change of the growth of the population over that time period,
and the rate of growth at a given time is the limit of the average rate of
growth.

Suppose that a population of bacteria doubles every hour. The population
function representing the bacteria’s growth can be found to be

n = ny2

where ng is the initial population and the time ¢ is measured in hours.
Find the rate of growth for a colony of bacteria with an initial population
ng = 100 after 4 hours.
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Example 7. The shape of a blood vessel can be modeled by a cylindrical tube
with radius R and length [ as illustrated in the figure.

_l__jf_l;__ =
=
/ 4

—

| ! |

The relationship between the velocity v of the blood and the distance r from
the axis is given by the law of laminar flow

P

T
U_4nl(R %)

where 7 is the viscosity of the blood and P is the pressure difference between
the ends of the tube. If P and [ are constant, then v is a function of r with
domain [0, R]. The velocity gradient at a given time is the limit of the average
rate of change of the velocity.

For one of the smaller human arteries we can take n = 0.027, R = 0.008 cm,
[ =2 cm, and P = 4000 dynes/cm?. Find the speed at which blood is flowing
at r = 0.002 and find the velocity gradient at that point.
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Example 8. Suppose C(x) is the total cost that a company incurs in produc-
ing x units of a certain commodity. The function C' is called a cost function.
The instantaneous rate of change of cost with respect to the number of items
produced, called the marginal cost, is the limit of the average rate of change
of the cost.

Suppose a company has estimated that the cost (in dollars) of producing x
items is

C(x) = 10,000 + 5z + 0.01z>.

Find the marginal cost at the production level of 500 items and compare it to
the actual cost of producing the 501st item.
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3.8 Exponential Growth and Decay

Definition 3.8.1. The equation
dy
A3
at Y

is called the law of natural growth (if £ > 0) or the law of natural decay (if
k < 0). It is called a differential equation because it involves an unknown
function y and its derivative dy/dt.

Theorem 3.8.1. The only solutions of the differential equation dy/dt = ky
are the exponential functions

y(t) = y(0)e™.
Definition 3.8.2. If P(t) is the size of a population at time ¢, then
_1ap
P dt
is the growth rate divided by population, called the relative growth rate.

Example 1. Use the fact that the world population was 2560 million in 1950
and 3040 million in 1960 to model the population of the world in the second
half of the 20th century. (Assume that the growth rate is proportional to the
population size.) What is the relative growth rate? Use the model to estimate
the world population in 1993 and to predict the population in the year 2020.
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Definition 3.8.3. If m(t) is the mass remaining from an initial mass mq of a
substance after time ¢, then the relative decay rate is

1 dm

m dt
It follows that the mass decays exponentially according to the equation
kt

m(t) = mee

where the rate of decay is expressed in terms of half-life, the time required for
half of any given quantity to decay.

Example 2. The half-life of radium-226 is 1590 years.

(a) A sample of radium-226 has a mass of 100 mg. Find a formula for the
mass of the sample that remains after ¢ years.

(b) Find the mass after 1000 years correct to the nearest milligram.

(¢c) When will the mass be reduced to 30 mg?
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Example 3. Newton’s Law of Cooling can be represented as a differential

equation

dT
= —KT-T),
o = K )

where T is the temperature of the object at time ¢ and T, is the temperature
of the surroundings. The exponential function y(t) = y(0)e*" is a solution to
this differential equation when y(t) = T'(t) — Ts.

A bottle of soda pop at room temperature (72°F) is placed in a refrigerator
where the temperature is 44°F. After half an hour the soda pop has cooled to
61°F.

(a) What is the temperature of the soda pop after another half hour?

(b) How long does it take for the soda pop to cool to 50°F?
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Example 4. In general, if an amount A is invested at an interest rate r, then
after t years it is worth Ag(1 + 7). Usually, however, interest is compounded
more frequently, say, n times a year. Then in each compounding period the
interest rate is r/n and there are nt compounding periods in ¢ years, so the

value of the investment is o
,
A, (1 i _) |
n

Therefore, taking limits gives us the amount after ¢ years as
A(t) = Aoe”

when interest is continuously compounded. Determine the value of an invest-
ment of $1000 after 3 years of continuously compounding 6% interest. Com-
pare this to the value of the same investment compounded annually instead.
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3.9 Related Rates

Example 1. Air is being pumped into a spherical balloon so that its volume
increases at a rate of 100 cm?/s. How fast is the radius of the balloon increasing
when the diameter is 50 cm?
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Example 2. A ladder 10 ft long rests against a vertical wall. If the bottom
of the ladder slides away from the wall at a rate of 1 ft/s, how fast is the top
of the ladder sliding down the wall when the bottom of the ladder is 6 ft from
the wall?
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Example 3. A water tank has the shape of an inverted circular cone with
base radius 2 m and height 4 m. If water is being pumped into the tank at
a rate of 2 m®/min, find the rate at which the water level is rising when the
water is 3 m deep.
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Example 4. Car A is traveling west at 50 mi/h and car B is traveling north
at 60 mi/h. Both are headed for the intersection of the two roads. At what
rate are the cars approaching each other when car A is 0.3 mi and car B is 0.4
mi from the intersection?
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Example 5. A man walks along a straight path at a speed of 4 ft/s. A
searchlight is located on the ground 20 ft from the path and is kept focused
on the man. At what rate is the searchlight rotating when the man is 15 ft
from the point on the path closest to the searchlight?
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3.10 Linear Approximations and Differentials

Definition 3.10.1. The approximation

f@) = f(a) + f(a)(z — a)

is called the linear approximation or tangent line approximation of f at a. The
linear function whose graph is this tangent line, that is,

L(z) = f(a) + f'(a)(x — a)

is called the linearization of f at a.

Example 1. Find the linearization of the function f(x) = +/z +3ata = 1 and
use it to approximate the numbers v/3.98 and v/4.05. Are these approximations
overestimates or underestimates?

108



Calculus - 3.10 Linear Approximations and Differentials

Example 2. For what values of x is the linear approximation

7T x

\/x+3%1+1

accurate to within 0.57 What about accuracy to within 0.17

Definition 3.10.2. If y = f(x), where f is a differentiable func-
tion, then the differential dx is an independent variable; that is,

dx can be given the value of any real number. The differential

dy is then defined in terms of dx by the equation
dy = f'(z)dz.
109
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Example 3. Compare the values Ay and dy if y = f(x) = 2° + 2 — 22 + 1
and z changes

(a) from 2 to 2.05

(b) from 2 to 2.01.

Example 4. The radius of a sphere was measured and found to be 21 cm with
a possible error in measurement of at most 0.05 cm. What is the maximum
error in using this value of the radius to compute the volume of the sphere?
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3.11 Hyperbolic Functions

Definition 3.11.1. Functions that have the same relationship to the hyper-
bola that trigonometric functions have to the circle are called hyperbolic func-
tions and are defined as follows

T __ ,—T 1
sinhxz = ce-° cschx = —
2 sinh x
et 4+ e ” 1
hy = —— ho =
cosh x 5 sech x p——
inh h
tanh x = S cothz = C9S x_
cosh z sinh x
Theorem 3.11.1 (Hyperbolic Identities).
sinh(—z) = —sinh cosh(—z) = coshz
cosh?z —sinh?z =1 1 — tanh® z = sech? x

sinh(x + y) = sinh x cosh y + cosh x sinh y
cosh(x + y) = cosh x cosh y + sinh z sinh y.

Example 1. Prove

(a) cosh?z —sinh?z = 1

(b) 1 — tanh®2 = sech® z.
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Theorem 3.11.2 (Derivatives of Hyperbolic Functions).

. (sinhz) = cosh . (cschx) = — eschx coth
. (coshx) = sinhx . (sechx) = — sech x tanh z
d _ 2 d _ 2

. (tanh ) = sech” . (cothx) = — csch” .

Example 2. Find di(cosh V).
T

Theorem 3.11.3 (Inverse Hyperbolic Functions).

sinh ™'z = In(x + Va2 + 1) reR
cosh™ = In(z + Va2 — 1) x>1
1 1
tanh ™'z = ~In rr —-1l<z<1
2 l—x

Example 3. Show that sinh™' z = In(x + /22 + 1).
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Theorem 3.11.4 (Derivatives of Inverse Hyperbolic Functions).

d (sinh ™' 2) ! d (csch™ z) !
—(sinh™ 2) = —— — r)=———
dx V1+a? dx lz|va? 41
d 1 d 1
L (cosh ™ ) = ———— & (sech™ ') = ———
o (cosh™ x) —— dx(sec x) =
d Lo B 1
%(tanh x) = T3 %(coth x) -l

d
Example 4. Prove that — (sinh™' z) =

dz V1+a?

Example 5. Find di[tanhl(sin x)].
T
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Chapter 4

Applications of Differentiation

4.1 Maximum and Minimum Values

Definition 4.1.1. Let ¢ be a number in the domain D of a function f. Then
f(c) is the absolute maximum value (or global maximum value) of f on D if
f(c) > f(z) for all z in D and f(c) is the absolute minimum value (or global
minimum value) of f on D if f(c) < f(x) for all  in D. These values are
called extreme values of f.

Definition 4.1.2. The number f(c) is a local maximum value of f if f(c) >
f(z) when x is near ¢ and a local minimum value of f if f(c) < f(x) when z is
near ¢. When we say near, we mean on an open interval containing c. These
values are called local extreme values of f.

Example 1. For what values of x does f(x) = cosz take on its maximum
and minimum values?

Example 2. Find all of the extreme values of f(x) = x°.
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Calculus - 4.1 Maximum and Minimum Values

Example 3. Find all of the extreme values of f(z) = 2.

Example 4. Find all of the extreme values of f(z) = 3z*— 1622+ 1822 within
the domain —1 < z < 4.

Theorem 4.1.1 (Extreme Value Theorem). If f is continuous on a closed
interval [a,b] then f attains an absolute mazximum value f(c) and an absolute
minimum value f(d) at some numbers ¢ and d in |a, b].

Theorem 4.1.2 (Fermat’s Theorem). If f has a local mazimum or minimum
at ¢, and if f'(c) exists, then f'(c) = 0.

Proof. Suppose f has a local maximum at ¢. Then, by definition, f(c) > f(x)
if x is near ¢, so if we let h > 0 be close to 0 we have

f(e) = fle+h)

fleth) = (0) _ 0
h =
i LCHP =IO g
h—0+ h h—0+
fe) <0

If h < 0, the direction of the inequality is reversed and we get f’(¢) > 0. Thus
combining these inequalities gives us f’(¢) = 0. A similar argument can be
used to achieve the same result if f has a local minimum at c. O
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Example 5. Use the function f(z) = x® to determine whether the converse
of Fermat’s theorem is true.

Example 6. Does Fermat’s theorem apply to the function f(x) = |z|?

Definition 4.1.3. A critical number of a function f is a number ¢ in the
domain of f such that either f'(c) =0 or f'(c) does not exist.

Example 7. Find the critical numbers of z3/°(4 — z).
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Example 8. Find the absolute maximum and minimum values of the function

flx)=2" -3z +1 ——<z <4

DO | —

Example 9. (a) Use a graphing device to estimate the absolute minimum
and maximum values of the function f(z) =x — 2sinz, 0 < x < 27.
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Calculus - 4.1 Maximum and Minimum Values

(b) Use calculus to find the exact minimum and maximum values.

Example 10. The Hubble Space Telescope was deployed on April 24, 1990,
by the space shuttle Discovery. A model for the velocity of the shuttle during
this mission, from liftoff at ¢ = 0 until the solid rocket boosters were jettisoned
at t = 126 seconds, is given by

v(t) = 0.001302t* — 0.09029¢* + 23.61¢ — 3.083

(in feet per second). Using this model, estimate the absolute maximum and
minimum values of the acceleration of the shuttle between liftoff and the jet-
tisoning of the boosters.
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Calculus - 4.2 The Mean Value Theorem

4.2 The Mean Value Theorem

Theorem 4.2.1 (Rolle’s Theorem). Let f be a function that satisfies the fol-
lowing three hypotheses:

1. f is continuous on the closed interval [a,b].

2. f is differentiable on the open interval (a,b).
3. f(a) = f(b).

Then there is a number ¢ in (a,b) such that f'(c) = 0.

Proof. 1f f(x) = k, a constant, then f'(z) = 0 for all x € (a,b). If f(z) > f(a)
for some x € (a,b) then f has a local maximum for a number ¢ € (a,b)

the extreme value theorem. Since f is differentiable on (a,b), f'(¢) = 0 by
Fermat’s theorem. By the same reasoning, f'(c) =0 if f(z) < f(a). ]

Example 1. How could Rolle’s theorem be applied to a position function that
models a ball thrown upward?

Example 2. Prove that the equation 23+ —1 = 0 has exactly one real root.
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Calculus - 4.2 The Mean Value Theorem

Theorem 4.2.2 (The Mean Value Theorem). Let f be a function that satisfies
the following hypotheses:

1. f is continuous on the closed interval [a,b).

2. f is differentiable on the open interval (a,b).

Then there is a number ¢ in (a,b) such that

f(b) — f(a)

flle) = Ho =

or, equivalently,

f(b) = fla) = f'(e)(b - a).

Proof. Let h be the difference between f and the secant line to f on [a, b], i.e.,

Then h is continuous on [a, b] and differentiable on (a,b) because it is the sum
of f and a first-degree polynomial, which are both continuous on [a,b] and
differentiable on (a,b). Also,

a) = fta) ~ fa) - 1O =IO 4y~
(o) = 16) ~ fa) - PO D gy g

so h(a) = h(b). Therefore, by Rolle’s thereom, there is a number ¢ in (a,b)
such that h/(c) =0, i.e.,

0="n(c)=f(c) — W
which is equivalent to
b) —
o = =10
as desired. n
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Calculus - 4.2 The Mean Value Theorem

Example 3. Find a number ¢ in (0,2) such that the slope of the secant line

is equal to the slope of the tangent line for the function f(x) = 23 — z.

Example 4. What does the mean value theorem say about the velocity of an
object moving in a straight line?

Example 5. Suppose that f(0) = —3 and f’(x) < 5 for all values of z. How
large can f(2) possibly be?

Theorem 4.2.3. If f'(x) =0 for all x in an interval (a,b), then f is constant
on (a,b).

Proof. Let xq,x9 € (a,b) be such that z; < z5. By the mean value theorem
for f on [z1, xs], we get

f(@2) = f@1) = [(e) (22 — m1),
for some ¢ € (21, x2). But f'(x) = 0 for all z in this interval, so f(z2) = f(z1).
Since 1 and x5 were chosen arbitrarily, f is constant on (a, b). O
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Calculus - 4.2 The Mean Value Theorem

Corollary 4.2.1. If f'(x) = ¢'(z) for all x in an interval (a,b), then f — g is
constant on (a,b); that is f(x) = g(x) 4+ ¢ where ¢ is a constant.

Proof. Let
F(z) = f(z) — g(x)
Then
F'(z) = f'(x) — ¢'(x) =0,
so F'is constant by the previous theorem, and thus f — ¢ is constant. O]

Example 6. Prove the identity tan™' z + cot ™'z = 7 /2.
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Calculus - 4.3 Derivatives and the Shape of a Graph

4.3 Derivatives and the Shape of a Graph

Theorem 4.3.1 (Increasing/Decreasing Test).

(a) If f'(x) > 0 on an interval, then f is increasing on that interval.

(b) If f'(x) <0 on an interval, then f is decreasing on that interval.

Proof. Let x1, x5 be two numbers on an interval where f’(x) > 0 such that
r1 < T9. Then by the mean value theorem,

fx2) = f(21) = f(c) (w2 — 1)

for some c in the interval. But f’(¢) > 0 and zo—21 > 0, so f(z2) — f(x1) > 0,
ie.,

f(z2) > f(x1)

in the interval. Since z; and x5 were chosen arbitrarily, we are done, and the
second half of the theorem is proved similarly. O

Example 1. Find where the function f(z) = 32* —42® — 1222 +5 is increasing
and where it is decreasing.
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Calculus - 4.3 Derivatives and the Shape of a Graph

Theorem 4.3.2 (The First Derivative Test). Suppose that c is a critical num-
ber of a continuous function f.

(a) If f' changes from positive to negative at ¢, then f has a local mazimum
at c.

(b) If f' changes from negative to positive at c, then f has a local minimum
at c.

c) If ' is positive to the left and to the right of ¢, or negative to the left and
g 9
to the right of ¢, then f has no local minimum or maximum at c.

Example 2. Find the local minimum and maximum values of the function f
in Example 1.

Example 3. Find the local maximum and minimum values of the function

g(x) =x 4 2sinx 0 <z <2r.
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Calculus - 4.3 Derivatives and the Shape of a Graph

Definition 4.3.1. If the graph of f lies above all of its tangents on an interval
I, then it is called concave upward on I. If the graph of f lies below all of its
tangents on I, it is called concave downward on 1.

Theorem 4.3.3 (Concavity Test).

(a) If f"(x) >0 for all x in I, then the graph of f is concave upward on I.
(b) If f"(x) <O for all x in I, then the graph of f is concave downward on I.

Example 4. The figure shows a population graph for Cyprian honeybees
raised in an apiary. How does the rate of population increase change over
time? When is this rate highest? Over what intervals is P concave upward or
concave downward?

P
80 +
60 +
Number of bees
(in thousands)
40 +
20 +

0 3 6 9 12 15 18 ¢

Time (in weeks)
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Calculus - 4.3 Derivatives and the Shape of a Graph

Definition 4.3.2. A point P on a curve y = f(z) is called an inflection point
if f is continuous there and the curve changes from concave upward to concave
downward or from concave downward to concave upward at P.

Example 5. Sketch a possible graph of a function f that satisfies the following
conditions:

(i) f'(x) > 0on (—o0,1), f'(x) <0 on (1,00).
(ii) f"(x) >0 on (—o0,—2) and (2,00), f"(z) <0 on (—2,2).

(iii) lim f(z) = -2, li_>m f(z) =0.

T——00

Theorem 4.3.4 (The Second Derivative Test). Suppose f’ is continuous near
c.

(a) If f'(c) =0 and f"(c) > 0, then f has a local minimum at c.
(b) If f'(c) =0 and f"(c) <0, then f has a local mazimum at c.
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Calculus - 4.3 Derivatives and the Shape of a Graph

Example 6. Discuss the curve y = z* — 423 with respect to concavity, points
of inflection, and local maxima and minima. Use this information to sketch

the curve.
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Calculus - 4.3 Derivatives and the Shape of a Graph

Example 7. Sketch the graph of the function f(z) = 2%3(6 — x)'/3.
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Calculus - 4.3 Derivatives and the Shape of a Graph

Example 8. Use the first and second derivatives of f(x) = €'/, together with
asymptotes, to sketch its graph.
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Calculus - 4.4 Indeterminate Forms and 1'Hospital’s Rule

4.4 Indeterminate Forms and I’Hospital’s Rule

Theorem 4.4.1 (L’Hospital’s Rule). Suppose f and g are differentiable and
g'(z) # 0 on an open interval I that contains a (except possibly at a). Suppose
that

lim f(z) =0 and lim g(z) =0

Tr—a r—a

or that
lim f(z) = o0 and lim g(z) = o0

r—ra Tr—ra

(In other words, we have an indeterminate form of type % or o0/00.) Then

flz) o f(2)

lim —% = lim .
z—a g(gj) z—a g’(x)

if the limit on the right side exists (or is 00 or —o0).

1
Example 1. Find lim nxli

z—1 x —

xT

Example 2. Calculate lim c.
Tr—0o0 U
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1
Example 3. Calculate lim ey
T—r00 €T
. . tanx —x
Example 4. Find lim ———.
z—0 x?’
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Example 5. Find lim ﬂ.
z—n— 1 —cosx

Example 6. Evaluate lim xlnx.
z—0t
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1 1
Example 7. Compute lim | — — :
e—1+ \Inzx x—1

Example 8. Calculate lim (e” — ).
T—>00
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Example 9. Calculate lim (1 + sin4z)®?.

z—0t

Example 10. Find lim z*.

z—07F
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4.5 Summary of Curve Sketching

Use the following guidelines when sketching curves by hand:

A. Domain

B. Intercepts

C. Symmetry

D. Asymptotes

E. Intervals of Increase or Decrease

F. Local Maximum and Minimum Values

G. Concavity and Points of Inflection

Example 1. Use the guidelines to sketch the curve y = x22 I_Z T
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Example 2. Sketch the graph of f(z) =

\/ZB—I—l.
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Example 3. Sketch the graph of f(z) = ze”.
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Example 4. Sketch the graph of f(z) = 23_&.
sin x
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Example 5. Sketch the graph of y = In(4 — 2?).
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Calculus - 4.5 Summary of Curve Sketching

Definition 4.5.1. If
lim [f(xz) — (mx +b)] =0

T—00

where m # 0, then the line y = ma + b is called a slant asymptote because
the vertical distance between the curve y = f(z) and the line y = mx + b
approaches 0.

Example 6. Sketch the graph of f(z) =

241
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4.6 Graphing with Calculus and Calculators

Example 1. Graph the polynomial f(z) = 22° + 325 + 323 — 22%. Use the
graphs of f" and f” to estimate all maximum and minimum points and intervals
of concavity.
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Example 2. Draw the graph of the function

22 +T7r+3
f(2) = ———

T

in a viewing rectangle that contains all the important features of the function.
Estimate the maximum and minimum values and the intervals of concavity.
Then use calculus to find these quantities exactly.
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Calculus - 4.6 Graphing with Calculus and Calculators

2}z +1)3

Example 3. Graph the function f(z) = w22 = 0
r—2)%(x —
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Calculus - 4.6 Graphing with Calculus and Calculators

Example 4. Graph the function f(z) = sin(z + sin2z). For 0 < z < 7,
estimate all maximum and minimum values, intervals of increase and decrease,

and inflection points.
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Calculus - 4.6 Graphing with Calculus and Calculators

Example 5. How does the graph of f(z) = 1/(2* + 2z + ¢) vary as ¢ varies?
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4.7 Optimization Problems

Example 1. A farmer has 2400 ft of fencing and wants to fence off a rect-
angular field that borders a straight river. He needs no fence along the river.
What are the dimensions of the field that has the largest area?
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Example 2. A cylindrical can is to be made to hold 1 L of oil. Find the
dimensions that will minimize the cost of the metal to manufacture the can.
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Theorem 4.7.1 (First Derivative Test for Absolute Extreme Values). Suppose
that ¢ 1s a critical number of a continuous function f defined on an interval.

(a) If f'(x) > 0 for all x < ¢ and f'(x) < 0 for all x > ¢, then f(c) is the
absolute maximum value of f.

(b) If f'(x) < 0 for all x < ¢ and f'(x) > 0 for all x > ¢, then f(c) is the
absolute minimum value of f.

Example 3. Find the point on the parabola y? = 2x that is closest to the
point (1,4).
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Example 4. A man launches his boat from point A on a bank
of a straight river, 3 km wide, and wants to reach point B, 8 km
downstream on the opposite bank, as quickly as possible (see the
figure). He could row his boat directly across the river to point C
and then run to B, or he could row directly to B, or he could row
to some point D between C and B and then run to B. If he can row
6 km/h and run 8 km/h, where should he land to reach B as soon
as possible? (We assume that the speed of the water is negligible
compared with the speed at which the man rows.)
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Calculus - 4.7 Optimization Problems

Example 5. Find the area of the largest rectangle that can be inscribed in a
semicircle of radius r.
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Definition 4.7.1. If p(x) is the price per unit that a company can charge if
it sells = units, then p is called the demand function (or price function).
If x units are sold, then the total revenue

R(z) = quantity x price = xp(z)

and R is called the revenue function. The derivative R’ of the revenue function
is called the marginal revenue function and is the rate of change of revenue
with respect to the number of units sold.
If x units are sold, then the total profit is

where C'is the cost function and P is called the profit function. The marginal
profit function is P’, the derivative of the profit function.

Example 6. A store has been selling 200 flat-screen TVs a week at $350
each. A market survey indicates that for each $10 rebate offered to buyers, the
number of TVs sold will increase by 20 a week. Find the demand function and
the revenue function. How large a rebate should the store offer to maximize
its revenue?
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4.8 Newton’s Method

Theorem 4.8.1 (Newton’s Method). If x,, is the nth approzimation of a root
r for a function f then

Tpy1 = Tp — f’(l’ )
n

Example 1. Starting with x; = 2, find the third approximation x3 to the
root of the equation 2® — 22 — 5 = 0.
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Example 2. Use Newton’s method to find ¥/2 to eight decimal places.
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Example 3. Find, correct to six decimal places, the root of the equation
cosT = x.
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4.9 Antiderivatives

Definition 4.9.1. A function F' is called an antiderivative of f on an interval
I'if F'(x) = f(x) for all z in I.

Theorem 4.9.1. If F is an antiderivative of f on an interval I, then the most
general antiderivative of f on I is

F(zx)+C

where C' is an arbitrary constant.

Proof. Follows by Corollary 4.2.1 to the mean value theorem. O

Example 1. Find the most general antiderivative of each of the following
functions.

(a) f(x) =sinz

(b) fz)=1/x

(C) f(.’ﬂ) :xn’ 7’L7£ -1
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Example 2. Find all functions g such that

215 — /T

g (x) =4sinz +
T

Example 3. Find [ if f/(z) = * +20(1 + 2?)~* and f(0) = —2.
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Example 4. Find f if f"(x) = 1222 + 62 — 4, f(0) =4, and f(1) = 1.

Example 5. The graph of a function f is given in the figure. y
Make a rough sketch of an antiderivative F', given that F'(0) = 2.
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Example 6. A particle moves in a straight line and has acceleration given by
a(t) = 6t+4. Its initial velocity is v(0) = —6 cm/s and its initial displacement
is s(0) =9 cm. Find its position function s(t).
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Example 7. A ball is thrown upward with a speed of 48 ft /s from the edge of a
cliff 432 ft above the ground. Find its height above the ground ¢ seconds later.
When does it reach its maximum height? When does it hit the ground? [For
motion close to the ground we may assume that the downward acceleration ¢
is constant, its value being about 9.8 m/s? (or 32 ft/s?).]
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Chapter 5

Integrals

5.1 Areas and Distances

Example 1. Use rectangles to estimate the area under the parabola y = 22
from 0 to 1.
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Calculus - 5.1 Areas and Distances

Example 2. For the region in Example 1, show that the sum of the areas of

the upper approximating rectangles approaches %, that is,

1
lim R, = -.
im 3
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Calculus - 5.1 Areas and Distances

Definition 5.1.1. The area A of the region S that lies under the graph of the
continuous function f is the limit of the sum of the areas of approximating
rectangles:

n—oo

A=lim R, = nli_)nolo[f(:cl)A:c—I—f(xQ)Ax—I—~~—I—f(a:n)A:c] = Jinolto(xl)Aa:

The last equality is an example of the use of sigma notation to write sums
with many terms more compactly.

Definition 5.1.2. Numbers z in the ith subinterval [z;_1, x;] are called sam-
ple points. We form lower (and upper) sums by choosing the sample points z}
so that f(x}) is the minimum (and maximum) value of f on the ith subinterval.

y
Ax
N '
| 1 | l
I I I ' ' '
I I ] | | || | :
I I [ I : | l :\
I I Lo I
I I Lo I | [ I
I I Lo | I I I I
I I Il | I I I I
I I Lo I I I I I
I I Ll I I I I I
0 aT X [ X, Ix; X1 1 X Xp—1 [ b X
x¥F x¥ x5 xF Xk

Example 3. Let A be the area of the region that lies under the graph of
f(z) = e between z = 0 and x = 2.

(a) Using right endpoints, find an expression for A as a limit. Do not evaluate
the limit.
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Calculus - 5.1 Areas and Distances

(b) Estimate the area by taking the sample points to be midpoints and using
four subintervals and then ten subintervals.
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Calculus - 5.1 Areas and Distances

Example 4. Suppose the odometer on a car is broken. Estimate the distance
driven in feet over a 30-second time interval by using the speedometer readings
taken every five seconds and recorded in the following table:

Time (s) 0[5 [10]15]20]25]30
Velocity (mi/h) | 17 | 21 | 24 | 29 | 32 | 31 | 28
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5.2 The Definite Integral

Definition 5.2.1. If f is a function defined for a < z < b, we divide the
interval [a,b] into n subintervals of equal width Az = (b — a)/n. We let
xo(= a),z1,x2,...,x,(= b) be the endpoints of these subintervals and we let
x], x5, ..., 2, be any sample points in these subintervals, so 2} lies in the ith
subinterval [x;_1,x;]. Then the definite integral of f from a to b is

/bf(m) dr = lim zn:f(xf)Ax
o n—o00 P

provided that this limit exists and gives the same value for all possible choices
of sample points. If it does exist, we say that f is integrable on [a, b].

Definition 5.2.2. The symbol [ is called an integral sign. In the notation

f: f(z)dz, f(zx) is called the integrand and a and b are called the limits of
integration; a is the lower limit and b is the upper limit. The procedure of
calculating an integral is called integration.

Definition 5.2.3. The sum

is called a Riemann sum and it can be used to approximate the definite integral
of an integrable function within any desired degree of accuracy.
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Calculus - 5.2 The Definite Integral

Definition 5.2.4. A definite integral can be interpreted as a net area, that
is, a difference of areas:

/bf(:c)dx:Al—A2

where A is the area of the region above the z-axis and below the graph of f,
and A, is the area of the region below the x-axis and the above the graph of

f.

YA YA
y=fx) y = f(x)
Ty, ] |l :
0| a b x 0|a b x

Theorem 5.2.1. If f is continuous on [a,b], or if f has only a finite number of
Jump discontinuities, then f is integrable on [a,b]; that is, the definite integral
f;f(x)dx exists.

Theorem 5.2.2. If f is integrable on [a,b], then

/bf(x) dr = lim zn:f(xl)Ax
o n—00 p

where

and r; = a+iAz.
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Example 1. Express
] 3 . 1 .
nhm E (7 + z;sinx;) Ax

as an integral on the interval [0, 7].

Theorem 5.2.3. The following formulas are true when working with sigma
notation:

Z’l_ n+1
Z . (2n—|—1)

=1
n

E CcC =nc

=1

Xn: ca; = CXn: a;
=1 =1
=1 =1 =1

Z(CLZ‘ - bz) = ZCL,’ — sz

=1 =1 =1
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Example 2. (a) Evaluate the Riemann sum for f(z) = 2® — 6z, taking the
sample points to be right endpoints and a =0, b = 3, and n = 6.

3
(b) Evaluate/ (z° — 62) dz.
0
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3
Example 3. (a) Set up an expression for / e’ dx as a limit of sums.
1

(b) Use a computer algebra system to evaluate the expression.
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Example 4. Evaluate the following integrals by interpreting each in terms of
areas.

(a) /01de

(b) /03@ —1)dx

170



Calculus - 5.2 The Definite Integral

Theorem 5.2.4 (Midpoint Rule).

[ #a)dn =3 f@) A = Aalf@) -+ fla)

where
B b—a

Ax =

n
and

1
T; = 5(%71 + x;) = midpoint of [x;_1,x;].

2
1
Example 5. Use the Midpoint Rule with n =5 to approximate / —dz.
L
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Theorem 5.2.5 (Properties of the Definite Integral).

Z.[ff@ﬂdz:—iéaf@ﬂdx
RS

3. / cdx = c¢(b— a), where ¢ is any constant.

a

Jv@ e = @i [ o

b
/ cf(x)dx / f(z) dx, where ¢ is any constant.

/v<—g m-/f w—/<>w
fﬂ@@+fﬂ@mzlvmm

1
Example 6. Use the properties of integrals to evaluate / (4 4 32%) dx.
0

o

E N

a

D

=
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10 8
Example 7. If it is known that / f(x)dr =17 and / f(x)dr =12, find
0 0
10

f(z)dz.

8

Theorem 5.2.6 (Comparison Properties of the Integral).

b
8 If f(x) >0 fora<x <b, then/ f(x)dz > 0.

b b
9. If f(x) > g(z) fora<x <D, then/ f(z)dx > / g(x)dx.

10. If m < f(z) < M fora <z <b, then
b
m(b—a)g/ F@)dz < M(b—a).

1
Example 8. Use Property 10 to estimate / e~ dz.
0
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5.3 The Fundamental Theorem of Calculus

Example 1. If fis the function whose graph is shown in the
figure and g(z) = [ f(¢) dt, find the values of g(0), g(1), g(2),
9(3), g(4), and g(b). Then sketch a rough graph of g. y=fl1)

N =

Theorem 5.3.1 (The Fundamental Theorem of Calculus, Part 1). If f is
continuous on |a,b|, then the function g defined by

:/f(t)dt a<zxz<b

is continuous on |a,b] and differentiable on (a,b), and ¢'(x) = f(x).

Proof. If x and = + h are in (a,b), then

g(x +h) —g(x / ft)dt — /f
:</a f(t)dt+/x f(t)dt>—/:f(t)dt
:/j+hf(t)dt
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Calculus - 5.3 The Fundamental Theorem of Calculus

and so, for h # 0,

y
(93 + h / £ —
Y= F(x) o~ /
For now let’s assume that A > 0. Since f is continuous on [z, z+
h], the Extreme Value Theorem says that there are numbers u y
and v in [z, x + h| such that f(u) =m and f(v) = M, where m m
and M are the absolute minimum and maximum values of f on _/
[,z + h]. (See the figure.)
Then 0 X u v=x+h X

mh < F(t)dt < Mh
/xx-i-h

whs/ﬁ F(t)dt < f(o)h

[ rwa <o)

gz +h)—

h

flu) <

flu) < 9@  fo),

This inequality can be proved in a similar manner for the case where h < 0.
Now we let h — 0. Then u — x and v — x, since u and v lie between z and
x + h. Therefore

lim f(u) = lim f(u) = f(z) ~ and  lim f(v) = lim f(v) = f(z)

uU—T h—0 U—T

because f is continuous at x. We conclude, from the Squeeze Theorem, that

h—0

If x = a or b, then this equation can be interpreted as a one-sided limit, and
thus g is continuous on [a, b]. O

Example 2. Find the derivative of the function g(x / V1+t2dt.
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Calculus - 5.3 The Fundamental Theorem of Calculus

Example 3. Find the derivative of the Fresnel function

S(z) = /x sin(7t?/2) dt

0

and compare its graph with that of S(z) to visually confirm the fundamental
theorem of calculus.

334
Example 4. Find i/ sect dt.
dx |,
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Theorem 5.3.2 (The Fundamental Theorem of Calculus, Part 2). If f is
continuous on |a,b|, then

b
/ F(@)dz = F(b) — F(a)

where F' is any antiderivative of f, that is, a function such that F' = f.

Proof. Let g(x) = [ f(t)dt. By Part 1, ¢’(x) = f(z); that is, g is an an-
tiderivative of f. If F is any other antiderivative of f on [a,b], then, by
Corollary 4.2.1,

F(z)=g(x)+C

for a < x < b. By continuity, this is also true for « € [a, b], so again by Part 1,
gsa) = [ f(tydt=0
and thus
F(b) — F(a) = [g(b) + C] — [g(a) + C]
gb)+C—-0-C
g(b)

/a 1)

dt.
3

Example 5. Evaluate the integral / e dx.
1

(=
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Calculus - 5.3 The Fundamental Theorem of Calculus

Remark 1. We often use the notation
b
F(x)], = F(b) — F(a).

So the equation of the Fundamental Theorem of Calculus Part 2 can be written
as

b
/ f(z)de = F(x)}z where  F'=f.

b

Other common notations are F(z)[ and [F(z)].

Example 6. Find the area under the parabola y = 22 from 0 to 1.

6
d

Example 7. Evaluate / a
3 X
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Calculus - 5.3 The Fundamental Theorem of Calculus

Example 8. Find the area under the cosine curve from 0 to b, where
0<b<m/2

Example 9. What is wrong with the following calculation?

3
/ d L,
—dr = — — - —
-1 2 . 3 3
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5.4 Indefinite Integrals and the Net Change
Theorem

Definition 5.4.1. An antiderivative of f is called an indefinite integral where

/f(x) dx = F(x) means F'(z) = f(x).

Example 1. Find the general indefinite integral

/(10x4 — 2sec’ ) dz.

cos 6
20

de.

Example 2. Evaluate / -
sin

3
Example 3. Evaluate / (z° — 62) dz.
0
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Calculus - 5.4 Indefinite Integrals and the Net Change Theorem

2
Example 4. Find / (2:U3 — b6+ —
0 T+

terms of areas.

3
1) dx and interpret the result in

9912 | 42
2t t*vt—1
Example 5. Evaluate / il t2\/_ dt.
1
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Theorem 5.4.1 (Net Change Theorem). The integral of a rate of change is
the net change:

Example 6. A particle moves along a line so that its velocity at time ¢ is
v(t) =t — t — 6 (measured in meters per second).

(a) Find the displacement of the particle during the time period 1 <t < 4.

(b) Find the distance traveled during this time period.
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Calculus - 5.4 Indefinite Integrals and the Net Change Theorem

Example 7. The figure shows the power consumption in the city of San Fran-
cisco for a day in September (P is measured in megawatts; ¢ is measured in
hours starting at midnight). Estimate the energy used on that day.

P
800 A4

600
/ N

400

200

0 3 6 9 12 15 18 21 t
Pacific Gas & Electric
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5.5 The Substitution Rule

Theorem 5.5.1 (The Substitution Rule). If u = g(z) is a differentiable func-
tion whose range is an interval I and f is continuous on I, then

[ 16@g@ = [ rwa
Proof. If f = F’, then, by the Chain Rule,

dr
Thus if u = g(x), then we have

/f(g(x))g’(x) dr = F(g(x)) +C = F(u) + C = /f(u) du.

Example 1. Find /x‘s cos(z* +2) du.

Example 2. Evaluate / V2r + ldx.
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T
Example 3. Find [ ——dzx.
P / V1 — 422

Example 4. Calculate / e’ du.

Example 5. Find /vl + 222° dz.
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Example 6. Calculate / tan x dx.

Theorem 5.5.2 (The Substitution Rule for Definite Integrals). If ¢’ is con-
tinuous on [a,b] and f is continuous on the range of u = g(x), then

b g(b)
/ F(9(@))(x) do = /() F(u) du.

Proof. Let F be an antiderivative of f. Then F(g(x)) is an antiderivative of
f(g(z))g'(x), so by part 2 of the fundamental theorem of calculus, we have

/f@@w@Mx

I
T
~~
K
—~
8
SN—
—
s
I
o
—
Q
N
=
—
~—
|
o
—
K
N
S
S~—
S~—

By applying part 2 a second time, we also have

q(

b)
Flu)du = F(u)]"? = F(g(b)) — Flg(a)). O

o) g(a)



Calculus - 5.5 The Substitution Rule

4
Example 7. Evaluate / V2z + 1dx.
0

> dax
Example 8. Evaluate/l m

‘1
Example 9. Calculate / 2T g,
. T
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Theorem 5.5.3 (Integrals of Symmetric Functions). Suppose f is continuous
on [—a,al.

(a) If f is even [f(—z) = f(x)], then /_a f(z)dx = 2/0af(x) dx.

(b) If f is odd [f(—z) = —f(x)], then /_ f@)dz =0,

Proof. First we split the integral:

/Zﬂx)dx:/if(x)cm/Oaf@)dx:_/O_Gf@)dH/o“f(@dx

By substituting © = —x we get du = —dx and u = a when © = —a, so

[t == [ o = [ a

and therefore
' dr = ' —u) du + ’ dz.
/af(x) T /o f(—u)du /0 f(z)dx

(a) If f is even then f(—u) = f(u),

/Zf(x)dxz/oaf(U) u+/0af(x)dx:2/0af(x)dx‘

(b) If f is odd then f(—u) = —f(u), so

/_Zf(x)dx:—/Oaf(u)du—i-/oaf(x)dx:O. O
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2
Example 10. Evaluate / (2% + 1) da.

-2

1 tan x

Example 11. Evaluate / ——dx.
142?42t
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Chapter 6

Applications of Integration

6.1 Areas Between Curves

Definition 6.1.1. The areca A of the region bounded by the
curves y = f(x), y = g(z), and the lines x = a, © = b, where f y=f(x)
and ¢ are continuous and f(z) > g(z) for all z in [a, b], is

n b
A=l Y O(fG0) - gaDlae = [ 1f(@) - g(o)da, :
i=1 a
ogl b x
y=gx)
VA VA
AT [
A
| | (]! \
#) — g(xf) IR
} || } } } }
. ]| | [ | .
0 X of @l [T i;éf p X
)| Lk

190



Calculus - 6.1 Areas Between Curves

Example 1. Find the area of the region bounded above by y = e, bounded
below by y = z, and bounded on the sides by x = 0 and x = 1.

Example 2. Find the area of the region enclosed by the parabolas y = 22

and y = 2z — 22,
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Calculus - 6.1 Areas Between Curves

Example 3. Find the approximate area of the region bounded by the curves

y=xz/Vr2+1andy=2a'— 1.
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Calculus - 6.1 Areas Between Curves

Example 4. The figure shows the velocity curves for two cars,
A and B, that start side by side and move along the same road.
What does the area between the curves represent? Use the Mid-
point Rule to estimate it.
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Calculus - 6.1 Areas Between Curves

Example 5. The figure is an example of a pathogenesis curve for a measles
infection. It shows how the disease develops in an individual with no immunity
after the measles virus spreads to the bloodstream from the respiratory tract.

N
g 1500 +
<
a
=
=]
=]
=
S
=}
= 1000 +
=
)
o
E
=]
2
8 5007
£
E Symptoms Pathogen
2 appear is cleared
: | |
Z 4 4 4
0 10-11 12 17-18 21 ‘
(days)
Pathogen Infectiousness Infectiousness
enters plasma begins ends

The patient becomes infectious to others once the concentration of infected
cells becomes great enough, and he or she remains infectious until the immune
system manages to prevent further transmission. However, symptoms don’t
develop until the “amount of infection” reaches a particular threshold. The
amount of infection needed to develop symptoms depends on both the con-
centration of infected cells and time, and corresponds to the area under the
pathogenesis curve until symptoms appear.

(a) The pathogenesis curve in the figure has been modeled by f(t) = —t(t —
21)(t+1). If infectiousness begins on day t; = 10 and ends on day ¢, = 18,
what are the corresponding concentration levels of infected cells?
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Calculus - 6.1 Areas Between Curves

(b) The level of infectiousness for an infected person is the area between
N = f(t) and the line through the points P;(t1, (f(t1)) and Py(ta, f(t2)),
measured in (cells/mL)- days. Compute the level of infectiousness for this
particular patient.
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Calculus - 6.1 Areas Between Curves

Definition 6.1.2. The area between the curves y = f(z) and y = g(x) and
between o = a and x = b is

A= / f(@) - g(x)] d.

Example 6. Find the area of the region bounded by the curves y = sinz,
y=-cosz, x =0, and x = 7/2.
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Calculus - 6.1 Areas Between Curves

Remark 1. Some regions are best treated by regarding = as a
function of y. If a region is bounded by curves with equations
x = fly), r = gly), y = ¢, and y = d, where f and g are
continuous and f(y) > g(y) for ¢ < y < d (see the figure), then
its area is

A =/ Lf(y) — g(y)] dy.

Example 7. Find the area enclosed by the line y = z — 1 and
the parabola y? = 2x + 6.
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6.2 Volumes

Definition 6.2.1 (Definition of Volume). Let S be a solid that lies between
x = a and x = b. If the cross-sectional area of S in the plane P,, through
x and perpendicular to the z-axis, is A(x), where A is a continuous function,
then the volume of S is

n b
V= 7}1_)1210 Zl A(x])Ax = /a A(z) dx.

y

Ax

P
a 7N b X 0 a=x, X X2 X3 Xy Xs Xe x;=b X

X XX

Example 1. Show that the volume of a sphere of radius r is V' = %m‘g’.
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Calculus - 6.2 Volumes

Example 2. Find the volume of the solid obtained by rotating about the z-
axis the region under the curve y = y/z from 0 to 1. Tllustrate the definition
of volume by sketching a typical approximating cylinder.

Example 3. Find the volume of the solid obtained by rotating the region
bounded by y = 23, y = 8, and x = 0 about the y-axis.
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Calculus - 6.2 Volumes

Example 4. The region Z enclosed by the curves y = x and y = 22 is rotated
about the z-axis. Find the volume of the resulting solid.

Example 5. Find the volume of the solid obtained by rotating the region in
Example 4 about the line y = 2.
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Calculus - 6.2 Volumes

Example 6. Find the volume of the solid obtained by rotating the region in
Example 4 about the line z = —1.

Example 7. The figure shows a solid with a circular base of

radius 1. Parallel cross-sections perpendicular to the base are
equilateral triangles. Find the volume of the solid.

/’”’f}';';:::":‘ iy
10 \
/"’f."':*t':"&"“$‘§§§§\

o “M“ \\ \ A

e \‘\}
|

g

\
L

‘0
()
, :e!‘?&“‘k\\‘\‘ﬂl‘

201



Calculus - 6.2 Volumes

Example 8. Find the volume of a pyramid whose base is a square with side
L and whose height is h.

Example 9. A wedge is cut out of a circular cylinder of radius 4 by two planes.
One plane is perpendicular to the axis of the cylinder. The other intersects
the first at an angle of 30° along a diameter of the cylinder. Find the volume
of the wedge.

202



Calculus - 6.3 Volumes by Cylindrical Shells

6.3 Volumes by Cylindrical Shells

Theorem 6.3.1 (Method of Cylindrical Shells). The volume of the solid in
the figure, obtained by rotating about the y-axis the region under the curve
y = f(z) from a to b, is

n b
V = lim Z 21z, f (z;) Az = / 2nxf(x) dx where 0 < a <b

a

and where Z; is the midpoint of the ith subinterval [x;_1, ;).

y

Example 1. Find the volume of the solid obtained by rotating about the
y-axis the region bounded by y = 222 — 2% and y = 0.
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Example 2. Find the volume of the solid obtained by rotating about the
y-axis the region between y = z and y = 22

Example 3. Use cylindrical shells to find the volume of the solid obtained by
rotating about the x-axis the region under the curve y = 1/ from 0 to 1.
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Example 4. Find the volume of the solid obtained by rotating the region
bounded by y =  — 22 and y = 0 about the line x = 2.
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6.4 Work

Definition 6.4.1. In general, if an object moves along a straight line with
position function s(t), then the force F' on the object (in the same direction)
is given by Newton’s Second Law of Motion as the product of its mass m and
its acceleration a:

d?s
F = =m—.
ma mdt2

Definition 6.4.2. In the case of constant acceleration, the force F' is also
constant and the work done is defined to be the product of the force F' and
distance d that the object moves:

W = Fd work = force x distance.

Example 1. (a) How much work is done in lifting a 1.2-kg book off the floor
to put it on a desk that is 0.7 m high? Use the fact that the acceleration
due to gravity is ¢ = 9.8 m/s%

(b) How much work is done in lifting a 20-1b weight 6 ft off the ground?
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Calculus - 6.4 Work

Definition 6.4.3. If the force f(z) on an object is variable, then we define
the work done in moving the object from a to b as

W = Jiriloif(xf)Ax = /bf(x) dx.
i=1 a

Example 2. When a particle is located a distance x feet from the origin, a
force of 2% + 2z pounds acts on it. How much work is done in moving it from
r=1tox =37

Theorem 6.4.1 (Hooke’s Law). The force required to maintain a spring
stretched x units beyond its natural length is proportional to x:

f(x) = kzx

where k is a positive constant called the spring constant (see the figure). Hooke’s
Law holds provided that x is not too large.

fx)=kx
>
frictionless 0 X 0 x X
surface
(a) Natural position of spring (b) Stretched position of spring
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Calculus - 6.4 Work

Example 3. A force of 40 N is required to hold a spring that has been
stretched from its natural length of 10 cm to a length of 15 ecm. How much
work is done in stretching the spring from 15 cm to 18 cm?

Example 4. A 200-1b cable is 100 ft long and hangs vertically from the top
of a tall building. How much work is required to lift the cable to the top of
the building?
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Calculus - 6.4 Work

Example 5. A tank has the shape of an inverted circular cone with height
10 m and base radius 4 m. It is filled with water to a height of 8 m. Find the
work required to empty the tank by pumping all of the water to the top of the
tank. (The density of water is 1000 kg/m3.)
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6.5 Average Value of a Function

Definition 6.5.1. The average value of a function f on the interval [a, ] is

1 b
fave - b—(l/a f(.%‘) dx

Example 1. Find the average value of the function f(z) = 1+ 22 on the
interval [—1,2].

Theorem 6.5.1 (The Mean Value Theorem for Integrals). If f is continuous
on [a,bl], then there exists a number ¢ in |a,b] such that

[
/f F()b—a).

Proof. By applying the Mean Value Theorem for derivatives to the function
F(x) = [T f(t)dt, we see that there exists a number ¢ in [a, b] such that

f() fave:

that s,

P - PO
[ rwa)| - HH=E
£(e) = = [F(b) ~ F(a)]
[ 0
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Example 2. Find a number ¢ in the interval [—1, 2] that satisfies the mean
value theorem for integrals for the function f(z) =1+ z?%.

Example 3. Show that the average velocity of a car over a time interval [t;, ]
is the same as the average of its velocities during the trip.
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Chapter 7

Techniques of Integration

7.1 Integration by Parts

Theorem 7.1.1 (Formula for Integration by Parts). If f and g are differen-
tiable functions then

or, equivalently,

/udv:uv—/vdu

where u = f(x) and v = g(x).

Proof. By the Product Rule,

1 H(@)9(@)] = F@)d (@) + g(0)f'(x)

g
f(2)g(x) = / (@) (2) + g(0) f' (@) da
_ / f(2)g/ () dx + / 9(0) () de
/ f(@)d (@) do = f(x)g(x) — / 9(2) f'(z) de 0
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Calculus - 7.1 Integration by Parts

Example 1. Find /xsinxdm.

Example 2. Evaluate / Inzdx.
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Calculus - 7.1 Integration by Parts

Example 3. Find /tQGt dt.

214



Calculus - 7.1 Integration by Parts

Example 4. Evaluate / e’ sinx dx.
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Calculus - 7.1 Integration by Parts

Theorem 7.1.2 (Formula for Definite Integration by Parts). If f and g are
differentiable on (a,b) and f' and ¢’ are continuous, then

[ @)@ de = ), - [ gte)f @)

1
Example 5. Calculate / tan~! z da.
0
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Calculus - 7.1 Integration by Parts

Example 6. Prove the reduction formula

] 1 o n—1 e
/sm”xdx: ——cosxsin" x4+ sin" %z dx
n n

where n > 2 is an integer.
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7.2 'Trigonometric Integrals

Example 1. Evaluate / cos® x dx.

Example 2. Find /sin5 x cos® z dz.
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Calculus - 7.2 Trigonometric Integrals

Remark 1. Sometimes it is easier to use the half-angle identities
9 1 9 1
sin“ x = 5(1 — cos 2x) and cos” x = 5(1 + cos 2x)
to evaluate an integral.

Example 3. Evaluate / sin® z dx.
0

Example 4. Find / sin z d.
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Example 5. Evaluate / tan® z sec? z dz.

Example 6. Find / tan® fsec’ 6 d6.
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Example 7. Find /tan?’xda:.

Example 8. Find / sec® x dx.
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Calculus - 7.2 Trigonometric Integrals

Remark 2. To evaluate the integrals (a) [ sinma cosna dz, (b) [ sinma sinnzx dz,
or (¢) [ cosma cosnax dz, use the corresponding identity:

(a) sin Acos B = %[Sin(A — B) +sin(A + B)]
(b) sin Asin B = %[COS(A — B) —cos(A+ B)]

(c) cos Acos B = %[COS(A — B) + cos(A + B)].

Example 9. Evaluate / sin 4z cos 5z dx.
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7.3 'Trigonometric Substitution

Table of Trigonometric Substitutions

Expression Substitution Identity
_ . 7T ﬂ- - . 2 — 2
2 _ 22 x—a81n6,—§§0§§ 1 —sin“ 60 = cos 6
_ T ™ 20 _ cnp?
Va2 + 22 x—atan@,—§§9§§ 1 4 tan” 6§ = sec” 6
3
2 — a2 xzasec@,OS@ﬁgorﬂgegg sec? — 1 = tan®6
VO — 22
Example 1. Evaluate / —2xdx.
x
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Example 2. Find the area enclosed by the ellipse

IQ y2
StE=L
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1
——dx.
2?2 +4

Example 3. Find
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Calculus - 7.3 Trigonometric Substitution

x
Example 4. Find | —— dz.
P / vaz+4

d
Example 5. Evaluate / —x, where a > 0.
2 _ a2

226



Calculus - 7.3 Trigonometric Substitution

SL’S

3v/3/2
Example 6. Find /0 m dx.
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Example 7. Evaluate / L dx.
V3 —2x —x?
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7.4 Integration by Partial Fractions

x3—|—x

r—1

dz.

Example 1. Find /
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Calculus - 7.4 Integration by Partial Fractions

2+ 2x—1
x.
203 4+ 322 — 22

Example 2. Evaluate /
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d
Example 3. Find /—I2, where a # 0.
—a

12
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2% +4x+1
Example 4. Find/x v dz.
3 —a?—z+1
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Calculus - 7.4 Integration by Partial Fractions

Theorem 7.4.1. p )
/—x:—tan_1 E +C.
22+a? a a

22 — 4
Example 5. Evaluate / wdm.
x3+4x
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42 — 3x + 2
E le 6. Evaluat —— dx.
xample Vauae/4x2_4x+3 T
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Calculus - 7.4 Integration by Partial Fractions

Example 7. Write out the form of the partial fraction decomposition of the
function
2?2 +1
z(x —1) (a2 +x+ 1) (22 4+ 1)%

1 — 2 2 .3
Example 8. Evaluate / T o dx.
z(z? +1)2
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Calculus - 7.4 Integration by Partial Fractions

Vo +4

4
+ dzx.
x

Example 9. Evaluate /
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7.5 Strategy for Integration

tan® x

dzx.

Example 1. /

cos® x

Example 2. /eﬁd:c.
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5+ 1
E le 3. dx.
xample / 2 — 32 — 10z "
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Calculus - 7.5 Strategy for Integration

dx

zvinzx

Example 4. /

1—=x
E le 5. \/ dx.
xample / T T
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7.6 Integration Using Tables and CAS’s

Example 1. The region bounded by the curves y = arctanz, y = 0, and
x =1 is rotated about the y-axis. Find the volume of the resulting solid.

1’2

——dx
Vb5 — 42

Example 2. Use the Table of Integrals to find /
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Example 3. Use the Table of Integrals to evaluate / 3 sinz dx.

Example 4. Use the Table of Integrals to find /x\/ 22+ 2x +4dx.
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Calculus - 7.6 Integration Using Tables and CAS’s

Example 5. Use a computer algebra system to find /x\/ 22+ 2x +4dr.

Example 6. Use a CAS to evaluate /x(m2 +5)% du.

Example 7. Use a CAS to find /sin5 x cos® x dx.
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7.7 Approximate Integration

Theorem 7.7.1 (Midpoint Rule).

y
b
| 7@ de My = Balf(an) + £(@2) 4+ (@) T
a /: | |
where ; | : : I\
n A
o ERRERR
1 I I I >
T, = 5(@,1 + x;) = midpoint of [x;_1,x;]. 0 X, X, X3 X, X
Theorem 7.7.2 (Trapezoidal Rule). y
P—
b Az \
[ #@)de T, = S0 2 )42 )42 )+ )
where Ax = (b—a)/n and x; = a + iAwx.
Example 1. Use (a) the Trapezoidal Rule and (b) the Midpoint
Rule with n = 5 to approximate the integral ff(l /) dx.
0 Xo X X, X3 X, X
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Calculus - 7.7 Approximate Integration

Theorem 7.7.3 (Error Bounds). Suppose |f"(x)| < K fora <z <b. If Er

and Ey; are the errors in the Trapezoidal and Midpoint Rules, then

K —a)
12n?

K{b—a)?

Er| <
|Brl < 24n?

and |Ey| <

Example 2. How large should we take n in order to guarantee that the Trape-
zoidal and Midpoint Rule approximations for |, 12(1 /) dzx are accurate to within
0.00017
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Calculus - 7.7 Approximate Integration

Example 3. (a) Use the Midpoint Rule with n = 10 to approximate the
integral fol e dr.

(b) Give an upper bound for the error involved in this approximation.
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Calculus - 7.7 Approximate Integration

Theorem 7.7.4 (Simpson’s Rule).

Ax

b
[ #ta)dn x5, = SE )+ 4f(a0) + 2f(a) + 47 m) + -
+2f(¥n-2) +4f (xn-1) + f(z0)]

where n is even and Az = (b— a)/n.

0 a=x, X, X, X3 X4 X5 X¢=b X

Example 4. Use Simpson’s Rule with n = 10 to approximate ff(l /x)dx.
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Calculus - 7.7 Approximate Integration

Example 5. The figure shows data traffic on the link from the United States
to SWITCH, the Swiss academic and research network, on February 10, 1998.
D(t) is the data throughput, measured in megabits per second (Mb/s). Use
Simpson’s Rule to estimate the total amount of data transmitted on the link
from midnight to noon on that day.

D
8+

6-.

0 3 6 9 12 15 18 21 24 t(hours)
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Calculus - 7.7 Approximate Integration

Theorem 7.7.5 (Error Bound for Simpson’s Rule). Suppose that |f®(z)| <
K fora <z <b. If Es is the error involved in using Simpson’s Rule, then
K(b—a)®
Egl < ———
1Bsl < —5on

Example 6. How large should we take n in order to guarantee that the Simp-
son’s Rule approximation for ff(l /) dx is accurate to within 0.00017
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Calculus - 7.7 Approximate Integration

Example 7. (a) Use Simpson’s Rule with n = 10 to approximate the integral

fol e dz.

(b) Estimate the error involved in this approximation.
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7.8 Improper Integrals

Definition 7.8.1 (Definition of an Improper Integral of Type 1).

(a) If fcf f(z) dx exists for every number ¢ > a, then

/aoo f(z)dz = lim /atf(:v) dx

t—o0
provided this limit exists (as a finite number).

(b) If ftb f(z) dx exists for every number ¢ < b, then

/_; f(z)dx :tgr_noo/tbf(x) dx

provided this limit exists (as a finite number).

The improper integrals [ f(x)dz and f_boo f(z)dx are called convergent if
the corresponding limit exists and divergent if the limit does not exist.

(c) If both [ f(x)dx and [°_ f(z)dx are convergent, then we define

/_:f(a:)d:c:/_;f(x)dwr/:of(x)dm

In part (¢) any real number a can be used.

Example 1. Determine whether the integral [[~(1/z)dx is convergent or
divergent.
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0
Example 2. Evaluate / xe' dx.

—0o0
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< 1

T2

Example 3. Evaluate /
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Calculus - 7.8 Improper Integrals

Example 4. For what values of p is the integral

1
/ — dx
1 P

convergent?
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Calculus - 7.8 Improper Integrals

Definition 7.8.2 (Definition of an Improper Integral of Type 2).

(a) If f is continuous on [a,b) and is discontinuous at b, then

/f da::tl_iga_/atf(a:)dx

if this limit exists (as a finite number).

(b) If f is continuous on (a, b] and is discontinuous at a, then

b b
/f( )dr = lim f()

t—sat

if this limit exists (as a finite number).

The improper integral fab f(z) dz is called convergent if the corresponding limit
exists and divergent if the limit does not exist.

(¢) If f has a discontinuity at ¢, where a < ¢ < b, and both [7 f(z)dz and
fcb f(z) dx are convergent, then we define

/abf(x)dx:/acf(x)dx+/be(:v)dx

5
1
Example 5. Find
P /2 Vo —2
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Calculus - 7.8 Improper Integrals

/2
Example 6. Determine whether / sec x dx converges or diverges.
0

3
Example 7. Evaluate / :vl if possible.
0

€T —
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Calculus - 7.8 Improper Integrals

1
Example 8. / Inxdz.
0
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Calculus - 7.8 Improper Integrals

Theorem 7.8.1 (Comparison Theorem). Suppose that f and g are continuous
functions with f(zx) > g(z) >0 for z > a.

(a) If [ f(z)dx is convergent, then [~ g(x)dx is convergent.
(b) If [~ g(z) dx is divergent, then [ ° f(z)dx is divergent.

Example 9. Show that / e dr is convergent.
0

1+4+e7®
T

Example 10. Determine whether / dx converges or diverges.
1
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Chapter 8

Further Applications of
Integration

8.1 Arc Length

Definition 8.1.1. The length L of the curve C' with equation y = f(z),
a<zx<b,is

L= nlggo; [P P

where P; is the point (x;, f(z;)).

VA P,
e
P}’l
Py
0 a x X, b );c
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Calculus - 8.1 Arc Length

Theorem 8.1.1 (The Arc Length Formula). If f’ is continuous on [a, b], then
the length of the curve y = f(z), a <z <b, is

L:/ab\/de:/ab,/H(Z—i)de.

Proof. Let Ay; = y; — y;_1. By the Mean Value Theorem, there is a number
x; between x;_; and z; such that

f@i) = flzicn) = f/(@7) (2 — zio1)
Ay; = f'(x7)Az.

Therefore,
|Pio1 Pl = V/(A2)2 + (Ay;)? = /(Ax)? + [f'(2}) Ax]?
= I+ @)V (Az)? = 1+ [f(a)2A.
Hence

n n b
tiw Y (PRI = Jim S VI PEPAe = [ VI F@Pd O
i=1 i=1 a

y
Example 1. Find the length of the arc of the semicubical

parabola y* = z® between the points (1,1) and (4,8). (See the
figure.)
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Calculus - 8.1 Arc Length

Remark 1. If a curve has the equation x = ¢g(y), ¢ < y < d, and ¢'(y) is
continuous, then by interchanging the roles of x and y in the Arc Length
Formula, we obtain the following formula for its length:

L:/cd\/mdy:/cd,/H(fl—z)Zdy.

Example 2. Find the length of the arc of the parabola y* = x from (0,0) to
(1,1).
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Calculus - 8.1 Arc Length

Example 3. (a) Set up an integral for the length of the arc of the hyperbola
zy =1 from the point (1,1) to the point (2, 3).

(b) Use Simpson’s Rule with n = 10 to estimate the arc length.

Theorem 8.1.2. If a smooth curve C' (a curve that has a continuous deriva-
tive) has the equation y = f(x), a < x < b, then s(x), the distance along C
from the initial point (a, f(a)) to the point (x, f(x)), is called the arc length
function and is given by

s(x) = /w V1 [f(t)*dt.
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Calculus - 8.1 Arc Length

2

Example 4. Find the arc length function for the curve y = x* — % In x taking

(1,1) as the starting point.
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Calculus - 8.2 Area of a Surface of Revolution

8.2 Area of a Surface of Revolution

Definition 8.2.1. In the case where f is positive and has

a continuous derivative, we define the surface area of the
surface obtained by rotating the curve y = f(x), a <z < b,
about the z-axis as

§=lim } 2w f(ai) 1+ [f()PA
— [ omi@VIF PR s

0

Example 1. The curve y = V4 — 22, —1 < z < 1, is an arc of
the circle 22 4+ y? = 4. Find the area of the surface obtained by
rotating this arc about the z-axis. (The surface is a portion of a
sphere of radius 2. See the bottom figure.)

263




Calculus - 8.2 Area of a Surface of Revolution

Example 2. The arc of the parabola y = z? from (1,1) to (2,4) is rotated
about the y-axis. Find the area of the resulting surface.
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Calculus - 8.2 Area of a Surface of Revolution

Example 3. Find the area of the surface generated by rotating the curve
y=-¢" 0<z <1, about the z-axis.
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8.3 Applications to Physics and Engineering

Definition 8.3.1. In general, the hydrostatic force exerted on a thin plate
with area A square meters submerged in a fluid with density p kilograms per
cubic meter at a depth d meters below the surface of the fluid is

F =mg = pgAd

where m is the mass and ¢ is the acceleration due to gravity. The pressure P
(in pascals) on the plate is defined to be the force per unit area:

F
P = — = .
A pgd

Example 1. A dam has the shape of the trapezoid shown in

top and 30 m at the bottom. Find the force on the dam due to
hydrostatic pressure if the water level is 4 m from the top of the
dam.
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50 m
the figure. The height is 20 m and the width is 50 m at the \
30 m

!

20 m
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Calculus - 8.3 Applications to Physics and Engineering

Example 2. Find the hydrostatic force on one end of a cylindrical drum with
radius 3 ft if the drum is submerged in water 10 ft deep.
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Calculus - 8.3 Applications to Physics and Engineering

Definition 8.3.2. In general, for a system of n particles with masses

mi,Ma, ..., my, located at the points x1, s, ..., x, on the z-axis,
X, x X,
0 7 — — AN X
m X=X Xy— X y

the center of mass Z is the point on which a thin plate of any given shape
balances horizontally, and can be shown to be
7 = iz TaTi
m

where m;z; are called the moments of the masses m; and m = > m; is the
total mass of the system.
The sum of the individual moments

n
i=1

is called the moment of the system about the origin.

Definition 8.3.3. In general, for a system of n particles with masses

my, Mg, ..., m, located at the points (z1,v1), (Z2,%2),- .., (Tn, y,) in the xy-
plane
y
X
o
Y3 :)’1
0 :y2 X
4

we define the moment of the system about the y-axis to be

n
My: E m;T;
=1

and the moment of the system about the x-axis to be

=1

The coordinates (Z, ) of the center of mass are given by
M, M,

r=— 5=
m m
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Calculus - 8.3 Applications to Physics and Engineering

Example 3. Find the moments and center of mass of the system of objects
that have masses 3, 4, and 8 at the points (—1,1), (2, —1), and (3, 2), respec-

tively.

o Y=1w)
R
a b
Definition 8.3.4. The center of mass of a lamina (a flat
plate) with uniform density p and area A that occupies a
region #Z of the plane is called the centroid of Z and is (X, FE)
located at the point (Z,%), where o o
= | BN \C,(xi’ Ef@i))
p=d (e y=1 [ Aywra
x—Aaxxa: y—AGQx:U.
Remark 1. The symmetry principle says that if #Z is sym-
metric about a line [, then the centroid of Z# lies on [. NS
“R / T >\x b
269 PRy T




Calculus - 8.3 Applications to Physics and Engineering

Example 4. Find the center of mass of a semicircular plate of radius r.

Example 5. Find the centroid of the region bounded by the curves y = cos x,
y=0,x=0,and x = 7/2.
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Calculus - 8.3 Applications to Physics and Engineering

Theorem 8.3.1. If the region Z lies between two curves
y = f(x) and y = g(x), where f(x) > g(x), then the cen-
troid of Z is (Z,y) where

&I
I

3 [ ali@ - g@lds

a

Yy

i | SU@P = o)) do.

y

Example 6. Find the centroid of the region bounded by the line y = x and

the parabola y = 2.
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Calculus - 8.3 Applications to Physics and Engineering

Theorem 8.3.2 (Theorem of Pappus). Let Z be a plane region that lies en-
tirely on one side of a line | in the plane. If Z is rotated about [, then the
volume of the resulting solid is the product of the area A of # and the distance
d traveled by the centroid of X .

Example 7. A torus is formed by rotating a circle of radius r about a line in
the plane of the circle that is a distance R (> r) from the center of the circle.
Find the volume of the torus.
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8.4 Applications to Economics and Biology

Definition 8.4.1. The consumer surplus for a commodity
is defined as

[ ) - Pl

where p(z) is the demand function, and P is the current
selling price for the amount of the commodity X that can
currently be sold.

Example 1. The demand for a product, in dollars, is
p = 1200 — 0.2z — 0.000122.

Find the consumer surplus when the sales level is 500.
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p
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surplus (X, P)
P
p="Fp
0 X



Calculus - 8.4 Applications to Economics and Biology

Definition 8.4.2. The cardiac output of the heart is the volume of blood
pumped by the heart per unit time, that is, the rate of flow into the aorta. It
is given by

A
[ e(t) dt
where A is the amount of dye injected into the right atrium, [0, 7] is the time

interval until the dye has cleared, and c(t) is the concentration of the dye at
time ¢.

Example 2. A 5-mg bolus of dye is injected into a right atrium.
The concentration of the dye (in milligrams per liter) is mea-
sured in the aorta at one-second intervals as shown in the table.
Estimate the cardiac output.

c(t)
0
0.4
2.8
6.5
9.8
8.9
6.1
4.0
2.3
1.1
0

OO0 | O T x| W[ N —| O <+

—
S
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Calculus - 8.5 Probability

8.5 Probability

Definition 8.5.1. The probability density function f of a continuous random
variable X (a quantity whose values range over an interval of real numbers) is
given by:

P(angb):/bf(:c)dx

where f(x) > 0 for all x and
/ f(z)dz =1.

Example 1. Let f(z) = 0.0062(10 — z) for 0 < 2 < 10 and f(x) = 0 for all
other values of .

(a) Verify that f is a probability density function.

(b) Find P(4 < X < 8)
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Calculus - 8.5 Probability

Example 2. Phenomena such as waiting times and equipment failure times
are commonly modeled by exponentially decreasing probability density func-
tions. Find the exact form of such a function.
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Calculus - 8.5 Probability

Definition 8.5.2. In general, the mean of any probability density function f
is defined to be

= /_OO xf(x)dx.

[e.e]

Example 3. Find the mean of the exponential distribution of Example 2:

Ft) = {o - ift <0,

ce if ¢t > 0.
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Calculus - 8.5 Probability

Example 4. Suppose the average waiting time for a customer’s call to be
answered by a company representative is five minutes.

(a) Find the probability that a call is answered during the first minute, as-
suming that an exponential distribution is appropriate.

(b) Find the probability that a customer waits more than five minutes to be
answered.

278



Calculus - 8.5 Probability

Definition 8.5.3. When random phenomena are modeled by a normal distri-
bution this means that the probability density function of the random variable
X is a member of the family of functions

F@) = a2 /2a?)
o\ 2T

where the positive constant ¢ is called the standard deviation (a measure of
how spread out the values of X are).

Example 5. Intelligence Quotient (IQ) scores are distributed

normally with mean 100 and standard deviation 15. (The figure
shows the corresponding probability density function.) 0.021
(a) What percentage of the population has an IQ score between 0017
85 and 1157 1
0
60 80 100 120 140 X

(b) What percentage of the population has an 1Q above 1407
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Chapter 9

Differential Equations

9.1 Modeling with Differential Equations

Definition 9.1.1. In general, a differential equation is an equation that con-
tains an unknown function and one or more of its derivatives. The order of a
differential equation is the order of the highest derivative that occurs in the
equation. A function f is called a solution of a differential equation if the
equation is satisfied when y = f(x) and its derivatives are substituted into the
equation.

Example 1. Show that every member of the family of functions

_ 1+ cet
1 — cet

Y

is a solution of the differential equation y’ = %(y2 —1).
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Calculus - 9.1 Modeling with Differential Equations

Example 2. Find a solution of the differential equation 3’ = %(y2 — 1) that
satisfies the initial condition y(0) = 2.
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9.2 Direction Fields and Euler’s Method

Definition 9.2.1. In general, suppose we have a first-order differential equa-
tion of the form

y = F(z,y)

where F'(z,y) is some expression in x and y. If we draw short line segments
with slope F'(z,y) at several points (z,y), the result is called a direction field
(or slope field).

Example 1.

a) Sketch the direction field for the differential equation 3’ = 2% + y? — 1.
Y Y

(b) Use part (a) to sketch the solution curve that passes through the origin.
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Calculus - 9.2 Direction Fields and Euler’s Method

Example 2. Suppose that in the simple circuit of the figure the
resistance is 12 €2, the inductance is 4 H, and a battery gives a

constant voltage of 60 V.
(a) Draw a direction field for

dI
L= + RI = E(t
it (t)

with these values.

(b) What can you say about the limiting value of the current?

(c) Identify any equilibrium solutions.

(d) If the switch is closed when ¢t = 0 so the current starts with
I1(0) = 0, use the direction field to sketch the solution curve.
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Calculus - 9.2 Direction Fields and Euler’s Method

Theorem 9.2.1 (Euler’s Method). Approzimate values for the solution of the
initial-value problem y' = F(x,y), y(xo) = yo with step size h, at x, = x,_1+h,
are

Yn = Yn-1 + hF(Tp_1,Yn1) n=123,....

Example 3. Use Euler’'s method with step size 0.1 to construct a table of
approximate values for the solution of the initial-value problem

vy =x+vy y(0) = 1.
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Calculus - 9.2 Direction Fields and Euler’s Method

Example 4. In Example 2 we discussed a simple electric circuit with resistance
12 0, inductance 4 H, and a battery with voltage 60 V. If the switch is closed
when £ = 0, we modeled the current I at time ¢ by the initial-value problem

dI
— =15-31  I(0)=0.
7 (0)

Estimate the current in the circuit half a second after the switch is closed.
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9.3 Separable Equations

Definition 9.3.1. A separable equation is a first-order differential equation
in which the expression for dy/dx can be factored as a function of x times a
function of y. In other words, it can be written in the form

dy _

e 9(x)g(y).

d
Example 1. (a) Solve the differential equation d_y = —.
x

(b) Find the solution of this equation that satisfies the initial condition y(0) =
2.
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Calculus - 9.3 Separable Equations

_ , . dy 62
Example 2. Solve the differential equation — = ———.
dr 2y +cosy

Example 3. Solve the equation 3y = z%y.
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Calculus - 9.3 Separable Equations

Example 4. In Section 9.2 we modeled the current I(¢) in the
electric circuit shown in the figure by the differential equation

dl

L— + RI = E(t).

o (2)
Find an expression for the current in a circuit where the resis-
tance is 12 V, the inductance is 4 H, a battery gives a constant
voltage of 60 V, and the switch is turned on when ¢ = 0. What
is the limiting value of the current?
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Calculus - 9.3 Separable Equations

Definition 9.3.2. An orthogonal trajectory of a family of curves
is a curve that intersects each curve of the family orthogonally,
that is, at right angles (see the figure).

Example 5. Find the orthogonal trajectories of the family of
curves © = ky?, where k is an arbitrary constant. /

orthogonal
trajectory
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Calculus - 9.3 Separable Equations

Example 6. A tank contains 20 kg of salt dissolved in 5000 L of water. Brine
that contains 0.03 kg of salt per liter of water enters the tank at a rate of 25
L/min. The solution is kept thoroughly mixed and drains from the tank at
the same rate. How much salt remains in the tank after half an hour?
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9.4 Models for Population Growth

Definition 9.4.1. In general, if P(t) is the value of a quantity y at time ¢ and
if the rate of change of P with respect to ¢ is proportional to its size P(t) at
any time, then

P
e
dt

where k is a constant. This equation is sometimes called the law of natural
growth.

Theorem 9.4.1. The solution of the initial-value problem

dpP

— =kP P(0) = F,

18

P(t) = Pye*".

Proof. The law of natural growth is a separable differential equation, so

dP

el 1y &
dt
dP
[ e
In|P|=kt+C
|P| _ ek:t—i—C’ — eCekt
P = Aeft,

where A (= £¢“ or 0) is an arbitrary constant. Since P(0) = A, P(t) =
Poekt. ]

Definition 9.4.2. The model for population growth known as the logistic
differential equation is

dP P

— =kP|1—-—

i~ (1)

where M is the carrying capacity, the maximum population that the environ-
ment is capable of sustaining in the long run.
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Example 1. Draw a direction field for the logistic equation with & = 0.08
and carrying capacity M = 1000. What can you deduce about the solutions?
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Calculus - 9.4 Models for Population Growth

Theorem 9.4.2. The solution to the logistic equation is

M M — F,
P(t) = m where A= PO .

Proof. The logistic equation is separable, so using partial fractions, we get

£

/P (1—P/M)
/%d}?:/lm

/(%%—Ml_P)dP:/k:dt

1n|P|—1n|M—P|—kt—|—C’

= —kt —
p \
M—-P o—kt=C _ —C —kt
P
M—P
—A —kt
P
M
F — 1= Ae_kt
M
F = 1"’ Ae kt
M
P —
1+ Ae—kt’
where A = +e7¢. If t = 0, we have
M — P,
— Al = A
2 ¢
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Calculus - 9.4 Models for Population Growth

Example 2. Write the solution of the initial-value problem

P P
— =0.08P(1- — P0) =1
g~ 00 ( 1000) (0) = 100

and use it to find the population sizes P(40) and P(80). At what time does
the population reach 9007
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Example 3. In the 1930s the biologist G. F. Gause conducted an experiment
with the protozoan Paramecium and used a logistic equation to model his
data. The table gives his daily count of the population of protozoa. He esti-
mated the initial relative growth rate to be 0.7944 and the carrying capacity

to be 64.
t (days) 0|1} 2|31 4|5 |6 |78 |9 ]|10(11]12(13|14]15]| 16
P (observed) | 2 |3 22|16 |39 |52 |54 |47 (50|76 |69 |51 |57 |70 53|59 |57

Find the exponential and logistic models for Gause’s data. Compare the pre-
dicted values with the observed values and comment on the fit.
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9.5 Linear Equations

Definition 9.5.1. A first-order linear differential equation is one that can be
put into the form

Y4 Play = Q)

where P and () are continuous functions on a given interval.

Theorem 9.5.1. To solve the linear differential equation y' + P(x)y = Q(z),
multiply both sides by the integrating factor I(x) = e/ P@dz gnd integrate both
sides.

d
Example 1. Solve the differential equation d—y + 322y = 62°.
x
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Example 2. Find the solution of the initial-value problem

o2y 4y =1 x>0 y(l) =2.
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Example 3. Solve 3/ + 2zy = 1.
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Example 4. Suppose that in the simple circuit of the figure the
resistance is 12 V and the inductance is 4 H. If a battery gives a
constant voltage of 60 V and the switch is closed when ¢ = 0 so
the current starts with 7(0) = 0, find

(a) I(t),

(b) the current after 1 second, and

(c) the limiting value of the current.
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Example 5. Suppose that the resistance and inductance remain as in Example
4 but, instead of the battery, we use a generator that produces a variable
voltage of E(t) = 60sin 30t volts. Find I(t).

300



Calculus - 9.6 Predator-Prey Systems

9.6 Predator-Prey Systems

Definition 9.6.1. The equations

dR aw

 — kR -— — = —rW + bRW

7 R —aRW o rW 4+ bR
are known as the predator-prey equations, or the Lotka-Volterra equations. A
solution of this system of equations is a pair of functions R(t) and W (t) that

describe the populations of prey and predators as functions of time.

Example 1. Suppose that populations of rabbits and wolves are described
by the Lotka-Volterra equations with & = 0.08, a = 0.001, » = 0.02, and
b = 0.00002. The time t is measured in months.

(a) Find the constant solutions (called the equilibrium solutions) and interpret
the answer.
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(b) Use the system of differential equations to find an expression for dW/dR.

(c) Draw a direction field for the resulting differential equation in the RW-
plane. Then use that direction field to sketch some solution curves.
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(d) Suppose that, at some point in time, there are 1000 rabbits and 40 wolves.
Draw the corresponding solution curve and use it to describe the changes
in both population levels.

(e) Use part (d) to make sketches of R and W as functions of ¢.
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Chapter 10

Parametric Equations and Polar
Coordinates

10.1 Curves Defined by Parametric Equations

Definition 10.1.1. Suppose that = and y are both given as functions of a
third variable ¢ (called a parameter) by the equations

r=[ft)  y=g()

(called parametric equations). Each value of ¢ determines a point (z,y), which
we can plot in a coordinate plane. As ¢ varies, the point (z,y) = (f(¢), g(¢))
varies and traces out a curve C'; which we call a parametric curve.

Example 1. Sketch and identify the curve defined by the parametric equations

r=t*—-2t y=t+1.
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Definition 10.1.2. In general, the curve with parametric equations
v=f(t) y=g(t) a<t<b

has initial point (f(a), g(a)) and terminal point (f(b), g(b)).

Example 2. What curve is represented by the following parametric equations?

T = cost Yy =sint 0<t<2m.

Example 3. What curve is represented by the given parametric equations?

T = sin 2t Yy = cos 2t 0<t<2m.
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Example 4. Find parametric equations for the circle with center (h, k) and
radius 7.

Example 5. Sketch the curve with parametric equations x = sint, y = sin®¢t.
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Example 6. Use a graphing device to graph the curve z = y* — 3y%.

Example 7. The curve traced out by a point P on the circumference of a
circle as the circle rolls along a straight line is called a cycloid (see the figure).
If the circle has radius r and rolls along the z-axis and if one position of P is
the origin, find parametric equations for the cycloid.

N RO N N

P
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Example 8. Investigate the family of curves with parametric equations
r =a+ cost y =atant + sint.

What do these curves have in common? How does the shape change as a
increases?
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10.2 Calculus with Parametric Curves

Theorem 10.2.1. Suppose f and g are differentiable functions. Then for a
point on the parametric curve x = f(t), y = g(t), where y is also a differen-
tiable function of x, we have

dy
dy_% dx
- dv TP
dt

Proof. Since y is a differentiable function of x, we have, by the Chain Rule,

dy dy dx

dt — dr dt’

Then if fl—f # (0 we can divide by it, so

dy
dy_%
dt

Theorem 10.2.2. Suppose f and g are differentiable functions. Then for a
point on the parametric curve x = f(t), y = g(t), where y is also a differen-
tiable function of x, we have

.2
2y dt \dz o dx
dt

Proof. By the previous theorem,

i ()
2y d [dy dt \ dr dx
Y _ 2 () AN T, 0
dz? dm(das) dr it 70
dt
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Example 1. A curve C is defined by the parametric equations z = 2, y =
3 — 3t.

(a) Show that C' has two tangents at the point (3,0) and find their equations

(b) Find the points on C' where the tangent is horizontal or vertical.

(c¢) Determine where the curve is concave upward or downward.

(d) Sketch the curve.
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Example 2.

(a) Find the tangent to the cycloid x = (6 — sinf), y = r(1 — cosf) at the
point where 6 = 7/3.

(b) At what points is the tangent horizontal? When is it vertical?
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Theorem 10.2.3. If a curve is traced out once by the parametric equations
x=f(t) and y = g(t), a« <t < 3, then the area under the curve is given by

B a
A= ! or / .
[ atosya [ [ ot (t)dt]

Proof. Since the area under the curve y = F(x) from a to bis A = ff F(z)dx,
we can use the Substitution Rule for Definite Integrals with y = ¢(¢) and
dxr = f'(t) dt to get

A:/abydm:/jg(t)f’(t)dt. O

Example 3. Find the area under one arch of the cycloid y
z=r(0 —sinf) y=r1(1—cosh). W

0‘ 2mr X
(See the figure.)
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Theorem 10.2.4. If a curve C is described by the parametric equations x =
f(t), y=g(t), a <t <, where f' and ¢' are continuous on |«, ] and C' is
traversed exactly once as t increases from « to 3, then the length of C' is

= [+ ()

Example 4. (a) Use the representation of the unit circle given by

T = cost Yy =sint 0<t<2m

to find its arc length.

(b) Use the representation of the unit circle given by
T = sin 2t Yy = cos 2t 0<t<2m

to find its arc length.
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Example 5. Find the length of one arch of the cycloid z = r(6 — sin#),
=r(l — cosb).
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Theorem 10.2.5. Suppose a curve C is given by the parametric equations
x=f(t), y =gt), a <t < B, where f', ¢ are continuous, ¢'(t) > 0, is
rotated about the x-axis. If C is traversed exactly once as t increases from «
to B, then the area of the resulting surface is given by

p dz\? dy 2
= 2 — —= )
S /a Wy\/(dt) +<dt> dt

Example 6. Show that the surface area of a sphere of radius r is 4mwr2.
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10.3 Polar Coordinates

Definition 10.3.1. The polar coordinate system consists of a
point called the pole (or origin) O, a ray starting at the pole
called the polar axis, and other points P represented by (r,0)
where r is the distance from O to P and 6 is the angle (usually
measured in radians) between the polar axis and the line OP as
in the figure. r, 0 are called polar coordinates of P.

Example 1. Plot the points whose polar coordinates are given.

(a) (1,5m/4)

(b) (2,3m)

(¢) (2,—2/3)

(d) (=3,3m/4)
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Theorem 10.3.1. If the point P has Cartesian coordinates (x,y) and polar
coordinates (r,0), then

x =rcosf y =rsinf
and

r? =a2% +9° tan = 2.
x

Example 2. Convert the point (2, 7/3) from polar to Cartesian coordinates.

Example 3. Represent the point with Cartesian coordinates (1, —1) in terms
of polar coordinates.

Example 4. What curve is represented by the polar equation r = 27
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Example 5. Sketch the polar curve 6 = 1.

Example 6. (a) Sketch the curve with polar equation r = 2 cos 6.

(b) Find a Cartesian equation for this curve.
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Example 7. Sketch the curve r =1+ sin 6.

Example 8. Sketch the curve r = cos 26.
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Theorem 10.3.2. The slope of the tangent line to a polar curve r = f(0) is

d
dy d—gsin9+rcosﬁ
dz %cos@—rsin@

Proof. Regard 6 as a parameter and write
x=rcos = f(f)cosd  y=rsinf = f(#)sind.
Then by Theorem 10.2.1 and the product rule, we have

d d
dy d—‘z d—gsine—l—?"cosﬁ
dr dr ~dr : =

— cosf —rsind

do  db

Example 9.

(a) For the cardioid r = 1 4 sin @ of Example 7, find the slope of the tangent
line when 0 = 7/3.
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(b) Find the points on the cardioid where the tangent line is horizontal or
vertical.

Example 10. Graph the curve r = sin(860/5).
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Example 11. Investigate the family of polar curves given by r = 1 + ¢sin#f.
How does the shape change as ¢ changes? (These curves are called limagons,
after a French word for snail, because of the shape of the curves for certain
values of ¢.)
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10.4 Areas and Lengths in Polar Coordinates

Theorem 10.4.1. Let Z be the region, illustrated in the figure,
bounded by the polar curve r = f(6) and by the rays 0 = a
and 0 = b, where f is a positive continuous function and where
0<b—a<2nm. The area A of the polar region X% is

b1
A:/a §7~2d6.

Example 1. Find the area enclosed by one loop of the four-leaved rose r =
cos 26.
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Example 2. Find the area of the region that lies inside the circle r = 3sin 6
and outside the cardioid » = 1 + sin 6.

Example 3. Find all points of intersection of the curves » = cos 26 and r = %

324



Calculus - 10.4 Areas and Lengths in Polar Coordinates

Theorem 10.4.2. The length of a curve with polar equation v = f(0), a <

0 <b, is B
b dr\?
I = 24 (20 g0
/a m (d@)

Proof. Regard 6 as a parameter and write
x =rcosf = f(0)cosd y=rsinf = f(0)sind.
Then by the product rule, we have

dy dr . dr  dr .
@_@sm@%—rcos@ @—@COSQ—TSIHQ.

Since cos? 6 +sin?0 = 1,

dz\? dy\” dr\? 9 dr
dx dy\~ _ (dr _ 9.0 : 2 ;o2
(d@) + (d@) (d@) cos” 0 "0 cos fsin ) 4 r*sin” 0

do do

_(dr 2+r2
\de ’
b dr\ 2 dy 2 b dr\ 2
_ o _J — 2 -
L_N(de)+(d9) T Y 3

2
d
+ (_r) sin’ @ + QT—T sin 6 cos 0 + r2 cos 0

SO
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Example 4. Find the length of the cardioid » = 1 + sin 6.
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10.5 Conic Sections

Definition 10.5.1. Parabolas, ellipses, and hyperbolas are called conic sec-
tions, or conics, because they result from intersecting a cone with a plane as
shown in the figure.

Definition 10.5.2. A parabola is the set of points in a plane
that are equidistant from a fixed point F (called the focus) and
a fixed line (called the directrix). This definition is illustrated
by the figure. Notice that the point halfway between the focus
and the directrix lies on the parabola; it is called the vertex. The
line through the focus perpendicular to the directrix is called the
axis of the parabola. vertex

axis parabola

|
N

focus |

7

|
N
| directrix
Theorem 10.5.1. An equation of the parabola with focus (0,p) and directriz
Y= —pis

x? = 4dpy.
Theorem 10.5.2. An equation of the parabola with focus (p,0) and directriz
T = —pis

y? = dpx.
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Example 1. Find the focus and directrix of the parabola 3? + 10z = 0 and
sketch the graph.

Definition 10.5.3. An ellipse is the set of points in a plane the
sum of whose distances from two fixed points F} and F, is a
constant (see the figure). These two fixed points are called the
foci (plural of focus).

Definition 10.5.4. If (—¢,0) and (c,0) are the foci of an ellipse, the sum of
the distances from a point on the ellipse to the foci are 2a > 0, and b = a?—c?,
then the points (a,0) and (—a,0) are called the vertices of ellipse and the line
segment joining the vertices is called the major axis. The line segment joining

(0,b) and (0, —b) is the minor axis.

Theorem 10.5.3. The ellipse

2 2
Sl azb>0
a

has foci (¢, 0), where ¢ = a® — b?, and vertices (+a,0).

Theorem 10.5.4. The ellipse
T + ¥y _ 1 a>b>0

has foci (0,+c), where ¢* = a® — b*, and vertices (0, %a).
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Example 2. Sketch the graph of 922 + 16y* = 144 and locate the foci.

Example 3. Find an equation of the ellipse with foci (0,£2) and vertices
(0, £3).
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Definition 10.5.5. A hyperbola is the set of all points in a plane y
the difference of whose distances from two fixed points F; and
F, (the foci) is a constant. This definition is illustrated in the
figure.

Theorem 10.5.5. The hyperbola

has foci (+c,0), where ¢* = a® + b%, vertices (+a,0), and asymptotes y =
+(b/a)x.

Theorem 10.5.6. The hyperbola

has foci (0,4c), where ¢ = a* + b?, vertices (0,+a), and asymptotes y =
+(a/b)x.

Example 4. Find the foci and asymptotes of the hyperbola 92% — 16y? = 144
and sketch its graph.
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Example 5. Find the foci and equation of the hyperbola with vertices (0, 1)
and asymptote y = 2z.

Example 6. Find an equation of the ellipse with foci (2, —2), (4,—2), and
vertices (1, —2), (5, —2).

Example 7. Sketch the conic 92% — 4y? — 722 + 8y + 176 = 0 and find its foci.
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10.6 Conic Sections in Polar Coordinates

Theorem 10.6.1. Let F be a fized point (called the focus) and

[ be a fized line (called the directriz) in a plane. Let e be a fized L disectri
positive number (called the eccentricity). The set of all points P (directrix)
i the plane such that
|PF’ —e x=d
[Pl
(that is, the ratio of the distance from F' to the distance from 1 x
is the constant e) is a conic section. The conic is
(a) an ellipse if e < 1
C
(b) a parabola if e = 1
(¢) a hyperbola if e > 1
Theorem 10.6.2. A polar equation of the form
ed ed
r=— or r=-———
1+ecosh 1+esinf
represents a conic section with eccentricity e. The conic is an ellipse if e < 1,
a parabola if e =1, or a hyperbola if e > 1.
¥4 y
¥y y
x=d x=—d y=d directrix
\ directrix directrix / \ /
> F X
F / x F X F >
/ \ y=—d directrix
o ed o ed o ed o ed
A O = s 0 =T esno D=0

Example 1. Find a polar equation for a parabola that has its focus at the
origin and whose directrix is the line y = —6.

332



Calculus - 10.6 Conic Sections in Polar Coordinates

Example 2. A conic is given by the polar equation

10

"= 3 —2cosh’

Find the eccentricity, identify the conic, locate the directrix, and sketch the
conic.

12

E le 3. Sketch th icr=——m—:.
xample etch the conic r 3T d5nd

333



Calculus - 10.6 Conic Sections in Polar Coordinates

Example 4. If the ellipse of Example 2 is rotated through an angle 7/4 about
the origin, find a polar equation and graph the resulting ellipse.

Theorem 10.6.3. The polar equation of an ellipse with focus at the origin,
semimagor axis a, eccentricity e, and directrix x = d can be written in the form

a(l —e?)
r=-—2
1+ ecosf

Definition 10.6.1. The positions of a planet that are closest
to and farthest from the sun are called its perihelion and aphe-
lion, respectively, and correspond to the vertices of the ellipse
(see the figure). The distances from the sun to the perihelion r

and aphelion are called the perihelion distance and aphelion dis- 0
tance, respectively. )

planet

aphelion perihelion

Theorem 10.6.4. The perihelion distance from a planet to the
sun is a(l — e) and the aphelion distance is a(1 + e).

Proof. If the sun is at the focus F', at perihelion we have # = 0, so

a(l—e*)  a(l—e)(l+e)

1+ ecosO 1+e

Similarly, at aphelion § = 7 and r = a(1 + e). O
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Example 5. (a) Find an approximate polar equation for the elliptical orbit
of the earth around the sun (at one focus) given that the eccentricity is
about 0.017 and the length of the major axis is about 2.99 x 10® km.

(b) Find the distance from the earth to the sun at perihelion and at aphelion.
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Chapter 11

Infinite Sequences and Series

11.1 Sequences

Definition 11.1.1. A sequence can be thought of as a list of numbers written
in a definite order:
a1,09,03,04,...,0pn,....

The number a, is called the first term, as is the second term, and in general
a, is the nth term.

A sequence can also be defined as a function whose domain is the set of positive
integers. However, we usually write a, instead of the function notation f(n)
for the value of the function at the number n.

The sequence {ay, as,as, ...} is also denoted by

{an} or {an}nZ,.

Example 1. Some sequences can be defined by giving a formula for the nth
term. In the following examples we give three descriptions of the sequence:
one by using the preceding notation, another by using the defining formula,
and a third by writing out the terms of the sequence. Notice that n doesn’t
have to start at 1.

336



Calculus - 11.1 Sequences

n 1% n
a, =
n-+1 n-+1

a, =vn—3n2>3

(d) {cosnl} anzcos%,nzo

Example 2. Find a formula for the general term a,, of the sequence

3 4 5 6 7
5 2571257 625731257

assuming that the pattern of the first few terms continues.
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Example 3. Here are some sequences that don’t have a simple defining equa-
tion.

(a) The sequence {p,}, where p, is the population of the world as of January
1 in the year n.

we let a, be the digit in the nth decimal place or the number e, then
b) If 1 be the digit in th h decimal pl f th b h
{a,} is a well-defined sequence whose first few terms are

{7,1,8,2,8,1,8,2,4,5,...}.

(c) The Fibonacci sequence {f,} is defined recursively by the conditions

flzl f2:1 fn:fn—l+fn—2 n > 3.
Each term is the sum of the two preceding terms. The first few terms are
{1,1,2,3,5,8,13,21,...}

This sequence arose when the 13th-century Italian mathematician known
as Fibonacci solved a problem concerning the breeding of rabbits.

Definition 11.1.2. A sequence {a,} has the limit L and we write

lim a, = L or a, — L asn— oo
n—oo

if we can make the terms a,, as close to L as we like by taking n sufficiently
large. If lim, .., exists, we say the sequence converges (or is convergent).
Otherwise, we say the sequence diverges (or is divergent).

Definition 11.1.3 (Precise Definition of the Limit of a Sequence). A sequence
{a,} has the limit L and we write

lim a, = L or a, -+ Lasn— o
n—oo

if for every € > 0 there is a corresponding integer N such that
if n>N then la, — L| < e.

Theorem 11.1.1. Iflim, . f(z) = L and f(n) = a, when n is an integer,
then lim,, s~ a, = L.

Definition 11.1.4. lim,,_,, a, = oo means that for every positive number M
there is an integer NV such that

if n>N then a, > M.
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Theorem 11.1.2 (Limit Laws for Sequences). If {a,} and {b,} are convergent
sequences and ¢ is a constant, then

lim (a, + b,) = lim a, + lim b,
n—00 n—00 n—00

lim (a,, — b,) = lim a, — lim b,

n—oo n—oo n—oo
lim ca, = ¢ lim a, lim c=c
n—0o0 n—oo n—oo
lim (a,b,) = lim a, - lim b,
n—oo n—oo n—oo

a lim a,
lim — = 2= if lim b, #0
n—oo by, lim b, n—00

n—oo

n—oo

p
lim af = [lim an] if p>0 and a, > 0.
n—oo

Theorem 11.1.3 (Squeeze Theorem for Sequences). If a, < b, < ¢, for

n > ng and lim a, = lim ¢, = L, then lim b, = L.
n—oo n—oo n—oo

Theorem 11.1.4. If lim |a,| =0, then lim a, = 0.
n—oo n—oo

Proof. Since lim,,_,, |a,| =0,

lim —|a,| =0= — lim |a,| = 0.
n—oo n—oo

But —|a,| < a, < |a,| for all n, so by the squeeze theorem for sequences,
lim,, o a, = 0. ]

n

Example 4. Find lim :
n—oo N + 1
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n
Example 5. Is the sequence a, = T convergent or divergent?
n

1
Example 6. Calculate lim nn
n—oo n

Example 7. Determine whether the sequence a,, = (—1)" is convergent or
divergent.
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n

if it exists.

Example 8. Evaluate lim
n—o0 n

Theorem 11.1.5. If lim a, = L and the function f is continuous at L, then

n—o0

lim f(a,) = f(L).

n—o0

Proof. Choose a particular n, say ng. By the definition of a limit of a sequence,
given 1 > 0 there exists an integer N, such that |a,, — L| < €1 for ng > N.
Similarly, by the definition of continuity, the limit of f exists at L, so for e5 > 0
there exists e; > 0 such that if |a,, — L| < ;1 then |f(an,) — f(L)| < 2. This
is true for arbitrary €3 > 0, so lim, o f(a,) = f(L). O
Example 9. Find lim sin(7/n).

n—oo
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Example 10. Discuss the convergence of the sequence a, = n!/n", where

Example 11. For what values of r is the sequence {r"} convergent?
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Definition 11.1.5. A sequence {a,} is called increasing if a, < a,; for all
n > 1, that is, a; < as < ag < ---. It is called decreasing if a,, > a,,, for all
n > 1. A sequence is monotonic if it is either increasing or decreasing.

3
Example 12. Is the sequence { n } increasing or decreasing?
n
Example 13. Show that the sequence a,, = 2?:_ 1 is decreasing.
n
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Definition 11.1.6. A sequence {a,} is bounded above if there is a number
M such that

a, < M for all n > 1.

It is bounded below if there is a number m such that

m < a, for all n > 1.

If it is bounded above and below, then {a,} is a bounded sequence.

Theorem 11.1.6 (Monotonic Sequence theorem). Every bounded, monotonic
sequence 1s convergent.

Example 14. Investigate the sequence {a,,} defined by the recurrence relation

1
G1:2 an+1:§(an+6) forn:1,2,3,....
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11.2 Series

Definition 11.2.1. In general, if we try to add the terms of an infinite se-
quence {a,}>2; we get an expression of the form

a1+a2+a3+...+an_’_...

which is called an infnite series (or just a series) and is denoted, for short, by

the symbol
Z an, or Z -
n=1

Definition 11.2.2. Given a series Y >, a, = a1 +as+az+--- , let s, denote
its nth partial sum:

n
Sp = 5 a; =aiy+az+---+ay.
i=1

If the sequence {s,} is convergent and lim,_,, S, = s exists as a real number,
then the series Y a,, is called convergent and we write

o0

n=1

The number s is called the sum of the series. If the sequence {s,} is divergent,
then the series is called divergent.

Example 1. Find the sum of the series > | a, if the sum of the first n terms

of the series is
2n

3n+5

Sp=a1+ay+ - +a, =
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Example 2. Find the sum of the geometric series

oo

a+a7’+a7’2—|—ar3—|—~~—i—ar"71+--~IZar”’l a# 0

where each term is obtained from the preceding one by multiplying it by the
common ratio 7.
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Example 3. Find the sum of the geometric series

5_94_@_@4_
3 9 27

Example 4. Is the series Y 2?"3!~" convergent or divergent?
n=1
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Example 5. A drug is administered to a patient at the same time every day.
Suppose the concentration of the drug is C,, (measured in mg/mL) after the
injection on the nth day. Before the injection the next day, only 30% of the
drug remains in the bloodstream and the daily dose raises the concentration
by 0.2 mg/mL.

(a) Find the concentration after three days.

(b) What is the concentration after the nth dose?

(c) What is the limiting concentration?
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Example 6. Write the number 2.317 = 2.3171717.. .. as a ratio of integers.

Example 7. Find the sum of the series > 2", where |z| < 1.
n=0
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- 1
Example 8. Show that the series Z ( is convergent, and find its
n=1

n(n+1)

suim.
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Example 9. Show that the harmonic series

i1—1+1+1+1+
n 2 3 4

n=1

is divergent.
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Theorem 11.2.1. If the series Y a, is convergent, then lim a, = 0.
n=1 n—oo

Proof. Let s, = a; +as + -+ + a,. Then a, = s, — s,—1. Since > a,
is convergent, the sequence {s,} is convergent. Let lim, .. S, = s. Since
n—1— 00 as n — 0o, we also have lim,,_,, s,,_1 = s. Therefore

lim a, = lim (s, — $,—1) = lim s, — lim s, 1 = s —s=0. O
n—oo n—oo n—oo n—oo

Corollary 11.2.1 (Test for Divergence). If lim a,, does not exist or if lim a,, #
n—o0 n—oo

[e.e]

0, then the series Y a, is divergent.
n=1

Proof. 1f the series is not divergent, then it is convergent, and so lim,, o, a,, = 0
by Theorem 11.2.1. The result follows by contrapositive. O

o0 2
Example 10. Show that the series Z n diverges.

15n2+4
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Theorem 11.2.2. If > a, and b, are convergent series, then so are the
series Y ca, (where ¢ is a constant), > (a, +by), and > (a, —by,), and

(i) ican = cian
n=1 n=1

(i1) i(an +b,) = ian + ibn
n=1 n n=1

=1
(111) i(an —b,) = ian - ibn
n=1 n=1 n=1

- 3 1
Example 11. Find the sum of the series Z (m + 2—)
n(n n

n=1

Remark 1. A finite number of terms doesn’t affect the convergence or diver-
gence of a series. For instance, suppose that we were able to show that the
series

is convergent. Since
—~ n 1 2 3 & n
2T atetmt i w

it follows that the entire series > >~ n/(n® + 1) is convergent. Similarly, if it
is known that the series > > . a, converges, then the full series

00 N 00
Zan:Zan+ Z Ay

n=1 n=1 n=N+1

is also convergent.
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11.3 The Integral Test and Estimates of Sums

Theorem 11.3.1 (The Integral Test). Suppose f is a continuous, positive,
decreasing function on [1,00) and a, = f(n). The the series Y -, a, is con-
vergent if and only if the improper integral floo f(x) dx is convergent. In other
words:

(i) If/ f(z)dx is convergent, then Y a, is convergent.
1 n=1

(1) If/ f(z)dx is divergent, then »_ a, is divergent.
1 n=1

Proof.

(i) If [ f(z) dz is convergent, then comparing the areas of the
rectangles with the area under y = f(x) from 1 to n in the
top figure, we see that

Zai:a2+a3—|—~~—|—anS/nf(:c)dxg/oof(x)dx

since f(z) > 0. Therefore
Sp = a1 —|—Zai < +/ f(z)dx = M, say.
i=2 1

Since s, < M for all n, the sequence {s,} is bounded above. Also
Sn+l = Sn + Any1 = Sp

since ap11 = f(n+1) > 0. Thus {s,} is an increasing bounded sequence
and so it is convergent by the Monotonic Sequence Theorem.
(i) If [° f(z) dx is divergent, then [|* f(z)dz — oo as n — oo

because f(z) > 0. But the bottom figure shows that ’

n n—1
/ f(x)dx§a1+a2+-~-+an_1:Zai:sn_l
1 i=1

and so s, 1 — 00, implying that s, — oc. O]
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oo
Example 1. Test the series g for convergence or divergence.
n=1

n?+1

o0

1
Example 2. For what values of p is the series Z — convergent? (This series
n
n=1
is called the p-series.)
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Example 3. Determine whether each series converges or diverges.

1 1 1 1 1
B2 m=mtmtmtat

n=1

z
[M]¢
%y
"
+
Sl-
+
-
_l_
-
+

o0
Inn
Example 4. Determine whether the series E —— converges or diverges.
n

n=1
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Definition 11.3.1. The remainder

Rn:*s_sn:an+1+an+2+an+3+"'

is the error made when s,,, the sum of the first n terms, is used as an approx-

imation to the total sum.

Theorem 11.3.2 (Remainder Estimate for the Integral Test).
Suppose f(k) = ag, where f is a continuous, positive, decreasing
function for x > n and > a, is convergent. If R, = s —s,, then

/n O: f(z)dz < R, < / " fydo

Proof. Comparing the rectangles with the area under y = f(x)
for x > n in the top figure, we see that

R, =api1+ apio+--- S/ f(z)dz.

Similarly, we see from the bottom figure that

Rn:an+1+an+2+---2/ f(z)dx. O]
n+1

<

a
n+1| a9

Ap+1

Ap+2

n+1

Example 5. (a) Approximate the sum of the series Y 1/n3 by using the sum
of the first 10 terms. Estimate the error involved in this approximation.
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(b) How many terms are required to ensure that the sum is accurate to within
0.0005?7

Corollary 11.3.1. Suppose f(k) = a, where f is a continuous, positive,
decreasing function for x > n and > a, is convergent. Then

sn—l—/n:f(x)dxgsgsn—f—/noof(x)dx.

Example 6. Use Corollary 11.3.1 with n = 10 to estimate the sum of the

[eS)
i 1
series E -3
n

n=1
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11.4 The Comparison Tests

Theorem 11.4.1 (The Comparison Test). Suppose that > a, and )b, are
series with positive terms.

(1) If > by, is convergent and a, < b, for alln, then_ a, is also convergent.

(11) If > by is divergent and a, > b, for all n, then > a, is also divergent.

Proof. (i) Let
n o0
S ST S )
i=1 i=1 n=1
Since both series have positive terms, the sequences {s,} and {¢,} are
increasing (S,4+1 = Sp+ant1 > Sp). Alsot, — ¢, s0t, <t forall n. Since
a; < b;, we have s, < t,. Thus s, <t for all n. This means that {s,} is

increasing and bounded above and therefore converges by the Monotonic
Sequence Theorem. Thus ) a, converges.

(i) If > by is divergent, then ¢, — oo (since {t,} is increasing). But a; > b;

SO Sy, > t,,. Thus s, — oo. Therefore > a,, diverges. O
Example 1. Determine whether the series i L converges or di
pre s = 2n2 +4n + 3 &

verges.
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“Ink
Example 2. Test the series Z - for convergence or divergence.
k=1

Theorem 11.4.2 (The Limit Comparison Test). Suppose that y a,, and > b,
are series with positive terms. If

where ¢ 1s a finite number and ¢ > 0, then either both series converge or both
diverge.

Proof. Let m and M be positive numbers such that m < ¢ < M. Because
a, /by is close to ¢ for large n, there is an integer N such that

a
m<b—n<M when n > N,
n

and so
mb,, < a, < Mb, when n > N.

If > b, converges, so does > Mb,. Thus > a, converges by part (i) of the
Comparison Test. If > b, diverges, so does > mb, and part (ii) of the Com-
parison Test shows that > a,, diverges. ]
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oo
Example 3. Test the series g for convergence or divergence.
n=1

on — 1

o0

2n? + 3
Example 4. Determine whether the series Z nton

< V5 +nd

converges or diverges.

n—=
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Example 5. Use the sum of the first 100 terms to approximate the sum of
the series > 1/(n® + 1). Estimate the error involved in this approximation.
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11.5 Alternating Series

Definition 11.5.1. An alternating series is a series whose terms are alter-
nately positive and negative.

Theorem 11.5.1 (Alternating Series Test). If the alternating series

o0

S (=1)"by=by—by+ by —by+bs—bg+--- by >0

n=1
satisfies
(i) by < b, for alln
(ii) lim b, =0
n—o0

then the series is convergent.

Proof.
b,
_ b2
+ b,
— b,
+ bs
l< — b
| T T T >
0 Sy Sy Se s Ss S5 S
We first consider the even partial sums:
So=b; —by >0 since by < by
Sy = S9 + (bg — b4) 2 So since b4 S bg.
In general
Son = Son—2 + (Dan—1 — ban) > S2n—2 since ba, < boy—1.
Thus

0<s5y<s54<56< -0 <59 <ove

But we can also write
Sop = b1 — (bg — b3) — (by — bs) — -+ - — (ban—2 — bap—1) — bap.
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Every term in parenthesis is positive, so sg, < by for all n. Therefore, the
sequence {sy,} of even partial sums is increasing and bounded above. It is
therefore convergent by the Monotonic Sequence Theorem. Let’s call its limit
s, that is,

lim ss, = s.
n—oo

Now we compute the limit of the odd partial sums:

lim s9,11 = lm (S2, + bapi1)
n—oo n—oo

= lim S5, + lim bg,
n—o0o

n—oo
=s5+0
= s.
Since both the even and odd partial sums converge to s, we have lim,,_,o, s, = s
and so the series is convergent. O]

Example 1. Determine whether the alternating harmonic series

1 1 1 = (—1)!
1l— 4+ 4. = A
2 3 a’ ; n

converges or diverges.
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= (—1)"3
Example 2. Determine whether the series Z w
n

1 converges or diverges.

n=1

Example 3. Test the series Z(—l)wrl

n=1

——— for convergence or divergence.
n3 +1
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Theorem 11.5.2 (Alternating Series Estimation Theorem). Ifs = Y (—1)""1b,,
where b, > 0, is the sum of an alternating series that satisfies

(i) bpi1 < b, and (i) lim b, =0

then
|Ru| =[5 — 80| < bppa

Proof. We know from the proof of the Alternating Series Test that s lies be-
tween any two consecutive partial sums s,, and s, 1. (There we showed that
s is larger than all the even partial sums. A similar argument shows that s is
smaller than all the odd sums.) It follows that

|5_8n| < |Sn+1_8n| :bn—f—l' O
oo
. . (=1 .
Example 4. Find the sum of the series g ‘ correct to three decimal
n!
n=0

places.
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11.6 Absolute Convergence, Ratio and Root
Tests

Definition 11.6.1. A series ) a,, is called absolutely convergent if the series
of absolute values ) |a,| is convergent.

Example 1. Is the series

= (=1 1 1 1
ey L L

n=1

absolutely convergent?

Example 2. Is the series

= (=)t 1 1 1
~ 7 -4z
Z n 2+3 4

n=1

absolutely convergent?
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Definition 11.6.2. A series Y a,, is called conditionally convergent if it is

convergent but not absolutely convergent.

Theorem 11.6.1. If a series Y a,, is absolutely convergent, then it is conver-

gent.

Proof. Observe that the inequality

0 < a,+ |a,| < 2|a,|

is true because |a,| is either a,, or —a,. If > a, is absolutely convergent, then
> |ay| is convergent, so Y 2|a,| is convergent. Therefore, by the Comparison

Test, Y (a, + |a,|) is convergent. Then

Za” = Z(an + lan|) —

> lan]

is the difference of two convergent series and is therefore convergent. O]

Example 3. Determine whether the series

cos 3

. cosn cosl cos2
Z n2 o 12 + 22
n=1

is convergent or divergent.
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Theorem 11.6.2 (The Ratio Test).

o
a
(i) If lim mtl = L < 1, then the series Zan s absolutely convergent
n—oo n —1

(and therefore convergent).

o0
. . An41 . Ant1 . .
(it) If lim |—=| = L > 1 or lim || = oo, then the series E ay, 1S
n—00 | Ay n—oo | Ay —
divergent.
(i3) If lim ntll = 1, the Ratio Test is inconclusive; that is, no conclusion
n—00 | Qp

can be drawn about the convergence or divergence of »_ a,.

% 3
Example 4. Test the series Z(—l)”% for absolute convergence.
n=1

X n
n
Example 5. Test the convergence of the series E —-
n!
n=1
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Theorem 11.6.3 (The Root Test).

(1) If lim {/|a,| = L < 1, then the series Zan s absolutely convergent
n—oo
n=1
(and therefore convergent).

(i) If lim {/|a,| = L > 1 or lim {/|a,| = oo, then the series Zan is
n—oo n—oo

n=1
divergent.

(i1i) If lim {/|a,| =1, the Root Test is inconclusive.
n—oo

Example 6. Test the convergence of the series Z (Bn i 2) .
n
n=1
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Definition 11.6.3. By a rearrangement of an infinite series Y a,, we mean a
series obtained by simply changing the order of the terms.

Remark 1. If Y a, is an absolutely convergent series with sum s, then any
rearrangement of »_ a,, has the same sum s.

Remark 2. It Y a, is a conditionally convergent series and r is any real number
whatsoever, then there is a rearrangement of > a,, that has a sum equal to 7.
For example, if we multiply the alternating harmonic series

] 1+1 1+1 1+1 1+ 2
23 145 6 7 s 77"
by %,We get
1 1+ 1 1 - 11 5
2 16 8 T a2n®
Then inserting zeros between the terms of this series gives
1 1 1 1 1
0O+-+0—-=-4+0+=-4+0—=+---==In2
+ o0 0+ 0ot ;2.

and we can add this to the alternating harmonic series to get

1—i—1 1+1+1 1+ 312
- — — — - — — cee = —In
3 2 5 7 A4 2 ’

which is a rearrangement of the alternating harmonic series with a different
sum.

371



Calculus - 11.7 Strategy for Testing Series

11.7 Strategy for Testing Series

n—1
n+1

Example 1. Z
n=1

n3+1

Example 2. Z m
n=1

Example 3. Zne_"Q.

n=1
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nS

nt+1

Example 4. Z(—l)"

n=1

Example 5. Z =k
k=1

=~ 1
Example 6. Z —.
— 243
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11.8 Power Series

Definition 11.8.1. A power series is a series of the form

o0
n __ 2 3
Cp" = Co + 1T + Ccox” + 3" + - - -
n=0

where x is a variable and the ¢,’s are constants called the coefficients of the
series.
More generally, a series of the form

ch(x_a)n:Co+01($—a)+02(x—a)2+u.

n=0

is called a power series in (r — a) or a power series centered at a or a power
series about a.

oo
Example 1. For what values of x is the series Z nlz" convergent?

n=0

374



Calculus - 11.8 Power Series

00 _3)n
Example 2. For what values of x does the series 5 u
n

n=1

converge?

Example 3. Find the domain of the Bessel function of order 0 defined by

N
0o =3

n=0
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Theorem 11.8.1. For a given power series Z cn(x—a)", there are only three
n=0
possibilities:

(i) The series converges only when r = a.
(ii) The series converges for all x.

(111) There is a positive number R such that the series converges if |x —a| < R
and diverges if |x — a| > R.

Definition 11.8.2. The number R in case (iii) is called the radius of conver-
gence of the power series. By convention, the radius of convergence is R = 0 in
case (i) and R = oo in case (ii). The interval of convergence of a power series
is the interval that consists of all values of x for which the series converges.

Example 4. Find the radius of convergence and interval of convergence of

the series
n+1

n=0
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Example 5. Find the radius of convergence and interval of convergence of
the series -
Z n(x+2)"

3n+1

n=0
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11.9 Representations of Functions as Power
Series

Example 1. Express 1/(1 + x?) as the sum of a power series and find the
interval of convergence.

Example 2. Find a power series representation for 1/(x + 2).
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Example 3. Find a power series representation of z3/(x + 2).

Theorem 11.9.1. If the power series Y c¢p(x —a)™ has radius of convergence
R > 0, then the function f defined by

f(x) =co+ci(x—a)+cy(xr —a)? chm’—a
is differentiable (and therefore continuous) on the interval (a — R,a+ R) and
(i) f'(z) = cy +2co(x — a) + 3cs(x — a)? chnx—a -1

(ii) /f(l')dx:C+CO($_Q)+61(I—2(1)2+02(x_3a>3

n+1

_C+Z n_+1

The radii of convergence of the power series in Equations (i) and (ii) are both

R.
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Example 4. Find the derivative of the Bessel function

2 (—1)ran
Jo(x) = Z%

n=0

Example 5. Express 1/(1 — )% as a power series using differentiation. What
is the radius of convergence?
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Example 6. Find a power series representation for In(1 + ) and its radius of
convergence.

Example 7. Find a power series representation for f(z) = tan™! z.
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Example 8. (a) Evaluate [[1/(1+ z7)]dz as a power series.

(b) Use part (a) to approximate foo's[l/(l + 27)]dx correct to within 1077.
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11.10 Taylor and Maclaurin Series

Theorem 11.10.1. If f has a power series representation (expansion) at a,
that is, if

f(x):ch(x—a)” |z —al < R

then its coefficients are given by the formula

Definition 11.10.1. The Taylor series of the function f at a (or about a or
centered at a) is

>~ £n)(g
fa) =S LW gy

n.

f'(a)
1!

f"(a)
2!

o Oy

fla) + == —a) +

For the special case a = 0 the Taylor series becomes

O 10 o, 170

3
1 9] T

O fn)
f@) =3 e g0y 4

n

which we call the Maclaurin Series.

Example 1. Find the Maclaurin series of the function f(x) = e* and its radius
of convergence.

383



Calculus - 11.10 Taylor and Maclaurin Series

Theorem 11.10.2. If f(z) = T,,(z)+ R, (), where T,, is the nth-degree Taylor
polynomial of f at a, R, is the remainder of the Taylor series, and

lim R,(x) =0

n—o0

for |x —al < R, then f is equal to the sum of its Taylor series on the interval
|z —a| < R.

Theorem 11.10.3 (Taylor’s Inequality). If |f™+Y)(z)| < M for |z —a| < d,
then the remainder R,(x) of the Taylor series satisfies the inequality

Ro(2)] < —2

< mh: —al™™ for|r —al <d.

Example 2. Prove that e” is equal to the sum of its Maclaurin series.
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Example 3. Find the Taylor series f(x) = e* at a = 2.

Example 4. Find the Maclaurin series for sinx and prove that it represents
sinz for all z.
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Example 5. Find the Maclaurin series for cos x.

Example 6. Find the Maclaurin series for the function f(z) = x cos .
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Example 7. Represent f(x) = sinx as the sum of its Taylor series centered
at /3.
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Example 8. Find the Maclaurin series for f(z) = (1 + x)*, where k is any
real number.
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Theorem 11.10.4 (The Binomial Series). If k is any real number and |z| < 1,

then

Qo) =3 (i)x g BE=D L RE-DE=2)

2! 3!

n=0

where the coefficients

(k:) k(k—1)(k—2)-- (k—n+1)

n n!

are called the binomial coefficients.

Example 9. Find the Maclaurin series for the function f(z) =

its radius of convergence.
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1 1 1

Example 10. Find the sum of the series 12 3.9 + 55 1.9

Example 11. (a) Evaluate [e¢=*"dz as an infinite series.

(b) Evaluate fol e~ dx correct to within an error of 0.001.
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T __ 1 _
Example 12. Evaluate lim #.
x—0 x
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Example 13. Find the first three nonzero terms in the Maclaurin series for

(a) e"sinx

(b) tanx
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11.11 Applications of Taylor Polynomials

Example 1. (a) Approximate the function f(z) = /z by a Taylor polyno-
mial of degree 2 at a = 8.

(b) How accurate is this approximation when 7 < z < 9?7
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Example 2. (a) What is the maximum error possible in using the approxi-

mation

3 2P

sinx ~ x — 3 + E
when —0.3 < x < 0.37 Use this approximation to find sin 12° correct to

six decimal places.

(b) For what values of x is this approximation accurate to within 0.000057
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Example 3. In Einstein’s theory of special relativity the mass of an object

moving with velocity v is
mo

where my is the mass of an object when at rest and c is the speed of light.
The kinetic energy of the object is the difference between its total energy and
its energy at rest:

m =

K = mc? — moc?.

(a) Show that when v is very small compared with ¢, this expression for K

agrees with classical Newtonian physics: K = %mOUQ.
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(b) Use Taylor’s Inequality to estimate the difference in these expressions for
K when |v| <100 m/s.
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Chapter 12

Vectors and the Geometry of

Space

12.1 Three-Dimensional Coordinate Systems

Definition 12.1.1. The coordinate axes are three directed lines
through the origin that are perpendicular to each other and la-
beled the x-axis, y-axis, and z-axis. The direction of the z-axis
is determined by the right-hand rule as illustrated in the figure.

Definition 12.1.2. The three coordinate axes determine the
three coordinate planes illustrated in the figure. These three
coordinate planes divide space into eight parts, called octants.
The first octant, in the foreground of the figure, is determined
by the positive axes.

Definition 12.1.3. We represent a point P in space by the or-
dered triple (a, b, c) where a is the distance from the yz-plane to
P, bis the distance from the zz-plane to P, and c is the distance
from the xy-plane to P. We call a, b, and ¢ the coordinates of P.

\.
§

The points (a,b,0), (0,b,¢), and (a,0,c) are called the projections of P onto

the xy-plane, yz-plane, and xz-plane, respectively.

Definition 12.1.4. The Cartesian product RxRxR = {(z,y, 2) | z,y,z € R}
is the set of all ordered triples of real numbers and is denoted by R3. It is

called a three-dimensional rectangular coordinate system.
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Example 1. What surfaces in R? are represented by the following equations?

(a) z2=3

Example 2. (a) Which points (x,y, z) satisfy the equations

4yt =1 and z =237

(b) What does the equation x? + y* = 1 represent as a surface in R3?
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Example 3. Describe and sketch the surface in R? represented by the equation
Y=z

Theorem 12.1.1 (Distance Formula in Three Dimensions). The distance
| Py P2| between the points Py(xy,y1,21) and Py(xa,ys, 22) is

PPy = /(22 — 21)2 + (Y2 — y1)? + (22 — 21)?

Example 4. Find the distance from the point P(2, —1,7) to the point Q(1, —3,5).

Example 5. Find an equation of a sphere with radius r and center C'(h, k, ).
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Example 6. Show that 22 + y* + 2% + 42 — 6y + 22 + 6 = 0 is the equation
of a sphere, and find its center and radius.

Example 7. What region in R? is represented by the following inequalities?

1§w2+y2+22§4 z <0.
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12.2 Vectors

Definition 12.2.1. A vector is a quantity that has both mag-

nitude and direction, denoted v or ¢. For a particle that moves B
along a line segment from point A to point B, the correspond- v

ing displacement vector, shown in the figure, has initial point A

and terminal point B and we indicate this by writing v = AB. ¢
Because the vector u = @ has the same length and the same

direction as v, even though it is in a different position, we say that u and v
are equivalent (or equal) and we write u = v. The zero vector, denoted by 0
has length 0.

Definition 12.2.2 (Vector Addition). If u and v are vectors positioned so
the initial point of v is at the terminal point of u, then the sum u + v is the
vector from the initial point of u to the terminal point of v.

Example 1. Draw the sum of the vectors a and b shown in the
ﬁgure' \

Definition 12.2.3 (Scalar Multiplication). If ¢ is a scalar and v is a vector,
then the scalar multiple cv is the vector whose length is || times the length of
v and whose direction is the same as v if ¢ > 0 and is opposite to v if ¢ < 0.
If c=0o0rv=0,then cv =0.

Definition 12.2.4. Two nonzero vectors are parallel if they are scalar multi-
ples of one another. In particular, the vector —v = (—1)v, called the negative
of v, has the same length as v but points in the opposite direction. By the
difference u — v of two vectors we mean

u—v=u+(—v).
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Example 2. If a and b are the vectors shown in the figure, draw

a—2b. \ %’

Definition 12.2.5. If we place the initial point of a vector a at the origin of a
rectangular coordinate system, then the terminal point of a has coordinates of
the form (ai, az) or (aj,as,as). These coordinates are called the components
of a and we write

a= (a,as) or a = (ay, as, as).

The representation of a vector from the origin to a point is called the position
vector of the point.

Theorem 12.2.1. Given the points A(x1,y1,21) and B(xa,ys, 22), the vector
a with representation E 18

a=(To—T1,Y2 — Y1, %2 — 21).

Proof. The vector a = O? = (ay, as, az) is the position vector of the point
P(ay,ay,a3). If 1@ is another representation of a, where the initial point is
A(z1,y1, 21) and the terminal point is B(xs, ys, 22), then we must have z1+a; =
To, Y1 + as = Yo, and 27 + ag = 2z9. Therefore, a1 = x9 — 21, ao = yo — y1, and
as = 29 — 21. ]

Example 3. Find the vector represented by the directed line segment with
initial point A(2,—3,4) and terminal point B(—2,1,1).
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Definition 12.2.6. The magnitude or length of the vector v is the length of
any of its representations and is denoted by the symbol |v| or ||v]|.

Theorem 12.2.2. The length of the two-dimensional vector a = {(ay, as) is

la| = y/a} + a3.

The length of the three-dimensional vector a = (ay, as, as) is

la| = \/a? + a3 + a3.
Theorem 12.2.3. If a = (ay,a3) and b = (b1, by), then
a+b= (a1 +by,as+ by) a—b=(a; —bi,ay — by)

and
ca = (caq, cay)

for a scalar c. Similarly, for three-dimensional vectors,

(a1, as,as) + (b1, by, b3) = (a1 + by, az + by, az + bs)
<a1,a2,a3> - <517 bz,b3> = (Cll —b1,a9 — by, a3 — b3>

clay, ag, as) = {(cay, cas, cas).

Example 4. If a = (4,0,3) and b = (—2,1,5), find |a|] and the vectors a+ b,
a — b, 3b, and 2a + 5b.
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Definition 12.2.7. We denote by V5 the set of all two-dimensional vectors
and by V3 the set of all three-dimensional vectors. More generally, we denote
by V,, the set of all n-dimensional vectors. An n-dimensional vector is an
ordered n-tuple:

a={(ay,ag,...,a,)

where aq, a9, ...,a, are real numbers that are called the components of a.
Addition and scalar multiplication are defined in terms of components just as
for the cases n =2 and n = 3.

Theorem 12.2.4 (Properties of Vectors). Ifa, b, and c are vectors in V,, and
c and d are scalars, then

l.a+b=b+a 2.a+(b+c)=(a+b)+c
3.a+0=a 4.a+(—a)=0

5. c(la+b)=ca+cb 6. (c+d)a=ca+da

7. (cd)a = ¢(da) 8. la=a

Definition 12.2.8. The vectors
i=(1,0,0) j=10,1,0) k =(0,0,1)

are called the standard basis vectors. They have length 1 and point in the
directions of the positive z-, y-, and z-axes. Similarly, in two dimensions we

define i = (1,0) and j = (0, 1).

Theorem 12.2.5. Any vector in V3 can be expressed in terms of i, j, and k.
Similarly, any vector in Vo can be expressed in terms of i and j.
Proof. If a = (ay, as,as3), then we can write

a= <a17&27a3> = <a17 O7O> + <0,CZ2,0> + <0707a3>
= CL1<]_, 0, 0> + (IQ(O, 1, 0> + CL3<0, 0, 1>
= ali + CLQj =+ a3k.

Similarly, in two dimensions, we can write

a= (a1, as) = a1+ asj. O
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Example 5. If a =i+ 2j — 3k and b = 4i + 7Tk, express the vector 2a + 3b
in terms of i, j, and k.

Definition 12.2.9. A unit vector is a vector whose length is 1. For instance,
i, j, and k are all unit vectors.

Theorem 12.2.6. In general, if a # 0, then the unit vector that has the same
direction as a is

Proof. Let ¢ = 1/]al. Then u = ca and c is a positive scalar, so u has the
same direction as a. Also

u| = [ca| = [c[la] = —]a] = L. O

Example 6. Find the unit vector in the direction of the vector 2i — j — 2k.
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Definition 12.2.10. A force is represented by a vector because it has both a
magnitude (measured in pounds or newtons) and a direction. If several forces
are acting on an object, the resultant force experienced by the object is the
vector sum of these forces.

Example 7. A 100-1Ib weight hangs from two wires as shown in the figure.
Find the tensions (forces) Ty and T, in both wires and the magnitudes of the
tensions.
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12.3 The Dot Product

Definition 12.3.1. If a = (ay, as, ag) and b = (by, b, b3), then the dot product
of a and b is the number a - b given by

a-b= a1b1 + Clng + CL3b3

and similarly
(ay,az) - (by,ba) = a1by + asby

for two-dimensional vectors.

Example 1. Compute the following dot products:

(a) (2,4)-(3,-1)
(b) <_17 77 4> : <67 2, _%>
(c) (+2j—3k)-(2j—k)

Theorem 12.3.1 (Properties of the Dot Product). If a, b, and ¢ are vectors
m Va3 and c is a scalar, then

1. a-a=|al? 2.
3.a-(b+c)=a-b+a-c 4. (ca)-(b) =c(a-b)=a- (cb)
5. 0-a=0

Theorem 12.3.2. If 0 is the angle between the vectors a and b, then

a-b = |a||b|cos¥.

Proof. If we apply the Law of Cosines to triangle OAB in the
figure, we get

|AB|? = |OA|* + |OB|? — 2|0A||OB| cos 6
la —b|* = |a|* + |b]* — 2|a||b| cos
(a—b)-(a—b) = |a]* + |b|* — 2|a||b| cos §
a-a—a-b—b-a+b-b=]a]®>+ |b]*—-2|al|b|cosd
la|* — 2a-b + |b]* = |a|]* + |b|* — 2|a||b| cos §
—2a-b = —2Ja||b|cosf
a-b = |a||b|cosf O

407



Calculus - 12.3 The Dot Product

Example 2. If the vectors a and b have lengths 4 and 6, and the angle
between them is 7/3, find a - b.

Corollary 12.3.1. If 0 is the angle between the nonzero vectors a and b, then

a-b

cosf) = ——.
|al[b|

Example 3. Find the angle between the vectors a = (2,2,—1) and b =
(5,—3,2).

Definition 12.3.2. Two nonzero vectors a and b are called perpendicular
or orthogonal if the angle between them is § = 7/2. The zero vector 0 is
considered to be perpendicular to all vectors.

Theorem 12.3.3. Two vectors a and b are orthogonal if and only if a-b = 0.

Proof. 1If § = /2, then
a-b = |a||b|cos(7/2) = 0.

Conversely, if a- b = 0, then cos# = 0, so § = 7/2. ]
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Example 4. Show that 2i 4+ 2j — k is perpendicular to 5i — 4j + 2k.

Definition 12.3.3. The direction angles of a nonzero vector a
are the angles a, 8, and v (in the interval [0,7]) that a makes
with the positive x-, y-, and z-axes, respectively. (See the figure.)
The cosines of these direction angles, cos «, cos 3, cos -y, are called
the direction cosines of the vector a.

Theorem 12.3.4. The direction cosines of a vector a = (ay, as,as3) are the
components of the unit vector in the direction of a, 1i.e.,

—a = (cos «, cos 3, cos ).

a

Proof. By Corollary 12.3.1,

Similarly,

Therefore,

a = <a17 as, CL3>
a = (|a|]cosa, |a| cos 3, |a| cos )

a = |a|(cos a, cos 3, cos )

—a = (cos a, cos 3, cos ). ]

al

Example 5. Find the direction angles of the vector a = (1,2, 3).

409



Calculus - 12.3 The Dot Product

Definition 12.3.4. If S is the foot of the perpendicular from R
to the line containing f@, then the vector with representation
ﬁ is called the vector projection of b onto a and is denoted by
proj, b. (See the figure.)

The scalar projection of b onto a (also called the component of
b along a) is defined to be the signed magnitude of the vector
projection, which is the number |b|cosf where 6 is the angle
between a and b. (See the figure.) This is denoted by comp, b.

Theorem 12.3.5. The scalar projection of b onto a is

a-b P [b| cos # = comp, b
comp, b= ——.
: El

The vector projection of b onto a is

) a-by a a-b
proj, b = <—> =T
lal /|| |a]

Proof. By Theorem 12.3.2,

a-b = |a||b|cosf
b
ao_ |b| cos 0,

al

which gives us the scalar projection of b onto a. Multiplying by the unit vector
gives us the vector projection in the direction of a. O]

Example 6. Find the scalar projection and vector projection of b = (1,1, 2)
onto a = (—2,3,1).
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Definition 12.3.5. Suppose that the constant force in moving

is defined to be the product of the component of the force along ,

R
an object from P to @ is F = P—}%, as in the figure. Then the . ‘
displacement vector is D = @ and the work done by this force i

WOIx - s 1
D

D and the distance moved:

W = (|F|cosf) |D].
Theorem 12.3.6. The work done by a constant force ¥ 1is the dot product

F - D, where D is the displacement vector.
Proof. By Theorem 12.3.2,
W = |F||D|cosf = F - D. O

Example 7. A wagon is pulled a distance of 100 m along a horizontal path
by a constant force of 70 N. The handle of the wagon is held at an angle of
35° above the horizontal path. Find the work done by the force.

Example 8. A force is given by a vector F = 3i+4j+ 5k and moves a particle
from the point P(2,1,0) to the point (4,6, 2). Find the work done.
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12.4 The Cross Product

Definition 12.4.1. If a = (aj,a,a3) and b = (b, by, b3), then the cross
product of a and b is the vector

a x b = (asbs — asbs, asby — a1bs, arby — ashy).

Definition 12.4.2. A determinant of order 2 is defined by

a b
a = ad — be.
A determinant of order 3 is defined by
ap az as
bl bg b3 = a bz b3 — a9 bl b3 +a bl b2 .
Ca C3 C1 C3 c1 Cy
C1 C2 C3

Theorem 12.4.1. The cross product of the vectors a = aqi + byj + bsk and
b = bll —|— bQJ —f- bgk iS

i j k
axb=l|a ay ag| =|"2 B[P By 2y
by bs bi b3 by bo
by by b3

Example 1. If a= (1,3,4) and b = (2,7, -5), find a x b.
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Example 2. Show that a x a = 0 for any vector a in V3.

Theorem 12.4.2. The vector a X b s orthogonal to both a and b.

Proof.

Gz as
by b3

ay as

by by

ay Qg

(axb)-a= b by

a; — as + as

= al(a2b3 — a3b2) — CLQ(Cleg — a3b1> —+ ag(a1b2 — CLle)
= a1a263 — a1b2a3 — a1a263 + b1a2a3 + @162&3 — b1a2a3
=0.

Similarly, (a x b) - b = 0.
Theorem 12.4.3. If 0 is the angle between a and b (so 0 < 6§ < x), then

la x b| = |a||b| sin 6.

Proof.

la X b|? = (azbs — azby)® + (azb; — aib3)* + (a1by — azby)?
= a3b3 — 2aqa3bobs + azbs + azb? — 2a,azbibs + aib;
+ a3bs — 2ayasb by + a3b?
= (ai + a5 + a3)(b] + b3 + b3) — (a1by + azby + azbs)?
— Ja]?/bf? — (a - b)?
= |a*[b|* — [a|*|b|* cos™#
= |a*|b|*(1 — cos® )

= |a|?|b|*sin? 6.
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Vsin? @ = sin 6 because siné > 0 when 0 < 6 < 7, so
la x b| = |a]|b| sin 6. O
Corollary 12.4.1. Two nonzero vectors a and b are parallel if and only if

axb=0.

Proof. Two nonzero vectors a and b are parallel if and only if § = 0 or 7. In
either case sinf = 0, so |a x b| = 0 and therefore a x b = 0. O

Corollary 12.4.2. The length of the cross product a X b is equal to the area
of the parallelogram determined by a and b.

Proof. The geometric interpretation of Theorem 12.4.3. can be
seen by looking at the figure. If a and b are represented by
directed line segments with the same initial point, then they
determine a parallelogram with base |al, altitude |b|sin#, and
area

A = |a|(|b|sinf) = |a x b|. O

Example 3. Find a vector perpendicular to the plane that passes through the
points P(1,4,6), Q(—2,5,—1), and R(1,—1,1).
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Example 4. Find the area of the triangle with vertices P(1,4,6), Q(—2,5,—1),
and R(1,—1,1).

Theorem 12.4.4. Ifa, b, and c are vectors and c is a scalar, then

~

axb=-bxa

2. (ca) x b=c(axb)=ax (cb)
3. ax(b+c)=axb+axc
4. (a+b)xc=axc+bxc
5.a-(bxc)=(axb)-c

K2

ax(bxc)=(a-c)b—(a-b)c

Theorem 12.4.5. The volume of the parallelepiped determined by the vectors
a, b, and c is the magnitude of their scalar triple product:

a; a2 das
V:|a-(b><c)|: b1 bQ b3
Ci1 Co C3

If the volume of the parallelepiped determined by a, b, and c is 0, then the
vectors must lie in the same plane; that is, they are coplanar.

Proof. The geometric interpretation of the scalar triple product

can be seen by looking at the figure. The area of the base paral- pxc| -7

lelogram is A = [bxc|. If 6 is the angle between a and b x ¢, then /
the height h of the parallelepiped is h = |a|| cos §|. Therefore the  ||g/a /
volume of the parallelepiped is C A ——————
b
V = Ah = |b x cl||a||cosf| = |a- (b X c)|. O
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Example 5. Use the scalar triple product to show that the vectors a =
(1,4,=7), b= (2,—1,4), and ¢ = (0, —9, 18) are coplanar.

Definition 12.4.3. If F is a force acting on a rigid body at a point given by
a position vector r then the torque 7 (relative to the origin) is defined to be
the cross product of the position and force vectors

T=rxF
and measures the tendency of the body to rotate about the origin.
Theorem 12.4.6. The magnitude of the torque vector is
|7| = |r x F| = |r||F|sin@

where 0 is the angle between the position and force vectors.

Example 6. A bolt is tightened by applying a 40-N force to a
0.25-m wrench as shown in the figure. Find the magnitude of
the torque about the center of the bolt.

0.25m
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12.5 Equations of Lines and Planes

Theorem 12.5.1. The vector equation of a line through the point

(370;3/0720) is
r=rg+itv

where rq is the position vector of (o, Yo, 20), V s a vector parallel
to the line, and t is a scalar.

Parametric equations for a line through the point (xo, Yo, 20) and
parallel to the direction vector {(a,b,c) are

X

T =x9+ at Yy =1yo+ bt z = 2o+ ct.
Example 1. (a) Find a vector equation and parametric equations for the
line that passes through the point (5,1,3) and is parallel to the vector
i+4j—2k.

(b) Find two other points on the line.

Definition 12.5.1. In general, if a vector v = (a, b, ¢) is used to describe the
direction of a line L, then the numbers a, b, and ¢ are called the direction
numbers of L. The equations

T—To Y—Y 22— %20
a b c

obtained by eliminating the parameter ¢ are called symmetric equations of L.
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Example 2. (a) Find parametric equations and symmetric equations of the
line that passes through the points A(2,4,—3) and B(3,—1,1).

(b) At what point does this line intersect the xy-plane?

Theorem 12.5.2. The line segment from vy to ry is given by the vector equa-
tion
r(t) = (1 —t)rg+try 0<t<1.
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Example 3. Show that the lines Ly and L, with parametric equations
Li: x=1+1 y=—2+3t z=4—1
Ly: x=2s y=3+s z=—3+4s

are skew lines; that is, they do not intersect and are not parallel (and therefore
do not lie in the same plane).

Definition 12.5.2. Either
n-(r—ry) =0

or
n-r=n-ry

is called a vector equation of a plane through point (zo, yo, 20)
where 1y is the position vector of (xg, yo, 20), r is the vector equa-
tion of the line through (zg, o, 20), and n is the vector through (z,yo, 20)
orthogonal to the plane, called a normal vector.

A scalar equation of the plane through point Py(xg, yo, 20) with normal vector
n = (a,b,c) is

a(x —xo) +b(y — yo) + c(z — 29) = 0.
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Example 4. Find an equation of the plane through the point (2,4, —1) with
normal vector n = (2,3,4). Find the intercepts and sketch the plane.

Theorem 12.5.3. The equation of a plane can be rewritten as the linear equa-
tion
ar+by+cz+d=0

where d = —(axg + by + czp).

Example 5. Find an equation of the plane that passes through the points
P(1,3,2), Q(3,—1,6), and R(5,2,0).
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Example 6. Find the point at which the line with parametric equations x =
24 3t, y = —4t, z = 5+t intersects the plane 4x + 5y — 2z = 18.

Definition 12.5.3. Two planes are parallel if their normal vec-

tors are parallel. If two planes are not parallel, then they in- \ T

tersect in a straight line and the angle between the two planes n\| ™

is defined as the acute angle between their normal vectors (see =

angle € in the figure). Sl M

Example 7. (a) Find the angle between the planes x +y + 2z = 1 and = —
2y+32=1
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(b) Find symmetric equations for the line of intersection L of these two planes.

Example 8. Find a formula for the distance D from a point P (xy, 41, 21) to
the plane ax + by 4+ cz +d = 0.
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Example 9. Find the distance between the parallel planes 10x +2y — 2z =5
and bx +y —z = 1.

Example 10. In Example 3 we showed that the lines

Ly: z=1+1 y=—2+3t z=4—1
Ly: x=2s y=3+s z=—-3+44s

are skew. Find the distance between them.
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12.6 Cylinders and Quadric Surfaces

Definition 12.6.1. The curves of intersection of a surface with planes parallel
to the coordinate planes are called traces (or cross-sections) of the surface.

Definition 12.6.2. A cylinder is a surface that consists of all lines (called
rulings) that are parallel to a given line and pass through a given plane curve.

Example 1. Sketch the graph of the surface z = 2.

Example 2. Identify and sketch the surfaces.

(a) 22 +y* =1

(b) y*+22=1
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Definition 12.6.3. A quadric surface is the graph of a second-degree equation
in three variables x, y, and z. The most general such equation is

Ar? + By’ + C2* + Dxy+ Eyz + Faz+ Gr + Hy+ 12+ J =0

where A, B,C, ..., J are constants, but by translation and rotation it can be
brought into one of the two standard forms

A + By +C2*+J =0 or Az*+By’+1z=0.
Example 3. Use traces to sketch the quadric surface with equation
2 2
2, Y z
=~ 4+ —=1
x” + 9 + 1

Example 4. Use traces to sketch the surface z = 422 + 3.
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Example 5. Sketch the surface z = y* — 22,

2 2

Example 6. Sketch the surface % +y? - ZZ =1
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Surface

Equation

Surface

Equation

Ellipsoid

.’172 y2 22

? + = + g =1
All traces are ellipses.

If a=0b=c, the
ellipsoid is a sphere.

Cone

22 .’172 y2

2 a2y
Horizontal traces are
ellipses.

Vertical traces in the
planes z = k and y = k
are hyperbolas if k # 0
but are pairs of lines if
k= 0.

Elliptic Paraboloid

PR T

- = + z

c a? b?
Horizontal traces are
ellipses.

Vertical traces are
parabolas.

The variable raised to
the first power indicates
the axis of the

Hyperboloid of One Sheet

\ 1‘\‘.}“‘, KAL) ,;1//},
N0/

ol

PHANINAN
[/ / (X
R

0 O

JAARDRONXRES

2 2 2
x 2

@y 2
a? b2 2
Horizontal traces are
ellipses.

Vertical traces are
hyperbolas.

The axis of symmetry
corresponds to the
variable whose

paraboloid. coefficient is negative.
Hyperbolic Paraboloid z 2 P Hyperboloid of Two Sheets 2 P N 2 _,
¢ a? b2 a2 b2 2

Horizontal traces are
hyperbolas.

Vertical traces are
parabolas.

The case where ¢ < 0 is
illustrated.

Horizontal traces in
2z = k are ellipses if
kE>cor k< —c.

Vertical traces are
hyperbolas.

The two minus signs
indicate two sheets.
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Example 7. Identify and sketch the surface 422 — y* + 222 +4 = 0.

Example 8. Classify the quadric surface 2% + 22% — 62 — y + 10 = 0.
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Chapter 13

Vector Functions

13.1 Vector Functions and Space Curves

Definition 13.1.1. A vector-valued function, or vector function is a function
whose domain is a set of real numbers and whose range is a set of vectors.
If f(t), g(t), and h(t) are the components of a vector function r(t) whose
values are three-dimensional vectors, then we call f, g, and h the component
functions of r and we can write

r(t) = (f(t), g(t), h(t)) = f(£)i+ g(t)j + h(t)k.

Example 1. What are the component functions and domain of

r(t) = <t3,ln(3 — 1), \/%>?

Definition 13.1.2. The limit of a vector function r is defined by taking the
limits of its component functions, i.e., if r(t) = (f(¢), g(t), h(t)), then

lim x(1) = <gm (2) lim g(t). im h<t>>

t—a

provided the limits of the component functions exist.

429



Calculus - 13.1 Vector Functions and Space Curves

int
Example 2. Find lir% r(t), where r(t) = (1 +t3)i +te 'j + sutq I
— —_

Definition 13.1.3. A vector function r is continuous at a if

limr(t) = r(a),

t—a

so r is continuous at a if and only if its component functions f, g, and h are
continuous at a.

Definition 13.1.4. Suppose that f, g, and h are continuous
real-valued functions on an interval I. Then the set C' of all

points (x,y, z) in space, where /
C
v=f(t) y=9@) z=h()

(called the parametric equations of C' for a parameter t) and /
X

t varies throughout the interval I, is called a space curve.
If we consider the vector function r(t) = (f(t),g(t), h(t)),
then r(t) is the position vector of the point P(f(¢), g(t), h(t)) on C. Thus any
continuous vector function r defines a space curve C' that is traced out by the
tip of the moving vector r(t), as shown in the figure.

Example 3. Describe the curve defined by the vector function

r(t) = (1+1t,2+ 5t,—1 + 6t).
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Example 4. Sketch the curve whose vector equation is

r(t) = costi+ sintj + tk.

Example 5. Find a vector equation and parametric equations for the line
segment that joins the point P(1,3,—2) to the point Q(2,—1,3).
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Example 6. Find a vector function that represents the curve of intersection
of the cylinder 2% + y? = 1 and the plane y + z = 2.

Example 7. Use a computer to draw the curve with vector equation r(t) =
(t,t2,¢3). This curve is called a twisted cubic.
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13.2 Vector Function Derivatives & Integrals

Definition 13.2.1. The derivative r’ of a vector function r is defined as

de = . r(t+h)—r(t)
@ T =l h

if this limit exists.

Definition 13.2.2. The vector r'(t) is called the tangent vector to the curve
defined by r at the point P, provided that r'(¢) exists and r'(¢) # 0. The tan-
gent line to C' at P is defined to be the line through P parallel to the tangent
vector r'(t). The unit tangent vector is

Theorem 13.2.1. If r(t) = (f(t), g(t), h(t)) = f()i+ g(t)j + h(t)k, where f,
g, and h are differentiable functions, then

r'(t) = (f'(t),4' (1), ' (2)) = f'(©)i+ g' ()i + M (D)k.

¥(1) = lim Ait[r(t + AL —1(0)]

= lim é[(f(t + A1), g(t + At), h(t + At)) — (f(1), (), h(t))]

At—0
_ 1 <f(t + At) — f(t) g(t+ At) —g(t) h(t+ At) — h(t)>
= Ao At ’ At ’ At
B < i LAY —f@) gt + A —g(t) A+ AL — h(t)>
— \ atso At  AES0 At AT At
= (f'(t),g'(t), W (1)) O

Example 1. (a) Find the derivative of r(t) = (1 + t3)i + te~'j + sin 2tk.

(b) Find the unit tangent vector at the point where ¢ = 0.
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Example 2. For the curve r(t) = v/t + (2 — t)j, find r'(t) and sketch the
position vector r(1) and the tangent vector r'(1).

Example 3. Find parametric equations for the tangent line to the helix with
parametric equations

T = 2cost y =sint z=t

at the point (0,1, 7/2).

Definition 13.2.3. The second derivative of a vector function r is the deriva-
tive of r/, that is, r’ = (r')".
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Theorem 13.2.2. Suppose u and v are differentiable vector functions, c is a
scalar, and f is a real-valued function. Then

d / /
1. a[u(t) +v(t)] =d(t) +Vv'(¢)
d
2. a[cu(t)] = cu'()
J. %[f(t)u(t)] = J/(Hu(t) + f(H)u'(?)
d / /
b ) V(o) = (o) V() +u) v
5. %[u(t) X v(t)] =u'(t) x v(t) +u(t) x v'(¢)
d

6. a[u( f@)] = fOu'(f(t))

Example 4. Show that if |r(¢)] = ¢ (a constant), then r'(¢) is orthogonal to
r(t) for all ¢.
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Definition 13.2.4. The definite integral of a continuous vector function r(t)
1s

b n
/a r(t)dtzé;n;ozr(ti)At

n—oo

= lim | [ Yo fenae i+ (S gnae] i+ [ Yo n)At | k
=1 =1 ;

and so

/abr(t)dt = (/abf(t)dt> i+ (/abg(t)dt> j+ (/abh(t)dt> k.

Theorem 13.2.3. We can extend the Fundamental Theorem of Calculus to
continuous vector functions as follows:

where R is an antiderivative of r, that is, R'(t) = r(t). We use the notation
[x(t)dt for indefinite integrals (antiderivatives).

Example 5. If r(t) = 2costi + sintj + 2tk, then what are [r(¢)dt and

ST e (t)dt?
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13.3 Arc Length and Curvature

Definition 13.3.1. If a space curve is given by r(t) = (f(t), g(t), h(t)), a <
t < b, or equivalently, the parametric equations z = f(t), y = g(t), z = h(t),
where f’, ¢/, and h’' are continuous, then the length of the curve traversed
exactly once as t increases from a to b is

L= [ VIOF T 0P WoTa
WERaEaE

L= /ab|r/(t>|dt.

Example 1. Find the length of the arc of the circular helix with vector equa-
tion r(t) = costi + sintj + tk from the point (1,0,0) to the point (1,0, 27).

or equivalently,

Remark 1. A single curve C' can be represented by more than one vector
function. For instance, the twisted cubic

ri(t) =12 1<t<2
could also be represented by the function
ro(u) = (e, e, ) 0<u<In2

We say that these equations are parametrizations of the curve C'. It can be
shown that our arc length equation is independent of the parametrization that
is used.
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Definition 13.3.2. Suppose that C is a curve given by a vector function
r(t) = fOi+g)j+hik a<t<b

where 1’ is continuous and C' is traversed exactly once as ¢ increases from a to
b. We define its arc length function s by

t t dz\? dy 2 dz\>
g / s _ _ _
s(t) /a v (u)|du /a \/(du) + (du) + (du) du
where differentiating both sides of the arc length function using the Funda-
mental Theorem of Calculus gives

ds ,
L]

Remark 2. If a curve r(t) is already given in terms of a parameter ¢ and s(t)
is the arc length function, then we may be able to solve for ¢ as a function of
s: t = t(s). Then the curve can be reparametrized with respect to arc length
by substituting for ¢: r = r(t(s)).

Example 2. Reparametrize the helix r(¢) = costi + sintj + tk with respect
to arc length measured from (1,0,0) in the direction of increasing t.
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Definition 13.3.3. The curvature of a curve C' at a given point is a measure
of how quickly the curve changes direction at that point, defined as

dT
ds

K =

where T is the unit tangent vector.

Remark 3. A parametrization is called smooth on an interval I if r’ is con-
tinuous and r'(¢) # 0 on I. A curve is called smooth if it has a smooth
parametrization. Since the unit tangent vector is only defined for smooth
curves, the curvature is only defined for smooth curves.

Theorem 13.3.1.

Proof. By the chain rule

dT _ dTds
dt — ds dt’
SO
dT dT !
__|dT| _|dT/dt| _|T(0)] -
ds ds/dt /()]

Example 3. Show that the curvature of a circle of radius a is 1/a.
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Theorem 13.3.2. The curvature of the curve given by the vector function r

N () x ()

"= P

Proof. Since T =1r'/|r'| and |r'| = ds/dt, we have

ds
"= T=—T
r' = |r| o
d?s ds
no_ _T _T/
dt? dt

Since T x T = 0, we have

ds d?s ds
/ " — _T _T _T/
rxr =gt (dt2 Rr7 )

ds d?s ds ds
P = B 5 B B
e A e T

' xr’ = (%%) (T xT)+ (%)2(T x T')
' xr’ = (%)2 (T x T').
Since |T(t)] =1 for all £, T and T’ are orthogonal, so
I’ x| = (%)2 T x T'|
- (%)2 IT||T’| sin <g>
_ <%)2 .

Thus
o x| e x|
T = (Gsjay = P
and
T ] .
r'| r'?
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Example 4. Find the curvature of the twisted cubic r(t) = (¢, t%) at a
general point and at (0,0,0).

Theorem 13.3.3. Ify = f(z) is a plane curve, then

/" ()

) |
") = T ()P

Proof. Choose z as the parameter and write r(z) = i+ f(z)j. Then r'(z) =
i+ f'(x)j and v"(x) = f"(x)j. Since i x j = k and j x j = 0, it follows that

r'(z) x r"(z) = f"(x)k. We also have |r'(z)| = /1 + [f'(x)]?, and so
_ @) <@ ()]
S N T E)Ea .
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Example 5. Find the curvature of the parabola y = x? at the points (0, 0),
(1,1), and (2,4).

Definition 13.3.4. For any point where x # 0, the principal

unit normal vector N(¢) (or simply unit normal) is defined T(1)
to be B(1)
/(1) N(1)

and so it is orthogonal to the unit tangent vector T(¢). The
vector B(t) = T(t) x N(t) is called the binormal vector. It is perpendicular
to both T and N and is also a unit vector. (See the figure.)

Example 6. Find the unit normal and binormal vectors for the circular helix

r(t) = costi+sintj + tk.
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Definition 13.3.5. The plane determined by the normal and binormal vectors
N and B at point P on a curve C' is called the normal plane of C' at P. It
consists of all lines that are orthogonal to the tangent vector T. The plane
determined by the vectors T and N is called the osculating plane of C' at P.
It is the plane that comes closest to containing the part of the curve near P.

Definition 13.3.6. The circle that lies in the osculating plane of C' at P, has
the same tangent as C' at P, lies on the concave side of C' (toward which N
points), and has radius p = 1/k (the reciprocal of the curvature) is called the
osculating circle (or the circle of curvature) of C' at P. It is the circle that
best describes how C' behaves near P; it shares the same tangent, normal, and
curvature at P.

Example 7. Find equations of the normal plane and osculating plane of the
helix in Example 6 at the point P(0, 1, 7/2).
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Example 8. Find and graph the osculating circle of the parabola y = 22 at
the origin.
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13.4 Motion in Space

Definition 13.4.1. Suppose a particle moves through space so that its posi-
tion vector at time ¢ is r(t). Then the velocity vector v(t) at time ¢ is given
by

(t) = lim r(t+ h})b =0 _ .

The speed of the particle at time ¢ is the magnitude of the velocity vector,

that is, [v(¢)|. As in the case of one-dimensional motion, the acceleration of
the particle is defined as the derivative of the velocity:

a(t) =v'(t) =r"(t).

Example 1. The position vector of an object moving in a plane is given by
r(t) = 3 + t3j. Find its velocity, speed, and acceleration when ¢t = 1 and
illustrate geometrically.
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Example 2. Find the velocity, acceleration, and speed of a particle with
position vector r(t) = (t2, €', te').

Example 3. A moving particle starts at an initial position r(0) = (1,0,0)
with initial velocity v(0) =i — j + k. Its acceleration is a(t) = 4t¢i + 6tj + k.
Find its velocity and position at time t.
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Remark 1. In general, vector integrals allow us to recover velocity when ac-
celeration is known and position when velocity is known:

t t
v(t) = v(to) —I—/ a(u)du  r(t) =r(ty) +/ v(u)du.
to to
If the force that acts on a particle is known, then the acceleration can be found
from Newton’s Second Law of Motion. The vector version of this law states
that if, at any time ¢, a force F(t) acts on an object of mass m producing an
acceleration a(t), then

F(t) = ma(t).

Example 4. An object with mass m that moves in a circular path with con-
stant angular speed w has position vector r(t) = a coswti+ asinwtj. Find the
force acting on the object and show that it is directed toward the origin.
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Example 5. A projectile is fired with angle of elevation «
and initial velocity vo. (See the figure.) Assuming that air
resistance is negligible and the only external force is due
to gravity, find the position function r(¢) of the projectile.
What value of @ maximizes the range (the horizontal distance
traveled)?
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Calculus - 13.4 Motion in Space

Example 6. A projectile is fired with muzzle speed 150 m/s and angle of ele-
vation 45° from a position 10 m above ground level. Where does the projectile
hit the ground, and with what speed?
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Theorem 13.4.1. If v = |v| is the speed of a particle in
motion, then
a=arT+ ayN

where ap = v and ay = Kkv>.

Proof.
) v v
@ vl v

T(t)

SO
v=oT
a=v =0T+ vT.
By our expression for curvature,

_ T T

vl

so |T’| = kv. Since N = T'/|T|,
T = |T'|N = xuN,
and thus
a=v'T+ kv’N [

Theorem 13.4.2.

G I T O]
Proof.
v-a=vT- (T + kv’N)
=uv/'T - T+ r*T-N
=/,
S0
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Example 7. A particle moves with position function r(t) = (t?,¢2,¢3). Find
the tangential and normal components of acceleration.
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Chapter 14

Partial Derivatives

14.1 Functions of Several Variables

Definition 14.1.1. A function f of two variables is a rule that assigns to each
ordered pair of real numbers (z,y) in a set D a unique real number denoted
by f(x,y). The set D is the domain of f and its range is the set of values that
f takes on, that is, {f(z,v) | (z,y) € D}.

Remark 1. We often write z = f(x,y) to make explicit the value taken on by
f at the general point (x,y). The variables x and y are independent variables
and z is the dependent variable.

Example 1. For each of the following functions, evaluate f(3,2) and find and
sketch the domain.

vz+y+1

r—1

(a) f(z,y) =
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Actual temperature (°C)

Calculus - 14.1 Functions of Several Variables

(b) f(z,y) =2n(y* — x)

Example 2. In regions with severe winter weather, the wind-chill index is
often used to describe the apparent severity of the cold. This index W is a
subjective temperature that depends on the actual temperature 7" and the
wind speed v. So W is a function of T" and v, and we can write W = f(T,v).
The table records values of W compiled by the US National Weather Service
and the Meteorological Service of Canada.

Wind-chill index as a function of air temperature and wind speed

Wind speed (km/h)

T Y15 10 15 20 25 30 40 20 60 70 80
) 4 3 2 1 1 o -1} -1} =2 =2| =3

o, -2 -3, 4| 5| -6, 6| =7 =8| -9 -9|-10
5| -7 -9 |-11|-12|-12 | —-13| —-14| —-15| —-16 | —16 | —17
—10 | -13 | =15 | =17 | =18 | =19 | =20 | —21 | =22 | =23 | =23 | —24
—15|—-19 | =21 | =23 | =24 | =25 | =26 | =27 | =29 | =30 | =30 | =31
—20 | —-24 | =27 | =29 | =30 | =32 | =33 | =34 | =35 | =36 | =37 | =38
25| =30 | =33 | =35 | =37 | =38 | =39 | =41 | —42 | —43 | —44 | —45
30| =36 | =39 | —41 | —43 | —44 | —46 | —48 | —49 | =50 | —51 | =52
—35 | —41 | —45 | —48 | —49 | =51 | =52 | —54 | =56 | —57 | —58 | —60
—40 | =47 | =51 | =54 | =56 | =57 | =59 | —61 | —63 | —64 | —65 | —67

Find f(—5,50) and interpret its meaning in context.
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Example 3. In 1928 Charles Cobb and Paul Douglas published
a study in which they modeled the growth of the American econ-
omy during the period 1899-1922. They considered a simplified
view of the economy in which production output is determined
by the amount of labor involved and the amount of capital in-
vested. While there are many other factors affecting economic
performance, their model proved to be remarkably accurate. The
function they used to model production was of the form

P(L,K) =bL*K*'™,

known as the Cobb-Douglas production function, where P is the
total production (the monetary value of all goods produced in a
year), L is the amount of labor (the total number of person-hours
worked in a year), and K is the amount of capital invested (the
monetary worth of all machinery, equipment, and buildings).
Cobb and Douglas used economic data published by the govern-
ment to obtain the table on the right. They took the year 1899
as a baseline and P, L, and K for 1899 were each assigned the
value 100. The values for other years were expressed as percent-
ages of the 1899 figures.

Cobb and Douglas used the method of least squares to fit the
data of the table to the function

P(L,K) = 1.01L*™ K.

Use this function to compute the production in the years 1910

Year

P

1899

100

100

100

1900

101

105

107

1901

112

110

114

1902

122

117

122

1903

124

122

131

1904

122

121

138

1905

143

125

149

1906

152

134

163

1907

151

140

176

1908

126

123

185

1909

155

143

198

1910

159

147

208

1911

153

148

216

1912

177

155

226

1913

184

156

236

1914

169

152

244

1915

189

156

246

1916

225

183

298

1917

227

198

335

1918

223

201

366

1919

218

196

387

1920

231

194

407

1921

179

146

417

1922

240

161
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and 1920, and compare your results with the actual values for these years.
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Example 4. Find the domain and range of g(z,y) = /9 — 22 — y2.

Definition 14.1.2. If f is a function of two variables with domain D, then
the graph of f is the set of all points (z,y, z) in R? such that z = f(z,y) and
(x,y) is in D.

Definition 14.1.3. The level curves of a function f of two variables are the
curves with equations f(z,y) = k, where k is a constant (in the range of f).

Example 5. Sketch the graph of the function f(z,y) =6 — 3z — 2y.
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Definition 14.1.4. The function
flx,y) =ax +by+c

is called a linear function. The graph of such a function has the equation

z=ar+by+c or ar+by —z2+c=0,

so it is a plane.

Example 6. Sketch the graph of g(z,y) = /9 — 22 — 2.

Example 7. Use a computer to draw the graph of the Cobb-Douglas produc-
tion function P(L, K) = 1.01L%™ K92,

Example 8. Find the domain and range and sketch the graph of h(x,y) =
422 4 12
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Example 9. A contour map for a function f is shown in the

S

figure. Use it to estimate the values of f(1,3) and f(4,5). — 50—

\—/

Example 10. Sketch the level curves of the function f(x,y) = 6 — 3z — 2y
for the values k = —6,0, 6, 12.

Example 11. Sketch the level curves of the function

g(x,y) =9 — a? —y? for k=0,1,2,3.
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Example 12. Sketch some level curves of the function h(x,y) = 42 +y? + 1.

Example 13. Plot level curves for the Cobb-Douglas production function of
Example 3.

Definition 14.1.5. A function of three variables, f, is a rule that assigns to
each ordered triple (z,y, z) in a domain D C R? a unique real number denoted

by f(z,y, 2).
Example 14. Find the domain of f if

f(x,y,z) =In(z —y) + xysin z.
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Definition 14.1.6. The level surfaces of a function f of three variables are
the curves with equations f(z,y, z) = k, where k is a constant.

Example 15. Find the level surfaces of the function

flx,y,2) = 2® + 4 + 22

Definition 14.1.7. A function of n variables is a rule that assigns a number
z = f(x1,29,...,2,) to an n-tuple (x1,xs, ..., x,) of real numbers. We denote
by R™ the set of all such n-tuples.

Remark 2. Sometimes we will use vector notation to write such functions
more compactly: If x = (xy,29,...,2,), we will often write f(x) in place of

f(x1,$2, e ,:L’n).
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14.2 Limits and Continuity

Definition 14.2.1. Let f be a function of two variables z
whose domain D includes points arbitrarily close to (a,b). L+e
Then we say the limit of f(z,y) as (z,y) approaches (a,b) is L

L and we write

lim x,y) =L
(myy)ﬂ(aﬂb)f( v)

if for every number € > 0 there is a corresponding number 0

6 > O such that if (z,y) € Dand 0 < \/(z —a)2+ (y — b)% < /\rFF\,

d then |f(xz,y) — L] <e. X
(a,b)

Remark 1. If f(x,y) — Ly as (x,y) — (a,b) along a path C; and f(z,y) — Lo
as (z,y) — (a,b) along a path Cy, where Ly # Lo, then limg ) (ap) f(2,y)
does not exist.

2 _ 2

does not exist.

Example 1. Show that lim
(2.9)~(0,0) 2% + y?
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Example 2. If f(z,y) = zy/(z* + y?), does  lim  f(x,y) exist?
(2,y)—(0,0)
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2
Example 3. If f(z,y) = :r;;c——iy—y‘*’ does " yl)ig(lo O)f(:c,y) exist?

Remark 2. The Limit Laws listed in section 2.3 can be extended to functions
of two variables: the limit of a sum is the sum of the limits, the limit of a
product is the product of the limits, and so on. In particular, the following

equations are true.

lim z=a lim y=25b lim c=c.
(z,y)—(ab) (z,y)—(ab) (z,y)—(a,b)

The Squeeze Theorem also holds.
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2
if it exists.

Example 4. Find lim
(2.9)=(0,0) T + Y

Definition 14.2.2. A function f of two variables is called continuous at (a, b)
if

lim f(z,y) = f(a,b).

(z,y)—(a,b)

We say that f is continuous on D if f is continuous at every point (a,b) in D.

Definition 14.2.3. A polynomial of two variables (or polynomial, for short)
is a sum of terms of the form cx™y™, where ¢ is a constant and m and n are
nonnegative integers. A rational function is a ratio of polynomials.

Remark 3. The limits in Remark 2 show that the functions f(z,y) = z,
g(x,y) =y, and h(x,y) = c are continuous. Since any polynomial can be built
up out of the simple functions f, g, and h by multiplication and addition,
it follows that all polynomials are continuous on R?. Likewise, any rational
function is continuous on its domain because it is a quotient of continuous
functions.
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Example 5. Evaluate lim (2%y® — 23y® + 3z + 2y).
(zy)—(1,2)

2 2

Example 6. Where is the function f(z,y) = % continuous?
r Y

Example 7. Where is the function

ZL‘2 —y2
g(way): $2+y2 f(]j, )7&(07())7
0 if (z,y) = (0,0)

continuous?

Remark 4. If f is a continuous function of two variables and ¢ is a continuous
function of a single variable that is defined on the range of f, then the com-
posite function h = g o f defined by h(z,y) = g(f(z,y)) is also a continuous

function.
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Example 8. Where is the function

3y
flz,y) = 2%+ y?
0 if (z,y) = (0,0)

continuous?

Example 9. Where is the function h(x,y) = arctan(y/x) continuous?

Definition 14.2.4. The notation

(z,y,2)—(a,b,c)

means that the values of f(z,y, z) approach the number L as the point (x,y, 2)
approaches the point (a, b, ¢) along any path in the domain of f. Precisely, for
every number ¢ > 0 there is a corresponding § > 0 such that if f(z,y, 2) is in
the domain of f and 0 < \/(z — a)? + (y — b)2 + (2 — ¢)? < § then |f(z,y,2)—
L| < e. The function is continuous at (a, b, ¢) if

lim  f(z,y,2) = f(a,b,c).

(z,y,2)—(a,b,c)

Definition 14.2.5. If f is defined on a subset D of R", then limy_,, f(x) = L
means that for every number € > 0 there is a corresponding number o > 0
such that if x € D and 0 < |x — a| < § then |f(x) — L| < e. The function is
continuous at a if

lim f(x) = f(a).

X—a
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14.3 Partial Derivatives

Definition 14.3.1. In general, if f is a function of two variables x and v,
suppose we only let x vary while keeping y fixed, say y = b, where b is a
constant. Then we are considering a function of a single variable z, say g(z) =
f(z,b). If g has a derivative at a, then we call it the partial derivative of f
with respect to x at (a,b) and denote it by f.(a,b). Thus

a h) — a a h.b) — a.b
fx(a,b):g’(a):}}g(l)g( +2 g():}lg%f( + f)L fla,b)

Similarly, the partial derivative of f with respect to y at (a,b), denoted by
fy(a,b), is obtained by keeping z fixed (x = a) and finding the ordinary
derivative at b of the function G(y) = f(a,y):

T f(a>b+h>_f<a7b)
fy(aab)—}l}g{l} h ~

Definition 14.3.2. If f is a function of two variables, its
partial derivatives are the functions f, and f, defined by

n(m):g <x+hy> f(z,y)
@(say):m <fvy+h> flay)

Definition 14.3.3 (Notations for Partial Derivatives). If z = f(z,y), we write

0 0 0

fle) = fo= = L) = 0= fi = Dif = Duf
0 0 0

fy(xay):fy 8:7]; a_yf(xay):a_;:f2:D2f:Dyf~

Remark 1 (Rule for Finding Partial Derivatives of z = f(x,y)).

1. To find f,, regard y as a constant and differentiate f(x,y) with respect
to x.

2. To find f,, regard = as a constant and differentiate f(x,y) with respect
to y.
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Example 1. If f(z,y) = 2® + 2%y® — 2y, find f,(2,1) and f,(2,1).

Example 2. If f(z,y) =4 — 2% — 2¢?, find f,(1,1) and f,(1,1) and interpret
these numbers as slopes.
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Example 3. The body mass index of a person is defined by

m

Calculate the partial derivatives of B for a young man with m = 64 kg and
h = 1.68 m and interpret them.

468



Calculus - 14.3 Partial Derivatives

, calculate — and —

Example 4. If f(x,y) = sin <% 5 oy

) of  of
Y

Example 5. Find 0z/0x and 0z/0y if z is defined implicitly as a function of
x and y by the equation

o+t 2+ by =1,
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Definition 14.3.4. If f is a function of three variables x, y and z, then its
partial derivative with respect to x is defined as

. f(:l?—l—h,y,z)—f(:v,y,z)
fole ) = i i

and it is found by regarding y and z as constants and differentiating f(x,y, 2)
with respect to x.

Definition 14.3.5. In general, if u is a function of n variables,

u= f(x1,x2,...,2,), its partial derivative with respect to the ith variable z;
is
au == hm f(xl" R SR + h7aji+1a e ,$n) — f(xla ey Ly e e ,l'n)
8@ h—0 h
and we also write 5 of
U
oo om  Jm = fi= D

Example 6. Find f,, f,, and f, if f(z,y,2) =e"Inz.
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Definition 14.3.6. If f is a function of two variables, then its partial deriva-
tives f, and f, are also functions of two variables, so we can consider their
partial derivatives (fy)z, (f2)y, (fy)z, and (f,),, which are called the second
partial derivatives of f. If z = f(z,y), we use the following notation:

(fx)m:fm:fnz(%@_i) :%:%
(e = fe = fur =5 (%) _ ggy _ afgy
(= b= =5 (%) e

Thus the notation f,, (or 9?f/0ydx) means that we first differentiate with
respect to  and then with respect to y, whereas in computing f,, the order
is reversed.

Example 7. Find the second partial derivatives of

f(z,y) = 2® + 2%y® — 2%
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Theorem 14.3.1 (Clairaut’s Theorem). Suppose f is defined on a disk D that
contains the point (a,b). If the functions f., and f,, are both continuous on
D, then

fwy(a7 b) = fyw(av b)

Remark 2. Partial derivatives of order 3 or higher can also be defined. For

instance,
o [ 0*f P f
Foww = (fa)y = dy <8y81:) - 0y20x

and using Clairaut’s Theorem it can be shown that f,,, = fyzy = fyyo if these
functions are continuous.

Example 8. Calculate f,.,. if f(x,y,2) = sin(3z + y=z).

Definition 14.3.7. The partial differential equation

’u  J%*u _

o2 oy

is called Laplace’s equation. Solutions of this equation are called harmonic
functions.
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Example 9. Show that the function u(z,y) = €” siny is a solution of Laplace’s
equation.

Definition 14.3.8. The wave equation

Pu 0%

o~ " o

describes the motion of a waveform, which could be an ocean wave, a sound
wave, a light wave, or a wave traveling along a vibration string.

Example 10. Verify that the function u(x,t) = sin(x — at) satisfies the wave
equation.
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14.4 Tangent Planes & Linear Approximations

Definition 14.4.1. Suppose a surface S has equation z =
f(z,y), where f has continuous first partial derivatives, and

T,
let P(zg,yo0,20) be a point on S. Let C; and Cy be the /Cl/
/P Ca

curves obtained by intersecting the vertical planes y = o
and x = xo with the surface S, so that P lies on both C; and
C5. Let T} and T5 be the tangent lines to the curves € and

{0
C5 at the point P. Then the tangent plane to the surface S / [
/ y

at the point P is defined to be the plane that contains both
tangent lines 7 and T5. (See the figure.)

Theorem 14.4.1. Suppose f has continuous partial derivatives. An equation
of the tangent plane to the surface z = f(z,y) at the point P(xo,yo, 20) 18

z— 20 = fu(To,y0)(x — x0) + [y (%0, Y0)(y — Yo)-

Proof. Any line passing through P has an equation of the form
Az —x0) + By — yo) + C(z — ) = 0.

By dividing this equation by C' and letting a = —A/C and b = —B/C, we can
write it in the form

z—zp=alx —x9) + by — vo).

If this equation represents the tangent plane at P, then its intersection with
the tangent line y = yo must be T7, so by letting y = yo we get

2z — 29 = a(x — x9)

as the equation of T, and since T has slope f,(zo, %), we have a = f,(xq, yo)-
Similarly, by letting x = ¢, we get z — 2o = b(y — yo) as the equation of 75,
so b= f,(zo, %) O

Example 1. Find the tangent plane to the elliptic paraboloid z = 222 + 12
at the point (1,1, 3).
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Definition 14.4.2. The linear function whose graph is the tangent plane at
the point to the graph of a function f of two variables at the point (a, b, f(a, b))
is called the linearization of f at (a,b) and is given by

L(z,y) = f(a,b) + fu(a,b)(x — a) + fy(a,b)(y = b).

The approximation

f(x,y) = f(a,b) + fala,0)(x — a) + fy(a, b)(y = b)

is called the linear approximation or the tangent line approximation of f at
(a,b).

Definition 14.4.3. Suppose z = f(z,y) is a function of two variables where
x changes from a to a + Ax and y changes from b to b + Ay. Then the
corresponding increment of z is

Az = f(a+ Az,b+ Ay) — f(a,b).

Definition 14.4.4. If z = f(x,y), then f is differentiable at (a,b) if Az can
be expressed in the form

Az = fo(a,b)Azx + f,(a,b)Ay + e1Ax + e2Ay
where &1 and g5 — 0 as (Az, Ay) — (0,0).

Theorem 14.4.2. If the partial derivatives f, and f, exist near (a,b) and are
continuous at (a,b), then f is differentiable at (a,b).

Example 2. Show that f(z,y) = xe™ is differentiable at (1,0) and find its
linearization there. Then use it to approximate f(1.1,—0.1).
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Example 3. On a hot day, extreme humidity makes us think the temperature
is higher than it really is, whereas in very dry air we perceive the temperature
to be lower than the thermometer indicates. The National Weather Service
has devised the heat index (also called the temperature-humidity index, or
humidex, in some countries) to describe the combined effects of temperature
and humidity. The heat index [ is the perceived air temperature when the
actual temperature is 7" and the relative humidity is H. So [ is a function of
T and H and we can write [ = f(7T, H). The following table of values of I is
an excerpt from a table compiled by the National Weather Service.

Heat index I as a function of temperature and humidity

Relative humidity (%)

TH50 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90

90 96 | 98 | 100 | 103 | 106 | 109 | 112 | 115 | 119

92 100 | 103 | 105 | 108 | 112 | 115 | 119 | 123 | 128

Actual 94 104 | 107 | 111 | 114 | 118 | 122 | 127 | 132 | 137
temperature

(°F) 96 109 | 113 | 116 | 121 | 125 | 130 | 135 | 141 | 146

98 114 | 118 | 123 | 127 | 133 | 138 | 144 | 150 | 157

100 119 | 124 | 129 | 135 | 141 | 147 | 154 | 161 | 168

Find a linear approximation for the heat index I = f(T, H) when T is near
96°F and H is near 70%. Use it to estimate the heat index when the temper-
ature is 97°F and the relative humidity is 72%.
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Definition 14.4.5. For a differentiable function of two variables, z = f(z,y),
we define the differentials dxr and dy to be independent variables; that is,
they can be given any values. Then the differential dz, also called the total
differential, is defined by

0z 0z
= Lo+ Sy )y = e+ oy

Example 4.
(a) If z = f(x,y) = 2> + 3zy — y?, find the differential dz.

(b) If x changes from from 2 to 2.05 and y changes from 3 to 2.96, compare
the values of Az and dz.

Example 5. The base radius and height of a right circular cone are measured
as 10 cm and 25 cm, respectively, with a possible error in measurement of as
much as 0.1 cm in each. Use differentials to estimate the maximum error in
the calculated volume of the cone.
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Remark 1. Linear approximations, differentiability, and differentials can be
defined in a similar manner for functions of more than two variables. A differ-
entiable function is defined by an expression similar to the one in Definition
14.4.4. For such functions the linear approximation is

f(xvyv Z) ~ f(a7 b7 C) + fw<a7 b7 C)(I - CL) + fy<a’7 b7 C)(y - b) + f2<a7b7 C)(’Z - C)

and the linearization L(z,y, z) is the right side of this expression.
If w= f(x,y,2) then the increment of w is

Aw = f(x 4+ Az, y + Ay, z + Az) — f(z,y, 2).

The differential dw is defined in terms of the differentials dzx, dy, and dz of the
independent variables by

ow ow ow
dw = —dr + —dy + —dz.
ox dy A
Example 6. The dimensions of a rectangular box are measured to be 75 cm,
60 cm, and 40 cm, and each measurement is correct to within 0.2 cm. Use
differentials to estimate the largest possible error when the volume of the box
is calculated from these measurements.
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14.5 The Chain Rule

Theorem 14.5.1 (The Chain Rule (Case 1)). Suppose that z = f(x,y) is a
differentiable function of x and y, where x = g(t) and y = h(t) are differen-
tiable functions of t. Then z is a differentiable function of t and

dz_0fdv  0fdy
dt  Oxdt Oydt’

Proof.
Az = gAa: + ﬁAy + 1Az + g5 Ay
ox oy

where €1 and €9 — 0 as (Az, Ay) — (0,0). Dividing both sides of this equation
by At, we have

Az  Of Ax  Of Ay Ax Ay

At Or At oyAr AT A
If we now let At — 0, then Az = g(t+At)—g(t) — 0 because g is differentiable
and therefore continuous. Similarly, Ay — 0. This, in turn, means that e; — 0
and €9 — 0, so

b _ g B2

dt ~ Ao At

_of .. Ax Of . Ay . . Az . . Ay
=G dim ag oy i (e ) o 5 (i) i, 37
_Ofdx  Ofdy dx dy

“ova Ty U w T
_0fdr  0fdy .
C Oxdt  Oydt’

Example 1. If z = 2%y + 3zy?, where x = sin2t and y = cost, find dz/dt
when ¢t = 0.
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Example 2. The pressure P (in kilopascals), volume V' (in liters), and tem-
perature T" (in kelvins) of a mole of an ideal gas are related by the equation
PV = 831T. Find the rate at which the pressure is changing when the tem-
perature is 300 K and increasing at a rate of 0.1 K/s and the volume is 100 L
and increasing at a rate of 0.2 L/s.

Theorem 14.5.2 (The Chain Rule (Case 2)). Suppose that z = f(x,y) is
a differentiable function of x and y, where x = g(s,t) and y = h(s,t) are
differentiable functions of s and t. Then

0z 0z0x 0z0y 0z 0z0x 0z0y

9s ozos Oyos ot ozot ogor

Example 3. If z = e¢®siny, where x = st? and y = s%t, find 9z/ds and 0z /0t.
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Theorem 14.5.3 (The Chain Rule (General Version)). Suppose that u is a
differentiable function of the n variables x1,x2,...,2, and each x; is a dif-
ferentiable function of the m wvariables ti,ts, ..., t,,. Then u is a function of
ti,ta, ..., t, and

@_ ou 0x; n ou Oxy +“'+%8xn

for eachi=1,2,...,m.

Example 4. Write out the Chain Rule for the case where w = f(x,y, 2, 1)
and z = z(u,v), y = y(u,v), z = z(u,v), and t = t(u,v).

2 -t 2

Example 5. If v = 2%y + y?23, where x = rse!, y = rs?e™!, and z = r?ssint,

find the value of Ju/ds when r =2, s =1, t = 0.
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Example 6. If g(s,t) = f(s* —t*t* — s?) and f is differentiable, show that g
satisfies the equation

dg dg

Example 7. If z = f(z,y) has continuous second-order partial derivatives
and = r? + 5% and y = 2rs, find

(a) 0z/0r
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(b) 92z/0r?

Theorem 14.5.4 (Implicit Differentiation). Suppose that an equation of the
form F(z,y) = 0 defines y implicitly as a differentiable function of x, that
is, y = f(z), where F(z, f(x)) = 0 for all x in the domain of f. If F is

differentiable,
oF

dy _ oz _ I
dx or Fy,
dy
Proof. 1f F' is differentiable, we can apply Case 1 of the Chain Rule to differ-

entiate both sides of the equation F(z,y) = 0 with respect to = to get

OFdv OFdy

Grde  Oydr

But dz/dx = 1, so if 0F /0y # 0 we can solve for dy/dz and obtain the desired
result. O
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Example 8. Find 3/ if 23 4 y® = 6xy.

Theorem 14.5.5. Suppose that z is given implicitly as a function z = f(z,y)
by an equation of the form F(x,y,z) = 0. This means that F(x,y, f(z,y)) =0
for all (x,y) in the domain of f. If F' and f are differentiable,

OF oF
9z g 0z 8_3/
or  OF oy  OF"
0z 0z

0 0
Example 9. Find % and &t 28 4 Y3+ 23 + 6ryz = 1.
ox oy
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14.6 Directional Derivatives and the Gradient

Definition 14.6.1. The directional derivative of f at (x, o) in the direction
of a unit vector u = (a,b) is

f(xo + ha,yo + hb) — f(xo,y0)

Dy f(xo,90) = ,llljf(l)

h Y

if this limit exists.

Example 1. Use the weather map in the right figure to
estimate the value of the directional derivative of the tem-
perature function at Reno in the southeasterly direction.

| S S N —
0 50 100 150 200
(Distance in miles)

485



Calculus - 14.6 Directional Derivatives and the Gradient

Theorem 14.6.1. If f is a differentiable function of x and y, then f has a
directional derivative in the direction of any unit vector u = (a,b) and

Dyuf(z,y) = fulz,y)a + fy(z,y)b.

Proof. 1f we define a function ¢ of the single variable h by
g(h) = f(xo + ha,yo + hb)
then, by the definition of the derivative, we have

g(h) — g(0) — lm f(xo + ha,yo + hd) — f(x0,y0)

/ I K
g <O> o llzlg(lj h h—0 h
- Duf(xOJyO)'

On the other hand, we can write g(h) = f(z,y), where x = xo+ha, y = yo+hb,
so the Chain Rule gives

yy Ofdr  Ofdy
If we now put h = 0, then x = x¢, y = yo, and
g/(O) = fx(an yO)a + fy(xo,yO)b-
Thus

Dy f(w0,90) = fa(®0,y0)a + fy (w0, Yo)b. ]

Remark 1. If the unit vector u makes an angle 6 with the Y
positive z-axis (as in the figure), then we can write u =
(cosf,sinf) and the formula in Theorem 14.6.1 becomes
Duf(x,y) = fo(x,y) cos 0 + fy(x,y) sind.
0
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Example 2. Find the directional derivative D, f(z,y) if
fla,y) =2’ = 3wy + 4y?

and u is the unit vector given by angle § = w/6. What is D, f(1,2)?

Definition 14.6.2. If f is a function of two variables  and y, then the gra-
dient of f is the vector function Vf (or gradf) defined by

0 0
Vi) = (aloo)f)) = i+ 5

Example 3. If f(x,y) =sinx + €™, then find V f(z,y) and V f(0,1).

Remark 2. With this notation for the gradient vector, we can rewrite the
equation for the directional derivative of a differentiable function as

Duf(xvy) = Vf(x,y) - W

This expresses the directional derivative in the direction of a unit vector u as
the scalar projection of the gradient vector onto u.
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Example 4. Find the directional derivative of the function f(z,y) = z%y*—4y
at the point (2, —1) in the direction of the vector v = 2i + 5j.

Definition 14.6.3. The directional derivative of f at (x¢, Yo, 20) in the direc-
tion of a unit vector u = (a, b, ¢) is
f(zo + ha,yo + hb, 2o + he) — f(xo, Yo, 20)

h

Duf(flfmyo, Zo) = ,llli%

if this limit exists. More compactly,

. f(xo+ hu) — f(x0)
Duf(xo) = Jim h
where xg = (g, yo) if n =2 and x¢ = (%o, Yo, 20) if n = 3.
Remark 3. If f(x,y, z) is differentiable and u = (a, b, ¢), then the same method
that was used to prove Theorem 14.6.1 can be used to show that

Dllf('ru y? Z) = f:v(x7 y? Z)CL + fy(x7 317 Z)b + f2<x7 Z/; Z>C'
For a function of three variables, the gradient vector, denoted by V f or grad f,
is

vf($7y7 Z) = <fx(x)y7 Z)afy($7y7 Z)?fz(x7y7 Z)>7

0 0 0
V= oSy L) = a—ii + 8—£j + a_ﬁk.

Just as with functions of two variables, the directional derivative can be rewrit-
ten as

or, for short,

Duf(xayvz) = Vf(l’,y,Z) -u.
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Example 5. If f(z,y,2) = zsinyz,

(a) find the gradient of f

(b) find the directional derivative of f at (1,3,0) in the direction of v =
i+2j—k

Theorem 14.6.2. Suppose [ is a differentiable function of two or three vari-
ables. The maximum value of the directional derivative D, f(x) is |V f(x)| and
it occurs when u has the same direction as the gradient vector V f(x).

Proof.
Duf=Vf-u=|Vf||lu|cosd = |V f|cost

where 6 is the angle between V f and u. The maximum value of cos# is 1 and
this occurs when 6 = 0. Therefore the maximum value of Dy f is |V f| and it
occurs when # = 0, that is, when u has the same direction as V f. O
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Example 6.

(a) If f(x,y) = ze¥, find the rate of change of f at the point P(2,0) in the
direction from P to () (%, 2).

(b) In what direction does f have the maximum rate of change? What is this
maximum rate of change?
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Example 7. Suppose that the temperature at a point (z, y, z) in space is given
by T'(x,y,z) = 80/(1+ x>+ 2y*+ 32?), where T is measured in degrees Celsius
and x, y, z, in meters. In which direction does the temperature increase fastest
at the point (1,1, —2)? What is the maximum rate of increase?

Definition 14.6.4. If VF(xg, yo, 20) # 0, the tangent plane VE (X0, Yo, 20)

to the level surface F'(z,y, z) = k at P(xg, Yo, 20) is the plane
that passes through P and has normal vector V F'(xq, 4o, 20)-
(See the figure.) Using the standard equation of a plane, we
can write the equation of this tangent plane as

tangent plane

Fo. (0, Y0, 20)(x—20)+F, (20, Yo, 20) (Y—y0)+F (20, Yo, 20) (T—20).
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Definition 14.6.5. The normal line to the level surface F(z,y,z) = k at
P(xq, 40, z0) is the line passing through P and perpendicular to the tangent
plane. The direction of the normal line is therefore given by the gradient vector
V F(xg, Yo, 20) and so its symmetric equations are

T — Zo . Y — Yo B 2= 20

Fx(x()uy(bz()) Fy(xO;yO,ZO) FZ(',L]O)yOaZU)‘

Example 8. Find the equations of the tangent plane and normal line at the
point (—2,1,—3) to the ellipsoid
2 2

x g 2
r 3
1TV Ty
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14.7 Maximum and Minimum Values

Definition 14.7.1. A function of two variables has a local maximum at (a, b)
if f(z,y) < f(a,b) when (z,y) is near (a,b). The number f(a,b) is called a
local maximum value. If f(z,y) > f(a,b) when (z,y) is near (a,b), then f
has a local minimum at (a,b) and f(a,b) is a local minimum value. If these
inequalities hold for all points (z,y) in the domain of f, then f has an absolute
maximum (or absolute minimum) at (a, b).

Theorem 14.7.1. If f has a local mazimum or minimum at (a,b) and the
first-order partial derivatives of f exist there, then f,(a,b) =0 and f,(a,b) =
0.

Proof. Let g(z) = f(x,b). If f has a local maximum (or minimum) at (a,b),
then ¢ has a local maximum (or minimum) at a, so ¢’(a) = 0 by Fermat’s
Theorem. But ¢'(a) = f.(a,b) and so f.(a,b) = 0. Similarly, by applying
Fermat’s Theorem to the function G(y) = f(a,y), we obtain f,(a,b) =0. O

Definition 14.7.2. A point (a, b) is called a critical point (or stationary point)
of fif f.(a,b) =0 and f,(a,b) =0, or if one of these partial derivatives does
not exist.

Example 1. Find the extreme values of f(z,y) = 2® + y? — 22 — 6y + 14.
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Example 2. Find the extreme values of f(z,y) = y* — 22

Theorem 14.7.2 (Second Derivatives Test). Suppose the second partial deriva-
tives of [ are continuous on a disk with center (a,b), and suppose that f,(a,b) =

0 and f,(a,b) =0. Let

D= D(aa b) = fm’(a7b)fyy(a’ b) - [fwy(avb)]Q'

(a) If D >0 and f..(a,b) >0, then f(a,b) is a local minimum.
(b) If D >0 and f..(a,b) <0, then f(a,b) is a local mazimum.
(¢c) If D <0, then f(a,b) is not a local mazimum or minimum.

Remark 1. In case (c) the point (a,b) is called a saddle point of f and the
graph of f crosses its tangent plane at (a,b).

Remark 2. If D = 0, the test gives no information: f could have a local
maximum or local minimum at (a,b), or (a,b) could be a saddle point of f.

Remark 3. To remember the formula for D, it’s helpful to write it as a deter-
minant:

Jow  fay

D=1

= faolfyy — <ffcy>2'
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Example 3. Find the local maximum and minimum values and saddle points
of f(z,y) = a* +y* — dzy + 1.
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Example 4. Find and classify the critical points of the function

f(z,y) = 102%y — 52* — 4y* — x* — 2y*.
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Example 5. Find the shortest distance from the point (1,0, —2) to the plane
r+2y+z=4.
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Example 6. A rectangular box without a lid is to be made from 12 m? of
cardboard. Find the maximum volume of such a box.
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Definition 14.7.3. A closed set in R? is one that contains all its boundary
points. [A boundary point of D is a point (a,b) such that every disk with
center (a,b) contains points in D and also points not in D.]

A bounded set in R? is one that is contained within some disk.

Closed sets
N
I |
| I

AN /

Sets that are not closed

Theorem 14.7.3 (Extreme Value Theorem for Functions of Two Variables).
If f is continuous on a closed, bounded set D in R?, then f attains an absolute
mazximum value f(xq,y1) and an absolute minimum value f(xs9,ys) at some
points (z1,y1) and (xe,y2) in D.

Remark 4. To find the absolute maximum and minimum values of a continuous
function f on a closed, bounded set D:

1. Find the values of f at the critical points of f in D.
2. Find the extreme values of f on the boundary of D.

3. The largest of the values from steps 1 and 2 is the absolute maximum
value; the smallest of these values is the absolute minimum value.
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Example 7. Find the absolute maximum and minimum values of the function
f(z,y) = 2* — 2zy + 2y on the rectangle D = {(x,y) |0 <z < 3,0 <y < 2}.
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14.8 Lagrange Multipliers

Theorem 14.8.1 (Method of Lagrange Multipliers). To find the mazimum
and minimum values of f(x,y,z) subject to the constraint g(z,y,z) = k [as-
suming that these extreme values exist and Vg # 0 on the surface g(x,y, z) =

kJ:

(a) Find all values of x, y, z, and X\ such that

Vf(z,y,2) = AVy(z,y,2)

and
g(x,y,z) = k.

The number X\ is called a Lagrange multiplier.

(b) Evaluate f at the points (x,y, z) that result from step (a). The largest of
these values is the mazimum value of f; the smallest is the minimum value

of f.
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Example 1. A rectangular box without a lid is to be made from 12 m? of
cardboard. Find the maximum volume of such a box.
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Example 2. Find the extreme values of the function f(z,y) = 2% + 2y* on
the circle 2% + y* = 1.

Example 3. Find the extreme values of f(x,y) = x?+2y? on the disk 22 +y? <
1.

503



Calculus - 14.8 Lagrange Multipliers

Example 4. Find the points on the sphere 22 + y? + 22 = 4 that are closest
to and farthest from the point (3,1, —1).
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Theorem 14.8.2 (Method of Lagrange Multipliers for Two
Constraints). To find the mazimum and minimum values
of f(x,y,z) subject to the constraints g(x,y,z) = k and
h(z,y,z) = ¢ [assuming that these extreme values exist and P
Vg #0, Vh #0, and Vg is not parallel to Vh]: ' Vg
(a) Find all values of x, y, z, A, and pu such that -
P

Vf(x,y,2) = AVg(z,y, 2) + pVh(z,y, 2) V/ i

and g=k
9(@,y,2) =k  hz,y,2) =c

The numbers A and p are called Lagrange multipliers.

(b) Evaluate f at the points (x,y,z) that result from step
(a). The largest of these values is the mazimum value of
f; the smallest is the minimum value of f.

Example 5. Find the maximum value of the function f(x,y,2) = z+2y+3z
on the curve of intersection of the plane z — y + 2z = 1 and the cylinder
22+ =1.
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Chapter 15

Multiple Integrals

15.1 Double Integrals over Rectangles

Definition 15.1.1. The double integral of f over the rectangle R is

//R floy)dA= Tim > > flxjy;) A4

i=1 j=1

if this limit exists. The points (77}, y;;) are called sample points, AA = Az Ay
is the area of the subrectangle R;; formed by the subintervals [z;_, ;] and
[y;—1,y;], and the sum is called a double Riemann sum.
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Definition 15.1.2. If f(x,y) > 0, then the volume V' of the solid that lies
above the rectangle R and below the surface z = f(x,y) is

V://Rf(x,y)dA.

Example 1. Estimate the volume of the solid that lies above the square
R =10,2] x [0,2] and below the elliptic paraboloid z = 16 — 2% — 2y%. Divide
R into four equal squares and choose the sample point to be the upper right
corner of each square R;;. Sketch the solid and the approximating rectangular
boxes.

Example 2. If R = {(z,y) | -1 <2 <1,-2 <y < 2}, evaluate the integral

//Rmcm.
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Calculus - 15.1 Double Integrals over Rectangles

Theorem 15.1.1 (Midpoint Rule for Double Integrals).

[[remar= 33 s an

i=1 j=1
where Z; is the midpoint of [x;_1,x;] and y; is the midpoint of [y;—1,y;].

Example 3. Use the Midpoint Rule with m = n = 2 to estimate the value of
the integral [[,(z — 3y®) dA, where R = {(z,y) |0 <2 <2,1 <y <2}

Definition 15.1.3. Suppose that f is a function of two variables that is in-
tegrable on the rectangle R = [a, b] X [¢,d]. We use the notation fab f(z,y)dz
to mean that y is held fixed and f(z,y) is integrated with respect to x from
x = a to x = b. This procedure is called partial integration with respect to z.
Integrating this function gives us an iterated integral

/j/jf(x,y)d:cdy:/cd [/abfu,y)dx] dy

where we first integrate with respect to = (holding y fixed) from z = a toz = b
and then we integrate the resulting function of y with respect to y from y = ¢
toy =d.
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Calculus - 15.1 Double Integrals over Rectangles

Example 4. Evaluate the iterated integrals.

3 2
(a) / / oy dy dx
o J1

2 3
(b) / / oy dx dy
1 Jo

Theorem 15.1.2 (Fubini’s Theorem). If f is continuous on the rectangle
R={(z,y) [a <z <bec<y<d}, then

//Rf(x’y)dA:/ab/cdf(%y)dydxz/Cd/abf(x,y)dxdy.

More generally, this is true if we assume that f is bounded on R, f is discon-

tinuous only on a finite number of smooth curves, and the iterated integrals
erist.
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Example 5. Evaluate the double integral [[,,(z—3y*) dA, where R = {(z,y) |
0<2<21<y<2)

Example 6. Evaluate [[,,ysin(zy)dA, where R = [1,2] x [0, 7].

Example 7. Find the volume of the solid S that is bounded by the elliptic
paraboloid 2% + 2y + z = 16, the planes + = 2 and y = 2, and the three
coordinate planes.
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Calculus - 15.1 Double Integrals over Rectangles

Theorem 15.1.3.

//R g(@)h(y) dA = / bg(m) dx / dh(y) dy  where R=[a,b] x [c, d].

Proof. By Fubini’s Theorem,

J[ stemtaa= | d / ' g(e)h(y) de dy = / d [ / ' o(@)h) dx] "

In the inner integral, y is a constant, so h(y) is a constant and we can write

/Cd [/abg(x)h(y) dx] dy = /Cd h(y) </abg(x) dx) dy = /abg(x) dr /Cd h(y) dy

since fab g(x) dx is a constant. O

Example 8. Find [[,sinzcosydA if R =[0,7/2] x [0,7/2].

Definition 15.1.4. The average value of a function f of two variables defined
on a rectangle R is

1 //
ave — — X, dA
where A(R) is the area of R.
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Calculus - 15.1 Double Integrals over Rectangles

Example 9. The contour map in the figure shows the snowfall, in inches, that
fell on the state of Colorado on December 20 and 21, 2006. (The state is in
the shape of a rectangle that measures 388 mi west to east and 276 mi south
to north.) Use the contour map to estimate the average snowfall for the entire
state of Colorado on those days.
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Calculus - 15.2 Double Integrals over General Regions

15.2 Double Integrals over General Regions

Definition 15.2.1. If F' is integrable over R and D is a bounded region then

we define the double integral of f over D by

//Df(x,y)dA://RF(x,y)dA

Flz.y) f(x,y) if (z,y)isin D,
Z, =
770 if (,y) is in R but not in D.

where F' is given by

P "~
)

I

I

raph of F'
Xg ap

Definition 15.2.2. A plane region D is said to be of type I if it lies between

the graphs of two continuous functions of x, that is,

D={(z,y) |la<z<bg(r) <y<g(r)}

where g; and gy are continuous on [a, b]. Some examples of type I regions are

shown in the figure.

Y =g>(x)

Y=gi(x)

y y
Yy =¢,(x) y=¢,(x)

D | D f

| | | l

| | | |

I y=gi(x) I : y=gi(x) l :

a b X 0 a b X 0 a
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Calculus - 15.2 Double Integrals over General Regions

Theorem 15.2.1. If f is continuous on a type I region D such that

D={(z.y)|a<e<bagle)<y<glx))

ﬂﬁ@wmz[lﬁﬁmw@m

Definition 15.2.3. A plane region D is said to be of type II if it lies between
the graphs of two continuous functions of y, that is,

then

D={(z,y) | c<y<d h(y) <z<h(y)}

where hy and hy are continuous on [c, d]. Some examples of type II regions are
shown in the figure.

VA
db————
y
x=m) ) p x=y(y) d—————
cb_ x=hy(y) D x=1,(y)
0 b 0 X
C _______

Theorem 15.2.2. If f is continuous on a type II region D such that

D={(z,y) | c<y<dh(y) <z<hy(y)}

ﬂjmwM—féﬁwmwmw

then
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Calculus - 15.2 Double Integrals over General Regions

Example 1. Evaluate [ p(@+2y)dA, where D is the region bounded by the
parabolas y = 222 and y = 1 + 22
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Calculus - 15.2 Double Integrals over General Regions

Example 2. Find the volume of the solid that lies under the paraboloid
2z = 22 + y? and above the region D in the zy-plane bounded by the line
y = 2x and the parabola y = z2.
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Example 3. Evaluate [f p oy dA, where D is the region bounded by the line
= 7 — 1 and the parabola y? = 2z + 6.
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Calculus - 15.2 Double Integrals over General Regions

Example 4. Find the volume of the tetrahedron bounded by the planes x +
2+ z2z=2, =2y, x=0,and z = 0.

Example 5. Evaluate the iterated integral fol fxl sin(y?) dy dx.
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Calculus - 15.2 Double Integrals over General Regions

Theorem 15.2.3 (Properties of Double Integrals).

// (z,y) + g(x,y)] dA = /fasyd/H—// g(x,y)d

2. // cf(x,y)dA = c/ f(z,y) dA where ¢ is a constant.
D D

3. If f(x,y) > g(z,y) for all (x,y) in D, then

//D f(e,y)dA > //D g(z,y) dA

4. If D = Dy U Dy, where Dy and Dy don’t overlap except perhaps on their
boundaries, then

//Dﬂ“"’y)dA:/le(xv?J)dAJr/DQf(x,y)dA

This property can be used to evaluate double integrals over regions D that
are neither type I nor type II but can be expressed as a union of regions
of type I or type 11, as illustrated by the figure.

y y
D,
D D,
0 X 0 ;
(a) D is neither type I nor type II. (b) D=D, U D,, D, is type I, D, is type 1L

5. // 1dA = A(D) where A(D) is the area of D.
D

6. If m < f(x,y) < M for all (x,y) in D, then

D) < / f(x,y)dA < MA(D).
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Calculus - 15.2 Double Integrals over General Regions

Example 6. Use Property 6 to estimate the integral [[, I esnreosy d A where
D is the disk with center the origin and radius 2.
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Calculus - 15.3 Double Integrals in Polar Coordinates

15.3 Double Integrals in Polar Coordinates

Definition 15.3.1. The region given by
R={(r0)|a<r<ba<d<pj}

is called a polar rectangle, as shown in the figure.

0=6;-
r=>b le \ * %
6= \,./(”iaej)
R
A6
/ /// f
// m// / r=r
r=a — / / / =T
/ pt ome U _
/ B - ////////////// r=ri—g
a ="
0 . 0

Theorem 15.3.1 (Change to Polar Coordinates in a Double Integral). If f is
continuous on a polar rectangle R given by 0 < a <r <b, a <0 < 3, where
0<p—a<2nm, then

//Rf(x’y)dA_/j/abf(rcose,rsine)rdrde,

Proof. The “center” of the polar subrectangle
Rij = {(7’, 9) ‘ rio1 <1< 7"1',(9];1 <f< 9]}

has polar coordinates

. 1 |
r, = 5(7”1;14‘7’@') Qj = 5(4%;14—9]').
Since the area of a sector of a circle with radius r and central angle 6 is %TQG,
the area of R;; is

1 1 1
AA; = grif0 — orl (A = S(r] — ) A6
1
= 5 (ri i) (ri = ri1) A0 = r] ArAd.
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Calculus - 15.3 Double Integrals in Polar Coordinates

Therefore we have

m n

//R flz,y)dA = m17llr—r>loo Z Z f(ricost,risint;) AA;

i=1 j=1
B b
:/ /f(rcosQ,rsiné’)rdrdQ. O

Example 1. Evaluate [[,(3z + 4y*) dA, where R is the region in the upper
half-plane bounded by the circles 22 + y* = 1 and 22 + y? = 4.

Example 2. Find the volume of the solid bounded by the plane z = 0 and
the paraboloid z = 1 — 2% — 3.
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Calculus - 15.3 Double Integrals in Polar Coordinates

Theorem 15.3.2. If f is continuous on a polar region of the form

D={(r,0)]a<0<pB,h(0) <r<hy(0)}

0=p r=h,(0)
D
/
/
/,3 B 0=«
e
0 r=nh6)

then

B rha(0)
//f(q:,y)dA:/ / f(rcos@,rsin®)rdrdd.
D a Jhi(0)

Example 3. Use a double integral to find the area enclosed by one loop of
the four-leaved rose r = cos 26.
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Example 4. Find the volume of the solid that lies under the paraboloid
2z = 22 + 9%, above the zy-plane, and inside the cylinder 22 + y? = 2.
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15.4 Applications of Double Integrals

Definition 15.4.1. Suppose a lamina occupies a region D of the zy-plane
and its density (in units of mass per unit area) at a point (x,y) in D is given
by p(z,y), where p is a continuous function on D. Then the total mass of the
lamina is given by

k l

m = k:,lllinoo Z Z p(ry, yi5) AA = //D p(r,y) dA.

i=1 j=1

Similarly, if an electric charge is distributed over a region D and the charge
density (in units of charge per unit area) is given by o(z,y) at a point (z,y)
in D, then the total charge () is given by

Q- //D o, y) dA.

Example 1. Charge is distributed over the triangular region y

D in the figure so that the charge density at (x,y) is o(x,y) =

zy, measured in coulombs per square meter (C/m?). Find y=1

the total charge. I b
y=1—x
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Calculus - 15.4 Applications of Double Integrals

Definition 15.4.2. Suppose a lamina occupies a region D and has density
function p(z,y). The moment of the lamina about the z-axis is

M, = lim Y yiplar;,u;) AA = // yp(z,y) dA.
m,n— 00 D

i=1 j=1

Similarly, moment about the y-axis is

My = Jim S wptean)ad = [ apteyaa
m,n—00 D

i=1 j=1

Definition 15.4.3. The coordinates (z,y) of the center of mass of a lamina
occupying the region D and having density function p(z,y) are

M, 1 M, 1
i:—y:—//xp(x,y)d/l g:_:—//yp(x,y)dA
m m J/p m m JJp

where the mass m is given by

m = //D oz, y) dA.

The lamina balances horizontally when supported at its center of mass (see

the figure).
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Calculus - 15.4 Applications of Double Integrals

Example 2. Find the mass and center of mass of a triangular lamina with
vertices (0,0), (1,0), and (0, 2) if the density function is p(x,y) = 1+ 3z + v.
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Calculus - 15.4 Applications of Double Integrals

Example 3. The density at any point on a semicircular lamina is proportional
to the distance from the center of the circle. Find the center of mass of the

lamina.
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Definition 15.4.4. The moment of inertia (also called the second moment)
of a particle of mass m about an axis is defined to be mr?, where r is the
distance from the particle to the axis. The moment of inertia of the lamina
about the z-axis is defined to be

L=t Y0 () otel ) 84 = [[ oty da
m,n—00 D

i=1 j=1

Similarly, the moment of inertia about the y-axis is defined to be

1= lim 77 ole p) A4 = //D (i, y) dA.

i=1 j=1

The moment of inertia about the origin, also called the polar moment of inertia

is defined to be

Iy = m},igloo i i [(@;)2 + (?/1*3)2] p(ai; yi;) AA = //D<$2 +y%)p(x, y) dA.

i=1 j=1

Example 4. Find the moments of inertia I, I,,, and I of a homogeneous disk
D with density p(z,y) = p, center the origin, and radius a.
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Calculus - 15.4 Applications of Double Integrals

Definition 15.4.5. The radius of gyration of a lamina about an axis is the
number R such that

mR? =1
where m is the mass of the lamina and I is the moment of inertia about the
given axis. In particular, the radius of gyration y with respect to the z-axis and
the radius of gyration z with respect to the y-axis are given by the equations
my? =1, mz® = I,.
Example 5. Find the radius of gyration about the z-axis of the disk in Ex-
ample 4.

Definition 15.4.6. The joint density function of two continuous random vari-
ables X and Y is a function f of two variables such that the probability that
(X,Y) lies in a region D is

P((X,Y) € D) = //D Fa,y) dA.

In particular, if the region is a rectangle, the probability that X lies between
a and b and Y lies between ¢ and d is

b pd
P(aSXSb,cSYSd)z//f(x,y)dydx.

(See the figure.)
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Calculus - 15.4 Applications of Double Integrals

Remark 1. Because probabilities aren’t negative and are measured on a scale
from 0O to 1, the joint density function has the following properties:

flz,y) >0 /sz(x,y)dAzl

r //RQf(x,y)dAz/_:/_Zf(x,y)dydx:c}i_{go/Daf(x’y)dA

where D, is the disk with radius a and center the origin.

fo

Example 6. If the joint density function for X and Y is given by

Clz+2y) if0<x<10,0<y<10
flx,y) = .
0 otherwise

find the value of the constant C. Then find P(X < 7,Y > 2).

Definition 15.4.7. Suppose X is a random variable with probability density
function fi(z) and Y is a random variable with density function f(y). Then X
and Y are called independent random variables if their joint density function
is the product of their individual density functions:

f(@y) = fi(@) fa(y).
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Calculus - 15.4 Applications of Double Integrals

Example 7. The manager of a movie theater determines that the average
time moviegoers wait in line to buy a ticket for this week’s film is 10 minutes
and the average time they wait to buy popcorn is 5 minutes. Assuming that
the waiting times are independent, find the probability that a moviegoer waits
a total of less than 20 minutes before taking his or her seat.
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Definition 15.4.8. If X and Y are random variables with joint density func-
tion f, we define the X-mean and Y-mean, also called the expected values of
X and Y, to be

mz//RQﬂff(fv,y)dA mz//Rzyf(x,y)dA-

Example 8. A factory produces (cylindrically shaped) roller bearings that
are sold as having diameter 4.0 cm and length 6.0 cm. In fact, the diameters
X are normally distributed with mean 4.0 cm and standard deviation 0.01 cm
while the lengths Y are normally distributed with mean 6.0 cm and standard
deviation 0.01 cm. Assuming that X and Y are independent, write the joint
density function and graph it. Find the probability that a bearing randomly
chosen from the production line has either length or diameter that differs from
the mean by more than 0.02 cm.
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Calculus - 15.5 Surface Area

15.5 Surface Area

Definition 15.5.1. Let S be a surface with equation z =
f(z,y), where f has continuous partial derivatives. We de-
fine the surface area of S to be

A = 33,

i=1 j=1

where AT;; is the part of the tangent plane to S at the point
P;; on the surface corresponding to a rectangle R;; in the
domain D of f.

Theorem 15.5.1. The area of the surface with equation z = f(x,y), (z,y) €
D, where f, and f, are continuous, is

AS) = [ Ife P+ el + a4

Proof. Let a and b be the vectors that start at P;; and lie along the sides of
the parallelogram with area AT;;. Then AT;; = |a x b|. Since f,(z;,y;) and
fy(xi,y;) are the slopes of the tangent lines through P,; in the directions of a
and b, we have

a=Azi+ f.(x;,y;) Ark
b=Ayj+ f,(z;,y;) Ayk.

and
i j k
axb=|Az 0 fi(z;,y;)Ax
0 Ay fylzi,y;) Ay
= —fulzi,yj) Az Ayi— f,(75,y;) Az Ayj+ Ax Ayk
= [—f:p(l’i, Z/j)i - fy(SCm Z/j)j + k] AA.
Thus

A) = fim 323 AT, = i 353

=1 j=1 i=1 j=1

= m Z Z \/[fm(xi, Y2 + [fy (@, y)]2 + L AA. 0
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Calculus - 15.5 Surface Area

Example 1. Find the surface area of the part of the surface z = 22 + 2y that
lies above the triangular region 7" in the zy-plane with vertices (0,0), (1,0),
and (1,1).

Example 2. Find the area of the part of the paraboloid z = 2% + y? that lies
under the plane z = 9.
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15.6 Triple Integrals

Definition 15.6.1. The triple integral of f over the box B
is

l m n
JI[ f@maav = m STSTS i) AV

i=1 j=1 k=1

if this limit exists. The points (27, yi, 2i;;) are called sam-
ple points, AV = Az Ay Az is the volume of the sub-box
Biji = [wi—1, %] X [yj—1, y;] X [#k—1, 2], and the sum is called
a triple Riemann sum.

Theorem 15.6.1 (Fubini’s Theorem for Triple Integrals). If f is continuous
on the rectangular box B = [a,b] x [¢,d] X [r, s], then

//Bf(x,y,Z)de/Ts/cd/abf(x,y,z)dxdydz.

Example 1. Evaluate the triple integral [[[, zyz*>dV where B is the rectan-
gular box given by

B={(z,y,2) | 0<2x<1,-1<y<20<z<3}
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Calculus - 15.6 Triple Integrals

Definition 15.6.2. If F' is integrable over B and FE is a bounded region then
we define the triple integral of f over £ by

//Ef(x,y,z) dV = ///BF(x,y,z) av

where F' is defined so that it agrees with f on F but is 0 for points in B that
are outside F.

Definition 15.6.3. A solid region FE is said to be of type 1 A
if it lies between the graphs of two continuous functions of x 2=y, )
and y, that is

E= {(IayVZ) | (xay) S D»“l(x7y) <z< u2(x,y)} a Z=uy(X, y)

|

where D is the projection of E onto the xy-plane as shown 0 W
in the figure. . I D : | y
Theorem 15.6.2. If f is continuous on a type 1 region E such that '

E={(z,y,2) | (z,y) € D,ui(z,y) < 2z < uz(z,y)}
then

uQ(xvy)
] swnav=[[ [ seyzas| an
E D u1(z,y)

Remark 1. If the projection D of E onto the zy-plane is a type
I plane region (as in the figure), then ’ 2=, y)

E = {(Z‘,y, Z) | a S Y S ba gl('r) S ) S 92(x)7u1(x7y> S < S UQ('Tay)}7 'E

SO
b rg2(z) pruz(z.y) 0 [
// f(x,y,z)dV:// / f(x,y,2)dzdydzx. /\I{\|JI\,
E a Jgi(x) Jui(zy) Xb :

y=gix)\ D

If, on the other hand, D is a type II plane region (as in the
figure), then

E={(z,y,2) | c<y <d, h(y) <z <h(y),u(z,y) <z <wus(z,y)},

0

SO ! -
|
d rha(y)  pus(ey) \L«‘\/TL\)
// fz,y,2)dV :/ / / f(z,y, z) dzdx dy. / L) :
E c hi(y) u ( X

z,y)
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Calculus - 15.6 Triple Integrals

Example 2. Evaluate [[],  2dV, where E is the solid tetrahedron bounded
by the four planes xt =0,y =0,2=0,and x +y + z = 1.

Definition 15.6.4. A solid region F is of type 2 if it is of
the form

E= {(x>y7 Z) ‘ (y7 Z) € D7u1<ya Z) Sx < UQ(Q:Z)}

where D is the projection of E onto the yz-plane as shown
in the figure.

Theorem 15.6.3. If f is continuous on a type 2 region E
such that

E= {(x,y, Z) | (y,Z) € D7u1(y7 Z) Sx < uQ(yaz)}

[ aamav = || [ / (())f(y) da

538

then
dA.




Calculus - 15.6 Triple Integrals

Definition 15.6.5. A solid region E is of type 3 if it is of .
the form

E= {(l‘,y, z) | (:L’,Z) € D7u1($7z) <y< UQ(ZL‘,Z)}

where D is the projection of F onto the xz-plane as shown
in the figure.

Theorem 15.6.4. If f is continuous on a type 3 region E
such that

E={(z,y,2) | (x,2) € D,us(x,2) <y < wus(z,2)}

fema = [ | [ fey.2) ay
E D uy(z,z)

Example 3. Evaluate [[[, Va2 + 22dV, where E is the region bounded by
the paraboloid y = 2 + 22 and the plane y = 4.

then
dA.
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Calculus - 15.6 Triple Integrals

1’2
Example 4. Express the iterated integral fol fo foyf(m,y,z) dzdydr as a
triple integral and then rewrite it as an iterated integral in a different order,
integrating first with respect to x, then z, and then y.

Theorem 15.6.5.

V(E) = ///E dv.

Example 5. Use a triple integral to find the volume of the tetrahedron T
bounded by the planes x +2y+ 2 =2, z =2y, x =0, and 2z = 0.
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Calculus - 15.6 Triple Integrals

Definition 15.6.6. If the density function of a solid object that occupies the
region E is p(x,y, z), in units of mass per unit volume, at any given point

(x,y, z), then its mass is
m = /// p(z,y,2)dV
E

and its moments about the three coordinate planes are

Myzz///Exp(x,y,Z) dv szz///Ey,O(x,y,z) dv
Mxy:///Ezp(x,y, z)dV.

The center of mass is located at the point (Z, 7, Z), where

Myz _ Mrz _ Mxy
m m m

xr =

If the density is constant, the center of mass of the solid is called the centroid
of E. The moments of inertia about the three coordinate axes are

I, = ///E(yf + 22)p(z,y,2)dV I, = ///E(xz + 22)p(z,y,2)dV
I = //[E(fff2 +y°)p(x,y, 2) dV.

Definition 15.6.7. The total electric charge on a solid object occupying a
region E and having charge density o(z,vy, z) is

Q= ///Ea(x,y,z) dv.

Definition 15.6.8. If we have three continuous random variables X, Y, and
7, their joint density function is a function of three variables such that the
probability that (XY, Z) lies in FE is

P(X,Y,Z) € E) = //Ef(x,y,z) av.

In particular,

b d s
P(aﬁXﬁb,cﬁYﬁd,rSZSs)—///f(x,y,z)dzdydx.

The joint density function satisfies

F(z,y,2) >0 /Z/:/Zf(x,y,z)dzdydle.
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Calculus - 15.6 Triple Integrals

Example 6. Find the center of mass of a solid of constant density that is
bounded by the parabolic cylinder 2 = y? and the planes z = z, z = 0, and
r=1.

042



Calculus - 15.7 Integrals in Cylindrical Coordinates

15.7 Integrals in Cylindrical Coordinates

Definition 15.7.1. In the cylindrical coordinate system, a ZA
point P in three-dimensional space is represented by the or-
dered triple (r,6, z), where r and 6 are polar coordinates of ? P(r, 0,2)
the projection of P onto the xy-plane and z is the directed
distance from the zy-plane to P. (See the figure.)

Theorem 15.7.1. To convert from cylindrical to rectangular
coordinates, we use the equations

x =rcosft y =rsinf z2=2z

whereas to convert from rectangular to cylindrical coordinates, we use

r? =2 4+ 97 tanf = 7 z=z.
x
Example 1. (a) Plot the point with cylindrical coordinates (2,27/3,1) and

find its rectangular coordinates.

(b) Find cylindrical coordinates of the point with rectangular coordinates
(3,—-3,—7).
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Calculus - 15.7 Integrals in Cylindrical Coordinates

Example 2. Describe the surface whose equation in cylindrical coordinates is
Z=r.

Theorem 15.7.2. Suppose that E is a type 1 region whose ,
projection D onto the xy-plane is described in polar coordi- 2= uy(% y)

nates (see the figure). In particular, suppose that f is con-
tinuous and

E={(z,y,2) | (z,9) € D,ur(x,y) < 2 < ug(z,y)}

where D is given in polar coordinates by

D ={(r,0) ] a<0<p8 h(0) <r<hy(0)}.

Then the formula for triple integration in cylindrical coordi-
nates is

B8 h2(0) 2(r cos 6,rsin 6)
// f(x,y,z)dV:// / f(rcos@,rsind, z)rdzdrdf.
E « h1(0) (rcosf,rsinf)
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Calculus - 15.7 Integrals in Cylindrical Coordinates

Example 3. A solid F lies within the cylinder 22 + 3% = 1, z

below the plane z = 4, and above the paraboloid z = 1 —a2% — z=4

y%. (See the figure.) The density at any point is proportional (0,0, 4)
to its distance from the axis of the cylinder. Find the mass ]
of E.

2 pVA—2Z 2
Example 4. Evaluate / / / (2% +v?) dz dy dx.
—2J —4—22 J /22 +y?
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15.8 Integrals in Spherical Coordinates

Definition 15.8.1. The spherical coordinates (p, 6, ¢) of a P
point P in space are shown in the figure, where p = |OP]
is the distance from the origin to P, # is the same angle as
in cylindrical coordinates, and ¢ is the angle between the

positive z-axis and the line segment OP. Note that P(x,y,z)
P(p. 0, )
p>0 0<¢<m
Theorem 15.8.1. The relationship between rectangular and
spherical coordinates can be seen from the figure. To convert
from spherical to rectangular coordinates, we use the equa- \§
tions
P'(x,y,0)

x = psin¢cos b y = psin¢psinf Z = pcos .
To convert from rectangular to spherical coordinates, we use the equation

,02 :x2+y2—|—z2.
Example 1. The point (2,7/4,7/3) is given in spherical coordinates. Plot
the point and find its rectangular coordinates.
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Calculus - 15.8 Integrals in Spherical Coordinates

Example 2. The point ((), 24/3, —2) is given in rectangular coordinates. Find

spherical coordinates for this point.

Theorem 15.8.2. The formula for triple integration in spherical coordinates

//E F,y,2)dV

d B8 b
:///f(,osinqbcos@,psinqbsin@,pcosgb)pzsingbddedgb.

where E 1s a spherical wedge given by

E={(p,0,0) | a<p<ba<d<pc<¢<d}

S
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Calculus - 15.8 Integrals in Spherical Coordinates

Example 3. Evaluate [[[, @ +v*+22 17 where B is the unit ball:

B={(z,y,2) | 2> +y* + 2> <1}
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Calculus - 15.8 Integrals in Spherical Coordinates

Example 4. Use spherical coordinates to find the volume of the solid that
lies above the cone z = y/22 + y? and below the sphere % + 3% + 2% = 2. (See
the figure.)
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15.9 Change of Variables in Multiple Integrals

Definition 15.9.1. A change of variables is given by a transformation 7" from
the uv-plane to the xy-plane:

T(u,v) = (x,y)
where x and y are related to u and v by the equations
x = g(u,v) y = h(u,v).

We usually assume that T is a O transformation, which means that g and h
have continuous first-order partial derivatives.

Remark 1. A transformation T is really just a function whose domain and
range are both subsets of R%. If T'(uy,v1) = (w1, y1), then the point (z1,%,) is
called the image of the point (u1,v1). If no two points have the same image,
T is called one-to-one. The figure shows the effect of a transformation 7" on
a region S in the wv-plane. T transforms S into a region R in the zy-plane
called the image of S, consisting of the images of all points in S.

DA VA
T
S —_— R
(11, 07) T
.\(—/ ® (%, )
0 u 0 X

If T is a one-to-one transformation, then it has an inverse transformation 71
from the xy-plane to the uv-plane and it may be possible to solve for v and v
in terms of x and y:
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Calculus - 15.9 Change of Variables in Multiple Integrals

Example 1. A transformation is defined by the equations

r=u®—v* Y = 2uv.

Find the image of the square S = {(u,v) |0 <u <1,0 <wv < 1}.

Definition 15.9.2. The Jacobian of the transformation 7" given by = g(u, v)
and y = h(u,v) is

or v
8(x,y)_ ou Ov _%@_%@

O(u,v) |9y Oy C Oudv  Ovou
ou Ov

Remark 2. This notation can be used to show that the area AA of the image
R in the xy-plane of a rectangle in the uv-plane is approximately

Au Av.

|9z, y)
adw ‘aw, )

Theorem 15.9.1 (Change of Variables in a Double Integral). Suppose that T
is a O transformation whose Jacobian is nonzero and that T maps a region S
in the uv-plane onto a region R in the xy-plane. Suppose that f is continuous
on R and that R and S are type I or type II plane regions. Suppose also that
T is one-to-one, except perhaps on the boundary of S. Then

[ s@maa= [[ statuovwon |52
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Calculus - 15.9 Change of Variables in Multiple Integrals

Example 2. Use the change of variables x = u? — v?, y = 2uv to evaluate

the integral [f rYdA, where R is the region bounded by the z-axis and the
parabolas y? = 4 — 4z and y? = 4 + 4z, y > 0.
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Calculus - 15.9 Change of Variables in Multiple Integrals

Example 3. Evaluate the integral [[ R e@tv)/(@=Y) dA where R is the trape-
zoidal region with vertices (1,0), (2,0), (0,—2), and (0, —1).
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Calculus - 15.9 Change of Variables in Multiple Integrals

Definition 15.9.3. The Jacobian of the transformation 7' given by z =
g(u,v,w), y = h(u,v,w), and z = k(u,v,w) is

Oor Ox Ox
ou v Ow
owyz) |2 By Oy
O(u,v,w) |Ou v Odwl|’
0z 0z 0z

du v dw

Theorem 15.9.2 (Change of Variables in a Triple Integral). Under hypotheses
similar to those in Theorem 15.9.1,

I swzrav = ] stuvw. vt o, stu.u) \%

Example 4. Use Theorem 15.9.2 to derive the formula for triple integration
in spherical coordinates.

du dv dw.
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Chapter 16

Vector Calculus

16.1 Vector Fields

Definition 16.1.1. Let D be a set in R? (a plane region). A

VA
vector field on R? is a function F that assigns to each point F(x,y)
(x,y) in D a two-dimensional vector F(z,y). D— \

(%)

Remark 1. Since F(x,y) is a two-dimensional vector, we can » L,
write it in terms of its component functions P and @ as ¥ 0 — x
follows:

.\\

F(z,y) = P(z,y)i+ Q(z,y)j = (P(z,y), Q(z,y))

or, for short,
F = Pi+ Qj.

Note that P and () are scalar functions of two variables and are sometimes
called scalar fields to distinguish them from vector fields.

Definition 16.1.2. Let E be a subset of R3. A vector field on R? is a function
F that assigns to each point (z,y, 2) in F a three-dimensional vector F(x,y, z).

Remark 2. We can express a vector field F on R3 in terms of its component
functions P, @), and R as

F(z,y,2) = P(x,y,2)i+ Q(z,y,2)] + R(x,y, 2)k.
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Calculus - 16.1 Vector Fields

Example 1. A vector field on R? is defined by F(z,y) = —yi + xj. Describe
F by sketching some of the vectors F(x,y).

Example 2. Sketch the vector field on R? given by F(x,v, z) = zk.
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Calculus - 16.1 Vector Fields

Example 3. Imagine a fluid flowing steadily along a pipe and let V(z,y, 2)
be the velocity vector at a point (x,y,z). Then V assigns a vector to each
point (z,y,2) in a certain domain F (the interior of the pipe) and so V is a
vector field on R? called a velocity field. Sketch a possible velocity field in a
fluid flow.

Example 4. Newton’s Law of Gravitation states that the magnitude of the
gravitational force between two objects with masses m and M is

mMG

r2

F| =

where r is the distance between the objects and G is the gravitational constant.
Let’s assume that the object with mass M is located at the origin in R? and
let the position vector of the object with mass m be x = (x,y, z). Write and
sketch an equation for the gravitational field F.
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Calculus - 16.1 Vector Fields

Example 5. Suppose an electric charge @) is located at the origin. According
to Coulomb’s Law, the magnitude of the electric force F(x) exerted by this

charge on a charge ¢ located at a point (z,y,z) with position vector x =
(x,y,2) is

£4Q
r2

[ =

where ¢ is a constant (that depends on the units used). This vector field and
the one in Example 4 are examples of force fields. Instead of considering the
electric force F, physicists often consider the force per unit charge E(x) =
%F(X), called the electric field of (). Write equations for F and E.

Definition 16.1.3. If f is a scalar function of two variables, its gradient

Vi, y) = felz, y)i+ fy(z,9)]

is a vector field on R? called a gradient vector field. Likewise, if f is a scalar
function of two variables, its gradient is a vector field on R? given by

Vi(x,y, 2) = folz,y, 2)i+ fy(z,y,2)] + f.(z,y, 2)k.

558



Calculus - 16.1 Vector Fields

Example 6. Find the gradient vector field of f(z,y) = %y — y3. Plot the
gradient vector field together with a contour map of f. How are they related?

Definition 16.1.4. A vector field F is called a conservative vector field if it is
the gradient of some scalar function, that is, if there exists a function f such
that F = Vf. In this situation f is called a potential function for F.
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16.2 Line Integrals

Definition 16.2.1. If f is defined on a smooth curve C' given

by the parametric equations r4
x = xz(t) y =y(t) a<t<hb,
then the line integral of f along C'is
[ Feds = lim 3 pau) s v
c n—o00 Py

if this limit exists. The lengths As; are of subarcs of C' and a
the points (z},y}) are sample points in the ith subarc.

Remark 1. Using the formula for the length of C' we can write

[ s [ bf(sc(w,y(t))\/ (%) ¥ (%)th.

Example 1. Evaluate fc(2 + 2%y) ds, where C' is the upper half of the unit
circle 22 + % = 1.
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Calculus - 16.2 Line Integrals

Definition 16.2.2. Suppose that C' is a piecewise-smooth
curve; that is, C' is a union of a finite number of smooth
curves C1, Oy, ..., C,, where, as illustrated in the figure, the
initial point of C;y; is the terminal point of C;. Then we
define the integral of f along C' as the sum of the integrals
of f along each of the smooth pieces of C"

/C fawyis= [ sepds+ [ faaiset [ s

Ca Cn

A
y c,
N
c
C, }
— Cl
0

Example 2. Evaluate [ o 27 ds where C consists of the arc C of the parabola

= 22 from (0,0) to (1,1) followed by the vertical line segment Cy from (1,1)

to (1,2).
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Calculus - 16.2 Line Integrals

Definition 16.2.3. Suppose that p(x,y) represents the linear density at a
point (z,y) of a thin wire shaped like a curve C'. Then the mass m of the wire
is given by

m = lim ) p(fv?,y?)ﬁsiz/p(x,y)d&
n—oo
i=1 ¢

The center of mass of the wire with density function p is located at the point
(Z,y), where

_ 1 B 1
T = —/xp(:v,y) ds  y= —/yp(x,y) ds.
m Jo m Jo

Example 3. A wire takes the shape of the semicircle 2 + ¢ = 1, y > 0, and
is thicker near its base than near the top. Find the center of mass of the wire
if the linear density at any point is proportional to its distance from the line

y=1.
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Calculus - 16.2 Line Integrals

Definition 16.2.4. The integrals
[ Fade = lim 3 et ) A

/Cf(x,y) dy = JLH;OZf(ff7yf)Ayi
=1

are called the line integrals of f along C with respect to z and y. The original
line integral [ o f(x,y)ds is called the line integral with respect to arc length.

Theorem 16.2.1. Line integrals with respect to x and y can also be evaluated
by expressing everything in terms of t:

[jmwmszmmWWMMt
[ sy = [ a0

Remark 2. When line integrals with respect to z and y occur together we
abbreviate by writing

/CP(w,y)de+/CQ(x,y)dy=/CP(x,y)derQ(x,y)dy-
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Calculus - 16.2 Line Integrals

Example 4. Evaluate fC y? dov+x dy, where (See the figure.)

(a) C' = () is the line segment from (-5, —3) to (0, 2)

= (, is the arc of the parabola z = 4 — y? from
(—5,-3) to (0,2).
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Definition 16.2.5. Suppose that C is a smooth space curve given by the
parametric equations

x = x(t) y =y(t) z = z(t) a<t<b,

or by a vector equation r(t) = x(t)i + y(¢)j + z(t)k. If f is a function three
variables that is continuous on some region containing C', then the line integral
of f along C' (with respect to arc length) is

f(z,y,2)ds = lim fx;‘kay;{azzik As;
/C (2. 2)ds = Jim 3 1 )

if this limit exists.

Remark 3. Using the formula for the length of C' we can write

[ sz [ bf(x(t),y(t),Z(t))\/ (%) + (%) + (%)

or, more compactly,

[ sl

For the special case f(z,y,2) =1, we get

/Cds:/ab|r’(t)|dt:L

where L is the length of the curve C.
Definition 16.2.6. The integrals

[ 1) de = i 3Gt An = [ 10000, 20) 0 d
n b
[ 1) dy = lim 3 i =) A= [ (0.0, 20 0 d

n b
[ Hy 2z = i Y gtz As = [ Ha 0,000,200 d

are called the line integrals of f along C' with respect to x, y, and z.

Remark 4. As with line integrals in the plane, we evaluate integrals of the
form

/ Pla,y, =) da + Q. y, 2) dy + R(zy, =) d
C

by expressing everything (x,y, z, dx, dy, dz) in terms of the parameter t.
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Calculus - 16.2 Line Integrals

Example 5. Evaluate [, cysinzds, where C' is the circular
helix given by the equations x = cost, y = sint, z = t,
0 <t < 2m. (See the figure.)
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Calculus - 16.2 Line Integrals

Example 6. Evaluate fcydx + zdy + xdz, where C' consists of the line
segment C from (2,0,0) to (3,4,5), followed by the vertical line segment Cj
from (3,4,5) to (3,4,0).
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Definition 16.2.7. Suppose that F = Pi+ Qj + Rk is a B
continuous force field on R3. We define the work W done by
the force field F as the limit of the Riemann sums

n

Y IF(af,yi =) - T, yi )] Asy

=1

and T(z,vy, z) is the unit tangent vector at the point (x,y, 2)

where P (x},yf, zf) is a point on the ith subarc P;,_; P; of C, /
on C. That is, .

W:/F(:L’,y,z)'T(x,y,z)ds:/F~Tds.
c C

Remark 5. If the curve C' is given by the vector equation r(t) = z(t)i+y(t)j+
z(t)k, then T(t) = r'(t)/|r'(t)], so

w- [ b P | = | Be(t) (1) dt

which we abbreviate as |, oF-dr.

Definition 16.2.8. Let F be a continuous vector field defined on a smooth
curve C' given by a vector function r(t), a <t < b. Then the line integral of
F along C'is

/CF-dr:/abF(r(t))-r’(t)dt:/CF-Tds.

Example 7. Find the work done by the force field F(z,y) = 2% — zyj in
moving a particle along the quarter-circle r(t) = costi + sintj, 0 <t < 7/2.

568



Calculus - 16.2 Line Integrals

Example 8. Evaluate [, F - dr, where F(xz,y,2) = zyi + yzj + zrk and C is
the twisted cubic given by

r=t y=t* =t 0<t<l1.

Theorem 16.2.2. Suppose the vector field F on R? is given in component
form by F = Pi+ Qj+ Rk. Then

/F~dr—/de+Qdy+Rdz.
c c

/CF-dr:/ F(r(t)) - v'(t) dt
(Pi+Qj+ Bk) - (¢'(t)i+y'(t)j + 2’ (H)k) dt

[P((t), y(t), 2(t))2"(t) + Q(x(t), y(8), 2(t))y () + R(x(t), y(t), 2(1))2'(t)] dt

/ab
f
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16.3 Fundamental Theorem for Line Integrals

Theorem 16.3.1 (Fundamental Theorem for Line Integrals). Let C' be a
smooth curve given by the vector function r(t), a <t <b. Let f be a differen-
tiable function of two or three variables whose gradient vector V f is continuous

on C. Then
tLVfwsz@wﬂ—f@w»

Proof. If f is a function of three variables and C' is a space
curve joining the point A(x1,y1, 21) to the point B(xg, ya, 22),
as in the figure, then the theorem becomes

/Cvf ~dr = f($2,y2722) - f(xhylazl)-

In this case (the case for two variables is similar),

/CVf-dr:/abe(r(t))-r’(t)dt

brofde  Ofdy Ofdz
—L(£E+@a+@aﬁt
b d
= — t))dt
| gt
= f(x(b)) — f(r(a)). O
Example 1. Find the work done by the gravitational field
mMG

TP

F(x) =

in moving a particle with mass m from the point (3,4, 12) to the point (2,2, 0)
along a piecewise-smooth curve C. (See Example 16.1.4.)
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Calculus - 16.3 Fundamental Theorem for Line Integrals

Remark 1. In general, if F is a continuous vector field with

domain D, we say that the line integral [, F - dr is inde-

pendent of path if [, F-dr = [, F -dr for any two paths

C7 and Cy in D that have the same initial points and the

same terminal points. By Theorem 16.3.1, line integrals of

conservative vector fields are independent of path. A curve

is called closed if its terminal point coincides with its initial point, that is,
r(b) =r(a). (See the figure.)

Theorem 16.3.2. [, F-dr is independent of path in D if and only if [, F-dr =
0 for every closed path C' in D.

Proof. 1f [, o F - dr is independent of path in D and C'is any
closed path in D, we can choose any two points A and B on
C as being composed of the path C from A to B followed
by the path Cy from B to A. (See the figure.) Then

A
/F-dr:/ F-dr—I—/ F-dr:/ F~dr—/ F-dr=0
C Cl 02 Cl *02

since 7 and —C'y have the same initial and terminal points.

Conversely, if it is true that [ o F - dr = 0 whenever C is a closed path in D,
then we demonstrate independence of path as follows. Take any two paths
C: and Cs from A to B in D and define C' to be the curve consisting of C
followed by —C5. Then

O:/F-dr:/F-dr+/ F-dr:/F-dr—/ F.-dr
C C1 —CQ C1 C2

and so fch-dr:fCQF-dr. O

G

Theorem 16.3.3. Suppose F is a vector field that is continuous on an open
connected region D. (By open we mean that for every point P in D there is
a disk with center P that lies entirely in D, and by connected we mean that
any two points in D can be joined by a path that lies in D.) If fCF -dr is
independent of path in D, then F is a conservative vector field on D; that is,
there exists a function f such that Vf =F.

Theorem 16.3.4. IfF(z,y) = P(z,y)i+Q(z,y)j is a conservative vector field,
where P and Q) have continuous first-order partial derivatives on a domain D,

then throughout D we have
orP  0Q

Oy ox
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Calculus - 16.3 Fundamental Theorem for Line Integrals

Definition 16.3.1. A simple curve is a curve that does not intersect itself
anywhere between its endpoints. [See the figure; r(a) = r(b) for a simple
closed curve, but r(t;) # r(t) when a < ty <ty < b.]

N E

simple, not simple,
not closed not closed

simple, not simple,

closed closed

Definition 16.3.2. A simply-connected region in the plane is a connected
region D such that every simple closed curve in D encloses only points that
are in D. [See the figure; a simply-connected region contains no hole and
cannot consist of two separate pieces. |

simply-connected region

regions that are not simply-connected

Theorem 16.3.5. Let F = Pi+ Q) be a vector field on an open simply-
connected region D. Suppose that P and () have continuous first-order partial

derivatives oP 00
8_y = o throughout D.

Then F s conservative.
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Example 2. Determine whether or not the vector field

F(z,y) = (x —y)i+ (v - 2)]

1s conservative.

Example 3. Determine whether or not the vector field
F(z,y) = (3 +2zy)i+ (2% — 3y%)]

is conservative.
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Example 4. (a) If F(z,y) = (3 + 2zy)i + (z* — 3y?)j, find a function f such
that F =V f.

(b) Evaluate the line integral | o F - dr, where C is the curve given by

r(t) = e'sinti + e’ costj 0<t<m.
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Example 5. If F(z,y, 2) = y*i + (2zy + €*)j + 3ye*’k, find a function f such
that Vf =F.
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16.4 Green’s Theorem

Definition 16.4.1. The positive orientation of a simple closed curve C' refers
to a single counterclockwise traversal of C'. Thus if C' is given by the vector
function r(t), a <t < b, then the region D is always on the left as the point
r(t) traverses C. (See the figure.)

YA YA
C
D D
C
0 X 0 X
(a) Positive orientation (b) Negative orientation

Theorem 16.4.1 (Green’s Theorem). Let C' be a positively oriented, piecewise-
smooth, simple closed curve in the plane and let D be the region bounded by C'.
If P and Q) have continuous partial derivatives on an open region that contains

D, then
/Pd:c—l—@dy:// (a—Q—a—P>dA.
c p\odzr 0Oy

Remark 1. The notation
%de—f—@dy or %Pdw—l—@dy

is sometimes used to indicate that the line integral is calculated using the
positive orientation of the closed curve C. Another notation for the positively
oriented boundary curve of D is 0D, so the equation in Green’s Theorem can

be written as 5 op
//(—Q——>dA:/ Pdx+ Qdy.
p \ O dy 8D
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Calculus - 16.4 Green’s Theorem

Example 1. Evaluate |, c x*dx + xy dy, where C is the triangular curve con-
sisting of the line segments from (0, 0) to (1,0), from (1,0) to (0,1), and from
(0,1) to (0,0).

Example 2. Evaluate ¢,(3y — e™"*)dz + (7z + \/y* + 1) dy, where C'is the
circle 22 + 3% = 9.
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Calculus - 16.4 Green’s Theorem

Theorem 16.4.2. The area of a region D 1is

1
Az}ﬁxdy:—ygydx:—ygxdy—ydx.
c c 2 Jc

Proof. Since the area of D is [[,,1dA, we wish to choose P and @ so that

0Q oP )
or Oy
There are several possibilities:
1
1
Then the result follows by Green’s Theorem.
22 ?
Example 3. Find the area enclosed by the ellipse — + e 1.
a
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Calculus - 16.4 Green’s Theorem

Example 4. Evaluate 36() y?dx + 3xydy, where C' is the boundary of the
semiannular region D in the upper half-plane between the circles 22 + ¢y = 1

and 2% + 9% = 4.

Remark 2. Green’s Theorem can be extended to apply to
regions with holes, that is, regions that are not simply-
connected. Observe that the boundary C of the region D
in the top figure consists of two simple closed curves C; and

C5. By dividing the region D into two regions D’ and D" <
by means of the lines shown in the bottom figure, and then
applying Green’s Theorem to each of D’ and D", we get C
0Q 0P 0Q 0P 0Q OP
— —— |dA = — —— ) dA — —— | dA
//D(ax ay) //(ax ay) *////(89: Iy
:/ de—i—@dy—i—/ Pdz+ Qdy ,
oD/ oD D
:/ de+Qdy+/ Pdr+Qdy T—
Cq Cs
= / Pdx + Qdy.
c
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Calculus - 16.4 Green’s Theorem

Example 5. If F(z,y) = (—yi + zj)/(z* + y®), show that [, F - dr = 27 for
every positively oriented simple closed path that encloses the origin.
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16.5 Curl and Divergence

Definition 16.5.1. If F = Pi+ Qj+ Rk is a vector field on R? and the partial
derivatives of P, (), and R all exist, then the curl of F is the vector field on
R3 defined by

_(OR 0Q\. (0P OR\. (0Q 0P
CurlF_(@y 8z)l+(8z (9:E)J+(8x 8y)k’

Remark 1. The equation for curl can be rewritten using operator notation by
introducing the vector differential operator V (“del”) as

V:i3+j2+k2.
ox Yy

It has meaning when it operates on a scalar function to produce the gradient

of f:
.0 .0 0 of. of. 9of
—(iZ 2 ) =Y Y Yy
v (18x+J8y+ 8z>f 8x1+ 8y‘1+ 0z
If we think of V as a vector with components 0/0z, 9/dy, and 9/0z, we can

also consider the formal cross product of V with the vector field F as follows:

i j k
o o0 0
VxF=|— — —
% Oor 0Oy 0z
P @ R
_(OR 0QY. oP ORY. oQ 0P
_(8y 8z>1+(8z 8:}6)‘]+<8x 8y>k

= curl F.

Example 1. If F(x,vy, 2) = x2i + 2yzj — y°k, find curl F.
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Calculus - 16.5 Curl and Divergence

Theorem 16.5.1. If f is a function of three variables that has continuous
second-order partial derivatives, then

curl(Vf) = 0.
Proof.
i J k
9 90 9
cwrl(Vf) =V x(Vf)= oz oy 0z
of of of
Jdr Jdy 0z
*f Pf . *f Pf . *f 0%
= - 1+ - J+ - k
Oydz 020y 0z0x  0x0z Oxdy  Oyor
=0i+0j+0k=0
by Clairaut’s Theorem. O

Example 2. Show that the vector field F(z,y, z) = z2i + 2yzj — y?k is not
conservative.

Theorem 16.5.2. If F is a vector field defined on all of R® whose component
functions have continuous partial derivatives and curl B = 0, then F is a
conservative vector field.

Example 3. (a) Show that
F(z,y,2) = y*2°1i + 22y2°j + 329227k

is a conservative vector field.
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(b) Find a function f such that F =V f.

Definition 16.5.2. If F = Pi+ Qj + Rk is a vector field on R* and dP/dz,
0Q /0y, and OR/0z exist, then the divergence of F is the function of three
variables defined by

oP 0Q OR
divF = —+ — + —.
v ox + dy + 0z
Remark 2. In terms of the gradient operator V = (9/0x)i+(9/9y)j+(0/0z)k,
the divergence of F can be written symbolically as the dot product of V and
F:
divF=V_.F.
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Example 4. If F(z,y, 2) = xzi + zyzj — y°k, find div F.

Theorem 16.5.3. If F = Pi+ Qj+ Rk is a vector field on R and P, @, and

R have continuous second-order partial derivatives, then

divecurl F = 0.

Proof.

divewlF =V - (V xF)
SO (Gr 09y, 0 (20 _omy b (00 or)
or \dy 0Oz oy \ 0z Ox 0z \Or Oy
R B 0%Q n 0?P B 0’R N 0%Q B 0?pP
Ox0y 0x0z Oydz Oydxr 0z0xr  0z0y

=0.

O

Example 5. Show that the vector field F(z,y, z) = x2i+ zyzj — v’k can’t be
written as the curl of another vector field, that is, F # curl G.
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Calculus - 16.5 Curl and Divergence

Theorem 16.5.4. Suppose a plane region D, its boundary curve C, and the
functions P and @) satisfy the hypotheses of Green’s Theorem where F = Pi—+

Qj. Then
51{ F.dr = // (curl F) - kdA.
c D

Proof. Regarding F as a vector field on R? with third component 0, we have

¢F~dr:7§de+Qdy
C C

and
i j k
0 0 0 oQ 0P
IF=| — — —|=(=—-—=— 1k
o Ox dy 0z ( Jdr Oy )
P(z,y) Qz,y) 0
Therefore 90 0P 90 op
IF) k=(——-— )k-k=—— —
(curl F) ( oxr Oy > ox Oy’
and the result follows by Green’s Theorem. n
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Calculus - 16.5 Curl and Divergence

Theorem 16.5.5. Suppose a plane region D, its boundary curve C, and the
functions P and @) satisfy the hypotheses of Green’s Theorem where F = Pi—+

Qj. Then
%F-ndSZ//divF(x,y)dA.
c D

Proof. 1f C' is given by the vector equation
r(t) =x(t)i+y(t)j a<t<b
then the unit tangent vector is

() = L0 YO

=
<~
—~
~
~
=<
<
~—~
+
~—
—

PO QD]
l{ 1) ()] h(m“

:/;w@wuwoa—<<>w><>

:/de de—//(ap 9@ 14

by Green’s Theorem. O
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16.6 Parametric Surfaces and Their Areas

Definition 16.6.1. Suppose that
r(u,v) = z(u,v)i+ y(u,v)j + z(u,v)k

is a vector-valued function defined on a region D in the wv-plane. So x, vy,
and z, the component functions of r, are functions of the two variables u and
v with domain D. The set of all points (z,¥, z) in R? such that

r = x(u,v) y = y(u,v) z = z(u,v)

and (u,v) varies throughout D, is called a parametric surface S and the equa-
tions are called parametric equations of S. The surface S is traced out by the
tip of the position vector r(u,v) as (u,v) moves throughout the region D. (See
the figure.)

(u, 1)

0 u 0

e

Example 1. Identify and sketch the surface with vector equation

r(u,v) = 2cosui + vj + 2sinuk.
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Calculus - 16.6 Parametric Surfaces and Their Areas

Definition 16.6.2. If a parametric surface S is given by a vector function
r(u,v) and we keep u constant by putting u = ug, then r(ug,v) becomes a
vector function of the single parameter v and defines a curve C lying on S.
(See the figure.)

Similarly, if we keep v constant by putting v = vy, we get a curve Cy given by
r(u,vp) that lies on S. We call these curves grid curves.

Example 2. Use a computer algebra system to graph the surface
r(u,v) = ((2 + sinv) cosu, (2 + sinv) sinwu, u 4 cosv).

Which grid curves have u constant? Which have v constant?
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Calculus - 16.6 Parametric Surfaces and Their Areas

Example 3. Find a vector function that represents the plane that passes
through the point Fy with position vector rg and that contains two nonparallel
vectors a and b.

Example 4. Find a parametric representation of the sphere

x2+y2—|—22:a2.
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Example 5. Find a parametric representation for the cylinder

x2+y2:4 0<z<1.

Example 6. Find a vector function that represents the elliptic paraboloid
z = 2?4 2y°.

Example 7. Find a parametric representation for the surface z = 2/x2 + y2,
that is, the top half the cone 2?2 = 422 + 412
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Remark 1. Surfaces of revolution can be represented
parametrically and thus graphed using a computer. For
instance, let’s consider the surface S obtained by rotat-
ing the curve y = f(x), a < z < b, about the z-axis,
where f(x) > 0. Let 6 be the angle of rotation as shown
in the figure. If (z,y, z) is a point on S, then

rT=2x y = f(z)cosf z = f(z)sinb.

Therefore we take x and 0 as parameters and regard these
equations as parametric equations of S. The parameter
domain is given by a < x <b, 0 < 0 < 27.

Example 8. Find parametric equations for the surface generated by rotating
the curve y = sinz, 0 < x < 27, about the z-axis. Use these equations to
graph the surface of revolution.
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Definition 16.6.3. If S is a parametric surface traced out by a vector function
r(u,v) = (u, )i + y(u,0)j + 2(u, v)k

at a point Py with position vector r(ug, vg), and if we keep u constant by putting
u = ug, then r(ug,v) becomes a vector function of the single parameter v and
defines a grid curve 'y lying on S. The tangent vector to C; at F, is obtained
by taking the partial derivative of r with respect to v:

ox . . 9%
r, = %(UO; 'U0>1 + 6—Z(U0> UO)J + %(UO, Uo)k-

Similarly, if we keep v constant by putting v = vy, we get a grid curve Cs given
by r(u,vp) that lies on S, and its tangent vector at Py is

0
r, = a—z(uo, V)i + 8_z(u0’ v0)j + i(uo, vo)k.
D zZ
(o, o)
V=1,
D u=u,

If r, x r, is not 0, then the surface S is called smooth (it has no “corners”).
For a smooth surface, the tangent plane is the plane that contains the tangent
vectors r, and r,, and the vector r, X r, is a normal vector to the tangent
plane.
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Example 9. Find the tangent plane to the surface with parametric equations
r=u? y =02 z=u+2v at the point (1,1, 3).

Definition 16.6.4. If a smooth parametric surface S is given by the equation
r(u,v) = z(u,v)i+ y(u,v)j+ z(u,v)k (u,v) € D

and S is covered just once as (u,v) ranges throughout the parameter domain
D, then the surface area of S is

A(S) = //D]ru X 1| dA

where or. dy. 0 or. oy, 0
xT. y . ya xX. y . ya
S W N = Y Py
Tu 8u1 + 8u‘] + ou To (%1 + 81)'] + ov
| R

(7, v5)
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Example 10. Find the surface area of a sphere of radius a.
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Theorem 16.6.1. If a surface S has equation z = f(x,y), where (z,y) lies
i D and f has continuous partial derivatives, then the surface areas of S is

w9 = [ () (2)

Proof. We take x and y as parameters. The parametric equations are

r=z y=y z=f(z,y)

SO
. (of (o
r;,;—l—i-(%)k ry—J+(a—y)k
and
i j k
ofl  ar. o
Iy X Iy = 1o 1 :—a—ii—a—‘;j'—i-k.
01 Y
y

Thus we have

afr\®  [of\’ 92\ (02"
. =/ == L) 1=y f1+ (= =) . O
ez x| \/(39&) * <3y * * Ox i dy
Example 11. Find the area of the part of the paraboloid z = 22 + 2 that
lies under the plane z = 9.
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16.7 Surface Integrals

Definition 16.7.1. Suppose that a surface S has a vector
equation

r(u,v) = z(u,v)i+ y(u,v)j + z(u, v)k (u,v) € D.

Then the surface integral of f over the surface S is

m n

//s @y z)dS = lm > > f(B5)ASy

i=1 j=1

where the areas AS;; are of patches of S that correspond
to subrectangles R;; with dimensions Au and Av, and the
points Pj; are sample points in each patch.

Remark 1. It can be shown, even when the parameter domain
D is not a rectangle, that

//Sf(x,y, z) dsz//Df(r(u,v))|ruxrv|dA,
and thus
//Sldsz//DervWA:A(S)_

Example 1. Compute the surface integral [[; 2 dS, where S is the unit sphere

4y’ + 22 =1
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Theorem 16.7.1. If S is a surface with equation z = g(x,y), then

//Sf(x,y,z)dS://l)f(:v,y,g(x,y))\/(%)2+(2_2)2+1dA_

Proof. Any surface S with equation z = g(z, y) can be regarded as a paramet-
ric surface with parametric equations

and so we have

Thus

and

92\’ 9z\>
o= (2) 5 (2) e

Example 2. Evaluate [[;ydS, where S is the surface z =
r4+y% 0<2<1,0<y<2 (See the figure.)
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Definition 16.7.2. If S is a piecewise-smooth surface, that is, a finite union
of smooth surfaces Si,Ss,...,S, that intersect only along their boundaries,
then the surface integral of f over S is defined by

//Sf(x,y,z)dS:/Slf(x,y,z)der...+//Snf<x,y7z)d3

Example 3. Evaluate [J. ¢ 2dS, where S is the surface whose sides S| are given
by the cylinder 22 + 3> = 1, whose bottom S, is the disk 22 + y?> < 1 in the
plane z = 0, and whose top S3 is the part of the plane z = 1 4+ x that lies
above Ss.
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Definition 16.7.3. If S is a surface that has a tangent plane at every point
(x,y, 2z) (except at any boundary point), and if it is possible to choose a unit
normal vector n at every such point so that n varies continuously over S, then
S is called an oriented surface and the given choice of n provides S with an
orientation. There are two possible orientations for any orientable surface (see
the figure).

Remark 2. For a closed surface, that is, a surface that is the boundary of a
solid region F, the convention is that the positive orientation is the one for
which the normal vectors point outward from E, and inward-pointing normals
give the negative orientation (see the figure).

Positive orientation Negative Orientation

Definition 16.7.4. If F is a continuous vector field defined on an oriented
surface S with unit normal vector n, then the surface integral of F over S is

//SF~dS://SF-ndS.

This integral is also called the flux of F across S.

Theorem 16.7.2. If S is given by a vector function r(u,v), then

//SF-dS://DF-(ruxrv)dA

where D is the parameter domain.

599



Calculus - 16.7 Surface Integrals

Proof. If S is given by a vector function r(u,v), then n is given by

r, X r,
n=——
v, X 1,

and thus we have
// F.dS — // T X g
]ru X Ty |
_ //D [F(r(u,v)) : % v, % T,| dA.

]

Example 4. Find the flux of the vector field F(z,y, z) = zi + yj + xk across

the unit sphere 22 +y% + 22 = 1.
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Remark 3. In the case of a surface S given by a graph z = g(z,y), we can
think of x and y as parameters and write

F-(r, xr,) = (Pi+Qj+ Rk)- <__xi——j+k

dg dg
F-dS:// (—P—— —+R)dA.
//s D Ox 83/

Example 5. Evaluate [[F - dS, where F(z,y, 2) = yi+ j+ zk and S is the
boundary of the solid region E enclosed by the paraboloid z = 1 — 22 — 2 and
the plane z = 0.

Thus
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Definition 16.7.5. If E is an electric field, then the surface integral

//SE-dS

is called the electric flux of E through the surface S. Gauss’s Law says that
the net charge enclosed by a closed surface S is

Q:ao//SE-dS

where gq is a constant (called the permittivity of free space) that depends on
the units used.

Definition 16.7.6. Suppose the temperature at a point (z,y, z) in a body is
u(zx,y, z). Then the heat flow is defined as the vector field

F=-KVu

where K is an experimentally determined constant called the conductivity of
the substance. The rate of heat flow across the surface S in the body is then
given by the surface integral

//SF-dS:—K//SVu-dS.

Example 6. The temperature u in a metal ball is proportional to the square
of the distance from the center of the ball. Find the rate of heat flow across a
sphere S of radius a with center at the center of the ball.
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16.8 Stokes’ Theorem

Definition 16.8.1. The figure shows an oriented surface .
with unit normal vector n. The orientation of S induces

the positive orientation of the boundary curve C' shown in

the figure. This means that if you walk in the positive direc-

tion around C' with your head pointing in the direction of n,

then the surface will always be on your left.

0

Theorem 16.8.1 (Stokes” Theorem). Let S be an oriented x/\—»

piecewise-smooth surface that is bounded by a simple, closed,
piecewise-smooth boundary curve C with positive orientation.

Let F be a vector field whose components have continuous partial derivatives
on an open region in R3 that contains S. Then

/F-dr://curlF-dS.
c s

Example 1. Evaluate [, F - dr, where F(z,y,2) = —y*i + zj + 2’k and C'is
the curve of intersection of the plane y + z = 2 and the cylinder 2% + y? = 1.
(Orient C' to be counterclockwise when viewed from above).
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Example 2. Use Stokes’ Theorem to compute the integral
[[gcurl F - dS, where F(z,y, 2) = xzi + yzj + xyk and S is
the part of the sphere 22 + y? + 22 = 4 that lies inside the
cylinder 22+1? = 1 and above the zy-plane. (See the figure.)
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16.9 The Divergence Theorem

Definition 16.9.1. Regions E that are simultaneously of types 1, 2, and 3
are called simple solid regions. The boundary of F is a closed surface, and we
use the convention that the positive orientation is outward; that is, the unit
normal vector n is directed outward from FE.

Theorem 16.9.1 (The Divergence Theorem). Let E be a simple solid region
and let S be the boundary surface of E, given with positive (outward) orien-
tation. Let F be a vector field whose component functions have continuous
partial derivatives on an open region that contains E. Then

//SF-dS:///EdiVFdV.

Example 1. Find the flux of the vector field F(x,y, z) = 2i + yj + 2k over
the unit sphere x2 + y? + 22 = 1.
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Example 2. Evaluate [[(F -dS, where
F(z,y,2) = ayi+ (y* + **)j + sin(zy)k
and S is the surface of the region £ bounded by the parabolic

cylinder 2 = 1—22 and the planes 2 = 0, y = 0, and y+2 = 2.
(See the figure.)
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Remark 1. The Divergence Theorem can be extended to ap-
ply to regions that are finite unions of simple solid regions.
For example, let’s consider the region E that lies between
the closed surfaces S; and Sy where Sy lies inside Sy. Let n;
and nsy be outward normals of S; and Sy. Then the bound-
ary surface of £ is S = 57 U S, and its normal n is given by
n = —n; on Sy and n = ny on Sy. (See the figure.) Applying
the Divergence Theorem to S, we get

///EdideV //F ds = //F ndS
//91 —n; ds+//52F n, dS
= //51F dS+//SQF'dS.

Example 3. In Example 16.1.5 we considered the electric field

E(x) = WX

where the electric charge @ is located at the origin and x = (z,y,2) is a
position vector. Use the Divergence Theorem to show that the electric flux of
E through any closed surface Sy that encloses the origin is

//S E - dS = 47e@).
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16.10 Summary

Fundamental Theorem of Calculus

Fundamental Theorem for Line Integrals

Green’s Theorem

Stokes’ Theorem

Divergence Theorem

Q
S

C

(222 as= [ passqu @

//curlF-dS:/F-dr
s c

///E;dideV://SF-dS

n
N
n
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Chapter 17

Second-Order Differential
Equations

17.1 Second-Order Linear Equations

Definition 17.1.1. A second-order linear differential equation has the form

d2

Plx )d$2

+Q(z ) +R( Jy = G(z)

where P, ), R, and G are continuous functions.

Definition 17.1.2. When G(z) = 0, for all z, in the equation in Definition
17.1.1. it is called a homogeneous linear equation. Thus the form of a second-
order linear homogeneous differential equation

d2

dx?

P(z)55 +Qx ) + R(z)y = 0.

If G(x) # 0 for some z, the equation is nonhomogeneous.

Theorem 17.1.1. If y1(x) and yz(x) are both solutions of a linear homoge-
neous equation and c; and cy are any constants, then the linear combination

y(r) = cryi(z) + caya(z)

18 also a solution.
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Proof. Since y; and y, are solutions of a linear homogeneous equation, we have

P(x)y + Q(z)yy + R(x)y, =0
P(x)yy + Q(x)ys + R(x)y2 = 0.

Therefore, using the basic rules for differentiation, we have

P(z)y"+Q(z)y" + R(z)y
= P(z)(ciy + cay2)” + Q(x)(cryn + cay2) + R(x)(cryn + caya)
= P(z)(c1yy + c2ys) + Q(x) (cryy + cays) + R(z)(eryn + c2yo)
= a[P(@)yy + Q)yy + R(z)yi] + co[P(2)ys + Q(2)ys + R(z)ys
— 1(0) + ¢5(0) = 0. 0
Definition 17.1.3. Solutions y; and ys to a linear homogeneous equation are

linearly independent if neither y; nor ¥, is a constant multiple of the other.
Otherwise, they are linearly dependent.

Theorem 17.1.2. If y; and yo are linearly independent solutions of a linear
homogeneous equation on an interval, and P(x) is never 0, then the general
solution s given by

y(r) = a1y (z) + caya(x)
where ¢y and co are arbitrary constants.
Remark 1. If y = €™ then iy = re’™ and y” = r2e™, so y = €' is a solution of
ay’" + by +cy=0
if
ar®e’™ + bre’™ + ce’ = 0
(ar® 4+ br + c)e™ = 0.
But € is never 0. Thus y = €' is a solution if r is a root of the equation
ar? + br + ¢ = 0, called the auxiliary equation (or characteristic equation) of

the differential equation ay” 4+ by’ +cy = 0. The roots r; and ry of the auxiliary
equation can be found by factoring or using the quadratic formula:

_ —b+ Vb —dac _ —b— Vb —4dac

B 2a 2= 2a '

Theorem 17.1.3 (Case I: b* —4ac > 0). If the roots vy and ry of the auxiliary
equation ar® + br + ¢ = 0 are real and unequal, then the general solution of
ay” +by +cy =0 is

(&

y = c1e? 4 coe™”.

Proof. In this case the roots r; and ry of the auxiliary equation are real and
distinct, so y; = €"* and y; = €™ are two linearly independent solutions of
ay” + by’ + cy =0. O
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Example 1. Solve the equation y” + ¢y — 6y = 0.

2 d
Example 2. Solve 3_y + v y=0.
dz? = dx

Theorem 17.1.4 (Case IT: b*—4ac = 0). If the auxiliary equation ar’*+br+c =
0 has only one real root r, then the general solution of ay” + by + cy =0 is

y=cre"”" + coxe™™.

Proof. By the quadratic formula,

b
r=—— so 2ar+b=0.
2a

We know that y; = €™ is one solution of ay” + by’ + cy = 0. We now verify
that yo = xe”™ is also a solution:

ayy 4 byh + cyy = a(2re’™ + r?ze™) + b(e" + rae’™) + cre’™
= (2ar + b)e"™ + (ar® + br + c)ze’™
=0(e™) 4+ 0(ze"™) = 0.

Since y; = €' and y, = we'™ are linearly independent solutions, Theorem
17.1.2 provides us with the general solution. O]
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Example 3. Solve the equation 4y” + 12y’ + 9y = 0.

Theorem 17.1.5 (Case III: b*>—4ac < 0). If the roots of the auziliary equation
ar? + br 4+ ¢ = 0 are the complex numbers r = o + i3, 7o = a — i3, then the
general solution of ay” + by’ + cy = 0 is

y = e**(cq cos fx + cosin fx).

Proof. Using Euler’s equation

e = cosf + isiné,

we write the solution of the differential equation as

y = Che"® + Che™® = Chel@tir 4 Cpela—ifle
= C1e*(cos Bz + isin fx) + Cre™*(cos fa — isin fz)
= e™[(Cy + Cy) cos Bz +i(Cy — Cy) sin B

= (¢ cos fx + ¢ 8in f)
where Cl = Cl + CQ, Cy = Z(Cl - CQ) O

Example 4. Solve the equation y” — 63’ + 13y = 0.
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Definition 17.1.4. An initial-value problem for a second-order linear differ-
ential equation consists of finding a solution y of the differential equation that
also satisfies initial conditions of the form

y(@o) =v  Y'(z0) =m
where yo and y; are given constants.

Example 5. Solve the initial-value problem

y'+y —6y=0 y0) =1 ¢ (0)=0.
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Example 6. Solve the initial-value problem

y'+y=0 y0)=2 ¢(0)=3.

Definition 17.1.5. A boundary-value problem for a second-order linear dif-
ferential equation consists of finding a solution y of the differential equation
that also satisfies boundary conditions of the form

y(xo) =yo  ylz1) = y1.
Example 7. Solve the boundary problem

y'+2y +y=0 y0)=1 y(1)=3.
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17.2 Nonhomogeneous Linear Equations

Theorem 17.2.1. The general solution of the nonhomogeneous differential
equation ay” + by’ + cy = G(x) can be written as

y(r) = yp(7) + ye()

where y, s a particular solution of ay” + by’ + cy = G(x) and y. is the general
solution of the complementary equation ay” + by + cy = 0.

Proof. We verify that if y is any solution of ay” + by’ + cy = G(z), then y —y,
is a solution of the complementary equation. Indeed

aly —yp)" +b(y —yp) + c(y —yp) = ay” — ay, + by’ — by, +cy — cy,
= (ay” +by' + cy) — (ay, + by, + cy,)
=G(z) — G(z) =0.

This shows that every solution is of the form y(z) = y,(x) + y.(z). It remains
to show that every function of this form is a solution. Indeed

a(yp + o) + 0(yp + o) + c(yp + ye) = ay, + ay, + by, + by, + cyp + cye
= (ay, + by, + cyp) + (ay, + by, + cy.)
— G(x) +0 = (). m

Remark 1 (The Method of Undetermined Coefficients).

1. If G(z) = e** P(x), where P is a polynomial of degree n, then try y,(z) =
ek2Q(x), where Q(z) is an nth-degree polynomial (whose coefficients are
determined by substituting in the differential equation).

2. If G(z) = e*P(z)cosmax or G(x) = e*P(x)sinmx, where P is an
nth-degree polynomial, then try

y(r) = e Q(x) cosma + " R(z) sin mx

where ) and R are nth-degree polynomials.

Modification: If any term of y, is a solution of the complementary equation,
multiply y, by @ (or by z? if necessary).
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Example 1. Solve the equation y” + v’ — 2y = 2%
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Example 2. Solve y" + 4y = 3%,

Example 3. Solve 3’ + 4 — 2y = sinx.
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Example 4. Solve 3" — 4y = ze® + cos 2.
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Example 5. Solve 3"’ 4+ y = sinz.
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Example 6. Determine the form of the trial solution for the differential equa-
tion " — 4y’ + 13y = €** cos 3.

Remark 2. Suppose we have already solved the homogeneous equation ay” +
by’ + cy = 0 and written the solution as

y(r) = cryi(z) + caya(z)

where y; and ys are linearly independent solutions. We replace the constants
(or parameters) ¢; and ¢, by arbitrary functions u, () and us(x). We then look
for a particular solution of the nonhomogeneous equation ay”+by' +cy = G(z)
of the form

Yp(x) = ur(2)y1(z) + uz(2)ya(z).

This method is called variation of parameters because we have varied the
parameters ¢; and ¢, to make them functions.
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Example 7. Solve the equation 3’ +y =tanz, 0 < x < 7/2.
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17.3 Applications of Second-Order Differen-

tial Equations

Remark 1. Consider the motion of an object with mass m
at the end of a spring that is either vertical (as in the first
figure) or horizontal on a level surface (as in the second fig-
ure). Hooke’s Law says that if the spring is stretched (or
compressed) x units from its natural length, then it exerts a

force that is proportional to z:

restoring force = —kx

where k is a positive constant (called the spring constant). If

we ignore any external resisting forces (due to air resistance
or friction) then, by Newton’s Second Law (force equals mass

times acceleration), we have

d? d?
md_tf = —kx or md_tf + kx =0.

m

equilibrium +0
position

equilibrium position

0 X X

This is a second-order linear differential equation. Its auxiliary equation is
mr?+k = 0 with roots r = +wi, where w = \/k/m. Thus the general solution

is
x(t) = 1 coswt + o sinwt

which can also be written as
x(t) = Acos(wt + 0)

where

w=+k/m

— o f2 2
A=/ci+c

C1 . Co
cosd = — singd = ——.
A

A

This type of motion is called simple harmonic motion.
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Example 1. A spring with a mass of 2 kg has natural length 0.5 m. A force
of 25.6 N is required to maintain it stretched to a length of 0.7 m. If the spring
is stretched to a length of 0.7 m and then released with initial velocity 0, find
the position of the mass at any time ¢.
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Remark 2. Assume that the damping force is proportional to the velocity of
the mass and acts in the direction opposite to the motion. Thus

dx
damping force = —c—
ping i
where c is a positive constant, called the damping constant. Thus, in this case,

Newton’s Second Law gives

¢’z toring force + damping f PN
™M —— = restorin orce ampin orce = —kRKr — c—
e & ping dt
or d2 d
e e
L Lk =o.
mdt2 +cdt + Kkx

This is a second-order linear differential equation and its auxiliary equation is
mr? + cr + k = 0. The roots are

. _—c+\/02—4mk5 . _—c—\/02—4mk
1= 9 = )
2m 2m

Case I: ¢ — 4mk > 0 (overdamping). x
In this case r1 and ry are distinct real roots and

x = cre"t + cye™,

Case II: ¢ — 4mk = 0 (critical damping).
This case corresponds to equal roots x
c

701:742:_2771

and the solution is given by
z = (¢ + cot)e 2L,

Case I1I: ¢ — 4mk < 0 (underdamping).
Here the roots are complex: x

\ — —(c/2m)t
r c A & Ae
= ——Fwt ~

T9 2m ~

N o[ [
where —
~

Vamk — c2

2m ' /

w =

The solution is given by

x = e 2 (¢ coswt + ey sinwt).
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Example 2. Suppose that the spring of Example 1 is immersed in a fluid with
damping constant ¢ = 40. Find the position of the mass at any time ¢ if it
starts from the equilibrium position and is given a push to start it with an
initial velocity of 0.6 m/s.

Remark 3. Suppose that, in addition to the restoring force and the damping
force, the motion of the spring is affected by an external force F(t). Then
Newton’s Second Law gives

Az

mﬁ = restoring force + damping force + external force

dx
= —kx — c— + F(t).
x Cdt+ (1)

Thus, instead of the homogeneous equation, the motion of the spring is now
governed by the following nonhomogeneous differential equation:



Calculus - 17.3 Applications of Second-Order Differential Equations

Remark 4. The circuit shown in the figure contains an elec-
tromotive force F (supplied by a battery or generator), a re-

sistor R, an indicator L, and a capacitor C', in series. If the l
charge on the capacitor at time ¢ is @ = Q(t), then the cur-
rent is the rate of change of () with respect to ¢: I = d@Q/dt.
It is known from physics that the voltage drops across the
resistor, inductor and capacitor are

switch

dl Q 2

RI —
dt C

respectively. Kirchhoft’s voltage law says that the sum of these voltage drops
is equal to the supplied voltage:

dl Q
L— + RI+ = = E(t).
a T =B
Since I = d@Q/dt, this equation becomes
d*Q dQ 1
L—+R—+—=Q=E(t
e Ty Te¢ =l

which is a second-order linear differential equation with constant coefficients.
If the charge Qg and the current I, are known at time 0, then we have the
initial conditions

Q(0) = Qo Q'(0) = I1(0) = I,.
A differential equation for the current can be obtained by differentiating with
respect to ¢ and remembering that I = dQ/dt:

21 dl 1
[ L Y
pr s *)

Example 3. Find the charge and current at time ¢ in the circuit of the figure
if R=40Q,L=1H,C =16 x 107* F, E(t) = 100 cos 10t, and the initial
charge and current are both 0.
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17.4 Series Solutions

Example 1. Use power series to solve the equation y” +y = 0.
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Example 2. Solve 3" — 2zy/ + 3y = 0.
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absolute maximum, 114
absolute minimum, 114
absolute value, 5
absolutely convergent, 367
acceleration, 63
acceleration vector, 445
algebraic function, 12
alternating series, 363
alternating series test, 363
antiderivative, 155
aphelion, 334
arc length, 258, 437
arc length function, 438
arccosine function, 24
arcsine function, 24
arctangent function, 24
area, 162
asymptote

horizontal, 48

slant, 140

vertical, 32
auxiliary equation, 610
average rate of change, 58
average value, 511
average value of a function, 210

binomial coefficients, 389
binormal vector, 442
boundary-value problem, 614
bounded above, 344
bounded below, 344
bounded sequence, 344
bounded set, 499

cancellation equations, 21

cardiac output, 274
carrying capacity, 291
center of mass, 268, 541, 562
centroid, 269, 541
chain rule, 76, 479
change of variables, 551, 554
characteristic equation, 610
closed

curve, 571

surface, 599
closed set, 499
common ratio, 346
comparison test, 359
complementary equation, 615
component functions, 429, 555
composite function, 17
composition, 17
concave downward, 125
concave upward, 125
conditionally convergent, 368
conductivity, 602
conic sections, 327
conics, 327
connected, 571
conservative vector field, 559
consumer surplus, 273
continuous, 463, 465

at a point, 42

from the left, 43

from the right, 43

on an interval, 43

vector function, 430
continuous random variable, 275
convergent, 250

absolutely, 367

632



Calculus - 17.4 Index

conditionally, 368 second order, 609
integral, 254 separable, 286
sequence, 338 solution, 280
series, 345 differentiation operators, 61
coordinate axes direction angles, 409
three-dimensional, 397 direction cosines, 409
coordinate planes direction field, 282
three-dimensional, 397 direction numbers, 417
coordinates directional derivative, 485, 488
three-dimensional, 397 discontinuity, 42
coplanar, 415 disk method for volume, 198
critical number, 116 displacement vector, 401, 411
critical point, 493 distance in three dimensions, 399
cross product, 412 divergence, 583
cubic function, 10 divergence theorem, 605
curl, 581 divergent, 250
curvature, 439 integral, 254
cycloid, 307 sequence, 338
cylinder, 424 series, 345
cylindrical coordinate system, 543 domain, 1, 452
‘ dot product, 407
damping constant, 624 double integral, 506, 513

decreasing sequence, 343

double Riemann sum, 506
definite integral, 165, 436

demand function, 151 eccentricity, 332
density, 525 electric charge, 541
dependent variable, 1, 452 electric field, 558
derivative electric flux, 602

at a point, 57 ellipse, 328

as a function, 60 foci, 328

of a parametric curve, 309 major axis, 328

of an inverse function, 85 minor axis, 328

second, 63 vertices, 328

third, 64 empirical model, 9
determinant, 412 equivalent vectors, 401
differentiable, 61, 475 Euler’s method, 284
differential, 109, 477, 478 even function, 6
differential equation, 99, 280 expected value, 533

equilibrium solutions, 301 exponential function, 13

linear, 296 extreme value theorem, 115, 499

logistic, 291 extreme values, 114

order, 280

Fermat’s theorem, 115
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Fibonacci sequence, 338 Gauss’s Law, 602

first derivative test, 124 geometric series, 346

first octant, 397 gradient, 487, 488, 558

flux, 599 graph, 455

force, 206 gravitational field, 557
force field, 558 greatest integer function, 37
Fresnel function, 176 Green’s Theorem, 576
Fubini’s Theorem, 509, 536 grid curves, 588

function, 1

half-life, 100

harmonic functions, 472
harmonic series, 351
arctangent, 24 heat flow, 602
composition, 17 homogeneous, 609

cubic, 10 horizontal asymptote, 48
horizontal line test, 21
hyperbolic functions, 111

algebraic, 12
arccosine, 24
arcsine, 24

even, 6
exponential, 13
hyperbolic, 111

) image, 550

inverse, 21 implicit differentiation, 80, 483
%nverse c.osme, 24 increasing sequence, 343
inverse sine, 24 increment, 58, 475, 478

Hverse tangent, 24 indefinite integral, 180

linear, 8 independent of path, 571

logarithmic, 13, 22
natural exponential, 20
odd, 6

independent variable, 1, 452
infinite series, 345

) initial point, 305, 401

of n variables, 459 initial-value problem, 613

of three Ve?riables, 458 instantaneous rate of change, 58
of two variables, 452 integrable, 165

one-to-one, 21

' \ integral
piecewise, 4 definite, 165
powgr, t1'1 " improper, 250
quadratic, indefinite, 180

rational, 11

) symmetric function, 188
reciprocal, 11

integral sign, 165

root, 11 integral test, 354
Stf?p, 6 ' integrand, 165
trigonometric, 12 integrating factor, 296
vector, 429

integration, 165

error bounds, 244
integration by parts, 212
intermediate value theorem, 47

fundamental theorem
for line integrals, 570
fundamental theorem of calculus, 174
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interval of convergence, 376 local minimum, 114
inverse cosine function, 24 logarithmic differentiation, 88
inverse function, 21 logarithmic function, 13, 22
inverse sine function, 24 logistic differential equation, 291
inverse tangent function, 24 Lotka-Volterra equations, 301
inverse transformation, 550 lower limit, 165
iterated integral, 508 lower sum, 162
Jacobian, 551, 554 Maclaurin series, 383
jerk, 64 magnitude of a vector, 403
joint density function, 530, 541 marginal profit function, 151
marginal revenue function, 151

L’HOSpit&l’S rule, 130 mass, 541’ 562
Lagrange multiplier, 501, 505 maximum, 114
Laplace’s equation, 472 absolute, 493
law of natural decay, 99 local, 493
law of natural growth, 99, 291 mean, 277
length, 258 mean value theorem, 120
level curves, 455 for integrals, 210
level surfaces, 459 midpoint rule, 171, 243, 508
limagon, 322 minimum, 114
limit, 29, 460 absolute, 493

at inﬁnity, 48 10(}&1, 493

infinite, 31 moment, 268, 526, 541

laws, 33 of inertia, 529, 541

of a sequence, 338

‘ o monotonic, 343
precise definition, 38

vector function, 429 natural exponential function, 20
limit comparison test, 360 natural logarithm, 23
limits of integration, 165 net area, 166
line Newton’s method, 152
vector equation, 417 Newton’s Second Law of Motion, 447
line integral, 560, 563, 565, 568 nonhomogeneous, 609
linear approximation, 108, 475, 478 normal line, 66, 492
linear combination, 609 normal plane, 443
linear differential equation, 296 normal vector, 419

linear equation, 420

linear function, 8, 456 octacts, 397
linearization, 108, 475 odd function, 6
linearly dependent, 610 one-to-one, 550 .
linearly independent, 610 one-to-one function, 21
local extreme, 114 open, 571

local maximum, 114 orientation, 599
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oriented surface, 599
orthogonal trajectory, 289
orthogonal vectors, 408
osculating circle, 443
osculating plane, 443

p-series, 355
parabola, 327

axis, 327

directrix, 327

focus, 327

vertex, 327
parameter, 304
parametric equations, 304, 430, 587
parametric surface, 587
parametrizations, 437
partial derivative, 466
partial sum, 345
perihelion, 334
piecewise function, 4
piecewise-smooth curve, 561
plane

parallel, 421

scalar equation, 419

vector equation, 419
polar axis, 316
polar coordinates, 316

directrix, 332

focus, 332
polar rectangle, 521
polynomial, 10, 463
position function, 56
position vector, 402
positive orientation, 576, 599, 603
potential function, 559
power function, 11
power rule, 65, 88
power series, 374
preator-prey equations, 301
pressure, 266
price function, 151
probability density function, 275

product rule, 70
profit function, 151
projections, 397

quadratic function, 10
quadric surface, 425
quotient rule, 71

radius of convergence, 376
radius of gyration, 530
range, 1, 452
ratio test, 369
rational function, 11, 463
rearrangement, 371
reciprocal function, 11
relative growth rate, 99
remainder, 357

Taylor series, 384
reparametrization, 438
resultant force, 406
revenue function, 151
Riemann sum, 165
right-hand rule, 397
Rolle’s theorem, 119
root function, 11
root test, 370
rulings, 424

saddle point, 494
sample points, 162, 506, 536
scalar fields, 555
scalar projection, 410
scalar triple product, 415
second derivative, 63, 434
second derivative test, 126, 494
second partial derivative, 471
sequence, 336
series, 345
alternating, 363
coefficients, 374
geometric, 346
harmonic, 351
Maclaurin, 383
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p-series, 355
power, 374
sum, 345
Taylor, 383
shell method for volume, 203
sigma notation, 162
simple curve, 572
simple harmonic motion, 622
simple solid region, 605
simply-connected region, 572
Simpson’s rule, 246
skew lines, 419
slant asymptote, 140
slope field, 282
smooth
curve, 439
reparametrization, 439
surface, 592
space curve, 430
speed, 445
spherical coordinates, 546
spring constant, 207
squeeze theorem, 37
for sequences, 339
standard basis vectors, 404
step function, 6
Stokes’ theorem, 603
substitution rule, 184
surface area, 263, 534, 593
surface integral, 596, 599
symmetric equations, 417
symmetry principle, 269

tangent line, 55, 433

tangent line approximation, 108
tangent plane, 474, 491, 592
tangent vector, 433

Taylor polynomial, 384

Taylor series, 383

terminal point, 305, 401

test for divergence, 352

third derivative, 64

three-dimensional coordinates, 397

torque, 416

traces, 424

transformation, 550
inverse, 550

trapezoidal rule, 243

trigonometric function, 12

triple integral, 536

triple Riemann sum, 536

twisted cubic, 432

type 1 region, 537

type 2 region, 538

type 3 region, 539

type I region, 513

type II region, 514

unit normal vector, 442
unit tangent vector, 433
unit vector, 405
upper limit, 165
upper sum, 162

value of a function, 1
variation of parameters, 620
vector, 401
addition, 401
components, 402
difference, 401
magnitude, 403
negative, 401
orthogonal, 408
parallel, 401
properties, 404
representation, 402
scalar multiplication, 401
vector field, 555
vector function, 429
vector projection, 410
velocity, 56
velocity field, 557
velocity vector, 445
vertical asymptote, 32
vertical line test, 4
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volume, 198

washer method for volume, 200

wave equation, 473
wind-chill index, 453
work, 206, 411, 568

zero vector, 401
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