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Chapter 1

Systems of Linear Equations
and Matrices

1.1 Introduction to Systems of Linear Equa-

tions

Definition 1.1.1. A linear equation in the n variables x1, x2, . . . , xn is one
that can be expressed in the form

a1x1 + a2x2 + · · ·+ anxn = b,

where a1, a2, . . . , an and b are constants, and the a’s are not all zero.
In the special case where b = 0, this equation has the form

a1x1 + a2x2 + · · ·+ anxn = 0,

which is called a homogeneous linear equation in the variables x1, x2, . . . , xn.

Example 1. The following are linear equations:

x+ 3y = 7 x1 − 2x2 − 3x3 + x4 = 0

1

2
x− y + 3z = −1 x1 + x2 + · · ·+ xn = 1.

The following are not linear equations:

x+ 3y2 = 4 3x+ 2y − xy = 5

sinx+ y = 0
√
x1 + 2x2 + x3 = 1.

1



Linear Algebra - 1.1 Introduction to Systems of Linear Equations

Definition 1.1.2. A finite set of linear equations is called a system of linear
equations or, more briefly, a linear system. The variables are called unknowns.
A general linear system of m equations in the n unknowns x1, x2, . . . , xn can
be written as

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2
...

...
...

...
am1x1 + am2x2 + · · ·+ amnxn = bm

Definition 1.1.3. A solution of a linear system in n unknowns x1, x2, . . . , xn

is a sequence of n numbers s1, s2, . . . , sn for which the substitution

x1 = s1, x2 = s2, . . . , xn = sn

makes each equation a true statement. A solution can be written as

(s1, s2, . . . , sn),

which is called an ordered n-tuple. If n = 2, then the n-tuple is called an
ordered pair, and if n = 3, then it is called an ordered triple.

Remark 1. Consider the linear system

a1x+ b1y = c1

a2x+ b2y = c2

in which the graphs of the equations are lines in the xy-plane. Each solution
(x, y) of this system corresponds to a point of intersections of the lines, so
there are three possibilities:

1. The lines may be parallel and distinct, in which case there is no inter-
section and consequently no solution.

2. The lines may intersect at only one point in which case the system has
exactly one solution.

3. The lines may coincide, in which case there are infinitely many points of
intersection (the points on the common line) and consequently infinitely
many solutions.
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Linear Algebra - 1.1 Introduction to Systems of Linear Equations

In general, we say that a linear system is consistent if it has at least one
solution and inconsistent if it has no solutions. Thus, a consistent linear system
of two equations in two unknowns has either one solution or infinitely many
solutions—there are no other possibilities. The same is true for a linear system
of three equations in three unknowns

a1x+ b1y + c1z = d1

a2x+ b2y + c2z = d2

a3x+ b3y + c3z = d3

in which the graphs of the equations are planes. The solutions of the system,
if any, correspond to points where all three planes intersect, so again we see
that there are only three possibilities—no solutions, one solution, or infinitely
many solutions.
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Theorem 1.1.1. Every system of linear equations has zero, one, or infinitely
many solutions. There are no other possibilities.
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Linear Algebra - 1.1 Introduction to Systems of Linear Equations

Example 2. Solve the linear system

x− y = 1

2x+ y = 6.

Example 3. Solve the linear system

x+ y = 4

3x+ 3y = 6.

Example 4. Solve the linear system

4x− 2y = 1

16x− 8y = 4.

4



Linear Algebra - 1.1 Introduction to Systems of Linear Equations

Example 5. Solve the linear system

x− y + 2z = 5

2x− 2y + 4z = 10

3x− 3y + 6z = 15.

Definition 1.1.4. The linear system

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2
...

...
...

...
am1x1 + am2x2 + · · ·+ amnxn = bm

can be abbreviated by writing only the rectangular array of numbers
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

...
am1 am2 · · · amn bm

 .

This is called the augmented matrix for the system.

5



Linear Algebra - 1.1 Introduction to Systems of Linear Equations

Remark 2. The basic method for solving a linear system is to perform algebraic
operations on the system that do not alter the solution set and that produce a
succession of increasingly simpler systems, until a point is reached where it can
be ascertained whether the system is consistent, and if so, what its solutions
are. Typically, the algebraic operations are:

1. Multiply an equation through by a nonzero constant.
2. Interchange two equations.
3. Add a constant times one equation to another.

Since the rows (horizontal lines) of an augmented matrix correspond to the
equations in the associated system, these three operations correspond to the
following operations on the rows of the augmented matrix:

1. Multiply a row through by a nonzero constant.
2. Interchange two rows.
3. Add a constant times one row to another.

These are called elementary row operations on a matrix.

Example 6. Solve the linear system

x+ y + 2z = 9

2x+ 4y − 3z = 1

3x+ 6y − 5z = 0

by operating on the equations in the system, and by operating on the rows of
the augmented matrix for the system.

6
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Linear Algebra - 1.2 Gaussian Elimination

1.2 Gaussian Elimination

Definition 1.2.1. To be of reduced row echelon form, a matrix must have the
following properties:

1. If a row does not consist entirely of zeros, then the first nonzero number
in the row is a 1. We call this a leading 1.

2. If there are any rows that consist entirely of zeros, then they are grouped
together at the bottom of the matrix.

3. In any two successive rows that do not consist entirely of zeros, the
leading 1 in the lower row occurs farther to the right than the leading 1
in the higher row.

4. Each column that contains a leading 1 has zeros everywhere else in that
column.

A matrix that has the first three properties is said to be in row echelon form.
(Thus, a matrix in reduced row echelon form is of necessity in row echelon
form, but not conversely.)

Example 1. The following matrices are in reduced row echelon form.

1 0 0 4
0 1 0 7
0 0 1 −1

 ,

1 0 0
0 1 0
0 0 1

 ,


0 1 −2 0 1
0 0 0 1 3
0 0 0 0 0
0 0 0 0 0

 ,

[
0 0
0 0

]
.

The following matrices are in row echelon form but not reduced row echelon
form. 1 4 −3 7

0 1 6 2
0 0 1 5

 ,

1 1 0
0 1 0
0 0 0

 ,

0 1 2 6 0
0 0 1 −1 0
0 0 0 0 1

 .

Example 2. With any real numbers substituted for the ∗’s, all matrices of
the following types are in row echelon form:

1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1

 ,


1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 0

 ,


1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 0
0 0 0 0

 ,


0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 1 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 1 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 1 ∗

 .
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All matrices of the following types are in reduced row echelon form:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 ∗
0 1 0 ∗
0 0 1 ∗
0 0 0 0

 ,


1 0 ∗ ∗
0 1 ∗ ∗
0 0 0 0
0 0 0 0

 ,


0 1 ∗ 0 0 0 ∗ ∗ 0 ∗
0 0 0 1 0 0 ∗ ∗ 0 ∗
0 0 0 0 1 0 ∗ ∗ 0 ∗
0 0 0 0 0 1 ∗ ∗ 0 ∗
0 0 0 0 0 0 0 0 1 ∗

 .

Example 3. Suppose that the augmented matrix for a linear system in the
unknowns x1, x2, x3, and x4 has been reduced by elementary row operations
to 

1 0 0 0 3
0 1 0 0 −1
0 0 1 0 0
0 0 0 1 5

 .

Solve the system.

Definition 1.2.2. The variables that correspond to the leading 1’s in a ma-
trix in reduced row echelon form are called leading variables. The remaining
variables are called free variables.

Example 4. In each part, suppose that the augmented matrix for a linear
system in the unknowns x, y, and z has been reduced by the elementary row
operations to the given reduced row echelon form. Solve the system.

(a)

1 0 0 0
0 1 2 0
0 0 0 1



(b)

1 0 3 −1
0 1 −4 2
0 0 0 0



(c)

1 −5 1 4
0 0 0 0
0 0 0 0



9
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Definition 1.2.3. If a linear system has infinitely many solutions, then a set
of parametric equations from which all solutions can be obtained by assigning
numerical values to the parameters is called a general solution of the system.

Theorem 1.2.1. The following step-by-step elimination procedure can be used
to reduce any matrix to reduced row echelon form.

Step 1. Locate the leftmost column that does not consist entirely of zeros.
Step 2. Interchange the top row with another row, if necessary, to bring a

nonzero entry to the top of the column found in Step 1.
Step 3. If the entry that is now at the top of the column found in Step 1 is

a, multiply the first row by 1/a in order to introduce a leading 1.
Step 4. Add suitable multiples of the top row to the rows below so that all

entries below the leading 1 become zeros.
Step 5. Now cover the top row in the matrix and begin again with Step 1

applied to the submatrix that remains. Continue in this way until
the entire matrix is in row echelon form.

Step 6. Beginning with the last nonzero row and working upward, add suit-
able multiples of each row to the rows above to introduce zeros above
the leading 1’s.

This procedure (or algorithm) is called Gauss-Jordan elimination and consists
of two parts, a forward phase in which zeros are introduced below the leading
1’s and a backward phase in which zeros are introduced above the leading 1’s.
If only the forward phase is used, then the procedure produces a row echelon
form and is called Gaussian elimination.

10
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Example 5. Solve by Gauss-Jordan elimination.

x1 + 3x2 − 2x3 + 2x5 = 0

2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = −1
5x3 + 10x4 + 15x6 = 5

2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 6

11
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Definition 1.2.4. A system of linear equations is said to be homogeneous if
the constant terms are all zero; that is, the system has the form

a11x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + a22x2 + · · ·+ a2nxn = 0
...

...
...

...
am1x1 + am2x2 + · · ·+ amnxn = 0

Every homogeneous system of linear equations is consistent because all such
systems have x1 = 0, x2 = 0, . . . , xn = 0 as a solution. This solution is called
the trivial solution; if there are other solutions, they are called nontrivial so-
lutions.

Remark 1. Because a homogeneous system of linear equations always has the
trivial solution, there are only two possibilities for its solutions:

• The system has only the trivial solution.
• The system has infinitely many solutions in addition to the trivial solu-
tion.

Example 6. Use Gauss-Jordan elimination to solve the homogeneous system
linear system

x1 + 3x2 − 2x3 + 2x5 = 0

2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = 0

5x3 + 10x4 + 15x6 = 0

2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 0.

12
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Theorem 1.2.2 (Free Variable Theorem for Homogeneous Systems). If a
homogeneous linear system has n unknowns, and if the reduced row echelon
form of its augmented matrix has r nonzero rows, then the system has n − r
free variables.

Theorem 1.2.3. A homogeneous linear system with more unknowns than
equations has infinitely many solutions.

Remark 2. For large linear systems that require a computer solution, it is
generally more efficient to use Gaussian elimination followed by a technique
known as back-substitution to complete the process of solving the system.

Example 7. From the computations in Example 5, a row echelon form of the
augmented matrix is 

1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 1 0 0 1 1

3

0 0 0 0 0 0 0

 .

Solve the corresponding system of equations.

13
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Example 8. Suppose that the matrices below are augmented matrices for
linear systems in the unknowns x1, x2, x3, and x4. These matrices are all in
row echelon form but not reduced row echelon form. Discuss the existence and
uniqueness of solutions to the corresponding linear systems.

(a)


1 −3 7 2 5
0 1 2 −4 1
0 0 1 6 9
0 0 0 0 1



(b)


1 −3 7 2 5
0 1 2 −4 1
0 0 1 6 9
0 0 0 0 0



(c)


1 −3 7 2 5
0 1 2 −4 1
0 0 1 6 9
0 0 0 1 0


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Remark 3. There are three facts about row echelon forms and reduced row
echelon forms that are important to know:

1. Every matrix has a unique reduced row echelon form.
2. Row echelon forms are not unique.
3. Although row echelon forms are not unique, the reduced row echelon

form and all row echelon forms of a matrix A have the same number of
zero rows, and the leading 1’s always occur in the same positions. Those
are called the pivot positions of A. The columns containing leading 1’s
in a row echelon or reduced row echelon form of A are called the pivot
columns of A, and the rows containing the leading 1’s are called the pivot
rows of A. A nonzero entry in a pivot position of A is called a pivot of
A.

Example 9. Given that the row echelon form of0 0 −2 0 7 12
2 4 −10 6 12 28
2 4 −5 6 −5 −1


is 1 2 −5 3 6 14

0 0 1 0 −7
2
−6

0 0 0 0 1 2

 .

Determine the pivot positions, pivot columns, pivot rows, and pivots of A.
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1.3 Matrices and Matrix Operations

Definition 1.3.1. A matrix is a rectangular array of numbers. The numbers
in the array are called the entries.

Example 1. Some examples of matrices are 1 2
3 0
−1 4

 ,
[
2 1 0 −3

]
,

e π −
√
2

0 1
2

1
0 0 0

 ,

[
1
3

]
, [4].

Remark 1. The size of a matrix is described in terms of rows (horizontal lines)
and columns (vertical lines) it contains. In a size description, the first number
always denotes the number of rows, and the second denotes the number of
columns. A matrix with only one row is called a row vector (or a row matrix),
and a matrix with only one column is called a column vector (or a column
matrix).

Remark 2. We will use capital letters to denote matrices and lowercase letters
to denote numerical quantities; thus we may write

A =

[
2 1 7
3 4 2

]
or C =

[
a b c
d e f

]
.

When discussing matrices, it is common to refer to numerical quantities as
scalars. The entry that occurs in row i and column j of a matrix A will be
denoted by aij. Thus a general m× n matrix might be written as

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 .

When a compact notation is desired, the preceding matrix can be written as

[aij]m×n [aij].

Remark 3. A general 1 × n row vector a and a general m × 1 column vector
b would be written as

a =
[
a1 a2 · · · an

]
and b =


b1
b2
...
bm

 .
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Remark 4. A matrix A with n rows and n columns is called a square matrix
of order n, and the shaded entries a11, a22, . . . , ann are said to be on the main
diagonal of A.

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn




Definition 1.3.2. Two matrices are defined to be equal if they have the same
size and their corresponding entries are equal.

Example 2. Consider the matrices

A =

[
2 1
3 x

]
, B =

[
2 1
3 5

]
, C =

[
2 1 0
3 4 0

]
.

For what values of x are the matrices equal?

Definition 1.3.3. If A and B are matrices of the same size, then the sum
A+B is the matrix obtained by adding the entries of B to the corresponding
entries of A, and the difference A − B is the matrix obtained by subtracting
the entries of B from the corresponding entries of A. Matrices of different sizes
cannot be added or subtracted.

Example 3. Consider the matrices

A =

 2 1 0 3
−1 0 2 4
4 −2 7 0

 , B =

−4 3 5 1
2 2 0 −1
3 2 −4 5

 , C =

[
1 1
2 2

]
.

Find A+B, A+ C, B + C, A−B, A− C, and B − C, if possible.
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Definition 1.3.4. If A is any matrix and c is any scalar, then the product cA
is the matrix obtained by multiplying each entry of the matrix A by c. The
matrix cA is said to be a scalar multiple of A.

Example 4. For the matrices

A =

[
2 3 4
1 3 1

]
, B =

[
0 2 7
−1 3 −5

]
, C =

[
9 −6 3
3 0 12

]
,

find 2A, (−1)B, and 1
3
C.

Definition 1.3.5. If A is an m× r matrix and B is an r×n matrix, then the
product AB is the m× n matrix whose entries are determined as follows: To
find the entry in row i and column j of AB, single out row i from the matrix
A and column j from the matrix B. Multiply the corresponding entries from
the row and column together, and then add up the resulting products.

Example 5. Consider the matrices

A =

[
1 2 4
2 6 0

]
, B =

4 1 4 3
0 −1 3 1
2 7 5 2

 .

Find AB.
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Example 6. Suppose that A, B, and C are matrices with the following sizes:

A B C

3× 4 4× 7 7× 3

Determine whether the products AB, AC, BC, BA, CA, and CB are defined.

Remark 5. In general, if A = [aij] is an m× r matrix and B = [bij] is an r×n
matrix, then, as illustrated by the shading in the following display,

AB =



a11 a12 · · · a1r
a21 a22 · · · a2r
...

...
...

ai1 ai2 · · · air
...

...
...

am1 am2 · · · amr




b11 b12 · · · b1j · · · b1n
b21 b22 · · · b2j · · · b2n
...

...
...

...
br1 br2 · · · brj · · · brn



the entry (AB)ij in row i and column j of AB is given by

(AB)ij = ai1b1j + ai2b2j + ai3b3j + · · ·+ airbrj .

This is called the row-column rule for matrix multiplication.

Remark 6. A matrix can be subdivided or partitioned into smaller matrices by
inserting horizontal and vertical rules between selected rows and columns. The
following formulas show how individual column vectors of AB can be obtained
by partitioning B into column vectors and how individual row vectors of AB
can be obtained by partitioning A into row vectors.

AB = A
[
b1 b2 · · · bn

]
=
[
Ab1 Ab2 · · · Abn

]
(AB computed column by column)

AB =


a1

a2
...
am

 =


a1B
a2B
...

amB


(AB computed row by row)
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Example 7. If A and B are the matrices in Example 5, then compute the
second column vector and first row vector of AB.

Definition 1.3.6. If A1, A2, . . . , Ar are matrices of the same size, and if
c1, c2, . . . , cr are scalars, then an expression of the form

c1A1 + c2A2 + · · ·+ crAr

is called a linear combination of A1, A2, . . . , Ar with coefficients c1, c2, . . . , cr.

Theorem 1.3.1. If A is an m×n matrix, and if x is an n× 1 column vector,
then the product Ax can be expressed as a linear combination of the column
vectors of A in which the coefficients are the entries of x.

Proof. Let

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 and x =


x1

x2
...
xn

 .

Then

Ax =


a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn
...

...
...

am1x1 + am2x2 + · · ·+ amnxn

 = x1


a11
a21
...

am1

+ x2


a12
a22
...

am2

+ · · ·+ xn


a1n
a2n
...

amn



Example 8. Write the matrix product−1 3 2
1 2 −3
2 1 −2


 2
−1
3

 =

 1
−9
−3


as a linear combination of column vectors.
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Example 9. If A and B are the matrices in Example 5, then write the column
vectors of the matrix product AB as linear combinations of column vectors.

Remark 7. Suppose that an m × r matrix A is partitioned into its r column
vectors c1, c2, . . . , cr (each of size m× 1) and an r×n matrix B is partitioned
into its r row vectors r1, r2, . . . , rr (each of size 1× n). Then

AB = c1r1 + c2r2 + · · ·+ crrr,

and this equation is called the column-row expansion of AB.

Example 10. Find the column-row expansion of the product

AB =

[
1 3
2 −1

][
2 0 4
−3 5 1

]
.
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Remark 8. Consider a system of m linear equations in n unknowns:

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2
...

...
...

...
am1x1 + am2x2 + · · ·+ amnxn = bm

We can replace the m equations in this system by the matrix equation
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn



x1

x2
...
xn

 =


b1
b2
...
bm

 .

If we designate these matrices by A, x, and b, respectively, then we can replace
the original system ofm equations in n unknowns by the single matrix equation

Ax = b.

The matrix A in this equation is called the coefficient matrix of the system.
The augmented matrix for the system is obtained by adjoining b to A as the
last column; thus the augmented matrix is

[A | b] =


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

...
am1 am2 · · · amn bm

 .

Definition 1.3.7. If A is any m×n matrix, then the transpose of A, denoted
by AT , is defined to be the n × m matrix that results by interchanging the
rows and columns of A; that is, the first column of AT is the first row of A,
the second column of AT is the second row of A, and so forth.

Example 11. Find the transposes of the following matrices:

A =

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

 , B =

2 3
1 4
5 6

 , C =
[
1 3 5

]
, D = [4].
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Remark 9. Not only are the columns of AT the rows of A, but the rows of AT

are the columns of A. Thus the entry in row i and column j of AT is the entry
in row j and column i of A; that is,

(AT )ij = (A)ji.

In the special case where A is a square matrix, the transpose of A can be
obtained by interchanging entries that are symmetrically positioned about the
main diagonal.

Definition 1.3.8. If A is a square matrix, then the trace of A, denoted by
tr(A), is defined to be the sum of the entries on the main diagonal of A. The
trace of A is undefined if A is not a square matrix.

Example 12. Find the traces of the following matrices:

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 , B =


−1 2 7 0
3 5 −8 4
1 2 7 −3
4 −2 1 0

 .
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1.4 Inverses; Algebraic Properties of Matrices

Theorem 1.4.1 (Properties of Matrix Arithmetic). Assuming that the sizes
of the matrices are such that the indicated operations can be performed, the
following rules of matrix arithmetic are valid.

(a) A+B = B + A
(b) A+ (B + C) = (A+B) + C
(c) A(BC) = (AB)C
(d) A(B + C) = AB + AC
(e) (B + C)A = BA+ CA
(f ) A(B − C) = AB − AC
(g) (B − C)A = BA− CA
(h) a(B + C) = aB + aC
(i) a(B − C) = aB − aC
(j ) (a+ b)C = aC + bC
(k) (a− b)C = aC − bC
(l) a(bC) = (ab)C
(m) a(BC) = (aB)C = B(aC)

Example 1. Consider

A =

1 2
3 4
0 1

 , B =

[
4 3
2 1

]
, C =

[
1 0
2 3

]
.

Compute (AB)C and A(BC).
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Example 2. Consider the matrices

A =

[
−1 0
2 3

]
and B =

[
1 2
3 0

]
.

Compute AB and BA.

Remark 1. A matrix whose entries are all zero is called a zero matrix. Some
examples are

[
0 0
0 0

]
,

0 0 0
0 0 0
0 0 0

 ,

[
0 0 0 0
0 0 0 0

]
,


0
0
0
0

 , [0].

We will denote a zero matrix by 0 unless it is important to specify its size, in
which case we will denote the m× n zero matrix by 0m×n.

Theorem 1.4.2 (Properties of Zero Matrices). If c is a scalar, and if the sizes
of the matrices are such that the operations can be performed, then:

(a) A+ 0 = 0+ A = A
(b) A− 0 = A
(c) A− A = A+ (−A) = 0
(d) 0A = 0
(e) If cA = 0, then c = 0 or A = 0.

Example 3. Consider the matrices

A =

[
0 1
0 2

]
, B =

[
1 1
3 4

]
, C =

[
2 5
3 4

]
.

Compute AB and AC.
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Example 4. Consider the matrices

A =

[
0 1
0 2

]
and B =

[
3 7
0 0

]
.

Compute AB.

Remark 2. A square matrix with 1’s on the main diagonal and zeros elsewhere
is called an identity matrix. Some examples are

[1],

[
1 0
0 1

]
,

1 0 0
0 1 0
0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

An identity matrix is denoted by the letter I. If it is important to emphasize
the size, we will write In for the n× n identity matrix.
If A is any m× n matrix, then

AIn = A and ImA = A.

Theorem 1.4.3. If R is the reduced row echelon form of an n× n matrix A,
then either R has a row of zeros or R is the identity matrix In.

Proof. Suppose that the reduced row echelon form of A is

R =


r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
...

rn1 rn2 · · · rnn

 .

Either the last row in this matrix consists entirely of zeros or it does not. If
not, the matrix contains no zero rows, and consequently each of the n rows
has a leading entry of 1. Since these leading 1’s occur progressively farther to
the right as we move down the matrix, each of these 1’s must occur on the
main diagonal. Since the other entries in the same column as one of these 1’s
are zero, R must be In. Thus, either R has a row of zeros or R = In.

Definition 1.4.1. If A is a square matrix, and if a matrix B of the same
size can be found such that AB = BA = I, then A is said to be invertible
(or nonsingular) and B is called an inverse of A. If no such matrix B can be
found, then A is said to be singular.
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Example 5. Let

A =

[
2 −5
−1 3

]
and B =

[
3 5
1 2

]
.

Are A and B inverses of each other?

Example 6. Consider the matrix

A =

1 4 0
2 5 0
3 6 0

 .

Is A singular?

Theorem 1.4.4. If B and C are both inverses of the matrix A, then B = C.

Proof. Since B is an inverse of A, we have BA = I. Multiplying both sides
on the right by C gives (BA)C = IC = C. But it is also true that (BA)C =
B(AC) = BI = B, so C = B.

Remark 3. If A is invertible, then its inverse will be denoted by the symbol
A−1. Thus,

AA−1 = I and A−1A = I.
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Theorem 1.4.5. The matrix

A =

[
a b
c d

]

is invertible if and only if ad − bc ̸= 0, in which case the inverse is given by
the formula

A−1 =
1

ad− bc

[
d −b
−c a

]
.

Example 7. In each part, determine whether the matrix is invertible. If so,
find its inverse.

(a) A =

[
6 1
5 2

]

(b) A =

[
−1 2
3 −6

]
Example 8. Solve the equations

u = ax+ by

v = cx+ dy

for x and y in terms of u and v.
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Theorem 1.4.6. If A and B are invertible matrices with the same size, then
AB is invertible and

(AB)−1 = B−1A−1.

Proof. We can establish the invertibility and obtain the stated formula at the
same time by showing that

(AB)(B−1A−1) = (B−1A−1)(AB) = I.

But
(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

and similarly, (B−1A−1)(AB) = I.

Remark 4. A product of any number of invertible matrices is invertible, and
the inverse of the product is the product of the inverses in the reverse order.

Example 9. Consider the matrices

A =

[
1 2
1 3

]
, B =

[
3 2
2 2

]
.

Compute AB, (AB)−1, and B−1A−1.
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Remark 5. If A is a square matrix, then we define the nonnegative integer
powers of A to be

A0 = I and An = AA · · ·A︸ ︷︷ ︸
n

and if A is invertible, then we define the negative integer powers of A to be

A−n = (A−1)n = A−1A−1 · · ·A−1︸ ︷︷ ︸
n

.

Because these definitions parallel those for real numbers, the usual laws of
nonnegative exponents hold; for example,

ArAs = Ar+s and (Ar)s = Ars.

Theorem 1.4.7. If A is invertible and n is a nonnegative integer, then:

(a) A−1 is invertible and (A−1)−1 = A.
(b) An is invertible and (An)−1 = A−n = (A−1)n.
(c) kA is invertible for any nonzero scalar k, and (kA)−1 = k−1A−1.

Example 10. Let A be the matrix in Example 9. Compute (A−1)3 and (A3)−1.
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Example 11. Calculate (A+B)2 for matrices A and B.

Definition 1.4.2. If A is a square matrix, say n× n, and if

p(x) = a0 + a1x+ a2x
2 + · · ·+ amx

m

is any polynomial, then we define the n× n matrix p(A) to be

p(A) = a0I + a1A+ a2A
2 + · · ·+ amA

m

where I is the n× n identity matrix; that is, p(A) is obtained by substituting
A for x and replacing the constant term a0 by the matrix a0I. An expression
of this form is called a matrix polynomial in A.

Example 12. Find p(A) for

p(x) = x2 − 2x− 5 and A =

[
−1 2
1 3

]
.

Remark 6. For any polynomials p1 and p2 we have

p1(A)p2(A) = p2(A)p1(A).

Theorem 1.4.8. If the sizes of the matrices are such that the stated operations
can be performed, then:

(a) (AT )T = A
(b) (A+B)T = AT +BT

(c) (A−B)T = AT −BT

(d) (kA)T = kAT

(e) (AB)T = BTAT
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Remark 7. The transpose of a product of any number of matrices is the product
of the transposes in the reverse order.

Theorem 1.4.9. If A is an invertible matrix, then AT is also invertible and

(AT )−1 = (A−1)T .

Proof. We can establish the invertibility and obtain the formula at the same
time by showing that

AT (A−1)T = (A−1)TAT = I.

But from part (e) of Theorem 1.4.8 and the fact that IT = I, we have

AT (A−1)T = (A−1A)T = IT = I

(A−1)TAT = (AA−1)T = IT = I.

Example 13. Compute (AT )−1 and (A−1)T for a general 2 × 2 invertible
matrix.
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1.5 Elementary Matrices and a Method for

Finding A−1

Definition 1.5.1. Matrices A and B are said to be row equivalent if either
(hence each) can be obtained from the other by a sequence of elementary row
operations.

Definition 1.5.2. A matrix E is called an elementary matrix if it can be
obtained from an identity matrix by performing a single elementary row op-
eration.

Example 1. What are the operations that produce the following elementary
matrices?

[
1 0
0 −3

] 
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


1 0 3
0 1 0
0 0 1


1 0 0
0 1 0
0 0 1



Theorem 1.5.1 (Row Operations by Matrix Multiplication). If the elemen-
tary matrix E results from performing a certain row operation on Im and if A
is an m× n matrix, then the product EA is the matrix that results when this
same row operation is performed on A.

Example 2. Consider the matrices

A =

1 0 2 3
2 −1 3 6
1 4 4 0

 , E =

1 0 0
0 1 0
3 0 1

 .

Compute the product EA.
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Example 3. What are the operations that produce the following elementary
matrices, and what are the operations that restore them to the identity matrix?[

1 0
0 7

] [
0 1
1 0

] [
1 5
0 1

]

Theorem 1.5.2. Every elementary matrix is invertible, and the inverse is
also an elementary matrix.

Proof. If E is an elementary matrix, then E results by performing some row
operation on I. Let E0 be the matrix that results when the inverse of this
operation is performed on I. Applying Theorem 1.5.1 and using the fact that
inverse row operations cancel the effect of each other, it follows that

E0E = I and EE0 = I.

Thus, the elementary matrix E0 is the inverse of E.

Theorem 1.5.3 (Equivalent Statements). If A is an n × n matrix, then the
following statements are equivalent, that is, all true or all false.

(a) A is invertible.
(b) Ax = 0 has only the trivial solution.
(c) The reduced row echelon form of A is In.
(d) A is expressible as a product of elementary matrices.

Remark 1 (Inversion Algorithm). To find the inverse of an invertible matrix
A, find a sequence of elementary row operations that reduces A to the identity
and then perform that same sequence of operations on In to obtain A−1.
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Example 4. Find the inverse of

A =

1 2 3
2 5 3
1 0 8

 .
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Example 5. Consider the matrix

A =

 1 6 4
2 4 −1
−1 2 5

 .

Is this matrix invertible?

Example 6. Use Theorem 1.5.3 to determine whether the given homogeneous
system has nontrivial solutions.

(a) x1 + 2x2 + 3x3 = 0

2x1 + 5x2 + 3x3 = 0

x1 + 8x3 = 0

(b) x1 + 6x2 + 4x3 = 0

2x1 + 4x2 − x3 = 0

−x1 + 2x2 + 5x3 = 0
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1.6 More on Linear Systems and Invertible

Matrices

Theorem 1.6.1. A system of linear equations has zero, one, or infinitely
many solutions. There are no other possibilities.

Proof. If Ax = b is a system of linear equations, exactly one of the following is
true: (a) the system has no solutions, (b) the system has exactly one solution,
or (c) the system has more than one solution. The proof will be complete if
we can show that the system has infinitely many solutions in case (c).
Assume that Ax = b has more than one solution, and let x0 = x1−x2, where
x1 and x2 are any two distinct solutions. Because x1 and x2 are distinct, the
matrix x0 is nonzero; moreover,

Ax0 = A(x1 − x2) = Ax1 − Ax2 = b− b = 0.

If we now let k be any scalar, then

A(x1 + kx0) = Ax1 + A(kx0) = Ax1 + k(Ax0)

= b+ k0 = b+ 0 = b.

But this says that x1 + kx0 is a solution of Ax = b. Since x0 is nonzero and
there are infinitely many choices for k, the system Ax = b has infinitely many
solutions.

Theorem 1.6.2. If A is an invertible n×n matrix, then for each n×1 matrix
b, the system of equations Ax = b has exactly one solution, name, x = A−1b.

Proof. Since A(A−1b) = b, it follows that x = A−1b is a solution of Ax = b.
To show that this is the only solution, we will assume that x0 is an arbitrary
solution and then show that x0 must be the solution A−1b.
If x0 is any solution of Ax = b, then Ax0 = b. Multiplying both sides of this
equation by A−1, we obtain x0 = A−1b.
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Example 1. Solve the system of linear equations

x1 + 2x2 + 3x3 = 5

2x1 + 5x2 + 3x3 = 3

x1 + 8x3 = 17.

Example 2. Solve the systems

(a) x1 + 2x2 + 3x3 = 4

2x1 + 5x2 + 3x3 = 5

x1 + 8x3 = 9

(b) x1 + 2x2 + 3x3 = 1

2x1 + 5x2 + 3x3 = 6

x1 + 8x3 = −6.
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Theorem 1.6.3. Let A be a square matrix.

(a) If B is a square matrix satisfying BA = I, then B = A−1.
(b) If B is a square matrix satisfying AB = I, then B = A−1.

Proof. (a) Assume that BA = I. If we can show that A is invertible, the proof
can be completed by multiplying BA = I on both sides by A−1 to obtain

BAA−1 = IA−1 or BI = IA−1 or B = A−1.

To show that A is invertible, it suffices to show that the system Ax = 0 has
only the trivial solution. Let x0 be any solution of this system. If we multiply
both sides of Ax0 = 0 on the left by B, we obtain BAx0 = B0 or Ix0 = 0 or
x0 = 0. Thus, the system of equations Ax = 0 has only the trivial solution.
(b) Assume that AB = I. By part (a), A = B−1. By multiplying A = B−1 on
both sides by B, we obtain

BA = BB−1 or BA = I.

The result then follows by (a).

Theorem 1.6.4 (Equivalent Statements). If A is an n × n matrix, then the
following are equivalent.

(a) A is invertible.
(b) Ax = 0 has only the trivial solution.
(c) The reduced row echelon form of A is In.
(d) A is expressible as a product of elementary matrices.
(e) Ax = b is consistent for every n× 1 matrix b.
(f ) Ax = b has exactly one solution for every n× 1 matrix b.

Theorem 1.6.5. Let A and B be square matrices of the same size. If AB is
invertible, then A and B must also be invertible.

Proof. We will show first that B is invertible by showing that the homogeneous
system Bx = 0 has only the trivial solution. If we assume that x0 is any
solution of this system, then

(AB)x0 = A(Bx0) = A0 = 0

so x0 = 0 by parts (a) and (b) of Theorem 1.6.4 applied to the invertible
matrix AB. But the invertibility of B implies the invertibility of B−1, which
in turn implies that

(AB)B−1 = A(BB−1) = AI = A

is invertible since the left side is a product of invertible matrices.
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Example 3. What conditions must b1, b2, and b3 satisfy in order for the system
of equations

x1 + x2 + 2x3 = b1

x1 + x3 = b2

2x1 + x2 + 3x3 = b3

to be consistent?
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Example 4. What conditions must b1, b2, and b3 satisfy in order for the system
of equations

x1 + 2x2 + 3x3 = b1

2x1 + 5x2 + 3x3 = b2

x1 + 8x3 = b3

to be consistent?
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1.7 Diagonal, Triangular, and Symmetric Ma-

trices

Definition 1.7.1. A square matrix in which all the entries off the main diag-
onal are zero is called a diagonal matrix. A general n× n diagonal matrix D
can be written as

D =


d1 0 · · · 0
0 d2 · · · 0
...

...
...

0 0 · · · dn

 .

Remark 1. A diagonal matrix is invertible if and only if all of its diagonal
entries are nonzero; in this case the inverse of the diagonal matrix D is

D−1 =


1/d1 0 · · · 0
0 1/d2 · · · 0
...

...
...

0 0 · · · 1/dn

 .

If k is a positive integer, then

Dk =


dk1 0 · · · 0
0 dk2 · · · 0
...

...
...

0 0 · · · dkn

 .

Example 1. Compute A−1, A5, and A−5 for

A =

1 0 0
0 −3 0
0 0 2

 .
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Remark 2. To multiply a matrix A on the left by a diagonal matrixD, multiply
successive rows of A by the successive diagonal entries of D, and to multiply A
on the right by D, multiply successive columns of A by the successive diagonal
entries of D.

Definition 1.7.2. A square matrix in which all the entries above the main
diagonal are zero is called lower triangular, and a square matrix in which all
the entries below the main diagonal are zero is called upper triangular. A
matrix that is either upper triangular or lower triangular is called triangular.

Example 2. What are general 4× 4 upper and lower triangular matrices?

Remark 3. Observe that diagonal matrices are both upper triangular and lower
triangular since they have zeros below and above the main diagonal. Observe
also that a square matrix in row echelon form is upper triangular since it has
zeros below the main diagonal.

Theorem 1.7.1.

(a) The transpose of a lower triangular matrix is upper triangular, and the
transpose of an upper triangular matrix is lower triangular.

(b) The product of lower triangular matrices is lower triangular, and the
product of upper triangular matrices is upper triangular.

(c) A triangular matrix is invertible if and only if its diagonal entries are
all nonzero.

(d) The inverse of an invertible lower triangular matrix is lower triangular,
and the inverse of an invertible upper triangular matrix is upper trian-
gular.
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Example 3. Consider the upper triangular matrices

A =

1 3 −1
0 2 4
0 0 5

 , B =

3 −2 2
0 0 −1
0 0 1

 .

What can you say about A−1, B−1, AB, and BA?

Definition 1.7.3. A square matrix is said to be symmetric if A = AT .

Example 4. Which of the following matrices are symmetric?

[
7 −3
−3 5

] 1 4 5
4 −3 0
5 0 7



d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4



Theorem 1.7.2. If A and B are symmetric matrices with the same size, and
if k is any scalar, then:

(a) AT is symmetric.
(b) A+B and A−B are symmetric.
(c) kA is symmetric.

Theorem 1.7.3. The product of two symmetric matrices is symmetric if and
only if the matrices commute.

Proof. Let A and B be symmetric matrices with the same size. Then

(AB)T = BTAT = BA.

Thus, (AB)T = AB if and only if AB = BA, that is, if and only if A and B
commute.
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Example 5. Which of these products is symmetric?[
1 2
2 3

][
−4 1
1 0

] [
1 2
2 3

][
−4 3
3 −1

]

Theorem 1.7.4. If A is an invertible symmetric matrix, then A−1 is symmet-
ric.

Proof. Assume that A is symmetric and invertible. Then

(A−1)T = (AT )−1 = A−1.

Theorem 1.7.5. If A is an invertible matrix, then AAT and ATA are also
invertible.

Proof. Since A is invertible, so is AT . Thus AAT and ATA are invertible, since
they are the products of invertible matrices.

Remark 4. If A is anm×n matrix, then AT is an n×m matrix, so the products
AAT and ATA are both square matrices—the matrix AAT has size m × m,
and the matrix ATA has size n×n. Such products are always symmetric since

(AAT )T = (AT )TAT = AAT and (ATA)T = AT (AT )T = ATA.

Example 6. Compute ATA and AAT for the 2× 3 matrix

A =

[
1 −2 4
3 0 −5

]
.

45



Linear Algebra - 1.8 Introduction to Linear Transformations

1.8 Introduction to Linear Transformations

Remark 1. The set of all ordered n-tuples of real numbers is denoted by the
symbol Rn. The elements of Rn are called vectors and are denoted in boldface
type. Ordered n-tuples can be expressed as

(s1, s2, . . . , sn),

called the comma-delimited form of a vector, or as the matrix
s1
s2
...
sn

 ,

called the column-vector form. For each i = 1, 2, . . . , n, let ei denote the vector
in Rn with a 1 in the ith position and zeros elsewhere. In column form these
vectors are

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , . . . , en =


0
0
0
...
1

 .

We call the vectors e1, e2, . . . , en the standard basis vectors for Rn. They
are termed “basis vectors” because all other vectors in Rn are expressible in
exactly one way as a linear combination of them. For example, if

x =


x1

x2
...
xn


then we can express x as

x = x1e1 + x2e2 + · · ·+ xnen.

Remark 2. A function is a rule that associates with each element of a set A
one and only one element in a set B. If f associates the element b with the
element a, then we write

b = f(a)

and we say that b is the image of a under f and the set B the codomain of
f . The subset of the codomain that consists of all images of elements in the
domain is called the range of f .
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Definition 1.8.1. If T is a function with domain Rn and codomain Rm, then
we say that T is a transformation from Rn to Rm or that T maps from Rn to
Rm, which we denote by writing

T : Rn → Rm.

In the special case where m = n, a transformation is sometimes called an
operator on Rn.

Remark 3. Suppose that we have the system of linear equations written in
matrix notation as

w = Ax,

which we can view as a transformation that maps a vector x in Rn into the
vector w in Rm by multiplying x on the left by A. We call this a matrix trans-
formation (or matrix operator in the special case where m = n). We denote
it by

TA : Rn → Rm.

In situations where specifiying the domain and codomain is not essential, we
will write

w = TA(x).

We call the transformation TA multiplication by A. On occasion we will find
it convenient to express this in the schematic form

x
TA−→ w,

which is read “TA maps x into w.”
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Example 1. Find the image of the vector

x =


1
−3
0
2


under the transformation from R4 to R3 defined by the equations

w1 = 2x1 − 3x2 + x3 − 5x4

w2 = 4x1 + x2 − 2x3 + x4

w3 = 5x1 − x2 + 4x3 .

Example 2. Find T0 (x) for an arbitrary vector x in Rn.

Example 3. Find TI(x) for an arbitrary vector x in Rn.
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Theorem 1.8.1. For every matrix A the matrix transformation TA : Rn →
Rm has the following properties for all vectors u and v and for every scalar k:

(a) TA(0) = 0
(b) TA(ku) = kTA(u)
(c) TA(u+ v) = TA(u) + TA(v)
(d) TA(u− v) = TA(u)− TA(v)

Theorem 1.8.2. T : Rn → Rm is a matrix transformation if and only if the
following relationships hold for all vectors u and v in Rn and for every scalar
k:

(i) T (u+ v) = T (u) + T (v)
(ii) T (ku) = kT (u)

Proof. If T is a matrix transformation, then properties (i) and (ii) follow re-
spectively from parts (c) and (b) of Theorem 1.8.1.
Conversely, assume that properties (i) and (ii) hold. We must show that there
exists an m× n matrix A such that

T (x) = Ax

for every vector x in Rn. Using the additivity and homogeneity properties of
TA, we get

T (k1u1 + k2u2 + · · ·+ krur) = k1T (u1) + k2T (u2) + · · ·+ krT (ur)

for all scalars k1, k2, . . . , kr and all vectors u1,u2, . . . ,ur in Rn. Let A be the
matrix

A = [T (e1) | T (e2) | · · · | T (en)]
where e1, e2, . . . , en are the standard basis vectors for Rn. Thus Ax is a linear
combination of the columns of A in which the successive cofficients are the
entries x1, x2, . . . , xn of x. That is,

Ax = x1T (e1) + x2T (e2) + · · ·+ xnT (en)

= T (x1e1 + x2e2 + · · ·+ xnen)

= T (x).

Remark 4. The additivity and homogeneity properties in Theorem 1.8.2 are
called linearity conditions, and a transformation that satisfies these conditions
is called a linear transformation. Using this terminology Theorem 1.8.2 can
be restated as follows.

Theorem 1.8.3. Every linear transformation from Rn to Rm is a matrix
transformation, and conversely, every matrix transformation from Rn to Rm

is a linear transformation.
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Theorem 1.8.4. If TA : Rn → Rm and TB : Rn → Rm are matrix transfor-
mations, and if TA(x) = TB(x) for every vector x in Rn, then A = B.

Proof. To say that TA(x) = TB(x) for every vector in Rn is the same as saying
that Ax = Bx for every vector x in Rn. This will be true, in particular, if x
is any of the standard basis vectors e1, e2, . . . , en for Rn; that is,

Aej = Bej (j = 1, 2, . . . , n).

Since every entry of ej is 0 except for the jth, which is 1, it follows that Aej
is the jth column of A and Bej is the jth column of B. Since Aej = Bej, this
implies that corresponding columns of A and B are the same, and hence that
A = B.

Remark 5. Theorem 1.8.4 tells us that every m×n matrix A produces exactly
one matrix transformation (multiplication by A) and every matrix transfor-
mation from Rn to Rm arises from exactly one m × n matrix; we call that
matrix the standard matrix for the transformation.

Remark 6 (Finding the Standard Matrix for a Matrix Transformation).

Step 1. Find the images of the standard basis vectors e1, e2, . . . , en for Rn.
Step 2. Construct the matrix that has the images obtained in Step 1 as

its successive columns. This matrix is the standard matrix for the
transformation.

Example 4. Find the standard matrix A for the linear transformation T :
R2 → R3 defined by the formula

T

[x1

x2

] =


2x1 + x2

x1 − 3x2

−x1 + x2

 .
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Example 5. For the linear transformation in Example 4, use the standard
matrix A obtained in that example to find

T

[1
4

] .

Example 6. Rewrite the transformation T (x1, x2) = (3x1 + x2, 2x1 − 4x2) in
column-vector form and find its standard matrix.
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Example 7. Find the standard matrix A for the linear transformation T :
R2 → R2 for which

T

[−1
1

] =

[
−5
5

]
, T

[ 2
−1

] =

[
7
−6

]
.
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Remark 7. Some of the most basic operators on R2 and R3 are those that map
each point into its symmetric image about a fixed line or a fixed plane that
contains the origin; these are called reflection operators. Matrix operators
on R2 that move points along arcs of circles centered at the origin are called
rotation operators.

Table 1

Operator Illustration Images of e1 and e2 Standard Matrix

Reflection about
the x-axis
T (x, y) = (x,−y)
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Reflection about
the y-axis
T (x, y) = (−x, y)
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Reflection about
the line y = x
T (x, y) = (y, x)

�*1 (� - рсѶ спрч ртѷпш �пр �#  / )0(� - чф ��" )0(� - чф �4�)(�" )/� 4 ''*2 �'��& Ҷ спрчѶ �)/*) � 3/�**&.Ѷ 
)�ѵѶ �'' -$"#/. - . -1 �

рѵч 
)/-*�0�/$*) /* 
$) �- �-�).!*-(�/$*). чф

���
� р

�ďăđÿēĎđ �ċċĔĒēđÿēćĎč �ČÿąăĒ ĎĄ ăႀ ÿčĂ ăႁ �ēÿčĂÿđĂ �ÿēđćė
�ăʢăāēćĎč ÿĀĎĔē
ēĆă ėܼÿėćĒᄾႾėᆠ ĘႿ Ⴝ ႾėᆠႼĘႿ

ᄾႾăއႿ Ⴝ ᄾႾއᆠ Ⴟކ Ⴝ Ⴞއᆠ ႿވႿᄾႾăކ Ⴝ ᄾႾކᆠ Ⴟއ Ⴝ ႾކᆠႼއႿ Գއ ކ
ކ ႼއԿ

T(x)

x
(x, y)

(x, –y)

x

y

�ăʢăāēćĎč ÿĀĎĔē
ēĆă ĘܼÿėćĒᄾႾėᆠ ĘႿ Ⴝ ႾႼėᆠ ĘႿ

ᄾႾăއႿ Ⴝ ᄾႾއᆠ Ⴟކ Ⴝ ႾႼއᆠ ႿވႿᄾႾăކ Ⴝ ᄾႾކᆠ Ⴟއ Ⴝ Ⴞކᆠ Ⴟއ ԳႼއ ކ
ކ Կއ

T(x) x

(x, y)(–x, y)

x

y

�ăʢăāēćĎč ÿĀĎĔē
ēĆă ċćčă Ę Ⴝ ėᄾႾėᆠ ĘႿ Ⴝ ႾĘᆠ ėႿ

ᄾႾăއႿ Ⴝ ᄾႾއᆠ Ⴟކ Ⴝ Ⴞކᆠ ႿވႿᄾႾăއ Ⴝ ᄾႾކᆠ Ⴟއ Ⴝ Ⴞއᆠ Ⴟކ Բކ އ
އ ԾT(x)ކ

x (x, y)

(y, x)
y = x

x

y

���
� с

�ďăđÿēĎđ �ċċĔĒēđÿēćĎč �ČÿąăĒ ĎĄ ăႀᆠ ăႁᆠ ăႂ �ēÿčĂÿđĂ �ÿēđćė

�ăʢăāēćĎč ÿĀĎĔē
ēĆă ėĘܼďċÿčăᄾႾėᆠ Ęᆠ ęႿ Ⴝ Ⴞėᆠ ĘᆠႼęႿ

ᄾႾăއႿ Ⴝ ᄾႾއᆠ ᆠކ Ⴟކ Ⴝ Ⴞއᆠ ᆠކ ႿވႿᄾႾăކ Ⴝ ᄾႾކᆠ ᆠއ Ⴟކ Ⴝ Ⴞކᆠ ᆠއ ႿމႿᄾႾăކ Ⴝ ᄾႾކᆠ ᆠކ Ⴟއ Ⴝ Ⴞކᆠ ႿއᆠႼކ Ըއ ކ ކ
ކ އ ކ
ކ ކ ႼއՄ

y

(x, y, z)

(x, y, –z)

z

x T(x)

x

�ăʢăāēćĎč ÿĀĎĔē
ēĆă ėęܼďċÿčăᄾႾėᆠ Ęᆠ ęႿ Ⴝ ႾėᆠႼĘᆠ ęႿ

ᄾႾăއႿ Ⴝ ᄾႾއᆠ ᆠކ Ⴟކ Ⴝ Ⴞއᆠ ᆠކ ႿވႿᄾႾăކ Ⴝ ᄾႾކᆠ ᆠއ Ⴟކ Ⴝ ႾކᆠႼއᆠ ႿމႿᄾႾăކ Ⴝ ᄾႾކᆠ ᆠކ Ⴟއ Ⴝ Ⴞކᆠ ᆠކ Ⴟއ Ըއ ކ ކ
ކ Ⴜއ ކ
ކ ކ އ

Մ
y

(x, y, z)(x, –y, z)

z

x

T(x) x

�ăʢăāēćĎč ÿĀĎĔē
ēĆă ĘęܼďċÿčăᄾႾėᆠ Ęᆠ ęႿ Ⴝ ႾႼėᆠ Ęᆠ ęႿ

ᄾႾăއႿ Ⴝ ᄾႾއᆠ ᆠކ Ⴟކ Ⴝ ႾႼއᆠ ᆠކ ႿވႿᄾႾăކ Ⴝ ᄾႾކᆠ ᆠއ Ⴟކ Ⴝ Ⴞކᆠ ᆠއ ႿމႿᄾႾăކ Ⴝ ᄾႾކᆠ ᆠކ Ⴟއ Ⴝ Ⴞކᆠ ᆠކ Ⴟއ ԸႼއ ކ ކ
ކ އ ކ
ކ ކ އ

Մ
y(x, y, z)

(–x, y, z)

z

x

T(x)

x

�đĎĉăāēćĎč �ďăđÿēĎđĒ
�ÿēđćė ĎďăđÿēĎđĒ Ďč ೵ވ ÿčĂ ೵މ ēĆÿē Čÿď ăÿāĆ ďĎćčē ćčēĎ ćēĒ ĎđēĆĎąĎčÿċ ďđĎĉăāēćĎč ĎčēĎ ÿ
ʟėăĂ ċćčă Ďđ ďċÿčă ēĆđĎĔąĆ ēĆă Ďđćąćč ÿđă āÿċċăĂ ďđĎĉăāēćĎč ĎďăđÿēĎđĒ ܱĎđ ČĎđă ďđăāćĒăċĘܡ
ĎđēĆĎąĎčÿċ ďđĎĉăāēćĎč ĎďăđÿēĎđĒܲܥ �ÿĀċă މ ĒĆĎĖĒ ēĆă ĒēÿčĂÿđĂ ČÿēđćāăĒ ĄĎđ ēĆă ĎđēĆĎąĎܼ
čÿċ ďđĎĉăāēćĎčĒ ĎčēĎ ēĆă āĎĎđĂćčÿēă ÿėăĒ ćč ೵ܡވ ÿčĂ �ÿĀċă ފ ĒĆĎĖĒ ēĆă ĒēÿčĂÿđĂ ČÿēđćāăĒ
ĄĎđ ēĆă ĎđēĆĎąĎčÿċ ďđĎĉăāēćĎčĒ ĎčēĎ ēĆă āĎĎđĂćčÿēă ďċÿčăĒ ćč ೵ܥމ

T (e1) = T (1, 0) = (0, 1)
T (e2) = T (0, 1) = (1, 0)

[
0 1
1 0

]

53



Linear Algebra - 1.8 Introduction to Linear Transformations

Table 2

Operator Illustration Images of e1, e2, e3 Standard Matrix
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Operator Illustration Images of e1 and e2 Standard Matrix
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T (e1) = T (1, 0) = (1, 0)
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Orthogonal projection
onto the y-axis
T (x, y) = (0, y)
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Table 4

Operator Illustration Images of e1, e2, e3 Standard Matrix

Orthogonal projection
onto the xy-plane
T (x, y, z) = (x, y, 0)
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onto the xz-plane
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onto the yz-plane
T (x, y, z) = (0, y, z)
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ćĒ ăĕćĂăčē ĄđĎČ ēĆă ćċċĔĒēđÿēćĎč ćč �ÿĀċă ܥފ 
ĎĖăĕăđܡ ćč ēĆă čăėē ĒăāēćĎč ÿčĂ ĒĔĀĒăĐĔăčēċĘ
Ėă Ėćċċ ĒēĔĂĘ ČĎđă āĎČďċćāÿēăĂ Čÿēđćė ēđÿčĒĄĎđČÿēćĎčĒ ćč ĖĆćāĆ ēĆă ăčĂ đăĒĔċēĒ ÿđă čĎē
ăĕćĂăčē ÿčĂ Čÿēđćė ČĔċēćďċćāÿēćĎč ćĒ ăĒĒăčēćÿċܥ

�ĎēÿēćĎč �ďăđÿēĎđĒ
�ÿēđćė ĎďăđÿēĎđĒ Ďč ೵ވ ēĆÿē ČĎĕă ďĎćčēĒ ÿċĎčą ÿđāĒ ĎĄ āćđāċăĒ āăčēăđăĂ ÿē ēĆă Ďđćąćč ÿđă
āÿċċăĂ đĎēÿēćĎč ĎďăđÿēĎđĒܥ �ăē ĔĒ āĎčĒćĂăđ ĆĎĖ ēĎ ʟčĂ ēĆă ĒēÿčĂÿđĂ Čÿēđćė ĄĎđ ēĆă đĎēÿܼ
ēćĎč ĎďăđÿēĎđ ೷ۚ ೵צވ೵ވ ēĆÿē ČĎĕăĒ ďĎćčēĒ āĎĔčēăđāċĎāĊĖćĒă ÿĀĎĔē ēĆă Ďđćąćč ēĆđĎĔąĆ ÿ

T (e1) = T (1, 0, 0) = (0, 0, 0)
T (e2) = T (0, 1, 0) = (0, 1, 0)
T (e3) = T (0, 0, 1) = (0, 0, 1)

0 0 0
0 1 0
0 0 1



Table 5

Operator Illustration Images of e1 and e2 Standard Matrix

Counterclockwise
rotation about the
origin through an
angle θ
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ÿ đĎēÿēćĎčܥ �Ē ćċċĔĒēđÿēăĂ ćč �ćąĔđă ܡދܥގܥއ ēĆă ćČÿąăĒ ĎĄ ēĆă ĒēÿčĂÿđĂ ĀÿĒćĒ ĕăāēĎđĒ ăއ ÿčĂ
ăވ ĔčĂăđ ÿ đĎēÿēćĎč ēĆđĎĔąĆ ÿč ÿčąċă ྶ ÿđă೷ШăއЩ Ҳ ೷ШއИ Щކ Ҳ ШāĎĒ ྶИ Ēćč ྶЩ ÿčĂ ೷ܱăވЩ Ҳ ೷ШކИ Щއ Ҳ Шҭ Ēćč ྶИ āĎĒ ྶЩ
ĒĎ ćē ĄĎċċĎĖĒ ĄđĎČ �ĎđČĔċÿ ܲދއܱ ēĆÿē ēĆă ĒēÿčĂÿđĂ Čÿēđćė ĄĎđ ೷ ćĒ

೤ Ҳ Ъ೷ШăއЩ ڔ ೷ШăވЩЫ Ҳ ԲāĎĒ ྶ ҭ Ēćč ྶ
Ēćč ྶ āĎĒ ྶԾ

e1

e2(–sin θ, cos θ)
(cos θ, sin θ)

x

y
T

T11 θ
θ

�
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�č Ċăăďćčą ĖćēĆ āĎČČĎč ĔĒÿąă Ėă Ėćċċ ĂăčĎēă ēĆćĒ Čÿēđćė ÿĒ

೵ᆇ Ҳ ԲāĎĒ ྶ ҭ Ēćč ྶ
Ēćč ྶ āĎĒ ྶԾ ܲޏއܱ

ÿčĂ āÿċċ ćē ēĆă đĎēÿēćĎč Čÿēđćė ĄĎđ ೵ܥވ �ĆăĒă ćĂăÿĒ ÿđă ĒĔČČÿđćęăĂ ćč �ÿĀċă ܥދ

�č ēĆă ďċÿčăܡ āĎĔčēăđāċĎāĊܼ
ĖćĒă ÿčąċăĒ ÿđă ďĎĒćēćĕă
ÿčĂ āċĎāĊĖćĒă ÿčąċăĒ ÿđă
čăąÿēćĕăܥ �Ćă đĎēÿēćĎč
Čÿēđćė ĄĎđ ÿ āċĎāĊĖćĒă
đĎēÿēćĎč ĎĄႼᆇ đÿĂćÿčĒ āÿč
Āă ĎĀēÿćčăĂ ĀĘ đăďċÿāćčąᆇ ĀĘႼᆇ ćč ܥܲޏއܱ �Ąēăđ
ĒćČďċćʟāÿēćĎč ēĆćĒ ĘćăċĂĒ

�ᆵኀ Ⴝ Գ āĎĒᆇ ĒćčᆇႼĒćčᆇ āĎĒᆇԿ

���
� ф

�ďăđÿēĎđ �ċċĔĒēđÿēćĎč �ČÿąăĒ ĎĄ ăႀ ÿčĂ ăႁ �ēÿčĂÿđĂ �ÿēđćė

�ĎĔčēăđāċĎāĊĖćĒă
đĎēÿēćĎč ÿĀĎĔē ēĆă
Ďđćąćč ēĆđĎĔąĆ ÿč
ÿčąċă ᆇ

 (!1, !2)

 (x, y)
x

w

y

xθ

ᄾႾăއႿ Ⴝ ᄾႾއᆠ Ⴟކ Ⴝ ႾāĎĒᆇᆠ ĒćčᆇܲᄾႾăވႿ Ⴝ ᄾႾކᆠ Ⴟއ Ⴝ ႾႼ Ēćčᆇᆠ āĎĒᆇܲ ԳāĎĒᆇ Ⴜ Ēćčᆇ
Ēćčᆇ āĎĒᆇԿ

�����
� ч Ҟ � �ĎēÿēćĎč �ÿēđćė

�ćčĂ ēĆă ćČÿąă ĎĄ ė Ⴝ Ⴞއᆠ Ⴟއ ĔčĂăđ ÿ đĎēÿēćĎč ĎĄ ᆏФތ đÿĂćÿčĒ ႾႽ Ⴟٷކމ ÿĀĎĔē ēĆă Ďđćąćčܥ
�ĎċĔēćĎč �ē ĄĎċċĎĖĒ ĄđĎČ ܲޏއܱ ĖćēĆ ᆇ Ⴝ ᆏФތ ēĆÿē

ᄼኈФތė Ⴝ Ըމٹ
ވ Ⴜ އ

ވ

އ
ވ

މٹ
ވ

Մ ԳއއԿ Ⴝ ԸމٹႼވއ
މٹႻއ
ވ

Մ ۳ ԳކᆡއލމᆡލމԿ
Ďđ ćč āĎČČÿܼĂăċćČćēăĂ čĎēÿēćĎčܡ ᄼኈФތႾއᆠ Ⴟއ ۳ Ⴞކᆡލމᆠ ܥႿލމᆡއ

�ĎčāċĔĂćčą �ăČÿđĊ
�ĎēÿēćĎčĒ ćč೵މ ÿđă ĒĔĀĒēÿčēćÿċċĘČĎđă āĎČďċćāÿēăĂ ēĆÿč ēĆĎĒă ćč೵ވ ÿčĂĖćċċ Āă āĎčĒćĂăđăĂ
ċÿēăđ ćč ēĆćĒ ēăėēܥ

T (e1) = T (1, 0) = (cos θ, sin θ)
T (e2) = T (0, 1) = (− sin θ, cos θ)

[
cos θ − sin θ
sin θ cos θ

]

Example 8. Find the image of x = (1, 1) under a rotation of π/6 radians
(= 30°) about the origin.
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1.9 Compositions of Matrix Transformations

Remark 1. Suppose that TA is a matrix transformation from Rn to Rk and
TB is a matrix transformation from Rk to Rm. If x is a vector in Rn, then
TA maps this vector into a vector TA(x) in Rk, and TB, in turn, maps that
vector into the vector TB(TA(x)) in Rm. This process creates a transformation
from Rn to Rm that we call the composition of TB with TA and denote by the
symbol

TB ◦ TA,

which is read “TB circle TA.” The transformation TA in the formula is per-
formed first; that is,

(TB ◦ TA)(x) = TB(TA(x)).

Theorem 1.9.1. If TA : Rn → Rk and TB : Rk → Rm are matrix transforma-
tions, then TB ◦ TA is also a matrix transformation and

TB ◦ TA = TBA.

Proof. First we will show that TB ◦ TA is a linear transformation, thereby
establishing that it is a matrix transformation. Then we will show that the
standard matrix for this transformation is BA to complete the proof.

To prove that TB ◦ TA is linear we must show that it has the required
additivity and homogeneity properties. For this purpose, let x and y be vectors
in Rn and observe that

(TB ◦ TA)(x+ y) = TB(TA(x+ y))

= TB(TA(x) + TA(y))

= TB(TA(x)) + TB(TA(y))

= (TB ◦ TA)(x) + (TB ◦ TA)(y),

which proves additivity. Moreover,

(TB ◦ TA)(kx) = TB(TA(kx))

= TB(k(TA(x))

= kTB(TA(x))

= k(TB ◦ TA)(x),

which proves homogeneity and establishes that TB ◦ TA is a matrix transfor-
mation. Thus, there is an m× n matrix C such that

TB ◦ TA = TC .
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To find the appropriate matrix C that satisfies this equation, observe that

TC(x) = (TB ◦ TA)(x) = TB(TA(x)) = TB(Ax) = B(Ax) = (BA)x = TBA(x).

It now follows that C = BA.

Example 1. Let T1 : R
3 → R2 and T2 : R

2 → R3 be the linear transformations
given by

T1(x, y, z) = (x+ 2y, x+ 2z − y)

and
T2(x, y) = (3x+ y, x, x− 2y).

Find the standard matrices for T2 ◦ T1 and T1 ◦ T2.

Example 2. Let TA : R2 → R2 be the reflection about the line y = x, and let
TB : R2 → R2 be the orthogonal projection onto the y − axis. What are the
standard matrices for TA ◦ TB and TB ◦ TA?
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Example 3. Let TA1
: R2 → R2 and TA2

: R2 → R2 be the matrix operators
that rotate vectors about the origin through the angles θ1 and θ2, respectively.
Verify that TA1 ◦ TA2 = TA2 ◦ TA1 .

Example 4. Let T1 : R2 → R2 be the reflection about the y-axis, and let
T2 : R

2 → R2 be the reflection about the x-axis. Verify that T1 ◦ T2 = T2 ◦ T1.
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Remark 2. Compositions can be defined for any finite succession of matrix
transformations whose domains and ranges have the appropriate dimensions.
For example, consider the matrix transformations

TA : Rn → Rk, TB : Rk → Rl, TC : Rl → Rm.

We define the composition (TC ◦ TB ◦ TA) : R
n → Rm by

(TC ◦ TB ◦ TA)(x) = TC(TB(TA(x))).

As above, it can be shown that this is a matrix transformation whose standard
matrix is CBA and that

TC ◦ TB ◦ TA = TCBA.

Example 5. Find the image of a vector

x =

[
x
y

]

under the matrix transformation that first rotates x about the origin through
an angle π/6, then reflects the resulting vector about the line y = x, and then
projects that vector orthogonally onto the y-axis.
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Remark 3. If TA : Rn → Rn is a matrix operator whose standard matrix A is
invertible, then we say that TA is invertible, and we define the inverse of TA as

T−1
A = TA−1 ,

or restated in words, the inverse of multiplication by A is multiplication by the
inverse of A. Thus, by definition, the standard matrix for T−1

A is A−1, from
which it follows that

T−1
A ◦ TA = TA−1 ◦ TA = TA−1A = TI .

It follows from this that for any vector x in Rn

(T−1
A ◦ TA)(x) = TI(x) = Ix = x

and similarly that (TA ◦ T−1
A )(x) = x. Thus, when TA and T−1

A are composed
in either order they cancel out the effect of one another.

Example 6. Let T : R2 → R2 be the operator that rotates each vector in R2

through the angle θ. Find the standard matrix for T−1.

Example 7. Consider the operator T : R2 → R2 defined by the equations

w1 = 2x1 + x2

w2 = 3x1 + 4x2.

Find T−1(w1, w2).
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1.10 Applications of Linear Systems

84 Chapter 1 Systems of Linear Equations and Matrices

1.9 Applications of Linear Systems
In this section we will discuss some brief applications of linear systems. These are but a
small sample of the wide variety of real-world problems to which our study of linear
systems is applicable.

Network Analysis The concept of a network appears in a variety of applications. Loosely stated, a network
is a set of branches through which something “flows.” For example, the branches might
be electrical wires through which electricity flows, pipes through which water or oil flows,
traffic lanes through which vehicular traffic flows, or economic linkages through which
money flows, to name a few possibilities.

In most networks, the branches meet at points, called nodes or junctions, where the
flow divides. For example, in an electrical network, nodes occur where three or more wires
join, in a traffic network they occur at street intersections, and in a financial network
they occur at banking centers where incoming money is distributed to individuals or
other institutions.

In the study of networks, there is generally some numerical measure of the rate at
which the medium flows through a branch. For example, the flow rate of electricity is
often measured in amperes, the flow rate of water or oil in gallons per minute, the flow rate
of traffic in vehicles per hour, and the flow rate of European currency in millions of Euros
per day. We will restrict our attention to networks in which there is flow conservation at
each node, by which we mean that the rate of flow into any node is equal to the rate of flow
out of that node. This ensures that the flow medium does not build up at the nodes and
block the free movement of the medium through the network.

A common problem in network analysis is to use known flow rates in certain branches
to find the flow rates in all of the branches. Here is an example.

EXAMPLE 1 Network Analysis Using Linear Systems

Figure 1.9.1 shows a network with four nodes in which the flow rate and direction of

35

30

55

60

15

Figure 1.9.1

flow in certain branches are known. Find the flow rates and directions of flow in the
remaining branches.

Solution As illustrated in Figure 1.9.2, we have assigned arbitrary directions to the

35

30

55

60

15

x1x2

x3

B

A

D

C

Figure 1.9.2

unknown flow rates x1, x2, and x3. We need not be concerned if some of the directions
are incorrect, since an incorrect direction will be signaled by a negative value for the flow
rate when we solve for the unknowns.

It follows from the conservation of flow at node A that

x1 + x2 = 30

Similarly, at the other nodes we have

x2 + x3 = 35 (node B)

x3 + 15 = 60 (node C)

x1 + 15 = 55 (node D)

These four conditions produce the linear system

x1 + x2 = 30

x2 + x3 = 35

x3 = 45
x1 = 40

Example 1. The figure shows a network with four nodes in
which the flow rate and direction of flow in certain branches
are known. Find the flow rates and directions of flow in the
remaining branches.
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Example 2. The network in the figure shows a proposed plan for the traf-
fic flow around a new park that will house the Liberty Bell in Philadelphia,
Pennsylvania. The plan calls for a computerized traffic light at the north exit
on Fifth Street, and the diagram indicates the average number of vehicles
per hour that are expected to flow in and out of the streets that border the
complex. All streets are one-way.

�*1 (� - рсѶ спрч ртѷпш �пр �#  / )0(� - рпп ��" )0(� - рпп �4�)(�" )/� 4 ''*2 �'��& Ҷ спрчѶ �)/*) � 3/�**&.Ѷ 
)�ѵѶ �'' -$"#/. - . -1 �

рпп �	����� р �4./ (. *! 
$) �- �,0�/$*). �)� ��/-$� .

�ĎċĔēćĎč ܱÿܲ �Ąܡ ÿĒ ćčĂćāÿēăĂ ćč �ćąĔđă ܡĀމܥކއܥއ Ėă ċăē ė ĂăčĎēă ēĆă čĔČĀăđ ĎĄ ĕăĆćāċăĒ ďăđ
ĆĎĔđ ēĆÿē ēĆă ēđÿʚā ċćąĆē ČĔĒē ċăē ēĆđĎĔąĆܡ ēĆăč ēĆă ēĎēÿċ čĔČĀăđ ĎĄ ĕăĆćāċăĒ ďăđ ĆĎĔđ ēĆÿē
ʢĎĖ ćč ÿčĂ ĎĔē ĎĄ ēĆă āĎČďċăė Ėćċċ Āă
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ĒāĆăČÿēćā ĂćÿąđÿČ ĎĄ ÿ āćđāĔćē ĖćēĆ Ďčă ĀÿēēăđĘ ܱđăďđăĒăčēăĂ ĀĘ ēĆă ĒĘČĀĎċ ܡܲ Ďčă đăĒćĒܼ
ēĎđ ܱđăďđăĒăčēăĂ ĀĘ ēĆă ĒĘČĀĎċ ܡܲ ÿčĂ ÿ ĒĖćēāĆܥ �Ćă ĀÿēēăđĘ ĆÿĒ ÿ ďĎĒćēćĕă ďĎċă ܱҬܲ
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(a) How many vehicles per hour should the traffic light let through to ensure
that the average number of vehicles per hour flowing into the complex is
the same as the average number of vehicles flowing out?

(b) Assuming that the traffic light has been set to balance the total flow in
and out of the complex, what can you say about the average number of
vehicles per hour that will flow along the streets that border the complex?
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Theorem 1.10.1 (Ohm’s Law). If a current of I amperes passes through a
resistor with a resistance of R ohms, then there is a resulting drop of E volts
in electrical potential that is the product of the current and resistance; that is,

E = IR.

Theorem 1.10.2 (Kirchhoff’s Current Law). The sum of the currents flowing
into any node is equal to the sum of the currents flowing out.

Theorem 1.10.3 (Kirchhoff’s Voltage Law). In one traversal of any closed
loop, the sum of the voltage rises equals the sum of the voltage drops.
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Example 3. Determine the current I in the circuit shown in the
figure.
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Example 4. Determine the currents I1, I2, and I3 in the circuit
shown in the figure.
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Example 5. Balance the chemical equation

HCl + Na3PO4 −→ H3PO4 + NaCl

[hydrochloric acid] + [sodium phosphate] −→ [phosphoric acid] + [sodium chloride].
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Theorem 1.10.4 (Polynomial Interpolation). Given any n points in the xy-
plane that have distinct x-coordinates, there is a unique polynomial of degree
n− 1 or less whose graph passes through those points.

Example 6. Find a cubic polynomial whose graph passes through the points

(1, 3), (2,−2), (3,−5), (4, 0).
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Example 7. Use polynomial interpolation to approximate the integral

ˆ 1

0

sin

(
πx2

2

)
dx.
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1.11 Leontief Input-Output Models

Remark 1. Suppose the open sector of an economy (the sector that does not
produce outputs) wants the economy to supply it with goods, products, and
utilities with monetary values. The column vector d that has these numbers as
successive components is called the outside demand vector. Since the product-
producing sectors consume some of their own output, the monetary value of
their output must cover their own needs plus the outside demand. The column
vector x that has these monetary value numbers as successive components is
called the production vector for the economy.

By multiplying x by the consumption matrix C for the economy, whose
columns are the inputs required for each output, we obtain Cx, the portion of
the production vector x that will be consumed by the productive sectors. The
vector Cx is called the intermediate demand vector for the economy. Once
the intermediate demand is met, the portion of the production that is left to
satisfy the outside demand is x− Cx. Thus x must satisfy the equation

x− Cx = d,

which we will find convenient to rewrite as

(I − C)x = d.

The matrix I −C is called the Leontief matrix and (I −C)x = d is called the
Leontief equation.

67



Linear Algebra - 1.11 Leontief Input-Output Models

Example 1. Consider the economy described in the table.

Manufacturing Agriculture Utilities

Manufacturing $ 0.50 $ 0.10 $ 0.10

Agriculture $ 0.20 $ 0.50 $ 0.30

Utilities $ 0.10 $ 0.30 $ 0.40

Input Required per Dollar Output
P
ro
v
id
er

Suppose that the open sector has a demand for $7900 worth of manufacturing
products, $3950 worth of agricultural products and $1975 worth of utilities.

(a) Can the economy meet this demand?
(b) If so, find a production vector x that will meet it exactly.
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Remark 2. In the case where an open economy has n product-producing sec-
tors, the consumption matrix, production vector, and outside demand vector
have the form

C =


c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
...

cn1 cn2 · · · cnn

 , x =


x1

x2
...
xn

 , d =


d1
d2
...
dn


where all entries are nonnegative and

cij = the monetary value of the output of the ith sector that is needed

by the jth sector to produce one unit of output

xi = the monetary value of the output of the ith sector

di = the monetary value of the output of the ith sector that is required

to meet the demand of the open sector.

Theorem 1.11.1. If C is the consumption matrix for an open economy, and
if all of the column sums are less than 1, then the matrix I − C is invertible,
the entries (I − C)−1 are nonnegative, and the economy is productive.

Example 2. The column sums of the consumption matrix C in Example
1 are less than 1, so (I − C)−1 exists and has nonnegative entries. Use a
calculating utility to confirm this, and use this inverse to solve the linear
system in Example 1.
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Chapter 2

Determinants

2.1 Determinants by Cofactor Expansion

Definition 2.1.1. If A is a square matrix, then the minor of entry aij is
denoted by Mij and is defined to be the determinant of the submatrix that
remains after the ith row and jth column are deleted from A. The number
(−1)i+jMij is denoted by Cij and is called the cofactor of entry aij.

Example 1. Let

A =

3 1 −4
2 5 6
1 4 8

 .

Find the minors and cofactors of entries a11 and a32.
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Example 2. Express det(A) for a 2 × 2 matrix A in terms of cofactors and
entries that all come from the same row or same column of A.

Theorem 2.1.1. If A is an n × n matrix, then regardless of which row or
column of A is chosen, the number obtained by multiplying the entries in that
row or column by the corresponding cofactors and adding the resulting products
is always the same.

Definition 2.1.2. If A is an n×n matrix, then the number obtained by mul-
tiplying the entries in any row or column of A by the corresponding cofactors
and adding the resulting products is called the determinant of A, and the sums
themselves are called cofactor expansions of A. That is,

det(A) = a1jC1j + a2jC2j + · · ·+ anjCnj

and
det(A) = ai1Ci1 + ai2Ci2 + · · ·+ ainCin.
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Example 3. Find the determinant of the matrix

A =

 3 1 0
−2 −4 3
5 4 −2


by cofactor expansion along the first row.

Example 4. Let A be the matrix in Example 3, and evaluate det(A) by
cofactor expansion along the first column of A.

Example 5. Find the determinant of the matrix

A =


1 0 0 −1
3 1 2 2
1 0 −2 1
2 0 0 1

 .
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Example 6. Find the determinant of a 4× 4 lower triangular matrix.

Theorem 2.1.2. If A is an n× n triangular matrix (upper triangular, lower
triangular, or diagonal), then det(A) is the product of the entries on the main
diagonal of the matrix; that is, det(A) = a11a22 · · · ann.

Example 7. Evaluate

∣∣∣∣∣3 1
4 −2

∣∣∣∣∣ and

∣∣∣∣∣∣∣
1 2 3
−4 5 6
7 −8 9

∣∣∣∣∣∣∣ .
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2.2 Evaluating Determinants by Row Reduc-

tion

Theorem 2.2.1. Let A be a square matrix. If A has a row of zeros or a
column of zeros, then det(A) = 0.

Proof. Since the determinant of A can be found by a cofactor expansion along
any row or column, we can use the row or column of zeros. Thus, if we let
C1, C2, . . . , Cn denote the cofactors of A along that row or column, then it
follows that

det(A) = 0 · C1 + 0 · C2 + · · ·+ 0 · Cn = 0.

Theorem 2.2.2. Let A be a square matrix. Then det(A) = det(AT ).

Proof. Since transposing a matrix changes its columns to rows and rows to
columns, the cofactor expansion of A along any row is the same as the cofactor
expansion of AT along the corresponding column. Thus, both have the same
determinant.

Theorem 2.2.3. Let A be an n× n matrix.

(a) If B is the matrix that results when a single row or single column of A
is multiplied by a scalar k, then det(B) = k det(A).

(b) If B is the matrix that results when two rows or two columns of A are
interchanged, then det(B) = − det(A).

(c) If B is the matrix that results when a multiple of one row of A is added
to another or when a multiple of one column is added to another, then
det(B) = det(A).

Theorem 2.2.4. Let E be an n× n elementary matrix.

(a) If E results from multiplying a row of In by a nonzero number k, then
det(E) = k.

(b) If E results from interchanging two rows of In, then det(E) = −1.
(c) If E results from adding a multiple of one row of In to another, then

det(E) = 1.

Example 1. Evaluate the following determinants of elementary matrices.∣∣∣∣∣∣∣∣∣
1 0 0 0
0 3 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
1 0 0 7
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣∣
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Theorem 2.2.5. If A is a square matrix with two proportional rows or two
proportional columns, then det(A) = 0.

Example 2. What are the determinants of the following matrices?

[
−1 4
−2 8

]  1 −2 7
−4 8 5
2 −4 3




3 −1 4 −5
6 −2 5 2
5 8 1 4
−9 3 −12 15



Example 3. Evaluate det(A) where

A =

0 1 5
3 −6 9
2 6 1

 .
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Example 4. Compute the determinant of

A =


1 0 0 3
2 7 0 6
0 6 3 0
7 3 1 −5

 .

Example 5. Evaluate det(A) where

A =


3 5 −2 6
1 2 −1 1
2 4 1 5
3 7 5 3

 .
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2.3 Properties of Determinants; Cramer’s Rule

Remark 1. Suppose that A and B are n×n matrices and k is any scalar. Since
a common factor of any row of a matrix can be moved through the determinant
sign, and since each of the n rows in kA has a common factor of k, it follows
that

det(kA) = kn det(A).

Example 1. Consider

A =

[
1 2
2 5

]
, B =

[
3 1
1 3

]
.

Calculate det(A), det(B), and det(A+B).

Theorem 2.3.1. Let A, B, and C be n × n matrices that differ only in a
single row, say the rth, and assume that the rth row of C can be obtained by
adding corresponding entries in the rth rows of A and B. Then

det(C) = det(A) + det(B).

The same result holds for columns.

Example 2. Consider

A =

1 7 5
2 0 3
1 4 7

 , B =

1 7 5
2 0 3
0 1 −1

 , C =

1 7 5
2 0 3
1 5 6

 .

Calculate det(A), det(B), and det(C).
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Lemma 2.3.2. If B is an n×n matrix and E is an n×n elementary matrix,
then

det(EB) = det(E) det(B).

Proof. We will consider three cases, each in accordance with the row operation
that produces the matrix E.
Case 1: If E results from multiplying a row of In by k, then EB results from
B by multiplying the corresponding row by k; so we have

det(EB) = k det(B).

But we also have det(E) = k, so

det(EB) = det(E) det(B).

Cases 2 and 3: The proofs of the cases where E results from interchanging two
rows of In or from adding a multiple of one row to another follow the same
pattern as Case 1.

Remark 2. It follows by repeated applications of Lemma 2.3.2 that if B is an
n× n matrix and E1, E2, . . . , Er are n× n elementary matrices, then

det(E1E2 · · ·ErB) = det(E1) det(E2) · · · det(Er) det(B).

Theorem 2.3.3. A square matrix A is invertible if and only if det(A) ̸= 0.

Proof. Let R be the reduced row echelon form of A. As a preliminary step,
we will show that det(A) and det(R) are both zero or both nonzero: Let
E1, E2, . . . , Er be the elementary matrices that correspond to the elementary
row operations that produce R from A. Thus

R = Er · · ·E2E1A

and so
det(R) = det(Er) · · · det(E2) det(E1) det(A).

Since the determinant of an elementary matrix is nonzero, it follows that
det(A) and det(R) are either both zero or both nonzero. If we assume first
that A is invertible, then it follows that R = I and hence that det(R) = 1
(̸= 0). This, in turn, implies that det(A) ̸= 0.
Conversely, assume that det(A) ̸= 0. It follows from this that det(R) ̸= 0,
which tells us that R cannot have a row of zeros. Thus R = I and hence A is
invertible.
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Example 3. Is the matrix

A =

1 2 3
1 0 1
2 4 6


invertible?

Theorem 2.3.4. If A and B are square matrices of the same size, then

det(AB) = det(A) det(B).

Proof. We divide the proof into two cases that depend on whether or not A is
invertible. If the matrix A is not invertible, then neither is the product AB.
Thus we have det(AB) = 0 and det(A) = 0, so it follows that det(AB) =
det(A) det(B).
Now assume that A is invertible. Then the matrix A is expressible as a product
of elementary matrices, say

A = E1E2 · · ·Er,

so
AB = E1E2 · · ·ErB.

Therefore,

det(AB) = det(E1) det(E2) · · · det(Er) det(B)

= det(E1E2 · · ·Er) det(B)

= det(A) det(B).

Example 4. Consider the matrices

A =

[
3 1
2 1

]
, B =

[
−1 3
5 8

]
.

Calculate det(A), det(B), and det(AB).
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Theorem 2.3.5. If A is invertible, then

det(A−1) =
1

det(A)
.

Proof. Since A−1A = I, it follows that det(A−1A) = det(I). Therefore, we
must have det(A−1) det(A) = 1. Since det(A) ̸= 0, the proof can be completed
by dividing through by det(A).

Example 5. Let

A =

3 2 −1
1 6 3
2 −4 0

 .

Compute det(A) using cofactor expansions along the first row and first column,
and then compute the sum of the products of the entries in the first row by
the corresponding cofactors in the second row, and the sum of the products
of the entries in the first column by the corresponding cofactors in the second
column.
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Definition 2.3.1. If A is any n×n matrix and Cij is the cofactor of aij, then
the matrix 

C11 C12 · · · C1n

C21 C22 · · · C2n
...

...
...

Cn1 Cn2 · · · Cnn


is called the matrix of cofactors from A. The transpose of this matrix is called
the adjoint of A and is denoted by adj(A).

Example 6. Let

A =

3 2 −1
1 6 3
2 −4 0

 .

Find adj(A).
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Theorem 2.3.6 (Inverse of a Matrix Using Its Adjoint). If A is an invertible
matrix, then

A−1 =
1

det(A)
adj(A).

Proof. We show first that

A adj(A) = det(A)I.

Consider the product

A adj(A) =



a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

ai1 ai2 · · · ain
...

...
...

an1 an2 · · · ann




C11 C21 · · · Cj1 · · · Cn1

C12 C22 · · · Cj2 · · · Cn2
...

...
...

...
C1n C2n · · · Cjn · · · Cnn

 .

The entry in the ith row and jth column of the product A adj(A) is

ai1Cj1 + ai2Cj2 + · · ·+ ainCjn.

If i = j, then this is the cofactor expansion of det(A) along the ith row of A,
and if i ̸= j, then the a’s and the cofactors come from different rows of A, so
the value of this entry is zero. Therefore,

A adj(A) =


det(A) 0 · · · 0

0 det(A) · · · 0
...

...
...

0 0 · · · det(A)

 = det(A)I.

Since A is invertible, det(A) ̸= 0. Therefore, we can write

1

det(A)
[A adj(A)] = I or A

[
1

det(A)
adj(A)

]
= I.

Multiplying both sides on the left by A−1 yields

A−1 =
1

det(A)
adj(A).
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Example 7. Use Theorem 2.3.6 to find the inverse of the matrix A in Example
6.

Theorem 2.3.7 (Cramer’s Rule). If Ax = b is a system of n linear equations
in n unknowns such that det(A) ̸= 0, then the system has a unique solution.
This solution is

x1 =
det(A1)

det(A)
, x2 =

det(A2)

det(A)
, . . . , xn =

det(An)

det(A)
,

where Aj is the matrix obtained by replacing the entries in the jth column of
A by the entries in the matrix

b =


b1
b2
...
bn

 .

Proof. If det(A) ̸= 0, then A is invertible and x = A−1b is the unique solution
of Ax = b. Therefore, we have

x = A−1b =
1

det(A)
adj(A)b =

1

det(A)


C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

...
...

C1n C2n · · · Cnn



b1
b2
...
bn



=
1

det(A)


b1C11 + b2C21 + · · ·+ bnCn1

b1C12 + b2C22 + · · ·+ bnCn2
...

...
...

b1C1n + b2C2nx2 + · · ·+ bnCnn

 .

The entry in the jth row of x is therefore

xj =
b1C1j + b2C2j + · · ·+ bnCnj

det(A)
.

Now let

Aj =


a11 a12 · · · a1j−1 b1 a1j+1 · · · a1n
a21 a22 · · · a2j−1 b2 a2j+1 · · · a2n
...

...
...

...
...

...
an1 an2 · · · anj−1 bn anj+1 · · · ann

 .
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Since Aj differs from A only in the jth column, it follows that the cofactors of
entries b1, b2, . . . , bn in Aj are the same as the cofactors of the corresponding
entries in the jth column of A. The cofactor expansion of det(Aj) along the
jth column is therefore

det(Aj) = b1C1j + b2C2j + · · ·+ bnCnj.

Substituting this result in gives

xj =
det(Aj)

det(A)
.

Example 8. Use Cramer’s rule to solve

x1 + 2x3 = 6

−3x1 + 4x2 + 6x3 = 30

−x1 − 2x2 + 3x3 = 8.

Theorem 2.3.8 (Equivalent Statements). If A is an n × n matrix, then the
following are equivalent.

(a) A is invertible.
(b) Ax = 0 has only the trivial solution.
(c) The reduced row echelon form of A is In.
(d) A is expressible as a product of elementary matrices.
(e) Ax = b is consistent for every n× 1 matrix b.
(f ) Ax = b has exactly one solution for every n× 1 matrix b.
(g) det(A) ̸= 0.
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Chapter 3

Euclidean Vector Spaces

3.1 Vectors in 2-Space, 3-Space, and n-Space

Remark 1. Geometric vectors in two dimensions (also called 2-space) or in
three dimensions (also called 3-space) are represented by arrows. The direction
of the arrowhead specifies the direction of the vector and the length of the
arrow specifies the magnitude. The tail of the arrow is called the initial point
of the vector and the tip the terminal point.

We will denote vectors in boldface type such as a, b, v, w, and x, and we
will denote scalars in lowercase italic type such as a, k, v, w, and x. When
we want to indicate that a vector v has initial point A and terminal point B,
then we will write

v =
−→
AB.

Vectors with the same length and direction are said to be equivalent. Equiva-
lent vectors are also said to be equal, which we indicate by writing

v = w.

The vector whose initial and terminal points coincide has length zero, so we
call this the zero vector and denote it by 0.

Definition 3.1.1 (Parallelogram Rule for Vector Addition). If v and w are
vectors in 2-space or 3-space that are positioned so their initial points coincide,
then the two vectors form adjacent sides of a parallelogram, and the sum v +w
is the vector represented by the arrow from the common initial point of v and
w to the opposite vertex of the parallelogram.
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Definition 3.1.2 (Triangle Rule for Vector Addition). If v and w are vectors
in 2-space or 3-space that are positioned so the initial point of w is at the
terminal point of v, then the sum v +w is the vector represented by the
arrow from the common initial point of v and w to the terminal point of w.

Remark 2 (Vector Addition Viewed as Translation). If v, w, and v + w are
positioned so their initial points coincide, then the terminal point of v + w
can be viewed in two ways:

1. The terminal point of v+w is the point that results when the terminal
point of v is translated in the direction of w by a distance equal to the
length of w.

2. The terminal point of v+w is the point that results when the terminal
point of w is translated in the direction of v by a distance equal to the
length of v.

Definition 3.1.3 (Vector Subtraction). The negative of a vector v, denoted
by −v, is the vector that has the same length as v but is oppositely directed,
and the difference of v from w, denoted by w − v, is taken to be the sum

w − v = w + (−v).

Definition 3.1.4 (Scalar Multiplication). If v is a nonzero vector in 2-space
or 3-space, and if k is a nonzero scalar, then we define the scalar product of
v by k to be the vector whose length is |k| times the length of v and whose
direction is the same as that of v if k is positive and opposite to that of v if
k is negative. If k = 0 or v = 0, then we define kv to be 0.

Remark 3. Observe that (−1)v has the same length as v but is oppositely
directed; therefore,

(−1)v = −v.

Remark 4. Since translating a vector does not change it, we agree that the
terms parallel and collinear mean the same thing when applied to vectors. We
regard the vector 0 as parallel to all vectors.

Remark 5. Vector addition satisfies the associative law for addition, that is,

u+ (v +w) = (u+ v) +w.

Remark 6. If a vector v in 2-space or 3-space is positioned with its initial
point at the origin of a rectangular coordinate system, then the vector is
completely determined by the coordinates of its terminal point. We call these
coordinates the components of v relative to the coordinate system. We will
write v = (v1, v2) to denote a vector v in 2-space with components (v1, v2), and
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v = (v1, v2, v3) to denote a vector v in 3-space with components (v1, v2, v3).
Two vectors in 2-space or 3-space are equivalent if and only if they have the

same terminal point when their initial points are at the origin. Algebraically,
this means that two vectors are equivalent if and only if their corresponding
components are equal. Thus, for example, the vectors

v = (v1, v2, v3) and w = (w1, w2, w3)

in 3-space are equivalent if and only if

v1 = w1, v2 = w2, v3 = w3.

Remark 7. If
−−→
P1P2 denotes the vector with initial point P1(x1, y1) and terminal

point P2(x2, y2), then the components of this vector are given by the formula

−−→
P1P2 = (x2 − x1, y2 − y1).

The components of a vector in 3-space that has initial point P1(x1, y1, z1) and
terminal point P2(x2, y2, z2) are given by

−−→
P1P2 = (x2 − x1, y2 − y1, z2 − z1).

Example 1. What are the components of the vector v =
−−→
P1P2 with initial

point P1(2,−1, 4) and terminal point P2(7, 5,−8)?

Definition 3.1.5. If n is a positive integer, then an ordered n-tuple is a
sequence of n real numbers (v1, v2, . . . , vn). The set of all ordered n-tuples is
called n-space and is denoted by Rn.

Definition 3.1.6. Vectors v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) in
Rn are said to be equivalent (also called equal) if

v1 = w1, v2 = w2, . . . , vn = wn.

We indicate this by writing v = w.

Example 2. When is
(a, b, c, d) = (1,−4, 2, 7)

true?
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Definition 3.1.7. If v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) are vectors
in Rn, and if k is any scalar, then we define

v +w = (v1 + w1, v2 + w2, . . . , vn + wn)

kv = (kv1, kv2, . . . , kvn)

− v = (−v1,−v2, . . . ,−vn)
w − v = w + (−v) = (w1 − v1, w2 − v2, . . . , wn − vn).

Example 3. If v = (1,−3, 2) and w = (4, 2, 1), then find v+w, 2v, −w, and
v −w.

Theorem 3.1.1. If u, v, and w are vectors in Rn, and if k and m are scalars,
then:

(a) u+ v = v + u
(b) (u+ v) +w = u+ (v +w)
(c) u+ 0 = 0+ u = u
(d) u+ (−u) = 0
(e) k(u+ v) = ku+ kv
(f ) (k +m)u = ku+mu
(g) k(mu) = (km)u
(h) 1u = u

Theorem 3.1.2. If v is a vector in Rn and k is a scalar, then:

(a) 0v = 0
(b) k0 = 0
(c) (−1)v = −v

Definition 3.1.8. If w is a vector in Rn, then w is said to be a linear combi-
nation of the vectors v1,v2, . . . ,vr in Rn if it can be expressed in the form

w = k1v1 + k2v2 + · · ·+ krvr

where k1, k2, . . . , kr are scalars. These scalars are called the coefficients of the
linear combination. In the case where r = 1, this formula becomes w = k1v1,
so that a linear combination of a single vector is just a scalar multiple of that
vector.
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3.2 Norm, Dot Product, and Distance in Rn

Definition 3.2.1. If v = (v1, v2, . . . , vn) is a vector in Rn, then the norm of
v (also called the length of v or the magnitude of v) is denoted by ∥v∥, and
is defined by the formula

∥v∥ =
√

v21 + v22 + · · ·+ v2n.

Example 1. Find the norm of the vector v = (−3, 2, 1) in R3 and the norm
of the vector v = (2,−1, 3,−5) in R4.

Theorem 3.2.1. If v is a vector in Rn, and if k is any scalar, then:

(a) ∥v∥ ≥ 0
(b) ∥v∥ = 0 if and only if v = 0
(c) ∥kv∥ = |k|∥v∥

Remark 1. A vector of norm 1 is called a unit vector. If v is any nonzero
vector in Rn, then

u =
1

∥v∥
v

defines a unit vector that is in the same direction as v. The process of multi-
plying a nonzero vector by the reciprocal of its length to obtain a unit vector
is called normalizing v.

Example 2. Find the unit vector u that has the same direction as v =
(2, 2,−1).
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Remark 2. When a rectangular coordinate system is introduced in R2 or R3,
the unit vectors in the positive directions of the coordinate axes are called the
standard unit vectors. In R2 these vectors are denoted by

i = (1, 0) and j = (0, 1)

and in R3 by

i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1).

Every vector v = (v1, v2) in R2 and every vector v = (v1, v2, v3) in R3 can be
expressed as a linear combination of standard unit vectors by writing

v = (v1, v2) = v1(1, 0) + v2(0, 1) = v1i+ v2j

v = (v1, v2, v3) = v1(1, 0, 0) + v2(0, 1, 0) + v3(0, 0, 1) = v1i+ v2j+ v3k.

Moreover, we can generalize these formulas to Rn by defining the standard
unit vectors in Rn to be

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1)

in which case every vector v = (v1, v2, . . . , vn) in Rn can be expressed as

v = (v1, v2, . . . , vn) = v1e1 + v2e2 + · · ·+ vnen.

Example 3. Write the vectors (2,−3, 4) and (7, 3,−4, 5) as linear combina-
tions of standard unit vectors.

Definition 3.2.2. If u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) are points
in Rn, then we denote the distance between u and v by d(u,v) and define it
to be

d(u,v) = ∥u− v∥ =
√
(u1 − v1)2 + (u2 − v2)2 + · · ·+ (un − vn)2.

Example 4. If

u = (1, 3,−2, 7) and v = (0, 7, 2, 2)

then find the distance between u and v.
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Remark 3. Let u and v be nonzero vectors in R2 or R3 that have been po-
sitioned so that their initial points coincide. We define the angle between u
and v to be the angle θ determined by u and v that satisfies the inequalities
0 ≤ θ ≤ π.

Definition 3.2.3. If u and v are nonzero vectors in R2 or R3, and if θ is the
angle between u and v, then the dot product (also called the Euclidean inner
product) of u and v is denoted by u · v and is defined as

u · v = ∥u∥∥v∥ cos θ.

If u = 0 or v = 0, then we define u · v to be 0.
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Example 5. Find the dot product of the vectors shown in the
figure.

Definition 3.2.4. If u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) are vectors
in Rn, then the dot product (also called the Euclidean inner product) of u and
v is denoted by u · v and is defined by

u · v = u1v1 + u2v2 + · · ·+ unvn.

Example 6.

(a) Use Definition 3.2.4 to compute the dot product of the vectors u and v
in Example 5.

(b) Calculate u · v for the following vectors in R4:

u = (−1, 3, 5, 7), v = (−3,−4, 1, 0).
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Example 7. Find the angle between a diagonal of a cube and one of its edges.

Remark 4. In the special case where u = v in Definition 3.2.4, we obtain the
relationship

v · v = v21 + v22 + · · ·+ v2n = ∥v∥2.

This yields the following formula for expressing the length of a vector in terms
of a dot product:

∥v∥ =
√
v · v.

Theorem 3.2.2. If u, v, and w are vectors in Rn, and if k is a scalar, then:

(a) u · v = v · u
(b) u · (v +w) = u · v + u ·w
(c) k(u · v) = (ku) · v
(d) v · v ≥ 0 and v · v = 0 if and only if v = 0

Theorem 3.2.3. If u, v, and w are vectors in Rn, and if k is a scalar, then:

(a) 0 · v = v · 0 = 0
(b) (u+ v) ·w = u ·w + v ·w
(c) u · (v −w) = u · v − u ·w
(d) (u− v) ·w = u ·w − v ·w
(e) k(u · v) = u · (kv)

Example 8. Calculate (u− 2v) · (3u+ 4v).
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Theorem 3.2.4 (Cauchy-Schwarz Inequality). If u = (u1, u2, . . . , un) and
v = (v1, v2, . . . , vn) are vectors in Rn, then

|u · v| ≤ ∥u∥∥v∥

or in terms of components

|u1v1 + u2v2 + · · ·+ unvn| ≤ (u2
1 + u2

2 + · · ·+ u2
n)

1/2(v21 + v22 + · · ·+ v2n)
1/2.

Theorem 3.2.5. If u, v, and w are vectors in Rn, then:

(a) ∥u+ v∥ ≤ ∥u∥+ ∥v∥
(b) d(u,v) ≤ d(u,w) + d(w,v)

Proof. (a)

∥u+ v∥2 = (u+ v) · (u+ v) = (u · u) + 2(u · v) + (v · v)
= ∥u∥2 + 2(u · v) + ∥v∥2

≤ ∥u∥2 + 2|u · v|+ ∥v∥2

≤ ∥u∥2 + 2∥u∥∥v∥+ ∥v∥2

= (∥u∥+ ∥v∥)2

(b)

d(u,v) = ∥u− v∥ = ∥(u−w) + (w − v)∥
≤ ∥u−w∥+ ∥w − v∥ = d(u,w) + d(w,v).

Theorem 3.2.6 (Parallelogram Equation for Vectors). If u and v are vectors
in Rn, then

∥u+ v∥2 + ∥u− v∥2 = 2
(
∥u∥2 + ∥v∥2

)
.

Proof.

∥u+ v∥2 + ∥u− v∥2 = (u+ v) · (u+ v) + (u− v) · (u− v)

= 2(u · u) + 2(v · v)
= 2

(
∥u∥2 + ∥v∥2

)
.

Theorem 3.2.7. If u and v are vectors in Rn with the Euclidean inner prod-
uct, then

u · v =
1

4
∥u+ v∥2 − 1

4
∥u− v∥2.

Proof.

∥u+ v∥2 = (u+ v) · (u+ v) = ∥u∥2 + 2(u · v) + ∥v∥2

∥u− v∥2 = (u− v) · (u− v) = ∥u∥2 − 2(u · v) + ∥v∥2

from which the result follows by simple algebra.
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Remark 5. If A is an n× n matrix and u and v are n× 1 matrices, then

Au · v = u · ATv

u · Av = ATu · v.

Example 9. Suppose that

A =

 1 −2 3
2 4 1
−1 0 1

 , u =

−12
4

 , v =

−20
5

 .

Verify that Au · v = u · ATv.
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3.3 Orthogonality

Definition 3.3.1. Two nonzero vectors u and v in Rn are said to be orthog-
onal (or perpendicular) if u · v = 0. We will also agree that the zero vector in
Rn is orthogonal to every vector in Rn.

Example 1.

(a) Show that u = (−2, 3, 1, 4) and v = (1, 2, 0,−1) are orthogonal vectors
in R4.

(b) Let S = {i, j,k} be the set of standard unit vectors in R3. Show that
each ordered pair of vectors in S is orthogonal.

Remark 1. If n is a nonzero vector, called a normal, that is orthogonal to a
line or plane, then

a(x− x0) + b(y − y0) = 0

a(x− x0) + b(y − y0) + c(z − z0) = 0

are called the point-normal equations of the line through the point P0(x0, y0)
that has normal n = (a, b) and the plane through the point P0(x0, y0, z0) that
has normal n = (a, b, c).

Example 2. Write equations that represent the line through the point (3,−7)
with normal n = (6, 1) and the plane through the point (3, 0, 7) with normal
n = (4, 2,−5).
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Theorem 3.3.1.

(a) If a and b are constants that are not both zero, then an equation of the
form

ax+ by + c = 0

represents a line in R2 with normal n = (a, b).
(b) If a, b, and c are constants that are not all zero, then an equation of the

form
ax+ by + cz + d = 0

represents a plane in R3 with normal n = (a, b, c).

Example 3.

(a) The equation ax+by = 0 represents a line through the origin in R2. Show
that the vector n1 = (a, b) formed from the coefficients of the equation
is orthogonal to the line, that is, orthogonal to every vector along the
line.

(b) The equation ax + by + cz = 0 represents a plane through the origin
in R3. Show that the vector n2 = (a, b, c) formed from the coefficients
of the equation is orthogonal to the plane, that is, orthogonal to every
vector that lies in the plane.
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Theorem 3.3.2 (Projection Theorem). If u and a are vectors in Rn, and
a ̸= 0, then u can be expressed in exactly one way in the form u = w1 +w2,
where w1 is a scalar multiple of a and w2 is orthogonal to a.

Proof. Since the vector w1 is to be a scalar multiple of a, it must have the
form

w1 = ka.

Our goal is to find a value of the scalar k and a vector w2 that is orthogonal
to a such that

u = w1 +w2.

We can determine k by writing

u = w1 +w2 = ka+w2

and thus
u · a = (ka+w2) · a = k∥a∥2 + (w2 · a).

Since w2 is to be orthogonal to a, w2 · a must be 0, and hence k must satisfy
the equation

u · a = k∥a∥2

from which we obtain
k =

u · a
∥a∥2

as the only possible value for k. Then writing

w2 = u−w1 = u− ka = u− u · a
∥a∥2

a

we see that

w2 · a =

(
u− u · a
∥a∥2

a

)
· a = u · a− u · a = 0.

Remark 2. The vectors w1 and w2 in the Projection Theorem have associ-
ated names—the vector w1 is called the orthogonal projection of u on a or
sometimes the vector component of u along a, and the vector w2 is called the
vector component of u orthogonal to a. The vector w1 is commonly denoted
by

proja u =
u · a
∥a∥2

a,

in which case it follows that w2 is

u− proja u = u− u · a
∥a∥2

a.
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Example 4. Let u = (2,−1, 3) and a = (4,−1, 2). Find the vector component
of u along a and the vector component of u orthogonal to a.

Example 5.

(a) Find the orthogonal projections of the vectors e1 = (1, 0) and e2 = (0, 1)
on the line L that makes an angle θ with the positive x-axis.

(b) Use the result in part (a) to find the standard matrix for the operator
T : R2 → R2 that maps each point orthogonally onto L.
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Example 6. Use part (b) of Example 5 to find the orthogonal projection of
the vector x = (1, 5) onto the line through the origin that makes an angle of
π/6 (= 30°) with the positive x-axis.

Remark 3. The reflection about a line L through the origin that makes an
angle θ with the positive x-axis is given by

Hθ =

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
.

Example 7. Find the reflection of the vector x = (1, 5) about the line through
the origin that makes an angle of π/6 (= 30°) with the x-axis.

Remark 4. A formula for the norm of the vector component of u along a can
be derived as follows:

∥ proja u∥ =
∥∥∥∥u · a∥a∥2a

∥∥∥∥ =

∣∣∣∣u · a∥a∥2
∣∣∣∣ ∥a∥ = |u · a|∥a∥2

∥a∥.

Thus,

∥ proja u∥ =
|u · a|
∥a∥

.
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Theorem 3.3.3 (Theorem of Pythagoras in Rn). If u and v are orthogonal
vectors in Rn with the Euclidean inner product, then

∥u+ v∥2 = ∥u∥2 + ∥v∥2.

Proof. Since u and v are orthogonal, we have u · v = 0, from which it follows
that

∥u+ v∥2 = (u+ v) · (u+ v) = ∥u∥2 + 2(u · v) + ∥v∥2 = ∥u∥2 + ∥v∥2.

Example 8. We showed in Example 1 that the vectors

u = (−2, 3, 1, 4) and v = (1, 2, 0,−1)

are orthogonal. Verify the Theorem of Pythagoras for these vectors.
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Theorem 3.3.4.

(a) In R2 the distance D between the point P0(x0, y0) and the line ax+by+c =
0 is

D =
|ax0 + by0 + c|√

a2 + b2
.

(b) In R3 the distance D between the point P0(x0, y0, z0) and the plane ax+
by + cz + d = 0 is

D =
|ax0 + by0 + cz0 + d|√

a2 + b2 + c2
.

Example 9. Find the distance D between the point (1,−4,−3) and the plane
2x− 3y + 6z = −1.

Example 10. The planes

x+ 2y − 2z = 3 and 2x+ 4y − 4z = 7

are parallel since their normals, (1, 2,−2) and (2, 4,−4), are parallel vectors.
Find the distance between these planes.
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3.4 The Geometry of Linear Systems

Theorem 3.4.1. Let L be the line in R2 or R3 that contains the point x0 and
is parallel to the nonzero vector v. Then the equation of the line through x0

that is parallel to v is
x = x0 + tv,

where the variable t is called a parameter. If x0 = 0, then the line passes
through the origin and the equation has the form

x = tv.

Theorem 3.4.2. Let W be the plane in R3 that contains the point x0 and is
parallel to the noncollinear vectors v1 and v2. Then an equation of the plane
through x0 that is parallel to v1 and v2 is given by

x = x0 + t1v1 + t2v2,

where the variables t1 and t2 are called parameters. If x0 = 0, then the plane
passes through the origin and the equation has the form

x = t1v1 + t2v2.

Definition 3.4.1. If x0 and v are vectors in Rn, and if v is nonzero, then the
equation

x = x0 + tv

defines the line through x0 that is parallel to v. In the special case where
x0 = 0, the line is said to pass through the origin.

Definition 3.4.2. If x0, v1, and v2 are vectors in Rn, and if v1 and v2 are
not collinear, then the equation

x = x0 + t1v1 + t2v2

defines the plane through x0 that is parallel to v1 and v2. In the special case
where x0 = 0, the plane is said to pass through the origin.
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Example 1.

(a) Find a vector equation and parametric equations of the line in R2 that
passes through the origin and is parallel to the vector v = (−2, 3).

(b) Find a vector equation and parametric equations of the line in R3 that
passes through the point P0(1, 2,−3) and is parallel to the vector v =
(4,−5, 1).

(c) Use the vector equation obtained in part (b) to find two points on the
line that are different from P0.

Example 2. Find vector and parametric equations of the plane x−y+2z = 5.
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Example 3.

(a) Find vector and parametric equations of the line through the origin of
R4 that is parallel to the vector v = (5,−3, 6, 1).

(b) Find vector and parametric equations of the plane in R4 that passes
through the point x0 = (2,−1, 0, 3) and is parallel to both v1 = (1, 5, 2,−4)
and v2 = (0, 7,−8, 6).

Remark 1. If x0 and x1 are distinct points in Rn, then the line determined by
these points is parallel to the vector v = x1 − x0, so it follows that the line
can be expressed in vector form as

x = x0 + t(x1 − x0)

or, equivalently, as
x = (1− t)x0 + tx1.

These are called the two-point vector equations of a line in Rn.
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Example 4. Find vector and parametric equations for the line in R2 that
passes through the points P (0, 7) and Q(5, 0).

Definition 3.4.3. If x0 and x1 are vectors in Rn, then the equation

x = x0 + t(x1 − x0) (0 ≤ t ≤ 1)

defines the line segment from x0 to x1. When convenient, this equation can
be written as

x = (1− t)x0 + tx1 (0 ≤ t ≤ 1).

Example 5. Find equations for the line segment in R2 from x0 = (1,−3) to
x1 = (5, 6).

Theorem 3.4.3. If A is an m× n matrix, then the solution set of the homo-
geneous linear system Ax = 0 consists of all vectors in Rn that are orthogonal
to every row vector of A.
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Example 6. We showed in Example 6 of Section 1.2 that the general solution
of the homogeneous linear system


1 3 −2 0 2 0
2 6 −5 −2 4 −3
0 0 5 10 0 15
2 6 0 8 4 18





x1

x2

x3

x4

x5

x6


=


0
0
0
0



is

x1 = −3r − 4s− 2t, x2 = r, x3 = −2s x4 = s, x5 = t, x6 = 0.

Verify Theorem 3.4.3 for this system.
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Theorem 3.4.4. The general solution of a consistent linear system Ax = b
can be obtained by adding any specific solution of Ax = b to the general
solution of Ax = 0.

Proof. Let x0 be any specific solution of Ax = b, let W denote the solution
set of Ax = 0, and let x0 + W denote the set of all vectors that result by
adding x0 to each vector in W . We must show that if x is a vector in x0 +W ,
then x is a solution of Ax = b, and conversely that every solution of Ax = b
is in the set x0 +W .

Assume first that x is a vector in x0+W . This implies that x is expressible
in the form x = x0 +w, where Ax0 = b and Aw = 0. Thus,

Ax = A(x0 +w) = Ax0 + Aw = b+ 0 = b,

which shows that x is a solution of Ax = b.
Conversely, let x be any solution of Ax = b. To show that x is in the set

x0 +W we must show that x is expressible in the form

x = x0 +w

where w is in W (i.e., Aw = 0). We can do this by taking w = x− x0. This
vector obviously satisfies x = x0 +w, and it is in W since

Aw = A(x− x0) = Ax− Ax0 = b− b = 0.
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3.5 Cross Product

Definition 3.5.1. If u = (u1, u2, u3) and v = (v1, v2, v3) are vectors in 3-space,
then the cross product u× v is the vector defined by

u× v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)

or, in determinant notation,

u× v =

∣∣∣∣∣u2 u3

v2 v3

∣∣∣∣∣ ,−
∣∣∣∣∣u1 u3

v1 v3

∣∣∣∣∣ ,
∣∣∣∣∣u1 u2

v1 v2

∣∣∣∣∣
 .

Example 1. Find u× v, where u = (1, 2,−2) and v = (3, 0, 1).

Theorem 3.5.1 (Relationships Involving Cross Product and Dot Product).
If u, v, and w are vectors in 3-space, then

(a) u · (u× v) = 0
(b) v · (u× v) = 0
(c) ∥u× v∥2 = ∥u∥2∥v∥2 − (u · v)2
(d) u× (v ×w) = (u ·w)v − (u · v)w
(e) (u× v)×w = (u ·w)v − (v ·w)u

Example 2. Consider the vectors

u = (1, 2,−2) and v = (3, 0, 1).

Verify that u× v is orthogonal to both u and v.
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Theorem 3.5.2 (Properties of Cross Product). If u, v, and w are vectors in
3-space and k is any scalar, then

(a) u× v = −(v × u)
(b) u× (v +w) = (u× v) + (u×w)
(c) (u+ v)×w = (u×w) + (v ×w)
(d) k(u× v) = (ku)× v = u× (kv)
(e) u× 0 = 0× u = 0
(f ) u× u = 0

Example 3. Compute i× j.

Theorem 3.5.3. If u and v are vectors in 3-space, then ∥u × v∥ is equal to
the area of the parallelogram determined by u and v.
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�ăēăđČćčÿčē �ĎđČ ĎĄ �đĎĒĒ �đĎĂĔāē
�ē ćĒ ÿċĒĎ ĖĎđēĆ čĎēćčą ēĆÿē ÿ āđĎĒĒ ďđĎĂĔāē āÿč Āă đăďđăĒăčēăĂ ĒĘČĀĎċćāÿċċĘ ćč ēĆă ĄĎđČ

Ĕ Ұ ĕ Ҳ ЦЦЦЦЦ
ć ĉ Ċ
Vއ Vވ Vމ
Wއ Wވ Wމ

ЦЦЦЦЦ Ҳ ЦЦЦVވ Vމ
Wވ Wމ

ЦЦЦ ć ҭ ЦЦЦVއ Vމ
Wއ Wމ

ЦЦЦ ĉ Ҭ ЦЦЦVއ Vވ
Wއ Wވ

ЦЦЦĊ ܲފܱ

�Ďđ ăėÿČďċăܡ ćĄ Ĕ Ҳ ШއИ Иވ ҭވЩ ÿčĂ ĕ Ҳ ШމИ Иކ ܡЩއ ēĆăč
Ĕ Ұ ĕ Ҳ ЦЦЦЦЦ

ć ĉ Ċ
އ ވ ҭވ
މ ކ އ

ЦЦЦЦЦ Ҳ ćވ ҭ ĉލ ҭ Ċތ

ĖĆćāĆ ÿąđăăĒ ĖćēĆ ēĆă đăĒĔċē ĎĀēÿćčăĂ ćč �ėÿČďċă ܥއ

�ăČÿđĊ �Ē ăĕćĂăčāăĂ ĀĘ ďÿđēĒ ܱĂܲ ÿčĂ ܱăܲ ĎĄ �ĆăĎđăČ ܡއܥދܥމ ćē ćĒ čĎē ēđĔă ćč ąăčăđÿċ ēĆÿē
Ĕ Ұ Шĕ ҰĖЩ Ҳ ШĔ Ұ ĕЩ ҰĖܥ �Ďđ ăėÿČďċăܡ

ć Ұ Ш ĉ Ұ ĉЩ Ҳ ć Ұ ކ Ҳ ކ

ÿčĂ Шć Ұ ĉЩ Ұ ĉ Ҳ Ċ Ұ ĉ Ҳ ҭć
ĒĎ

ć Ұ Ш ĉ Ұ ĉЩ ܍ Шć Ұ ĉЩ Ұ ĉ
�ă ĊčĎĖ ĄđĎČ �ĆăĎđăČ އܥދܥމ ēĆÿē Ĕ Ұ ĕ ćĒ ĎđēĆĎąĎčÿċ ēĎ ĀĎēĆ Ĕ ÿčĂ ĕܥ �Ą Ĕ ÿčĂ

ĕ ÿđă čĎčęăđĎ ĕăāēĎđĒܡ ćē āÿč Āă ĒĆĎĖč ēĆÿē ēĆă ĂćđăāēćĎč ĎĄ Ĕ Ұ ĕ āÿč Āă ĂăēăđČćčăĂ
ĔĒćčą ēĆă ĄĎċċĎĖćčą ݇đćąĆēܼĆÿčĂ đĔċă݉ ܱ�ćąĔđă ܤܲމܥދܥމ �ăē ྶ Āă ēĆă ÿčąċă ĀăēĖăăč Ĕ ÿčĂ

u

v

u × v

θ

u

v

u × v

θ

�
���� тѵфѵт

ĕܡ ÿčĂ ĒĔďďĎĒă Ĕ ćĒ đĎēÿēăĂ ēĆđĎĔąĆ ēĆă ÿčąċă ྶ Ĕčēćċ ćē āĎćčāćĂăĒ ĖćēĆ ĕܥ �Ą ēĆă ʟčąăđĒ ĎĄ
ēĆă đćąĆē ĆÿčĂ ÿđă āĔďďăĂ ĒĎ ēĆÿē ēĆăĘ ďĎćčē ćč ēĆă ĂćđăāēćĎč ĎĄ đĎēÿēćĎčܡ ēĆăč ēĆă ēĆĔČĀ
ćčĂćāÿēăĒ ܱđĎĔąĆċĘܲ ēĆă ĂćđăāēćĎč ĎĄ Ĕ Ұ ĕܥ

�ĎĔ ČÿĘ ʟčĂ ćē ćčĒēđĔāēćĕă ēĎ ďđÿāēćāă ēĆćĒ đĔċă ĖćēĆ ēĆă ďđĎĂĔāēĒ

ć Ұ ĉ Ҳ ĊИ ĉ Ұ Ċ Ҳ ćИ Ċ Ұ ć Ҳ ĉ

	ăĎČăēđćā �čēăđďđăēÿēćĎč ĎĄ �đĎĒĒ �đĎĂĔāē
�Ą Ĕ ÿčĂ ĕ ÿđă ĕăāēĎđĒ ćč ܡĒďÿāăܼމ ēĆăč ēĆă čĎđČ ĎĄ Ĕ Ұ ĕ ĆÿĒ ÿ ĔĒăĄĔċ ąăĎČăēđćā ćčēăđďđăܼ
ēÿēćĎčܥ �ÿąđÿčąă݆Ē ćĂăčēćēĘܡ ąćĕăč ćč �ĆăĎđăČ ܡއܥދܥމ ĒēÿēăĒ ēĆÿēЧĔ Ұ ĕЧވ Ҳ ЧĔЧވЧĕЧވ ҭ ШĔ ݖ ĕЩވ ܲދܱ

�Ą ྶ ĂăčĎēăĒ ēĆă ÿčąċă ĀăēĖăăč Ĕ ÿčĂ ĕܡ ēĆăč Ĕ ݖ ĕ Ҳ ЧĔЧЧĕЧ āĎĒ ܡྶ ĒĎ ܲދܱ āÿč Āă đăĖđćēēăč
ÿĒ ЧĔ Ұ ĕЧވ Ҳ ЧĔЧވЧĕЧވ ҭ ЧĔЧވЧĕЧވ āĎĒވ ྶҲ ЧĔЧވЧĕЧވШއ ҭ āĎĒވ ྶЩҲ ЧĔЧވЧĕЧވ Ēćčވ ྶ
�ćčāă ކ ܓ ྶ ܓ ྾ܡ ćē ĄĎċċĎĖĒ ēĆÿē Ēćč ྶ ܔ ܡކ ĒĎ ēĆćĒ āÿč Āă đăĖđćēēăč ÿĒ

ЧĔ Ұ ĕЧ Ҳ ЧĔЧЧĕЧ Ēćč ྶ ܲތܱ

�Ĕē ЧĕЧ Ēćč ྶ ćĒ ēĆă ÿċēćēĔĂă ĎĄ ēĆă ďÿđÿċċăċĎąđÿČ ĂăēăđČćčăĂ ĀĘ Ĕ ÿčĂ ĕ ܱ�ćąĔđă ܥܲފܥދܥމ
θ ‖u‖

‖v‖
v

u

‖v‖ sin θ

�
���� тѵфѵу �ĆĔĒܡ ĄđĎČ ܡܲތܱ ēĆă ÿđăÿ ೤ ĎĄ ēĆćĒ ďÿđÿċċăċĎąđÿČ ćĒ ąćĕăč ĀĘ೤ Ҳ ܱĀÿĒăܱܲÿċēćēĔĂăܲ Ҳ ЧĔЧЧĕЧ Ēćč ྶ Ҳ ЧĔ Ұ ĕЧ

Proof. If θ denotes the angle between u and v, then

∥u× v∥2 = ∥u∥2∥v∥2 − (u · v)2

= ∥u∥2∥v∥2 − ∥u∥2∥v∥2 cos2 θ
= ∥u∥2∥v∥2(1− cos2 θ)

= ∥u∥2∥v∥2 sin2 θ.

Since 0 ≤ θ ≤ π, it follows that sin θ ≥ 0, so this can be rewritten
as

∥u× v∥ = ∥u∥∥v∥ sin θ.

But ∥v∥ sin θ is the altitude of the parallelogram determined by
u and v (see the figure). Thus the area A of this parallelogram is given by

A = (base)(altitude) = ∥u∥∥v∥ sin θ = ∥u× v∥.
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Example 4. Find the area of the triangle determined by the points P1(2, 2, 0),
P2(−1, 0, 2), and P3(0, 4, 3).

Definition 3.5.2. If u, v, and w are vectors in 3-space, then

u · (v ×w)

is called the scalar triple product of u, v, and w.

Remark 1. The scalar triple product of u = (u1, u2, u3), v = (v1, v2, v3), and
w = (w1, w2, w3) can be calculated from the formula

u · (v ×w) =

∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣∣
since

u · (v ×w) = u ·

∣∣∣∣∣v2 v3
w2 w3

∣∣∣∣∣ i−
∣∣∣∣∣v1 v3
w1 w3

∣∣∣∣∣ j+
∣∣∣∣∣v1 v2
w1 w2

∣∣∣∣∣k


=

∣∣∣∣∣v2 v3
w2 w3

∣∣∣∣∣u1 −

∣∣∣∣∣v1 v3
w1 w3

∣∣∣∣∣u2 +

∣∣∣∣∣v1 v2
w1 w2

∣∣∣∣∣u3

=

∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣∣ .
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Example 5. Calculate the scalar triple product u · (v ×w) of the vectors

u = 3i− 2j− 5k, v = i+ 4j− 4k, w = 3j+ 2k.

Theorem 3.5.4.

(a) The absolute value of the determinant

det

[
u1 u2

v1 v2

]

is equal to the area of the parallelogram in 2-space determined by the
vectors u = (u1, u2) and v = (v1, v2). (See Figure a.)

(b) The absolute value of the determinant

det

u1 u2 u3

v1 v2 v3
w1 w2 w3


is equal to the volume of the parallelepiped in 3-space determined by the
vectors u = (u1, u2, u3), v = (v1, v2, v3), and w = (w1, w2, w3). (See
Figure b.)
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y

x

z

y

x

(v1, v2)

(u1, u2)
u

v

(u1, u2, u3)

(w1, w2, w3)
(v1, v2, v3)w

u

v
u

v

(u1, u2, 0)

(v1, v2, 0)

z

y

x

(a) (b) (c)
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�đĎĎĄ ܱÿܲ �Ćă ĊăĘ ēĎ ēĆă ďđĎĎĄ ćĒ ēĎ ĔĒă �ĆăĎđăČ ܥމܥދܥމ 
ĎĖăĕăđܡ ēĆÿē ēĆăĎđăČ ÿďďċćăĒ
ēĎ ĕăāēĎđĒ ćč ܡĒďÿāăܼމ ĖĆăđăÿĒ Ĕ Ҳ ШVއИVވЩ ÿčĂ ĕ Ҳ ШWއИ WވЩ ÿđă ĕăāēĎđĒ ćč ܥĒďÿāăܼވ �Ď āćđܼ
āĔČĕăčē ēĆćĒ ݇ĂćČăčĒćĎč ďđĎĀċăČ݉ܡ Ėă Ėćċċ ĕćăĖ Ĕ ÿčĂ ĕ ÿĒ ĕăāēĎđĒ ćč ēĆă ėĘܼďċÿčă ĎĄ
ÿč ėĘęܼāĎĎđĂćčÿēă ĒĘĒēăČ ܱ�ćąĔđă ܡāܲލܥދܥމ ćč ĖĆćāĆ āÿĒă ēĆăĒă ĕăāēĎđĒ ÿđă ăėďđăĒĒăĂ ÿĒ
Ĕ Ҳ ШVއИVވИ Щކ ÿčĂ ĕ Ҳ ШWއИ WވИ ܥЩކ �ĆĔĒ

Ĕ Ұ ĕ Ҳ ЦЦЦЦЦ
ć ĉ Ċ
Vއ Vވ ކ
Wއ Wވ ކ

ЦЦЦЦЦ Ҳ ЦЦЦVއ Vވ
Wއ Wވ

ЦЦЦĊ Ҳ Ăăē ԲVއ Vވ
Wއ Wވ

ԾĊ
�ē čĎĖ ĄĎċċĎĖĒ ĄđĎČ �ĆăĎđăČ މܥދܥމ ÿčĂ ēĆă Ąÿāē ēĆÿē ЧĊЧ Ҳ އ ēĆÿē ēĆă ÿđăÿ ೤ ĎĄ ēĆă ďÿđÿċܼ
ċăċĎąđÿČ ĂăēăđČćčăĂ ĀĘ Ĕ ÿčĂ ĕ ćĒ

೤ Ҳ ЧĔ Ұ ĕЧ Ҳ ЧЧЧĂăē ԲVއ Vވ
Wއ Wވ

ԾĊЧЧЧ Ҳ ЦЦЦĂăē ԲVއ Vވ
Wއ Wވ

ԾЦЦЦ ЧĊЧ Ҳ ЦЦЦĂăē ԲVއ Vވ
Wއ Wވ

ԾЦЦЦ
ĖĆćāĆ āĎČďċăēăĒ ēĆă ďđĎĎĄܥ

�đĎĎĄ ܱĀܲ �Ē ĒĆĎĖč ćč �ćąĔđă ܡގܥދܥމ ēÿĊă ēĆă ĀÿĒă ĎĄ ēĆă ďÿđÿċċăċăďćďăĂ ĂăēăđČćčăĂ ĀĘ Ĕܡ

h =   projv×wu

u

v

v × w

w

�
���� тѵфѵч

ĕܡ ÿčĂ Ė ēĎ Āă ēĆă ďÿđÿċċăċĎąđÿČ ĂăēăđČćčăĂ ĀĘ ĕ ÿčĂ Ėܥ �ē ĄĎċċĎĖĒ ĄđĎČ �ĆăĎđăČ މܥދܥމ
ēĆÿē ēĆă ÿđăÿ ĎĄ ēĆă ĀÿĒă ćĒ Чĕ ҰĖЧ ÿčĂܡ ÿĒ ćċċĔĒēđÿēăĂ ćč �ćąĔđă ܡގܥދܥމ ēĆă ĆăćąĆē Ć ĎĄ
ēĆă ďÿđÿċċăċăďćďăĂ ćĒ ēĆă ċăčąēĆ ĎĄ ēĆă ĎđēĆĎąĎčÿċ ďđĎĉăāēćĎč ĎĄ Ĕ Ďč ĕ ҰĖܥ �ĆăđăĄĎđăܡ ĀĘ
�ĎđČĔċÿ ܲވއܱ ĎĄ �ăāēćĎč ܡމܥމ

Ć Ҳ ЧďđĎĉĕҰĖĔЧ Ҳ ЦĔ ݖ Шĕ ҰĖЩЦЧĕ ҰĖЧ
�ē ĄĎċċĎĖĒ ēĆÿē ēĆă ĕĎċĔČă ೹ ĎĄ ēĆă ďÿđÿċċăċăďćďăĂ ćĒ

೹ Ҳ ܱÿđăÿ ĎĄ ĀÿĒăܲ ޒ ĆăćąĆē Ҳ Чĕ ҰĖЧ ЦĔ ݖ Шĕ ҰĖЩЦЧĕ ҰĖЧ Ҳ ЦĔ ݖ Шĕ ҰĖЩЦ
ĒĎ ĄđĎČ ܡܲލܱ

೹ Ҳ ЦЦЦЦЦĂăēԸ
Vއ Vވ Vމ
Wއ Wވ Wމ
Xއ Xވ Xމ

ՄЦЦЦЦЦ ܲގܱ

ĖĆćāĆ āĎČďċăēăĒ ēĆă ďđĎĎĄܥ

�ăČÿđĊ �Ą ೹ ĂăčĎēăĒ ēĆă ĕĎċĔČă ĎĄ ēĆă ďÿđÿċċăċăďćďăĂ ĂăēăđČćčăĂ ĀĘ ĕăāēĎđĒ Ĕܡ ĕܡ ÿčĂ
Ėܡ ēĆăč ćē ĄĎċċĎĖĒ ĄđĎČ �ĎđČĔċÿĒ ܲލܱ ÿčĂ ܲގܱ ēĆÿē

೹ Ҳ Բ ĕĎċĔČă ĎĄ ďÿđÿċċăċăďćďăĂĂăēăđČćčăĂ ĀĘ ĔИ ĕИ ÿčĂĖԾ Ҳ ЦĔ ݖ Шĕ ҰĖЩЦ ܲޏܱ

111



Linear Algebra - 3.5 Cross Product

Proof. (a) We will view u and v as vectors in the xy-plane of an xyz-coordinate
system (Figure c), in which case these vectors are expressed as u = (u1, u2, 0)
and v = (v1, v2, 0). Thus

u× v =

∣∣∣∣∣∣∣
i j k
u1 u2 0
v1 v2 0

∣∣∣∣∣∣∣ =
∣∣∣∣∣u1 u2

v1 v2

∣∣∣∣∣k = det

[
u1 u2

v1 v2

]
k.

It follows from Theorem 3.5.3 and the fact that ∥k∥ = 1 that the area A of
the parallelogram determined by u and v is

A = ∥u× v∥ =

∥∥∥∥∥∥det
[
u1 u2

v1 v2

]
k

∥∥∥∥∥∥ =

∣∣∣∣∣∣det
[
u1 u2

v1 v2

]∣∣∣∣∣∣ ∥k∥ =
∣∣∣∣∣∣det

[
u1 u2

v1 v2

]∣∣∣∣∣∣ .
(b) Take the base of the parallelepiped determined by u, v, and w to be the
parallelogram determined by v and w. The area of the base is ∥v ×w∥ and
the height h of the parallelepiped is the length of the orthogonal projection of
u on v ×w. Therefore,

h = ∥ projv×w u∥ = |u · (v ×w)|
∥v ×w∥

.

It follows that the volume V of the parallelepiped is

V = (area of base) · height = ∥v ×w∥|u · (v ×w)|
∥v ×w∥

= |u · (v ×w)|,

and so

V =

∣∣∣∣∣∣∣det
u1 u2 u3

v1 v2 v3
w1 w2 w3


∣∣∣∣∣∣∣ .

Theorem 3.5.5. If the vectors u = (u1, u2, u3), v = (v1, v2, v3), and w =
(w1, w2, w3) have the same initial point, then they lie in the same plane if and
only if

u · (v ×w) =

∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣∣ = 0.

112



Chapter 4

General Vector Spaces

4.1 Real Vector Spaces

Definition 4.1.1. Let V be an arbitrary nonempty set of objects on which
two operations are defined: addition, and multiplication by numbers called
scalars. By addition we mean a rule for associating with each pair of objects u
and v in V an object u+v, called the sum of u and v; by scalar multiplication
we mean a rule for associating with each scalar k and each object u in V an
object ku called the scalar multiple of u by k. If the following axioms are
satisfied by all objects u, v, w in V and all scalars k and m, then we call V a
vector space and we call the objects in V vectors.

1. If u and v are objects in V , then u+ v is in V .
2. u+ v = v + u
3. u+ (v +w) = (u+ v) +w
4. There is an object 0 in V , called a zero vector for V , such that 0+ u =

u+ 0 = u for all u in V .
5. For each u in V , there is an object −u in V , called a negative of u, such

that u+ (−u) = (−u) + u = 0.
6. If k is any scalar and u is any object in V , then ku is in V .
7. k(u+ v) = ku+ kv
8. (k +m)u = ku+mu
9. k(mu) = (km)(u)
10. 1u = u
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Linear Algebra - 4.1 Real Vector Spaces

Example 1. Let V consist of a single object, which we denote by 0, and define

0+ 0 = 0 and k0 = 0

for all scalars k. Check that all the vector space axioms are satisfied.

Example 2. Let V = Rn, and define the vector space operations on V to be
the usual operations of addition and scalar multiplication of n-tuples, that is,

u+ v = (u1, u2, . . . , un) + (v1, v2, . . . , vn) = (u1 + v1, u2 + v2, . . . , un + vn)

ku = (ku1, ku2, . . . , kun).

Check that all the vector space axioms are satisfied.
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Example 3. Let V consist of objects of the form

u = (u1, u2, . . . , un, . . .)

in which u1, u2, . . . , un, . . . is an infinite sequence of real numbers. We define
two infinite sequences to be equal if their corresponding components are equal,
and we define addition and scalar multiplication componentwise by

u+ v = (u1, u2, . . . , un, . . .) + (v1, v2, . . . , vn, . . .)

= (u1 + v1, u2 + v2, . . . , un + vn, . . .)

ku = (ku1, ku2, . . . , kun, . . .).

Confirm that V with these operations is a vector space.
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Example 4. Let V be the set of 2×2 matrices with real entries, and take the
vector space operations on V to be the usual operations of matrix addition
and scalar multiplication; that is,

u+ v =

[
u11 u12

u21 u22

]
+

[
v11 v12
v21 v22

]
=

[
u11 + v11 u12 + v12
u21 + v21 u22 + v22

]

ku = k

[
u11 u12

u21 u22

]
=

[
ku11 ku12

ku21 ku22

]
.

Confirm that V with these operations is a vector space.
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Example 5. Confirm that the set V of all m × n matrices with the usual
matrix operations of addition and scalar multiplication is a vector space.

Example 6. Let V be the set of real-valued functions that are defined at
each x in the interval (−∞,∞). If f = f(x) and g = g(x) are two functions
in V and if k is any scalar, then define the operations of addition and scalar
multiplication by

(f + g)(x) = f(x) + g(x)

(kf)(x) = kf(x).

Confirm that V with these operations is a vector space.

117



Linear Algebra - 4.1 Real Vector Spaces

Example 7. Let V = R2 and define addition and scalar multiplication as
follows: If u = (u1, u2) and v = (v1, v2), then define

u+ v = (u1 + v1, u2 + v2)

and if k is any real number, then define

ku = (ku1, 0).

Show that V is not a vector space.
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Example 8. Let V be the set of positive real numbers, let u = u and v = v be
any vectors (i.e., positive real numbers) in V , and let k be any scalar. Define
the operations on V to be

u+ v = uv

ku = uk

Confirm that V with these operations is a vector space.

Theorem 4.1.1. Let V be a vector space, u a vector in V , and k a scalar,
then:

(a) 0u = 0
(b) k0 = 0
(c) (−1)u = −u
(d) If ku = 0, then k = 0 or u = 0.
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4.2 Subspaces

Definition 4.2.1. A subset W of a vector space V is called a subspace of V if
W is itself a vector space under the addition and scalar multiplication defined
on V .

Theorem 4.2.1 (Subspace Test). If W is a set of one or more vectors in a
vector space V , then W is a subspace of V if and only if the following conditions
are satisfied.

(a) If u and v are vectors in W , then u+ v is in W .
(b) If k is a scalar and u is a vector in W , then ku is in W .

Proof. If W is a subspace of V , then all the vector space axioms hold in W ,
including Axioms 1 and 6, which are precisely conditions (a) and (b).

Conversely, assume that conditions (a) and (b) hold. Since these are Ax-
ioms 1 and 6, and since Axioms 2, 3, 7, 8, 9, and 10 are inherited from V , we
only need to show that Axioms 4 and 5 hold in W . For this purpose, let u be
any vector in W . It follows from condition (b) that ku is a vector in W for
every scalar k. In particular, 0u = 0 and (−1)u = −u are in W , which shows
that Axioms 4 and 5 hold in W .

Example 1. If V is any vector space, show that the subset W = {0} of V
consisting of the zero vector only is a subspace of V , called the zero subspace
of V .

Example 2. Show that lines through the origin are subspaces of R2 and of
R3.
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Example 3. Show that planes through the origin are subspaces of R3.

Example 4. Let W be the set of all points (x, y) in R2 for which x ≥ 0 and
y ≥ 0. Show that this set is not a subspace of R2.

Example 5. Show that the set of symmetric n× n matrices is a subspace of
Mnn.

Example 6. Show that the set of invertible n× n matrices is not a subspace
of Mnn.
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Example 7. Show that the set of continuous functions on (−∞,∞), denoted
by C(−∞,∞), is a subspace of F (−∞,∞).

Example 8. Show that the set of functions with m continuous derivatives on
(−∞,∞) and the set of functions with derivatives of all orders (−∞,∞) are
subspaces of F (−∞,∞), denoted by Cm(−∞,∞) and C∞(−∞,∞), respec-
tively.

Example 9. Show that the set of all polynomials is a subspace of F (−∞,∞),
denoted by P∞.

Example 10. Show that the set of polynomials with positive degree n is
not a subspace of F (−∞,∞), but that for each non-negative integer n the
polynomials of degree n or less form a subspace of F (−∞,∞), denoted by Pn.
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Example 11. Determine whether the indicated set of matrices is a subspace
of M22.

(a) The set U consisting of all matrices of the form[
x 0
2x y

]
.

(b) The set W consisting of all 2× 2 matrices A such that

A

[
1
2

]
=

[
1
−1

]
.

Example 12. Determine whether the indicated set of polynomials is a sub-
space of P2.

(a) The set U consisting of all polynomials of the form p = 1 + ax − ax2,
where a is a real number.

(b) The set W consisting of all polynomials p in P2 such that p(2) = 0.
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Theorem 4.2.2. If W1,W2, . . . ,Wr are subspaces of a vector space V , then
the intersection of these subspaces is also a subspace of V .

Proof. Let W be the intersection of the subspaces W1,W2, . . . ,Wr. This set is
not empty because each of these subspaces contains the zero vector of V , and
hence so does their intersection. Thus, it remains to show that W is closed
under addition and scalar multiplication.

To prove closure under addition, let u and v be vectors in W . Since W
is the intersection of W1,W2, . . . ,Wr, it follows that u and v also lie in each
of these subspaces. Moreover, since these subspaces are closed under addition
and scalar multiplication, they also all contain the vectors u + v and ku for
every scalar k, and hence so does their intersection W .

Theorem 4.2.3. The solution set of a homogeneous linear system Ax = 0 of
m equations in n unknowns is a subspace of Rn.

Proof. Let W be the solution set of the system. The set W is not empty
because it contains at least the trivial solution x = 0.

To show that W is a subspace of Rn, we must show that it is closed under
addition and scalar multiplication. To do this, let x1 and x2 be vectors in W .
Since these vectors are solutions of Ax = 0, we have

Ax1 = 0 and Ax2 = 0.

It follows from these equations and the distributive property of matrix multi-
plication that

A(x1 + x2) = Ax1 + Ax2 = 0+ 0 = 0,

so W is closed under addition. Similarly, if k is any scalar then

A(kx1) = kAx1 = k0 = 0,

so W is also closed under scalar multiplication.
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Example 13. In each part the solution of the linear system is provided. Give
a geometric description of the solution set.

(a)

1 −2 3
2 −4 6
3 −6 9


xy
z

 =

00
0



(b)

 1 −2 3
−3 7 −8
−2 4 −6


xy
z

 =

00
0



(c)

 1 −2 3
−3 7 −8
4 1 2


xy
z

 =

00
0



(d)

0 0 0
0 0 0
0 0 0


xy
z

 =

00
0



Theorem 4.2.4. If A is an m × n matrix, then the kernel of the matrix
transformation TA : Rn → Rm, the set of vectors in Rn that TA maps into the
zero vector in Rm, is a subspace of Rn.
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4.3 Spanning Sets

Definition 4.3.1. If w is a vector in a vector space V , then w is said to be a
linear combination of the vectors v1,v2, . . . ,vr in V if w can be expressed in
the form

w = k1v1 + k2v2 + · · ·+ krvr

where k1, k2, . . . , kr are scalars. These scalars are called the coefficients of the
linear combination.

Theorem 4.3.1. If S = {w1,w2, . . . ,wr} is a nonempty set of vectors in a
vector space V , then:

(a) The set W of all possible linear combinations of the vectors in S is a
subspace of V .

(b) The set W in part (a) is the “smallest” subspace of V that contains all
of the vectors in S in the sense that any other subspace that contains
those vectors contains W .

Proof. (a) Let W be the set of all possible linear combinations of the vectors
in S. We must show that W is closed under addition and scalar multiplication.
To prove closure under addition, let

u = c1w1 + c2w2 + · · ·+ crwr and v = k1w1 + k2w2 + · · ·+ krwr

be two vectors in W . It follows that their sum can be written as

u+ v = (c1 + k1)w1 + (c2 + k2)w2 + · · ·+ (cr + kr)wr,

which is a linear combination of the vectors in S. Similarly, if a is any scalar,
then

au = (ac1)w1 + (ac2)w2 + · · ·+ (acr)wr,

which is a linear combination of the vectors in S.
(b) Let W ′ be any subspace of V that contains all of the vectors in S. Since
W ′ is closed under addition and scalar multiplication, it contains all linear
combinations of the vectors in S and hence contains W .

Remark 1. The subspace W in Theorem 4.3.1 is called the subspace of V
spanned by S. The vectors w1,w2, . . . ,wr in S are said to span W , and we
write

W = span{w1,w2, . . . ,wr} or W = span(S).
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Example 1. Show that the standard unit vectors span Rn.

Example 2.

(a) If v is a nonzero vector in R2 or R3 that has its initial point at the origin,
what is a geometric description of span{v}?

(b) If v1 and v2 are nonzero vectors in R3 that have their initial points at
the origin, what is a geometric description of span{v1,v2}?

Example 3. Show that the polynomials 1, x, x2, . . . , xn span the vector space
Pn.
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Example 4. Consider the vectors u = (1, 2,−1) and v = (6, 4, 2) in R3. Show
that w = (9, 2, 7) is a linear combination of u and v and that w′ = (4,−1, 8)
is not a linear combination of u and v.

Example 5. Determine whether the vectors v1 = (1, 1, 2), v2 = (1, 0, 1), and
v3 = (2, 1, 3) span the vector space R3.
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Example 6. Determine whether the set S spans P2.

(a) S = {1 + x+ x2,−1− x, 2 + 2x+ x2}

(b) S = {x+ x2, x− x2, 1 + x, 1− x}
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Example 7. In each part, determine whether the set S spans M22.

(a) S =


[
1 2
0 1

]
,

[
1 0
0 1

]
,

[
1 2
1 0

]
,

[
1 1
1 1

]

(b) S =


[
1 0
0 0

]
,

[
−1 0
1 0

]
,

[
0 0
1 0

]
,

[
0 1
−1 1

]

Theorem 4.3.2. If S = {v1,v2, . . . ,vr} and S ′ = {w1,w2, . . . ,wk} are
nonempty sets of vectors in a vector space V , then

span{v1,v2, . . . ,vr} = span{w1.w2, . . . ,wk}

if and only if each vector in S is a linear combination of those in S ′, and each
vector in S ′ is a linear combination of those in S.
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4.4 Linear Independence

Definition 4.4.1. If S = {v1,v2, . . . ,vr} is a set of two or more vectors in
a vector space V , then S is said to be a linearly independent set if no vector
in S can be expressed as a linear combination of the others. A set that is not
linearly independent is said to be linearly dependent.

Theorem 4.4.1. A nonempty set S = {v1,v2, . . . ,vr} in a vector space V
is linearly independent if and only if the only coefficients satisfying the vector
equation

k1v1 + k2v2 + · · ·+ krvr = 0

are k1 = 0, k2 = 0, . . . , kr = 0.

Example 1. Show that the standard unit vectors in Rn are linearly indepen-
dent.

Example 2. Determine whether the vectors

v1 = (1,−2, 3), v2 = (5, 6,−1), v3 = (3, 2, 1)

are linearly independent or linearly dependent in R3.
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Example 3. Determine whether the vectors

v1 = (1, 2, 2,−1), v2 = (4, 9, 9,−4), v3 = (5, 8, 9,−5)

in R4 are linearly independent or linearly dependent.

Example 4. Show that the polynomials

1, x, x2, . . . , xn

form a linearly independent set in Pn.
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Example 5. Determine whether the polynomials

p1 = 1− x, p2 = 5 + 3x− 2x2, p3 = 1 + 3x− x2

are linearly dependent or linearly independent in P2.

Theorem 4.4.2.

(a) A set with finitely many vectors that contains 0 is linearly dependent.
(b) A set with exactly two vectors is linearly independent if and only if neither

vector is a scalar multiple of the other.

Example 6. Determine whether the functions f1 = x and f2 = sinx are
linearly independent in F (−∞,∞), and whether the functions g1 = sin 2x
and g2 = sinx cosx are linearly independent in F (−∞,∞).
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Theorem 4.4.3. Let S = {v1,v2, . . . ,vr} be a set of vectors in Rn. If r > n,
then S is linearly dependent.

Proof. Suppose that
v1 = (v11, v12, . . . , v1n)
v2 = (v21, v22, . . . , v2n)
...

...
vr = (vr1, vr2, . . . , vrn)

and consider the equation

k1v1 + k2v2 + · · ·+ krvr = 0.

If we express both sides of this equation in terms of components and then
equate the corresponding components, we obtain the system

v11k1 + v22k2 + · · ·+ vr1kr = 0
v12k1 + v22k2 + · · ·+ vr2kr = 0
...

...
...

...
v1nk1 + v2nk2 + · · ·+ vrnkr = 0.

This is a homogeneous system of n equations in the r unknowns k1, . . . , kr.
Since r > n, the system has nontrivial solutions. Therefore, S = {v1,v2, . . . ,vr}
is a linearly dependent set.

Example 7. It is an important fact that the nonzero row vectors of a matrix in
row echelon or reduced row echelon form are linearly independent. To suggest
how a general proof might go, show that the row vectors of the matrix

R =

1 a12 a13 a14
0 1 a23 a24
0 0 0 1


are linearly independent.
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Definition 4.4.2. If f1 = f1(x), f2 = f2(x), . . . , fn = fn(x) are functions that
are n− 1 times differentiable on the interval (−∞,∞), then the determinant

W (x) =

∣∣∣∣∣∣∣∣∣∣
f1(x) f2(x) · · · fn(x)
f ′
1(x) f ′

2(x) · · · f ′
n(x)

...
...

...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣∣
is called the Wronskian of f1, f2, . . . , fn.

Theorem 4.4.4. If the functions f1, f2, . . . , fn have n − 1 continuous deriva-
tives on the interval (−∞,∞), and if the Wronskian of these functions is not
identically zero on (−∞,∞), then these functions form a linearly independent
set of vectors in C(n−1)(−∞,∞).

Example 8. Use the Wronskian to show that f1 = x and f2 = sinx are linearly
independent vectors in C∞(−∞,∞).

Example 9. Use the Wronskian to show that f1 = 1, f2 = ex, and f3 = e2x

are linearly independent vectors in C∞(−∞,∞).
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4.5 Coordinates and Basis

Remark 1. A vector space V is said to be finite-dimensional if there is a finite
set of vectors in V that spans V and is said to be infinite-dimensional if no
such set exists.

Definition 4.5.1. If S = {v1,v2, . . . ,vn} is a set of vectors in a finite-
dimensional vector space V , then S is called a basis for V if:

(a) S spans V .
(b) S is linearly independent.

Example 1. Show that the standard unit vectors form a basis for Rn called
the standard basis for Rn.

Example 2. Show that S = {1, x, x2, . . . , xn} is a basis for the vector space
Pn of polynomials of degree n or less.
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Example 3. Show that the vectors v1 = (1, 2, 1), v2 = (2, 9, 0), and v3 =
(3, 3, 4) form a basis for R3.

Example 4. Show that the matrices

M1 =

[
1 0
0 0

]
, M2 =

[
0 1
0 0

]
, M3 =

[
0 0
1 0

]
, M4 =

[
0 0
0 1

]

form a basis for the vector space M22 of 2× 2 matrices.
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Example 5. Show that the vector space P∞ of all polynomials with real
coefficients is infinite-dimensional by showing that it has no finite spanning
set.

Example 6. Which of the vector spaces in Examples 1-5 are finite-dimensional,
and which are infinite-dimensional?

Theorem 4.5.1 (Uniqueness of Basis Representation). If S = {v1,v2, . . . ,vn}
is a basis for a vector space V , then every vector v in V can be expressed in
the form v = c1v1 + c2v2 + · · ·+ cnvn in exactly one way.

Proof. Since S spans V , it follows from the definition of a spanning set that
every vector in V is expressible as a linear combination of the vectors in S.
To see that there is only one way to express a vector as a linear combination
of the vectors in S, suppose that some vector v can be written as

v = c1v1 + c2v2 + · · ·+ cnvn

and also as
v = k1v1 + k2v2 + · · ·+ knvn.

Subtracting the second equation from the first gives

0 = (c1 − k1)v1 + (c2 − k2)v2 + · · ·+ (cn − kn)vn.

Since the right side of this equation is a linear combination of vectors in S,
the linear independence of S implies that

c1 − k1 = 0, c2 − k2 = 0, . . . , cn − kn = 0,

that is,

c1 = k1, c2 = k2, . . . , cn = kn.
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Definition 4.5.2. If S = {v1,v2, . . . ,vn} is a basis for a vector space V , and

v = c1v1 + c2v2 + · · ·+ cnvn

is the expression for a vector v in terms of the basis S, then the scalars
c1, c2, . . . , cn are called the coordinates of v relative to the basis S. The vector
(c1, c2, . . . , cn) in Rn constructed from these coordinates is called the coordi-
nate vector of v relative to S; it is denoted by

(v)S = (c1, c2, . . . , cn).

Example 7. What is the coordinate vector (v)S where V = Rn and S is the
standard basis?

Example 8.

(a) Find the coordinate vector for the polynomial

p(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n

relative to the standard basis for the vector space Pn.

(b) Find the coordinate vector of

B =

[
a b
c d

]
relative to the standard basis for M22.
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Example 9.

(a) We showed in Example 3 that the vectors

v1 = (1, 2, 1), v2 = (2, 9, 0), v3 = (3, 3, 4)

form a basis for R3. Find the coordinate vector of v = (5,−1, 9) relative
to the basis S = {v1,v2,v3}.

(b) Find the vector v in R3 whose coordinate vector relative to S is (v)S =
(−1, 3, 2).
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4.6 Dimension

Theorem 4.6.1. All bases for a finite-dimensional vector space have the same
number of vectors.

Theorem 4.6.2. Let V be an n-dimensional vector space, and let {v1,v2, . . . ,vn}
be any basis.

(a) If a set in V has more than n vectors, then it is linearly dependent.
(b) If a set in V has fewer than n vectors, then it does not span V .

Definition 4.6.1. The dimension of a finite-dimensional vector space V is
denoted by dim(V ) and is defined to be the number of vectors in a basis for
V . In addition, the zero vector space is defined to have dimension zero.

Example 1. Find the dimensions of Rn, Pn, and Mmn.

Example 2. If S = {v1,v2, . . . ,vr} is a set of linearly independent vectors,
what is dim[span(S)]?

Example 3. Find a basis for and the dimension of the solution space of the
homogeneous system

x1 + 3x2 − 2x3 + 2x5 = 0

2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = 0

5x3 + 10x4 + 15x6 = 0

2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 0.
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Theorem 4.6.3 (Plus/Minus Theorem). Let S be a nonempty set of vectors
in a vector space V .

(a) If S is a linearly independent set, and if v is a vector in V that is outside
of span(S), then the set S ∪{v} that results by inserting v into S is still
linearly independent.

(b) If v is a vector in S that is expressible as a linear combination of other
vectors in S, and if S−{v} denotes the set obtained by removing v from
S, then S and S − {v} span the same space; that is,

span(S) = span(S − {v}).

Example 4. Show that p1 = 1 − x2, p2 = 2 − x2, and p3 = x3 are linearly
independent vectors.

Theorem 4.6.4. Let V be an n-dimensional vector space, and let S be a set
in V with exactly n vectors. Then S is a basis for V if and only if S spans V
or S is linearly independent.

Proof. Assume that S has exactly n vectors and spans V . To prove that S
is a basis, we must show that S is a linearly independent set. But if this
is not so, them some vector v in S is a linear combination of the remaining
vectors. If we remove this vector from S, then it follows that the remaining
set of n−1 vectors still spans V . But this is impossible since no set with fewer
than n vectors can span an n-dimensional vector space. Thus S is linearly
independent.

Assume that S has exactly n vectors and is a linearly independent set. To
prove that S is a basis, we must show that S spans V . But if this is not so,
then there is some vector v in V that is not in span(S). If we insert this vector
into S, then this set of n + 1 vectors is still linearly independent. But this is
impossible, since no set with more than n vectors in an n-dimensional vector
space can be linearly independent. Thus S spans V .
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Example 5.

(a) Explain why the vectors v1 = (−3, 7) and v2 = (5, 5) form a basis for
R2.

(b) Explain why the vectors v1 = (2, 0,−1), v2 = (4, 0, 7), and v3 =
(−1, 1, 4) form a basis for R3.

Theorem 4.6.5. Let S be a finite set of vectors in a finite-dimensional vector
space V .

(a) If S spans V but is not a basis for V , then S can be reduced to a basis
for V by removing appropriate vectors from S.

(b) If S is a linearly independent set that is not already a basis for V , then
S can be enlarged to a basis for V by inserting appropriate vectors into
S.

Theorem 4.6.6. If W is a subspace of a finite-dimensional vector space V ,
then:

(a) W is finite-dimensional.
(b) dim(W ) ≤ dim(V ).
(c) W = V if and only if dim(W ) = dim(V ).

Proof. (a) Since V is finite-dimensional, there exists a finite set S spanning
V . Since W is a subspace of V , W ⊂ V . Therefore S also spans W , so W is
finite-dimensional.
(b) Part (a) shows that W is finite-dimensional, so it has a basis

S = {w1,w2, . . . ,wm}.
Either S is also a basis for V or it is not. If so, then dim(V ) = m, which means
that dim(V ) = dim(W ). If not, then because S is a linearly independent set
it can be enlarged to a basis for V . But this implies that dim(W ) < dim(V ),
so we have shown that dim(W ) ≤ dim(V ) in all cases.
(c) Assume that dim(W ) = dim(V ) and that S = {w1,w2, . . . ,wm} is a basis
for W . If S is not also a basis for V , then being linearly independent S can
be extended to a basis for V . But this would mean that dim(V ) > dim(W ),
which contradicts our hypothesis. Thus S must also be a basis for V , which
means that W = V . The converse is obvious.
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4.7 Change of Basis

Remark 1. If S = {v1,v2, . . . ,vn} is a basis for a finite-dimensional vector
space V , and if

(v)S = (c1, c2, . . . , cn)

is the coordinate vector of v relative to S, then the mapping

v→ (v)S

creates a connection (a one-to-one correspondence) between vectors in the
general vector space V and vectors in the Euclidean vector space Rn. We call
this the coordinate map relative to S from V to Rn.

Remark 2 (Solution of the Change-of-Basis Problem). If we change the basis
for a vector space V from an old basis B = {u1,u2, . . . ,un} to a new basis
B′ = {u′

1,u
′
2, . . . ,u

′
n}, then for each vector v in V , the new coordinate vector

[v]B′ is related to the old coordinate vector [v]B by the equation

[v]B′ = P [v]B

where the columns of P are the coordinate vectors of the old basis vectors
relative to the new basis; that is,

P =
[
[u1]B′ | [u2]B′ | . . . | [un]B′

]
.

Example 1. Consider the bases B = {u1,u2} and B′ = {u′
1,u

′
2} for R2,

where
u1 = (1, 0), u2 = (0, 1), u′

1 = (1, 1), u′
2(2, 1).

(a) Find the transition matrix PB→B′ from B to B′.

(b) Find the transition matrix PB′→B from B′ to B.
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Example 2. Let B and B′ be the bases in Example 1. Use an appropriate
formula to find [v]B′ given that

[v]B =

[
−3
5

]
.

Theorem 4.7.1. If P is the transition matrix from a basis B to a basis B′

for a finite-dimensional vector space V , then P is invertible and P−1 is the
transition matrix from B′ to B.

Remark 3 (A Procedure for Computing Transition Matrices).

Step 1. Form the partitioned matrix [new basis | old basis] in which the
basis vectors are in column form.

Step 2. Use elementary row operations to reduce the matrix in Step 1 to
reduced row echelon form.

Step 3. The resulting matrix will be [I | transition matrix from old to new]
where I is an identity matrix.

Step 4. Extract the matrix on the right side of the matrix obtained in Step
3.

Example 3. In Example 1 we considered the bases B = {u1,u2} and B′ =
{u′

1,u
′
2} for R2, where

u1 = (1, 0), u2 = (0, 1), u′
1 = (1, 1), u′

2 = (2, 1).

(a) Use Remark 3 to find the transition matrix from B to B′.

(b) Use Remark 3 to find the transition matrix from B′ to B.

Theorem 4.7.2. Let B = {u1,u2, . . . ,un} be any basis for Rn and let S =
{e1, e2, . . . , en} be the standard basis for Rn. If the vectors in these bases are
written in column form, then

PB→S = [u1 | u2 | · · · | un].
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4.8 Row Space, Column Space, and Null Space

Example 1. Let

A =

[
2 1 0
3 −1 4

]
.

What are the row and column vectors of A?

Definition 4.8.1. If A is an m× n matrix, then the subspace of Rn spanned
by the row vectors of A is called the row space of A, and the subspace of Rn

spanned by the column vectors of A is called the column space of A. The
solution space of the homogeneous system of equations Ax = 0, which is a
subspace of Rn, is called the null space of A.

Theorem 4.8.1. A system of linear equations Ax = b is consistent if and
only if b is in the column space of A.

Example 2. Let Ax = b be the linear system−1 3 2
1 2 −3
2 1 −2


x1

x2

x3

 =

 1
−9
−3

 .

Show that b is in the column space of A by expressing it as a linear combination
of the column vectors of A.
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Theorem 4.8.2. If x0 is any solution of a consistent linear system Ax = b,
and if S = {v1,v2, . . . ,vk} is a basis for the null space of A, then every solution
of Ax = b can be expressed in the form

x = x0 + c1v1 + c2v2 + · · ·+ ckvk.

Conversely, for all choices of scalars c1, c2, . . . , ck, the vector x in this formula
is a solution of Ax = b.

Proof. Let x0 be any solution of Ax = b, let W denote the null space of
Ax = 0, and let x0 +W be the set of all vectors that result by adding x0 to
each vector in W . Thus, the vectors in x0 +W are those that are expressible
in the form

x = x0 + c1v1 + c2v2 + · · ·+ ckvk.

We must show that if x is a vector in x0 +W , then x is a solution of Ax = b,
and conversely that every solution of Ax = b is in the set x0 +W .

Assume first that x is a vector in x0+W . This implies that x is expressible
in the form x = x0 +w, where Ax0 = b and Aw = 0. Thus,

Ax = A(x0 +w) = Ax0 + Aw = b+ 0 = b,

which shows that x is a solution of Ax = b.
Conversely, let x be any solution of Ax = b. To show that x is in the set

x0 +W we must show that x is expressible in the form

x = x0 +w

where w is in W (i.e., Aw = 0). We can do this by taking w = x− x0. This
vector obviously satisfies x = x0 +w, and it is in W since

Aw = A(x− x0) = Ax− Ax0 = b− b = 0.

Remark 1. The vector x0 in Theorem 4.7.2 is called a particular solution of
Ax = b, and the remaining part of the formula is called the general solution
of Ax = 0.
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Theorem 4.8.3.

(a) Row equivalent matrices have the same row space.
(b) Row equivalent matrices have the same null space.

Proof. (a) If A and B are row equivalent then each can be obtained from the
other by elementary row operations. As these operations involve only scalar
multiplication (multiply a row by a scalar) and linear combinations (add a
scalar multiple of one row to another), it follows that the row space of each is
a subspace of the other, so the two row spaces must be the same.
(b) If A and B are row equivalent then each can be obtained from the other
by elementary row operations. But elementary row operations do not change
the solution set of a linear system, so the solution sets of Ax = 0 and Bx = 0
must be the same. That is, A and B have the same null space.

Theorem 4.8.4. If a matrix R is in row echelon form, then the row vectors
with the leading 1’s (the nonzero row vectors) form a basis for the row space
of R, and the column vectors with the leading 1’s of the row vectors form a
basis for the column space of R.

Example 3. Find bases for the row and column spaces of the matrix

R =


1 −2 5 0 3
0 1 3 0 0
0 0 0 1 0
0 0 0 0 0

 .
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Example 4. Find a basis for the row space of the matrix

A =


1 −3 4 −2 5 4
2 −6 9 −1 8 2
2 −6 9 −1 9 7
−1 3 −4 2 −5 −4

 .

Theorem 4.8.5. If A and B are row equivalent matrices, then:

(a) A given set of column vectors of A is linearly independent if and only if
the corresponding column vectors of B are linearly independent.

(b) A given set of column vectors of A forms a basis for the column space of
A if and only if the corresponding column vectors of B form a basis for
the column space of B.

Example 5. Find a basis for the column space of the matrix

A =


1 −3 4 −2 5 4
2 −6 9 −1 8 2
2 −6 9 −1 9 7
−1 3 −4 2 −5 −4

 .
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Example 6. Find a basis for the row space of

A =


1 −2 0 0 3
2 −5 −3 −2 6
0 5 15 10 0
2 6 18 8 6


consisting entirely of row vectors from A.

Example 7. The following vectors span a subspace of R4. Find a subset of
these vectors that forms a basis of this subspace.

v1 = (1, 2, 2,−1), v2 = (−3,−6,−6, 3),
v3 = (4, 9, 9,−4), v4 = (−2,−1,−1, 2),
v5 = (5, 8, 9,−5), v6 = (4, 2, 7,−4).
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Example 8.

(a) Find a subset of the vectors

v1 = (1,−2, 0, 3), v2 = (2,−5,−3, 6),
v3 = (0, 1, 3, 0), v4 = (2,−1, 4,−7), v5 = (5,−8, 1, 2)

that forms a basis for the subspace of R4 spanned by these vectors.

(b) Express each vector not in the basis as a linear combination of the basis
vectors.
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4.9 Rank, Nullity, and the Fundamental Ma-

trix Spaces

Theorem 4.9.1. The row space and the column space of a matrix A have the
same dimension.

Proof. Elementary row operations do not change the dimension of the row
space or of the column space of a matrix. Thus, if R is any row echelon form
of A, it must be true that

dim(row space of A) = dim(row space of R)

dim(column space of A) = dim(column space of R)

so it suffices to show that the row and column spaces of R have the same
dimension. But the dimension of the row space of R is the number of nonzero
rows, and the dimension of the column space of R is the number of leading
1’s. Since these two numbers are the same, the row and column space have
the same dimension.

Definition 4.9.1. The common dimension of the row space and column space
of a matrix A is called the rank of A and is denoted by rank(A); the dimension
of the null space of A is called the nullity of A and is denoted by nullity(A).

Example 1. Find the rank and nullity of the matrix

A =


−1 2 0 4 5 −3
3 −7 2 0 1 4
2 −5 2 4 6 1
4 −9 2 −4 −4 7

 .
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Example 2. What is the maximum possible rank of an m× n matrix A that
is not square?

Theorem 4.9.2 (Dimension Theorem for Matrices). If A is a matrix with n
columns, then

rank(A) + nullity(A) = n.

Proof. Since A has n columns, the homogeneous linear system Ax = 0 has n
unknowns. These fall into two distinct categories: the leading variables and
the free variables. Thus,[

number of leading
variables

]
+

[
number of free

variables

]
= n.

But the number of leading variables is the same as the number of leading 1’s in
any row echelon form of A, which is the same as the dimension of the row space
of A, which is the same as the rank of A. Also, the number of free variables
in the general solution of Ax = 0 is the same as the number of parameters
in that solution, which is the same as the dimension of the solution space of
Ax = 0, which is the same as the nullity of A.

Example 3. Verify Theorem 4.8.2 for the matrix in Example 1.
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Theorem 4.9.3. If A is an m× n matrix, then

(a) rank(A) = the number of leading variables in the general solution of
Ax = 0.

(b) nullity(A) = the number of parameters in the general solution of Ax = 0.

Example 4.

(a) Find the number of parameters in the general solution of Ax = 0 if A is
a 5× 7 matrix of rank 3.

(b) Find the rank of a 5×7 matrix A for which Ax = 0 has a two-dimensional
solution space.

Theorem 4.9.4. If Ax = b is a consistent linear system of m equations in n
unknowns, and if A has rank r, then the general solution of the system contains
n− r parameters.

Remark 1. The following spaces associated with a matrix A and its transpose
AT are called the fundamental spaces of a matrix A:

row space of A column space of A

null space of A null space of AT

The row space and null space of A are subspaces of Rn, whereas the column
space of A and the null space of AT are subspaces of Rm. The null space of
AT is also called the left null space of A because transposing both sides of the
equation ATx = 0 produces the equation xTA = 0T in which the unknown is
on the left. The dimension of the left null space of A is called the left nullity
of A.

Theorem 4.9.5. If A is any matrix, then rank(A) = rank(AT ).

Proof.

rank(A) = dim(row space of A) = dim(column space of AT ) = rank(AT ).
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Example 5. Find bases for the fundamental spaces of the matrix

A =


−1 2 0 4 5 −3
3 −7 2 0 1 4
2 −5 2 4 6 1
4 −9 2 −4 −4 7

 .

Definition 4.9.2. If W is a subspace of Rn, then the set of all vectors in Rn

that are orthogonal to every vector in W is called the orthogonal complement
of W and is denoted by the symbol W⊥.

Theorem 4.9.6. If W is a subspace of Rn, then:

(a) W⊥ is a subspace of Rn.
(b) The only vector common to W and W⊥ is 0.
(c) The orthogonal complement of W⊥ is W .
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Example 6. What is the orthogonal complement of a line W through the
origin in R2? What is the orthogonal complement of a plane W through the
origin in R3?

Theorem 4.9.7. If A is an m× n matrix, then:

(a) The null space of A and the row space of A are orthogonal complements
in Rn.

(b) The null space of AT and the column space of A are orthogonal comple-
ments in Rm.

Theorem 4.9.8 (Equivalent Statements). If A is an n × n matrix, then the
following statements are equivalent.

(a) A is invertible.
(b) Ax = 0 has only the trivial solution.
(c) The reduced row echelon form of A is In.
(d) A is expressible as a product of elementary matrices.
(e) Ax = b is consistent for every n× 1 matrix b.
(f ) Ax = b has exactly one solution for every n× 1 matrix b.
(g) det(A) ̸= 0.
(h) The column vectors of A are linearly independent.
(i) The row vectors of A are linearly independent.
(j ) The column vectors of A span Rn.
(k) The row vectors of A span Rn.
(l) The column vectors of A form a basis for Rn.
(m) The row vectors of A form a basis for Rn.
(n) A has rank n.
(o) A has nullity 0.
(p) The orthogonal complement of the null space of A is Rn.
(q) The orthogonal complement of the row space of A is {0}.
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Remark 2. A linear system with more constraints than unknowns is called an
overdetermined system. A linear system with fewer constraints than unknowns
is called an underdetermined system.

Theorem 4.9.9. Let A be an m× n matrix.

(a) (Overdetermined Case). If m > n, then the linear system Ax = b is
inconsistent for at least one vector b in Rn.

(b) (Underdetermined Case). If m < n, then for each vector b in Rm the
linear system Ax = b is either inconsistent or has infinitely many solu-
tions.

Proof. (a) Assume that m > n, in which case the column vectors of A cannot
span Rm. Thus, there is at least one vector b in Rm that is not in the column
space of A, and for any such b the system Ax = b is inconsistent.
(b) Assume that m < n. For each vector b in Rn there are two possibilities:
either the system Ax = b is consistent or it is inconsistent. If it is inconsistent,
then the proof is complete. If it is consistent, then the general solution has
n − r parameters, where r = rank(A). But we know from Example 2 that
rank(A) is at most the smaller of m and n, so

n− r ≥ n−m > 0.

This means that the general solution has at least one parameter and hence
there are infinitely many solutions.

Example 7.

(a) What can you say about the solutions of an overdetermined system Ax =
b of 7 equations in 5 unknowns in which A has rank r = 4?

(b) What can you say about the solutions of an underdetermined system
Ax = b of 5 equations in 7 unknowns in which A has rank r = 4?
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Example 8. Under what conditions is the linear system

x1 − 2x2 = b1

x1 − x2 = b2

x1 + x2 = b3

x1 + 2x2 = b4

x1 + 3x2 = b5

consistent?
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Chapter 5

Eigenvalues and Eigenvectors

5.1 Eigenvalues and Eigenvectors

Definition 5.1.1. If A is an n × n matrix, then a nonzero vector x in Rn

is called an eigenvector of A (or of the matrix operator TA) if Ax is a scalar
multiple of x; that is,

Ax = λx

for some scalar λ. The scalar λ is called an eigenvalue of A (or of TA), and x
is said to be an eigenvector corresponding to λ.

Example 1. Determine whether the vector x =

[
1
2

]
is an eigenvector of

A =

[
3 0
8 −1

]
.
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Theorem 5.1.1. If A is an n×n matrix, then λ is an eigenvalue of A if and
only if it satisfies the equation

det(λI − A) = 0.

This is called the characteristic equation of A.

Example 2. In Example 1 we observed that λ = 3 is an eigenvalue of the
matrix

A =

[
3 0
8 −1

]
but we did not explain how we found it. Use the characteristic equation to
find all eigenvalues of this matrix.

Remark 1. When the determinant det(λI −A) is expanded, the characteristic
equation of A takes the form

λn + c1λ
n−1 + · · ·+ cn = 0

where the left side of this equation is a polynomial of degree n in which the
coefficient of λn is 1. The polynomial

p(λ) = λn + c1λ
n−1 + · · ·+ cn

is called the characteristic polynomial of A.
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Example 3. Find the eigenvalues of

A =

0 1 0
0 0 1
4 −17 8

 .

Example 4. Find the eigenvalues of the upper triangular matrix

A =


a11 a12 a13 a14
0 a22 a23 a24
0 0 a33 a34
0 0 0 a44

 .
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Theorem 5.1.2. If A is an n× n triangular matrix (upper triangular, lower
triangular, or diagonal), then the eigenvalues of A are the entries on the main
diagonal of A.

Example 5. Find the eigenvalues of the lower triangular matrix

A =

 1
2

0 0
−1 2

3
0

5 −8 −1
4

 .

Theorem 5.1.3. If A is an n× n matrix, the following statements are equiv-
alent.

(a) λ is an eigenvalue of A.
(b) λ is a solution of the characteristic equation det(λI − A) = 0.
(c) The system of equations (λI − A)x = 0 has nontrivial solutions.
(d) There is a nonzero vector x such that Ax = λx.

Remark 2. By definition, the eigenvectors of A corresponding to an eigenvalue
λ are the nonzero vectors that satisfy

(λI − A)x = 0.

Thus, we can find the eigenvectors of A corresponding to λ by finding the
nonzero vectors in the solution space of this linear system. This solution
space, which is called the eigenspace of A corresponding to λ, can also be
viewed as:

1. the null space of the matrix λI − A
2. the kernel of the matrix operator TλI−A : Rn → Rn

3. the set of vectors for which Ax = λx
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Example 6. Find bases for the eigenspaces of the matrix

A =

[
−1 3
2 0

]
.
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Example 7. Find bases for the eigenspaces of the matrix

A =

0 0 −2
1 2 1
1 0 3

 .
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Theorem 5.1.4. A square matrix A is invertible if and only if λ = 0 is not
an eigenvalue of A.

Proof. Assume that A is an n × n matrix and observe first that λ = 0 is a
solution of the characteristic equation

λn + c1λ
n−1 + · · ·+ cn = 0

if and only if the constant term cn is zero. Thus, it suffices to prove that A is
invertible if and only if cn ̸= 0. But

det(λI − A) = λn + c1λ
n−1 + · · ·+ cn

or, on setting λ = 0,

det(−A) = cn or (−1)n det(A) = cn.

It follows from the last equation that det(A) = 0 if and only if cn = 0, and
this in turn implies that A is invertible if and only if cn ̸= 0.

Example 8. Verify Theorem 5.1.4 for the matrix A in Example 7.
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Theorem 5.1.5 (Equivalent Statements). If A is an n × n matrix, then the
following statements are equivalent.

(a) A is invertible.
(b) Ax = 0 has only the trivial solution.
(c) The reduced row echelon form of A is In.
(d) A is expressible as a product of elementary matrices.
(e) Ax = b is consistent for every n× 1 matrix b.
(f ) Ax = b has exactly one solution for every n× 1 matrix b.
(g) det(A) ̸= 0.
(h) The column vectors of A are linearly independent.
(i) The row vectors of A are linearly independent.
(j ) The column vectors of A span Rn.
(k) The row vectors of A span Rn.
(l) The column vectors of A form a basis for Rn.
(m) The row vectors of A form a basis for Rn.
(n) A has rank n.
(o) A has nullity 0.
(p) The orthogonal complement of the null space of A is Rn.
(q) The orthogonal complement of the row space of A is {0}.
(r) λ = 0 is not an eigenvalue of A.
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5.2 Diagonalization

Remark 1. Products of the form P−1AP in which A and P are n×n matrices
and P is invertible can be viewed as transformations

A→ P−1AP

in which the matrix A is mapped into the matrix P−1AP . These are called
similarity transformations. In general, any property that is preserved by a
similarity transformation is called a similarity invariant and is said to be in-
variant under similarity.

Table 1 Similarity Invariants

Property Description

Determinant A and P−1AP have the same determinant.

Invertibility A is invertible if and only if P−1AP is invertible.

Rank A and P−1AP have the same rank.

Nullity A and P−1AP have the same nullity.

Trace A and P−1AP have the same trace.

Characteristic polynomial A and P−1AP have the same characteristic polynomial.

Eigenvalues A and P−1AP have the same eigenvalues.

Eigenspace dimension If λ is an eigenvalue of A (and hence P−1AP ) then the eigenspace
of A corresponding to λ and the eigenspace of P−1AP
corresponding to λ have the same dimension.

Definition 5.2.1. If A and B are square matrices, then we say that B is
similar to A if there is an invertible matrix P such that B = P−1AP .

Remark 2. Note that if B is similar to A, then it is also true that A is similar
to B since we can express A as A = Q−1BQ by taking Q = P−1. This being
the case, we will usually say that A and B are similar matrices if either is
similar to the other.

Definition 5.2.2. A square matrix A is said to be diagonalizable if it is similar
to some diagonal matrix; that is, if there exists an invertible matrix P such
that P−1AP is diagonal. In this case the matrix P is said to diagonalize A.
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Theorem 5.2.1. If A is an n× n matrix, the following statements are equiv-
alent.

(a) A is diagonalizable.
(b) A has n linearly independent eigenvectors.

Proof. (a)⇒ (b) Since A is assumed to be diagonalizable, it follows that there
exist an invertible matrix P and a diagonal matrix D such that P−1AP = D
or, equivalently,

AP = PD.

If we denote the column vectors of P by p1,p2, . . . ,pn, and if we assume that
the diagonal entries of D are λ1, λ2, . . . , λn, then the left side of this equation
can be expressed as

AP = A
[
p1 p2 · · · pn

]
=
[
Ap1 Ap2 · · · Apn

]
and the right side can be expressed as

PD =
[
λ1p1 λ2p2 · · · λnpn

]
.

Thus, it follows that

Ap1 = λ1p1, Ap2 = λ2p2, . . . , Apn = λnpn.

Since P is invertible, we know that its column vectors p1,p2, . . . ,pn are lin-
early independent (and hence nonzero). Thus, it follows that these n column
vectors are eigenvectors of A.
(b)⇒ (a) Assume thatA has n linearly independent eigenvectors, p1,p2, . . . ,pn,
and that λ1, λ2, . . . , λn are the corresponding eigenvalues. If we let

P =
[
p1 p2 · · · pn

]
and if we let D be the diagonal matrix that has λ1, λ2, . . . , λn as it successive
diagonal entries, then

AP = A
[
p1 p2 · · · pn

]
=
[
Ap1 Ap2 · · · Apn

]
=
[
λ1p1 λ2p2 · · · λnpn

]
= PD.

Since the column vectors of P are linearly independent, it follows that P is
invertible, so that this last equation can be rewritten as P−1AP = D, which
shows that A is diagonalizable.

Theorem 5.2.2.

(a) If λ1, λ2, . . . , λk are distinct eigenvalues of a matrix A, and if v1,v2, . . . ,vk

are corresponding eigenvectors, then {v1,v2, . . . ,vk} is a linearly inde-
pendent set.

(b) An n× n matrix with n distinct eigenvalues is diagonalizable.
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Example 1. Find a matrix P that diagonalizes

A =

0 0 −2
1 2 1
1 0 3

 .

Example 2. Show that the following matrix is not diagonalizable:

A =

 1 0 0
1 2 0
−3 5 2

 .
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Example 3. Show that the matrix

A =

0 1 0
0 0 1
4 −17 8


is diagonalizable.

Example 4. Show that the matrix

A =


−1 2 4 0
0 3 1 7
0 0 5 8
0 0 0 −2


is diagonalizable.

Theorem 5.2.3. If k is a positive integer, λ is an eigenvalue of a matrix A,
and x is a corresponding eigenvector, then λk is an eigenvalue of Ak and x is
a corresponding eigenvector.

Example 5. In example 2 we found the eigenvalues and corresponding eigen-
vectors of the matrix

A =

 1 0 0
1 2 0
−3 5 2

 .

Do the same for A7.
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Remark 3. Suppose that A is a diagonalizable n×nmatrix, that P diagonalizes
A, and that

P−1AP =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn

 = D.

If k is a positive integer, then

Ak = PDkP−1 = P


λk
1 0 · · · 0
0 λk

2 · · · 0
...

...
...

0 0 · · · λk
n

P−1.

Example 6. Use Remark 3 to find A13, where

A =

0 0 −2
1 2 1
1 0 3

 .
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Example 7. Use the matrices

I =

1 0 0
0 1 0
0 0 1

 and J =

1 1 0
0 1 1
0 0 1


to show that the converse of Theorem 5.2.2(b) is false.

Remark 4. If λ0 is an eigenvalue of an n× n matrix A, then the dimension of
the eigenspace corresponding to λ0 is called the geometric multiplicity of λ0,
and the number of times that λ− λ0 appears as a factor in the characteristic
polynomial of A is called the algebraic multiplicity of λ0.

Theorem 5.2.4 (Geometric and Algebraic Multiplicity). If A is a square
matrix, then:

(a) For every eigenvalue of A, the geometric multiplicity is less than or equal
to the algebraic multiplicity.

(b) A is diagonalizable if and only if the geometric multiplicity of every eigen-
value is equal to the algebraic multiplicity.
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5.3 Complex Vector Spaces

Definition 5.3.1. If n is a positive integer, then a complex n-tuple is a se-
quence of n complex numbers (v1, v2, . . . , vn). The set of all complex n-tuples
is called complex n-space and is denoted by Cn. Scalars are complex num-
bers, and the operations of addition, subtraction, and scalar multiplication are
performed componentwise.

Example 1. Let

v = (3 + i,−2i, 5) and A =

[
1 + i −i
4 6− 2i

]
.

Find v, Re(v), Im(v), A, Re(A), Im(A), and det(A).

Theorem 5.3.1. If u and v are vectors in Cn, and if k is a scalar, then:

(a) u = u
(b) ku = ku
(c) u+ v = u+ v
(d) u− v = u− v

Theorem 5.3.2. If A is an m× k complex matrix and B is a k × n complex
matrix, then:

(a) A = A
(b) (AT ) = (A)T

(c) AB = AB

Definition 5.3.2. If u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) are vectors
in Cn, then the complex Euclidean inner product of u and v (also called the
complex dot product) is denoted by u · v and is defined as

u · v = u1v1 + u2v2 + · · ·+ unvn.

We also define the Euclidean norm on Cn to be

∥v∥ =
√
v · v =

√
|v1|2 + |v2|2 + · · ·+ |vn|2.
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Example 2. Find u · v, v · u, ∥u∥, and ∥v∥ for the vectors

u = (1 + i, i, 3− i) and v = (1 + i, 2, 4i).

Theorem 5.3.3. If u, v, and w are vectors in Cn, and if k is a scalar, then
the complex Euclidean inner product has the following properties:

(a) u · v = v · u
(b) u · (v +w) = u · v + u ·w
(c) k(u · v) = (ku) · v
(d) u · kv = k(u · v)
(e) v · v ≥ 0 and v · v = 0 if and only if v = 0.

Theorem 5.3.4. If λ is an eigenvalue of a real n × n matrix A, and if x is
a corresponding eigenvector, then λ is also an eigenvalue of A, x is a corre-
sponding eigenvector.

Proof. Since λ is an eigenvalue of A and x is a corresponding eigenvector, we
have

Ax = λx = λx.

However, A = A, since A has real entries, so it follows that

Ax = Ax = Ax.

Therefore
Ax = Ax = λx

in which x ̸= 0; this tells us that λ is an eigenvalue of A and x is a corre-
sponding eigenvector.
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Example 3. Find the eigenvalues and bases for the eigenspaces of

A =

[
−2 −1
5 2

]
.
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Theorem 5.3.5. If A is a 2×2 matrix with real entries, then the characteristic
equation of A is λ2 − tr(A)λ+ det(A) = 0 and

(a) A has two distinct real eigenvalues if tr(A)2 − 4 det(A) > 0;
(b) A has one repeated real eigenvalue if tr(A)2 − 4 det(A) = 0;
(c) A has two complex conjugate eigenvalues if tr(A)2 − 4 det(A) < 0.

Example 4. In each part, use the characteristic equation to find the eigen-
values of

(a) A =

[
2 2
−1 5

]

(b) A =

[
0 −1
1 2

]

(c) A =

[
2 3
−3 2

]

Theorem 5.3.6. If A is a real symmetric matrix, then A has real eigenvalues.

Proof. Suppose that λ is an eigenvalue of A and x is a corresponding eigen-
vector, where we allow for the possibility that λ is complex and x is in Cn.
Thus,

Ax = λx

where x ̸= 0. If we multiply both sides of this equation by xT and use the fact
that

xTAx = xT (λx) = λ(xTx) = λ(x · x) = λ∥x∥2

then we obtain

λ =
xTAx

∥x∥2
.

Since the denominator in this expression is real, we can prove that λ is real
by showing that

xTAx = xTAx.

But A is symmetric and has real entries, so it follows that

xTAx = x
T
Ax = xTAx = (Ax)Tx = (Ax)Tx = (Ax)Tx = xTATx = xTAx.
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Theorem 5.3.7. The eigenvalues of the real matrix

C =

[
a −b
b a

]

are λ = a ± bi. If a and b are not both zero, then this matrix can be factored
as [

a −b
b a

]
=

[
|λ| 0
0 |λ|

][
cosϕ − sinϕ
sinϕ cosϕ

]
where ϕ is the angle from the positive x-axis to the ray that joins the origin to
the point (a, b).

Proof. The characteristic equation of C is (λ − a)2 + b2 = 0, from which it
follows that the eigenvalues of C are λ = a ± bi. Assuming that a and b are
not both zero, let ϕ be the angle from the positive x-axis to the ray that joins
the origin to the point (a, b). The angle ϕ is an argument of the eigenvalue
λ = a+ bi, so

a = |λ| cosϕ and b = |λ| sinϕ.

It follows from this that the matrix C can be written as

[
a −b
b a

]
=

[
|λ| 0
0 |λ|

]
a

|λ|
− b

|λ|
b

|λ|
a

|λ|

 =

[
|λ| 0
0 |λ|

][
cosϕ − sinϕ
sinϕ cosϕ

]

Theorem 5.3.8. Let A be a real 2 × 2 matrix with complex eigenvalues λ =
a± bi (where b ̸= 0). If x is an eigenvector of A corresponding to λ = a− bi,

then the matrix P =
[
Re(x) Im(x)

]
is invertible and

A = P

[
a −b
b a

]
P−1.

Example 5. Factor the matrix in Example 3 into the form given in Theorem
5.3.8 using the eigenvalue λ = −i and the corresponding eigenvector previously
obtained.
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5.4 Differential Equations

Remark 1. A differential equation is an equation involving unknown functions
and their derivatives. The order of a differential equation is the order of the
highest derivative it contains. The simplest differential equations are the first-
order differential equations of the form

y′ = ay

where y = f(x) is an unknown differentiable function to be determined, y′ =
dy/dx is its derivative, and a is a constant. As with most differential equations,
this equation has infinitely many solutions; they are the functions of the form

y = ceax

where c is an arbitrary constant. That every function of this form is a solution
follows from the computation

y′ = caeax = ay.

Accordingly, we call y = ceax the general solution of y′ = ay.
A condition which specifies the value of the general solution at a point is

called an initial condition, and the problem of solving a differential equation
subject to an initial condition is called an initial-value problem.

Remark 2. The system of differential equations

y′1 = a11y1 + a12y2 + · · ·+ a1nyn
y′2 = a21y1 + a22y2 + · · ·+ a2nyn
...

...
...

...
y′n = an1y1 + an2y2 + · · ·+ annyn.

where y1 = f1(x), y2 = f2(x), . . . , yn = fn(x) are functions to be determined,
and the aij’s are constants, is called a constant coefficient first-order homoge-
neous linear system. The solution

y1 = y2 = · · · = yn = 0

is called the trivial solution.
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Example 1.

(a) Write the following system in matrix form:

y′1 = 3y1

y′2 = −2y2
y′3 = 5y3

(b) Solve the system.

(c) Find a solution of the system that satisfies the initial conditions y1(0) =
1, y2(0) = 4, and y3(0) = −2.
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Example 2.

(a) Solve the system
y′1 = y1 + y2

y′2 = 4y1 − 2y2.

(b) Find the solution that satisfies the initial conditions y1(0) = 1, y2(0) = 6.
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5.5 Dynamical Systems and Markov Chains

Remark 1. A dynamical system is a finite set of variables whose values change
with time. The value of a variable at a point in time is called the state of the
variable at that time, and the vector formed from these states is called the
state vector of the dynamical system at that time.

Example 1. Suppose that two competing television channels, channel 1 and
channel 2, each have 50% of the viewer market at some initial point in time.
Assume that over each one-year period channel 1 captures 10% of channel 2’s
share, and channel 2 captures 20% of channel 1’s share. What is each channel’s
market share after one year?

181



Linear Algebra - 5.5 Dynamical Systems and Markov Chains

Example 2. Track the market shares of channels 1 and 2 in Example 1 over
a five-year period.
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Remark 2. In many dynamical systems the states of the variables are not
known with certainty but can be expressed as probabilities; such dynamical
systems are called stochastic processes. Stated informally, the probability that
an experiment or observation will have a certain outcome is the fraction of time
that the outcome would occur if the experiment could be repeated indefinitely
under constant conditions—the greater the number of actual repetitions, the
more accurately the probability describes the fraction of time that the outcome
occurs.

Example 3. Interpret the entries in the state vector in Example 1 as proba-
bilities.

Remark 3. A square matrix, each of whose columns is a probability vector, is
called a stochastic matrix.

Definition 5.5.1. A Markov chain is a dynamical system whose state vectors
at a succession of equally spaced times are probability vectors and for which
the state vectors at successive times are related by an equation of the form

x(k + 1) = Px(k)

in which P = [pij] is a stochastic matrix and pij is the probability that the
system will be in state i at time t = k+1 if it is in state j at time t = k. The
matrix P is called the transition matrix for the system.
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Example 4. Suppose that a tagged lion can migrate over three adjacent game
reserves in search of food: Reserve 1, Reserve 2, and Reserve 3. Based on data
about the food resources, researchers conclude that the monthly migration
pattern of the lion can be modeled by a Markov chain with transition matrix

Reserve at time t = k
1 2 3

0.5 0.4 0.6 1

P = 0.2 0.2 0.3 2 Reserve at time t = k+ 1

0.3 0.4 0.1 3

That is,

p11 = 0.5 = probability that the lion will stay in Reserve 1 when it is in Reserve 1

p12 = 0.4 = probability that the lion will move from Reserve 2 to Reserve 1

p13 = 0.6 = probability that the lion will move from Reserve 3 to Reserve 1

p21 = 0.2 = probability that the lion will move from Reserve 1 to Reserve 2

p22 = 0.2 = probability that the lion will stay in Reserve 2 when it is in Reserve 2

p23 = 0.3 = probability that the lion will move from Reserve 3 to Reserve 2

p31 = 0.3 = probability that the lion will move from Reserve 1 to Reserve 3

p32 = 0.4 = probability that the lion will move from Reserve 2 to Reserve 3

p33 = 0.1 = probability that the lion will stay in Reserve 3 when it is in Reserve 3.

Assuming that t is in months and the lion is released in Reserve 2 at time t = 0,
track its probable locations over a six-month period, and find the reserve in
which it is most likely to be at the end of that period.
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Remark 4. In a Markov chain with an initial state of x(0), the successive state
vectors are

x(1) = Px(0), x(2) = Px(1), x(3) = Px(2), x(4) = Px(3), . . . .

For brevity, it is common to denote x(k) by xk, which allows us to write the
successive state vectors more briefly as

x1 = Px0, x2 = Px1, x3 = Px2, x4 = Px3, . . . .

Alternatively, these state vectors can be expressed in terms of the initial state
vector x0 as

x1 = Px0, x2 = P (Px0) = P 2x0, x3 = P (P 2x0) = P 3x0, x4 = P (P 3x0) = P 4x0, . . .

from which it follows that
xk = P kx0.

Example 5. Use Remark 4 to find the state vector x(3) in Example 2.

Example 6. The matrix

P =

[
0 1
1 0

]
is stochastic and hence can be regarded as the transition matrix for a Markov
chain. Find the successive states in the Markov chain with initial vector x0.

185



Linear Algebra - 5.5 Dynamical Systems and Markov Chains

Remark 5. We say that a sequence of vectors

x1, x2, . . . , xk, . . .

approaches a limit q or that it converges to q if all entries in xk can be made
as close as we like to the corresponding entries in the vector q by taking k to
be sufficiently large. We denote this by writing xk → q as k →∞. Similarly,
we say that a sequence of matrices

P1, P2, P3, . . . , Pk, . . .

converges to a matrix Q, written Pk → Q as k → ∞, if each entry of Pk can
be made as close as we like to the corresponding entry of Q by taking k to be
sufficiently large.

Definition 5.5.2. A stochastic matrix P is said to be regular if P or some pos-
itive power of P has all positive entries, and a Markov chain whose transition
matrix is regular is said to be a regular Markov chain.

Example 7. Which transition matrices in Examples 2, 4, and 6 are regular?

Theorem 5.5.1. If P is the transition matrix for a regular Markov chain,
then:

(a) There is a unique probability vector q with positive entries such that
Pq = q.

(b) For any initial probability vector x0, the sequence of state vectors

x0, Px0, . . . , P kx0, . . .

converges to q.
(c) The sequence P, P 2, P 3, . . . , P k, . . . converges to the matrix Q each of

whose column vectors is q.

Remark 6. The vector q in Theorem 5.5.1 is called the steady-state vector of
the Markov chain.
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Example 8. Find the steady-state vector of the Markov chain in Example 2.

Example 9. Find the steady-state vector of the Markov chain in Example 4.

187



Chapter 6

Inner Product Spaces

6.1 Inner Products

Definition 6.1.1. An inner product on a real vector space V is a function
that associates a real number ⟨u,v⟩ with each pair of vectors in V in such a
way that the following axioms are satisfied for all vectors u, v, and w in V
and all scalars k.

1. ⟨u,v⟩ = ⟨v,u⟩
2. ⟨u+ v,w⟩ = ⟨u,w⟩+ ⟨v,w⟩
3. ⟨ku,v⟩ = k⟨u,v⟩
4. ⟨v,v⟩ ≥ 0 and ⟨v,v⟩ = 0 if and only if v = 0

A real vector space with an inner product is called a real inner product space.

Remark 1. The inner product

⟨u,v⟩ = u · v = u1v1 + u2v2 + · · ·+ unvn

of two vectors u and v in Rn is called the Euclidean inner product (or the stan-
dard inner product) on Rn to distinguish it from other possible inner products
that might be defined on Rn. We call Rn with the Euclidean inner product
Euclidean n-space.

Definition 6.1.2. If V is a real inner product space, then the norm (or length)
of a vector v in V is denoted by ∥v∥ and is defined by

∥v∥ =
√
⟨v,v⟩
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and the distance between two vectors is denoted by d(u,v) and is defined by

d(u,v) = ∥u− v∥ =
√
⟨u− v,u− v⟩.

A vector of norm 1 is called a unit vector.

Theorem 6.1.1. If u and v are vectors in a real inner product space V , and
if k is a scalar, then:

(a) ∥v∥ ≥ 0 with equality if and only if v = 0.
(b) ∥kv∥ = |k|∥v∥.
(c) d(u,v) = d(v,u).
(d) d(u,v) ≥ 0 with equality if and only if u = v.

Remark 2. If
w1, w2, . . . , wn

are positive real numbers, which we will call weights, and if u = (u1, u2, . . . , un)
and v = (v1, v2, . . . , vn) are vectors in Rn, then it can be shown that the
formula

⟨u,v⟩ = w1u1v1 + w2u2v2 + · · ·+ wnunvn

defines an inner product on Rn that we call the weighted Euclidean inner
product with weights w1, w2, . . . , wn.

Example 1. Let u = (u1, u2) and v = (v1, v2) be vectors in R2. Verify that
the weighted Euclidean inner product

⟨u,v⟩ = 3u1v1 + 2u2v2

satisfies the four inner product axioms.
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Example 2. Calculate ∥u∥ and d(u,v) for the vectors u = (1, 0) and v =
(0, 1) in R2 with the Euclidean inner product and with the weighted Euclidean
inner product from Example 1.

Definition 6.1.3. If V is an inner product space, then the set of points in V
that satisfy

∥u∥ = 1

is called the unit sphere or sometimes the unit circle in V .

Example 3.

(a) Sketch the unit circle in an xy-coordinate system in R2 using the Eu-
clidean inner product ⟨u,v⟩ = u1v1 + u2v2.

(b) Sketch the unit circle in an xy-coordinate system inR2 using the weighted
Euclidean inner product ⟨u,v⟩ = 1

9
u1v1 +

1
4
u2v2.
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Remark 3. The Euclidean inner product and the weighted Euclidean inner
products are special cases of a general class of inner products on Rn called
matrix inner products. To define this class of inner products, let u and v be
vectors in Rn that are expressed in column form, and let A be an invertible
n× n matrix. It can be shown that if u · v is the Euclidean inner product on
Rn, then the formula

⟨u,v⟩ = Au · Av

also defines an inner product; it is called the inner product on Rn generated
by A.

Example 4. Show that the standard Euclidean and weighted Euclidean inner
products are special cases of matrix inner products.

Example 5. The weighted Euclidean inner product discussed in Example 1
is the inner product on R2 generated by what matrix?

Example 6. If u = U and v = V are matrices in the vector space Mnn, then
show that the formula

⟨u,v⟩ = tr(UTV )

defines an inner product on Mnn called the standard inner product on that
space.
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Example 7. If

p = a0 + a1x+ · · ·+ anx
n and q = b0 + b1x+ · · ·+ bnx

n

are polynomials in Pn, then show that the following formula defines an inner
product on Pn that we call the standard inner product on this space:

⟨p,q⟩ = a0b0 + a1b1 + · · ·+ anbn.

Example 8. If

p = a0 + a1x+ · · ·+ anx
n and q = b0 + b1x+ · · ·+ bnx

n

are polynomials in Pn, and if x0, x1, . . . , xn are distinct real numbers (called
sample points), then show that the formula

⟨p,q⟩ = p(x0)q(x0) + p(x1)q(x1) + · · ·+ p(xn)q(xn).

defines an inner product on Pn called the evaluation inner product at x0, x1, . . . , xn.
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Example 9. Let P2 have the evaluation inner product at the points

x0 = −2, x1 = 0, and x2 = 2.

Compute ⟨p,q⟩ and ∥p∥ for the polynomials p = p(x) = x2 and q = q(x) =
1 + x.

Example 10. Let f = f(x) and g = g(x) be two functions in C[a, b] and
define

⟨f ,g⟩ =
ˆ b

a

f(x)g(x) dx.

Show that this formula defines an inner product on C[a, b].
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Example 11. If C[a, b] has the inner product that was defined in Example 10,
then what is the norm of a function f = f(x) relative to this inner product?

Theorem 6.1.2. If u, v, and w are vectors in a real inner product space V ,
and if k is a scalar, then:

(a) ⟨0,v⟩ = ⟨v,0⟩ = 0
(b) ⟨u,v +w⟩ = ⟨u,v⟩+ ⟨u,w⟩
(c) ⟨u,v −w⟩ = ⟨u,v⟩ − ⟨u,w⟩
(d) ⟨u− v,w⟩ = ⟨u,w⟩ − ⟨v,w⟩
(e) k⟨u,v⟩ = ⟨u, kv⟩

Example 12. Compute
⟨u− 2v, 3u+ 4v⟩

in terms of ∥u∥, ∥v∥, and ⟨u,v⟩.
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6.2 Angle and Orthogonality in Inner Product

Spaces

Theorem 6.2.1 (Cauchy-Schwarz Inequality). If u and v are vectors in a real
inner product space V , then

|⟨u,v⟩| ≤ ∥u∥∥v∥.

Proof. In the case where u = 0 the two sides of the inequality are equal since
⟨u,v⟩ and ∥u∥ are both zero. Thus, we need only consider the case where
u ̸= 0. Making this assumption, let

a = ⟨u,u⟩, b = 2⟨u,v⟩, c = ⟨v,v⟩

and let t be any real number. Since the positivity axiom states that the inner
product of any vector with itself is nonnegative, it follows that

0 ≤ ⟨tu+ v, tu+ v⟩ = ⟨u,u⟩t2 + 2⟨u,v⟩t+ ⟨v,v⟩
= at2 + bt+ c.

This inequality implies that the quadratic polynomial at2 + bt + c has either
no real roots or a repeated real root. Therefore, its discriminant must satisfy
the inequality b2 − 4ac ≤ 0. Expressing the coefficients a, b, and c in terms of
the vectors u and v gives 4⟨u,v⟩2 − 4⟨u,u⟩⟨v,v⟩ ≤ 0 or, equivalently,

⟨u,v⟩2 ≤ ⟨u,u⟩⟨v,v⟩.

Taking square roots of both sides and using the fact that ⟨u,u⟩ and ⟨v,v⟩ are
nonnegative yields

|⟨u,v⟩| ≤ ⟨u,u⟩1/2⟨v,v⟩1/2 or equivalently |⟨u,v⟩| ≤ ∥u∥∥v∥.

Remark 1. If u and v are vectors in a real inner product space V , then the
angle θ between u and v is defined to be

θ = cos−1

(
⟨u,v⟩
∥u∥∥v∥

)
.
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Example 1. Let M22 have the standard inner product. Find the cosine of the
angle between the vectors

u = U =

[
1 2
3 4

]
and v = V =

[
−1 0
3 2

]
.

Theorem 6.2.2. If u, v, and w are vectors in a real inner product space V ,
and if k is a scalar, then:

(a) ∥u+ v∥ ≤ ∥u∥+ ∥v∥
(b) d(u,v) ≤ d(u,w) + d(w,v)

Definition 6.2.1. Two vectors u and v in an inner product space V are called
orthogonal if ⟨u,v⟩ = 0.

Example 2. Are the vectors u = (1, 1) and v = (1,−1) orthogonal with
respect to the Euclidean inner product on R2? What about with respect to
the weighted Euclidean inner product ⟨u,v⟩ = 3u1v1 + 2u2v2?

Example 3. If M22 has the inner product of Example 6 in the preceding
section, then are the matrices

U =

[
1 0
1 1

]
and V =

[
0 2
0 0

]

orthogonal?
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Example 4. Let P2 have the inner product

⟨p,q⟩ =
ˆ 1

−1

p(x)q(x) dx

and let p = x and q = x2. Find ∥p∥ and ∥q∥ and show that p and q are
orthogonal relative to the given inner product.

Theorem 6.2.3 (Generalized Theorem of Pythagoras). If u and v are or-
thogonal vectors in a real inner product space, then

∥u+ v∥2 = ∥u∥2 + ∥v∥2.

Proof. The orthogonality of u and v implies that ⟨u,v⟩ = 0, so

∥u+ v∥2 = ⟨u+ v,u+ v⟩ = ∥u∥2 + 2⟨u,v⟩+ ∥v∥2

= ∥u∥2 + ∥v∥2.

Example 5. Verify Theorem 6.2.3 for the vectors p and q and inner product
discussed in Example 4.

Definition 6.2.2. If W is a subspace of a real inner product space V , then
the set of all vectors in V that are orthogonal to every vector in W is called
the orthogonal complement of W and is denoted by the symbol W⊥.
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Theorem 6.2.4. If W is a subspace of a real inner product space V , then:

(a) W⊥ is a subspace of V .
(b) W ∩W⊥ = {0}.

Proof. (a) The set W⊥ contains at least the zero vector, since ⟨0,w⟩ = 0
for every vector w in W . Thus, it remains to show that W⊥ is closed under
addition and scalar multiplication. To do this, suppose that u and v are
vectors in W⊥, so that for every vector w in W we have ⟨u,w⟩ = 0 and
⟨v,w⟩ = 0. It follows from the additivity and homogeneity axioms of inner
products that

⟨u+ v,w⟩ = ⟨u,w⟩+ ⟨v,w⟩ = 0 + 0 = 0

⟨ku,w⟩ = k⟨u,w⟩ = k(0) = 0

which proves that u+ v and ku are in W⊥.
(b) If v is any vector in both W and W⊥, then v is orthogonal to itself; that
is, ⟨v,v⟩ = 0. It follows from the positivity axiom for inner products that
v = 0.

Theorem 6.2.5. If W is a subspace of a real finite-dimensional inner product
space V , then the orthogonal complement of W⊥ is W ; that is,

(W⊥)⊥ = W.

Example 6. Let W be the subspace of R6 spanned by the vectors

w1 = (1, 3,−2, 0, 2, 0), w2 = (2, 6,−5,−2, 4− 3),

w3 = (0, 0, 5, 10, 0, 15), w4 = (2, 6, 0, 8, 4, 18).

Find a basis for the orthogonal complement of W .
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6.3 Gram-Schmidt Process; QR-Decomposition

Definition 6.3.1. A set of two or more vectors in a real inner product space
is said to be orthogonal if all pairs of distinct vectors in the set are orthogonal.
An orthogonal set in which each vector has norm 1 is said to be orthonormal.

Example 1. Let

v1 = (0, 1, 0), v2 = (1, 0, 1), v3 = (1, 0,−1)

and assume thatR3 has the Euclidean inner product. Is the set S = {v1,v2,v3}
orthogonal?

Remark 1. The process of multiplying a vector v by the reciprocal of its length
is called normalizing v.

Example 2. Normalize the vectors v1, v2, and v3 in Example 1.

Theorem 6.3.1. If S = {v1,v2, . . . ,vn} is an orthogonal set of nonzero vec-
tors in an inner product space, then S is linearly independent.

Proof. Assume that

k1v1 + k2v2 + · · ·+ knvn = 0.

To demonstrate that S = {v1,v2, . . . ,vn} is linearly independent, we must
prove that k1 = k2 = · · · = kn = 0.

For each vi in S, it follows that

⟨k1v1 + k2v2 + · · ·+ knvn,vi⟩ = ⟨0,vi⟩ = 0
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or, equivalently,

k1⟨v1,vi⟩+ k2⟨v2,vi⟩+ · · ·+ kn⟨vn,vi⟩ = 0.

From the orthogonality of S it follows that ⟨vj,vi⟩ = 0 when j ̸= i, so this
equation reduces to

ki⟨vi,vi⟩ = 0.

Since the vectors in S are assumed to be nonzero, it follows from the positivity
axiom for inner products that ⟨vi,vi⟩ ̸= 0. Thus, the preceding equation
implies that each ki is zero, which is what we wanted to prove.

Remark 2. In an inner product space, a basis consisting of orthonormal vectors
is called an orthonormal basis, and a basis consisting of orthogonal vectors is
called an orthogonal basis.

Example 3. Show that the standard basis is orthonormal with respect to the
standard inner product for Pn.

Example 4. Show that the vectors u1, u2, and u3 from Example 2 form an
orthonormal basis for R3.

Theorem 6.3.2.

(a) If S = {v1,v2, . . . ,vn} is an orthogonal basis for an inner product space
V , and if u is any vector in V , then

u =
⟨u,v1⟩
∥v1∥2

v1 +
⟨u,v2⟩
∥v2∥2

v2 + · · ·+
⟨u,vn⟩
∥vn∥2

vn.

(b) If S = {v1,v2, . . . ,vn} is an orthonormal basis for an inner product
space V , and if u is any vector in V , then

u = ⟨u,v1⟩v1 + ⟨u,v2⟩v2 + · · ·+ ⟨u,vn⟩vn.

200



Linear Algebra - 6.3 Gram-Schmidt Process; QR-Decomposition

Proof. (a) Since S = {v1,v2, . . . ,vn} is a basis for V , every vector u in V can
be expressed in the form

u = c1v1 + c2v2 + · · ·+ cnvn.

We will complete the proof by showing that

ci =
⟨u,vi⟩
∥vi∥2

for i = 1, 2, . . . , n. To do this, observe first that

⟨u,vi⟩ = ⟨c1v1 + c2v2 + · · ·+ cnvn,vi⟩
= c1⟨v1,vi⟩+ c2⟨v2,vi⟩+ · · ·+ cn⟨vn,vi⟩.

Since S is an orthogonal set, all of the inner products in the last equality are
zero except the ith, so we have

⟨u,vi⟩ = ci⟨vi,vi⟩ = ci∥vi∥2.

Solving this equation for ci yields the desired result.
(b) Here ∥v1∥ = ∥v2∥ = · · · = ∥vn∥ = 1, so part (a) simplifies to part (b).

Remark 3. The coordinate vector of a vector u in V relative to an orthogonal
basis S = {v1,v2, . . . ,vn} is

(u)S =

(
⟨u,v1⟩
∥v1∥2

,
⟨u,v2⟩
∥v2∥2

, . . . ,
⟨u,vn⟩
∥vn∥2

)
and relative to an orthonormal basis S = {v1,v2, . . . ,vn} is

(u)S = (⟨u,v1⟩, ⟨u,v2⟩, . . . , ⟨u,vn⟩).

Example 5. Let

v1 = (0, 1, 0), v2 =
(
−4

5
, 0, 3

5

)
, v3 =

(
3
5
, 0, 4

5

)
.

It is easy to check that S = {v1,v2,v3} is an orthonormal basis for R3 with
the Euclidean inner product. Express the vector u = (1, 1, 1) as a linear
combination of the vectors in S and find the coordinate vector (u)S.
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Example 6.

(a) Show that the vectors

w1 = (0, 2, 0), w2 = (3, 0, 3), w3 = (−4, 0, 4)

form an orthogonal basis for R3 with the Euclidean inner product, and
use that basis to find an orthonormal basis by normalizing each vector.

(b) Express the vector u = (1, 2, 4) as a linear combination of the orthonor-
mal basis vectors obtained in part (a).

Theorem 6.3.3 (Projection Theorem). If W is a finite-dimensional subspace
of an inner product space V , then every vector u in V can be expressed in
exactly one way as

u = w1 +w2

where w1 is in W and w2 is in W⊥.

Remark 4. The vectors w1 and w2 in Theorem 6.3.3 are commonly denoted

w1 = projW u and w2 = projW⊥ u.

These are called the orthogonal projection of u on W and the orthogonal pro-
jection of u on W⊥, respectively. The vector w2 is also called the component
of u orthogonal to W . Using this notation, we can write

u = projW u+ projW⊥ u = projW u+ (u− projW u).
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Theorem 6.3.4. Let W be a finite-dimensional subspace of an inner product
space V .

(a) If {v1,v2, . . . ,vr} is an orthogonal basis for W , and u is any vector in
V , then

projW u =
⟨u,v1⟩
∥v1∥2

v1 +
⟨u,v2⟩
∥v2∥2

v2 + · · ·+
⟨u,vr⟩
∥vr∥2

vr.

(b) If {v1,v2, . . . ,vr} is an orthonormal basis for W , and u is any vector in
V , then

projW u = ⟨u,v1⟩v1 + ⟨u,v2⟩v1 + · · ·+ ⟨u,vr⟩vr.

Proof. (a) It follows from Theorem 6.3.3 that the vector u can be expressed
in the form u = w1 + w2, where w1 = projW u is in W and w2 is in W⊥;
and it follows from Theorem 6.3.2 that the component projW u = w1 can be
expressed in terms of the basis vectors for W as

projW u = w1 =
⟨w1,v1⟩
∥v1∥2

v1 +
⟨w1,v2⟩
∥v2∥2

v2 + · · ·+
⟨w1,vr⟩
∥vr∥2

vr.

Since w2 is orthogonal to W , it follows that

⟨w2,v1⟩ = ⟨w2,v2⟩ = · · · = ⟨w2,vr⟩ = 0,

so we can write

projW u = w1 =
⟨w1 +w2,v1⟩
∥v1∥2

v1 +
⟨w1 +w2,v2⟩
∥v2∥2

v2 + · · ·+
⟨w1 +w2,vr⟩
∥vr∥2

vr

or, equivalently, as

projW u = w1 =
⟨u,v1⟩
∥v1∥2

v1 +
⟨u,v2⟩
∥v2∥2

v2 + · · ·+
⟨u,vr⟩
∥vr∥2

vr.

(b) Here ∥v1∥ = ∥v2∥ = · · · = ∥vr∥ = 1, so part (a) simplifies to part (b).

Example 7. Let R3 have the Euclidean inner product, and let W be the sub-
space spanned by the orthonormal vectors v1 = (0, 1, 0) and v2 = (−4

5
, 0, 3

5
).

Find the orthogonal projection of u = (1, 1, 1) on W and the component of u
orthogonal to W .
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Theorem 6.3.5. Every nonzero finite-dimensional inner product space has an
orthonormal basis.

Proof. Let W be any nonzero finite-dimensional subspace of an inner product
space, and suppose that {u1,u2, . . . ,ur} is any basis for W . It suffices to
show that W has an orthogonal basis since the vectors in that basis can be
normalized to obtain an orthonormal basis. The following sequence of steps
will produce an orthogonal basis {v1,v2, . . . ,vr} for W :

Step 1. Let v1 = u1.
Step 2. We can obtain a vector v2 that is orthogonal to v1 by computing the

component of u2 that is orthogonal to the space W1 spanned by v1.
Using Theorem 6.3.4,

v2 = u2 − projW1
u2 = u2 −

⟨u2,v1⟩
∥v1∥2

v1.

Of course, if v2 = 0, then v2 is not a basis vector. But this cannot
happen, since it would then follow from the preceding formula for v2

that

u2 =
⟨u2,v1⟩
∥v1∥2

v1 =
⟨u2,v1⟩
∥u1∥2

u1

which implies that u2 is a multiple of u1, contradicting the linear
independence of the basis {u1,u2, . . . ,ur}.

Step 3. To construct a vector v3 that is orthogonal to both v1 and v2, we
compute the component of u3 orthogonal to the space W2 spanned by
v1 and v2. Using Theorem 6.3.4,

v3 = u3 − projW2
u3 = u3 −

⟨u3,v1⟩
∥v1∥2

v1 −
⟨u3,v2⟩
∥v2∥2

v2.

As in Step 2, the linear independence of {u1,u2, . . . ,ur} ensures that
v3 ̸= 0.

Step 4. To determine a vector v4 that is orthogonal to v1, v2, and v3, we
compute the component of u4 orthogonal to the space W3 spanned by
v1, v2, and v3. Using Theorem 6.3.4,

v4 = u4 − projW3
u4 = u4 −

⟨u4,v1⟩
∥v1∥2

v1 −
⟨u4,v2⟩
∥v2∥2

v2 −
⟨u4,v3⟩
∥v3∥2

v3.

Continuing in this way we will produce after r steps an orthogonal set of
nonzero vectors {v1,v2, . . . ,vr}. Since such sets are linearly independent, we
will have produced an orthogonal basis for the r-dimensional space W . By
normalizing these basis vectors we can obtain an orthonormal basis.
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Example 8. Assume that the vector space R3 has the Euclidean inner prod-
uct. Apply the Gram-Schmidt process to transform the basis vectors

u1 = (1, 1, 1), u2 = (0, 1, 1), u3 = (0, 0, 1)

into an orthogonal basis {v1,v2,v3}, and then normalize the orthogonal basis
vectors to obtain an orthonormal basis {q1,q2,q3}.
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Example 9. Let the vector space P2 have the inner product

⟨p,q⟩ =
ˆ 1

−1

p(x)q(x) dx.

Apply the Gram-Schmidt process to transform the standard basis {1, x, x2}
for P2 into an orthogonal basis {ϕ1(x), ϕ2(x), ϕ3(x)}.

Theorem 6.3.6. If W is a finite-dimensional inner product space, then:

(a) Every orthogonal set of nonzero vectors in W can be enlarged to an or-
thogonal basis for W .

(b) Every orthonormal set in W can be enlarged to an orthonormal basis for
W .
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Theorem 6.3.7 (QR-Decomposition). If A is an m× n matrix with linearly
independent column vectors, then A can be factored as

A = QR

where Q is an m × n matrix with orthonormal column vectors, and R is an
n× n invertible upper triangular matrix.

Example 10. Find a QR-decomposition of

A =

1 0 0
1 1 0
1 1 1

 .
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6.4 Best Approximation; Least Squares

Theorem 6.4.1 (Best Approximation Theorem). If W is a finite-dimensional
subspace of an inner product space V , and if b is a vector in V , then projW b
is the best approximation to b from W in the sense that

∥b− projW b∥ < ∥b−w∥

for every vector w in W that is different from projW b.

Proof. For every vector w in W , we can write

b−w = (b− projW b) + (projW b−w).

But projW b−w, being a difference of vectors in W , is itself in W ; and since
b−projW b is orthogonal to W , the two terms on the right side of the equation
are orthogonal. Thus, it follows from the Theorem of Pythagoras that

∥b−w∥2 = ∥b− projW b∥2 + ∥ projW b−w∥2.

If w ̸= projW b, it follows that the second term in this sum is positive, and
hence that

∥b− projW b∥2 < ∥b−w∥2.

Since norms are nonnegative, it follows that

∥b− projW b∥ < ∥b−w∥.

Theorem 6.4.2. For every linear system Ax = b, the associated normal sys-
tem

ATAx = ATb

is consistent, and all solutions are least squares solutions of Ax = b. More-
over, if W is the column space of A, and x is any least squares solution of
Ax = b, then the orthogonal projection of b on W is

projW b = Ax.
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Example 1. Find the least squares solution, the least squares error vector,
and the least squares error of the linear system

x1 − x2 = 4

3x1 + 2x2 = 1

−2x1 + 4x2 = 3.
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Example 2. Find the least squares solutions, the least squares error vector,
and the least squares error of the linear system

3x1 + 2x2 − x3 = 2

x1 − 4x2 + 3x3 = −2
x1 + 10x2 − 7x3 = 1.
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Theorem 6.4.3. If A is an m× n matrix, then the following are equivalent.

(a) The column vectors of A are linearly independent.
(b) ATA is invertible.

Theorem 6.4.4. If A is an m × n matrix with linearly independent column
vectors, then for every m×1 matrix b, the linear system Ax = b has a unique
least squares solution. This solution is given by

x = (ATA)−1ATb.

Moreover, if W is the column space of A, then the orthogonal projection of b
on W is

projW b = Ax = A(ATA)−1ATb.

Example 3. Use Theorem 6.4.4 to find the least squares solution of the linear
system in Example 1.

Example 4. We showed in Section 3.3 that the standard matrix for the or-
thogonal projection onto the line W through the origin of R2 that makes an
angle θ with the positive x-axis is

Pθ =

[
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

]
.

Derive this result using Theorem 6.4.4.
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Theorem 6.4.5 (Equivalent Statements). If A is an n × n matrix, then the
following statements are equivalent.

(a) A is invertible.
(b) Ax = 0 has only the trivial solution.
(c) The reduced row echelon form of A is In.
(d) A is expressible as a product of elementary matrices.
(e) Ax = b is consistent for every n× 1 matrix b.
(f ) Ax = b has exactly one solution for every n× 1 matrix b.
(g) det(A) ̸= 0.
(h) The column vectors of A are linearly independent.
(i) The row vectors of A are linearly independent.
(j ) The column vectors of A span Rn.
(k) The row vectors of A span Rn.
(l) The column vectors of A form a basis for Rn.
(m) The row vectors of A form a basis for Rn.
(n) A has rank n.
(o) A has nullity 0.
(p) The orthogonal complement of the null space of A is Rn.
(q) The orthogonal complement of the row space of A is {0}.
(r) λ = 0 is not an eigenvalue of A.
(s) ATA is invertible.

Theorem 6.4.6. If A is an m × n matrix with linearly independent column
vectors, and if A = QR is a QR-decomposition of A, then for each b in Rm

the system Ax = b has a unique least squares solution given by

x = R−1QTb.
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6.5 Mathematical Modeling Using Least Squares

Theorem 6.5.1 (Uniqueness of the Least Squares Solution). Let (x1, y1), (x2, y2), . . . , (xn, yn)
be a set of two or more data points, not all lying on a vertical line, and let

M =


1 x1

1 x2
...

...
1 xn

 and y =


y1
y2
...
yn

 .

Then there is a unique least squares straight line fit

y = a∗ + b∗x

to the data points. Moreover,

v∗ =

[
a∗

b∗

]

is given by the formula
v∗ = (MTM)−1MTy

which expresses the fact that v = v∗ is the unique solution of the normal
equation

MTMv = MTy.
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Example 1. Find the least squares straight line fit to the four
points (0, 1), (1, 3), (2, 4), and (3, 4). (See the figure.)
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Example 2. Hooke’s law in physics states that the length x of
a uniform spring is a linear function of the force y applied to it.
If we express this relationship as y = a+ bx, then the coefficient
b is called the spring constant. Suppose a particular unstretched
spring has a measured length of 6.1 inches (i.e., x = 6.1 when
y = 0). Suppose further that, as illustrated in the figure, various
weights are attached to the end of the spring and the follow-
ing table of resulting spring lengths is recorded. Find the least
squares straight line fit to the data and use it to approximate
the spring constant.

Weight y (lb) 0 2 4 6

Length x (in) 6.1 7.6 8.7 10.4
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Example 3. According to Newton’s second law of motion, a body near the
Earth’s surface falls vertically downward in accordance with the equation

s = s0 + v0t+
1

2
gt2

where

s = vertical displacement downward relative to some reference point

s0 = displacement from the reference point at time t = 0

v0 = velocity at time t = 0

g = acceleration of gravity at the Earth’s surface.

Suppose that a laboratory experiment is performed to approximate g by mea-
suring the displacement s relative to a fixed reference point of a falling weight
at various times. Use the experimental results shown in the following table to
approximate g.

Time t (sec) .1 .2 .3 .4 .5

Displacement s (ft) −0.18 0.31 1.03 2.48 3.73
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6.6 Function Approximation; Fourier Series

Theorem 6.6.1. If f is a continuous function on [a, b], and W is a finite-
dimensional subspace of C[a, b], then the function g in W that minimizes the
mean square error ˆ b

a

[f(x)− g(x)]2 dx

is g = projW f , where the orthogonal projection is relative to the inner product

⟨f ,g⟩ =
ˆ b

a

f(x)g(x) dx.

The function g = projW f is called the least squares approximation to f from
W .

Remark 1. A function of the form

T (x) = c0 + c1 cosx+ c2 cos 2x+ · · ·+ cn cosnx

+ d1 sinx+ d2 sin 2x+ · · ·+ dn sinnx

is called a trigonometric polynomial; if cn and dn are not both zero, then T (x)
is said to have order n.

Remark 2. To find the least squares approximation of a continuous function
f(x) over the interval [0, 2π] by a trigonometric polynomial of order n or less
we use

projW f =
a0
2

+ [a1 cosx+ · · ·+ an cosnx] + [b1 sinx+ · · ·+ bn sinnx]

where

ak =
1

π

ˆ 2π

0

f(x) cos kx dx, bk =
1

π

ˆ 2π

0

f(x) sin kx dx.

The numbers a0, a1, . . . , an, b1, . . . , bn are called the Fourier coefficients of f .
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Example 1. Find the least squares approximation of f(x) = x on [0, 2π] by

(a) a trigonometric polynomial of order 2 or less;

(b) a trigonometric polynomial of order n or less.
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Chapter 7

Diagonalization and Quadratic
Forms

7.1 Orthogonal Matrices

Definition 7.1.1. A square matrix A is said to be orthogonal if its transpose
is the same as its inverse, that is, if

A−1 = AT

or, equivalently, if
AAT = ATA = I.

Example 1. Determine whether the matrix

A =


3
7

2
7

6
7

−6
7

3
7

2
7

2
7

6
7
−3

7


is orthogonal.
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Example 2. Recall from Table 5 of Section 1.8 that the standard matrix for
the counterclockwise rotation of R2 through an angle θ is

A =

[
cos θ − sin θ
sin θ cos θ

]
.

Verify that this matrix is orthogonal, along with the reflection matrices in
Tables 1 and 2 of Section 1.8.

Theorem 7.1.1. The following are equivalent for an n× n matrix A.

(a) A is orthogonal.
(b) The row vectors of A form an orthonormal set in Rn with the Euclidean

inner product.
(c) The column vectors of A form an orthonormal set in Rn with the Eu-

clidean inner product.

Theorem 7.1.2.

(a) The transpose of an orthogonal matrix is orthogonal.
(b) The inverse of an orthogonal matrix is orthogonal.
(c) A product of orthogonal matrices is orthogonal.
(d) If A is orthogonal, then det(A) = 1 or det(A) = −1.
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Example 3. Verify Theorem 7.1.2 (d) for the matrix

A =

[
1√
2

1√
2

− 1√
2

1√
2

]
.

Theorem 7.1.3. If A is an n× n matrix, then the following are equivalent.

(a) A is orthogonal.
(b) ∥Ax∥ = ∥x∥ for all x in Rn.
(c) Ax · Ay = x · y for all x and y in Rn.

Proof. (a) ⇒ (b) Assume that A is orthogonal, so that ATA = I. It follows
that

∥Ax∥ = (Ax · Ax)1/2 = (x · ATAx)1/2 = (x · x)1/2 = ∥x∥.

(b) ⇒ (c) Assume that ∥Ax∥ = ∥x∥ for all x in Rn. Then we have

Ax · Ay = 1
4
∥Ax+ Ay∥2 − 1

4
∥Ax− Ay∥2 = 1

4
∥A(x+ y)∥2 − 1

4
∥A(x− y)∥2

= 1
4
∥x+ y∥2 − 1

4
∥x− y∥2 = x · y.

(c) ⇒ (a) Assume that Ax · Ay = x · y for all x and y in Rn. It follows that

x · y = x · ATAy

which can be rewritten as x · (ATAy − y) = 0 or as

x · (ATA− I)y = 0.

Since this equation holds for all x in Rn, it holds in particular if
x = (ATA− I)y, so

(ATA− I)y · (ATA− I)y = 0.

Thus, it follows from the positivity axiom for inner products that

(ATA− I)y = 0.

Since this equation is satisfied by every vector y in Rn, it must be that ATA−I
is the zero matrix and hence ATA = I. Thus, A is orthogonal.
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Theorem 7.1.4. If S is an orthonormal basis for an n-dimensional inner
product space V , and if

(u)S = (u1, u2, . . . , un) and (v)S = (v1, v2, . . . , vn)

then:

(a) ∥u∥ =
√

u2
1 + u2

2 + · · ·+ u2
n

(b) d(u,v) =
√

(u1 − v1)2 + (u2 − v2)2 + · · ·+ (un − vn)2

(c) ⟨u,v⟩ = u1v1 + u2v2 + · · ·+ unvn

Theorem 7.1.5. Let V be a finite-dimensional inner product space. If P is the
transition matrix from one orthonormal basis for V to another orthonormal
basis for V , then P is an orthogonal matrix.

Example 4. Let the x′y′-coordinate system be the system obtained by ro-
tating a rectangular xy-coordinate system counterclockwise about the origin
through an angle θ. Write the coordinates (x′, y′) in terms of the coordinates
(x, y).
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Example 5. Use the rotation equations for R2 to find the new coordinates of
the point Q(2, 1) if the coordinate axes of a rectangular coordinate system are
rotated through an angle of θ = π/4.

Example 6. Let the x′y′z′-coordinate system be the system obtained by ro-
tating a rectangular xyz-coordinate system around its z-axis counterclockwise
through an angle θ. Write the coordinates (x′, y′, z′) in terms of the coordinates
(x, y, z).
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7.2 Orthogonal Diagonalization

Definition 7.2.1. If A and B are square matrices, then we say that B is
orthogonally similar to A if there is an orthogonal matrix P such that B =
P TAP .

Remark 1. If A is orthogonally similar to some diagonal matrix, say

P TAP = D

then we say that A is orthogonally diagonalizable and that P orthogonally
diagonalizes A.

Theorem 7.2.1. If A is an n× n matrix with real entries, then the following
are equivalent.

(a) A is orthogonally diagonalizable.
(b) A has an orthonormal set of n eigenvectors.
(c) A is symmetric.

Theorem 7.2.2. If A is a symmetric matrix with real entries, then:

(a) The eigenvalues of A are all real numbers.
(b) Eigenvectors from different eigenspaces are orthogonal.

Example 1. Find an orthogonal matrix P that diagonalizes

A =

4 2 2
2 4 2
2 2 4

 .
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Remark 2. If A is a symmetric matrix that is orthogonally diagonalized by

P =
[
u1 u2 · · · un

]
and if λ1, λ2, . . . , λn are the eigenvalues of A corresponding to the unit eigen-
vectors u1,u2, . . . ,un, then

A = λ1u1u
T
1 + λ2u2u

T
2 + · · ·+ λnunu

T
n ,

which is called a spectral decomposition of A.

Example 2. Find a spectral decomposition of the matrix

A =

[
1 2
2 −2

]
.
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Theorem 7.2.3 (Schur’s Theorem). If A is an n× n matrix with real entries
and real eigenvalues, then there is an orthogonal matrix P such that P TAP is
an upper triangular matrix of the form

P TAP =


λ1 × × · · · ×
0 λ2 × · · · ×
0 0 λ3 · · · ×
...

...
...

. . .
...

0 0 0 · · · λn


in which λ1, λ2, . . . , λn are the eigenvalues of A repeated according to multi-
plicity.

Theorem 7.2.4 (Hessenberg’s Theorem). If A is an n × n matrix with real
entries, then there is an orthogonal matrix P such that P TAP is a matrix of
the form

P TAP =



× × · · · × × ×
× × · · · × × ×
0 × . . . × × ×
...

...
. . .

...
...

...
0 0 · · · × × ×
0 0 · · · 0 × ×


.
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7.3 Quadratic Forms

Remark 1. If a1, a2, . . . , an are treated as fixed constants, then the expression

a1x1 + a2x2 + · · ·+ anxn

is a real-valued function of the n variables x1, x2, . . . , xn and is called a linear
form on Rn. A quadratic form on Rn is a function of the form

a1x
2
1 + a2x

2
2 + · · ·+ anx

2
n + (all possible terms akxixj in which i ̸= j).

The terms of the form akxixj are called cross product terms.

Remark 2. If A is a symmetric n× n matrix and x is an n× 1 column vector
of variables, then we call the function

QA(x) = xTAx

the quadratic form associated with A. When convenient, this function can be
expressed in dot product notation as

xTAx = x · Ax = Ax · x.

Example 1. In each part, express the quadratic form in the matrix notation
xTAx, where A is symmetric.

(a) 2x2 + 6xy − 5y2

(b) x2
1 + 7x2

2 − 3x2
3 + 4x1x2 − 2x1x3 + 8x2x3
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Theorem 7.3.1 (The Principal Axes Theorem). If A is a symmetric n × n
matrix, then there is an orthogonal change of variable that transforms the
quadratic form xTAx into a quadratic form yTDy with no cross product terms.
Specifically, if P orthogonally diagonalizes A, then making the change of vari-
able x = Py in the quadratic form xTAx yields the quadratic form

xTAx = yTDy = λ1y
2
1 + λ2y

2
2 + · · ·+ λny

2
n

in which λ1, λ2, . . . , λn are the eigenvalues of A corresponding to the eigenvec-
tors that form the successive columns of P .

Example 2. Find an orthogonal change of variable that eliminates the cross
product terms in the quadratic form Q = x2

1−x2
3−4x1x2+4x2x3, and express

Q in terms of the new variables.
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Remark 3. A conic section is a curve that results by cutting a double-napped
cone with a plane (see the figure).
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If the cutting plane passes through the vertex, then the resulting intersection
is called a degenerate conic. An equation of the form

ax2 + 2bxy + cy2 + dx+ ey + f = 0

in which a, b, and c are not all zero, represents a conic section. If d = e = 0,
the equation becomes

ax2 + 2bxy + cy2 + f = 0

and is said to represent a central conic. Furthermore, if b = 0, the equation
becomes

ax2 + cy2 + f = 0

and is said to represent a central conic in standard position. If we take the
constant f in these equations to the right side and let k = −f , then we can
rewrite these equations in matrix form as[

x y
] [a b

b c

][
x
y

]
= k and

[
x y

] [a 0
0 c

][
x
y

]
= k.

The three-dimensional analogs of these equations are

[
x y z

]a d e
d b f
e f c


xy
z

 = k and
[
x y z

]a 0 0
0 b 0
0 0 c


xy
z

 = k.

If a, b, and c are not all zero, the the graphs in R3 of these equations are called
central quadrics; the graph of the second of these equations, which is a special
case of the first, is called a central quadric in standard position.
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Example 3.

(a) Identify the conic whose equation is 5x2−4xy+8y2−36 = 0 by rotating
the xy-axes to put the conic in standard position.

(b) Find the angle θ through which you rotated the xy-axes in part (a).
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Definition 7.3.1. A quadratic form xTAx is said to be
positive definite if xTAx > 0 for x ̸= 0;
negative definite if xTAx < 0 for x ̸= 0;
indefinite if xTAx has both positive and negative values.

Theorem 7.3.2. If A is a symmetric matrix, then:

(a) xTAx is positive definite if and only if all eigenvalues of A are positive.
(b) xTAx is negative definite if and only if all eigenvalues of A are negative.
(c) xTAx is indefinite if and only if A has at least one positive eigenvalue

and at least one negative eigenvalue.

Example 4. Determine whether the matrix

A =

3 1 1
1 0 2
1 2 0


is positive definite, negative definite, indefinite, or none of these.
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Remark 4. The kth principal submatrix of an n × n matrix A is the k × k
submatrix consisting of the first k rows and columns of A.

Theorem 7.3.3. If A is a symmetric 2× 2 matrix, then:

(a) xTAx = 1 represents an ellipse if A is positive definite.
(b) xTAx = 1 has no graph if A is negative definite.
(c) xTAx = 1 represents a hyperbola if A is indefinite.

Theorem 7.3.4. If A is a symmetric matrix, then:

(a) A is positive definite if and only if the determinant of every principal
submatrix is positive.

(b) A is negative definite if and only if the determinants of the principal
submatrices alternate between negative and positive values starting with
a negative value for the determinant of the first principal submatrix.

(c) A is indefinite if and only if it is neither positive definite nor negative
definite and at least one principal submatrix has a positive determinant
and at least one has a negative determinant.

Example 5. Determine whether the matrix

A =

 2 −1 −3
−1 2 4
−3 4 9


is positive definite, negative definite, indefinite, or none of these.
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7.4 Optimization Using Quadratic Forms

Theorem 7.4.1 (Constrained Extremum Theorem). Let A be a symmetric
n×n matrix whose eigenvalues in order of decreasing size are λ1 ≥ λ2 ≥ · · · ≥
λn. Then:

(a) The quadratic form xTAx attains a maximum value and a minimum
value on the set of vectors for which ∥x∥ = 1.

(b) The maximum value attained in part (a) occurs at a vector corresponding
to the eigenvalue λ1.

(c) The minimum value attained in part (a) occurs at a vector corresponding
to the eigenvalue λn.

Example 1. Find the maximum and minimum values of the quadratic form

z = 5x2 + 5y2 + 4xy

subject to the constraint x2 + y2 = 1.
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Example 2. A rectangle is to be inscribed in the ellipse
4x2 + 9y2 = 36, as shown in the figure. Use eigenvalue methods
to find nonnegative values of x and y that produce the inscribed
rectangle with maximum area.
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Remark 1. The curves in the xy-plane for which the function
f(x, y) is constant have equations of the form

f(x, y) = k

and are called the level curves of f (see the figure).

Example 3. Geometrically interpret the level curves of the
quadratic form

z = 5x2 + 5y2 + 4xy

subject to the constraint x2 + y2 = 1.

Remark 2. If a function f(x, y) has first-order partial derivatives, then its
relative maxima and minima, if any, occur at points where the conditions

fx(x, y) = 0 and fy(x, y) = 0

are both true. These are called critical points of f . The specific behavior of f
at a critical point (x0, y0) is determined by the sign of

D(x, y) = f(x, y)− f(x0, y0)

at points (x, y) that are close to, but different from, (x0, y0):

• If D(x, y) > 0 at points (x, y) that are sufficiently close to, but different
from, (x0, y0), then f(x0, y0) < f(x, y) at such points and f is said to
have a relative minimum at (x0, y0).

• If D(x, y) < 0 at points (x, y) that are sufficiently close to, but different
from, (x0, y0), then f(x0, y0) > f(x, y) at such points and f is said to
have a relative maximum at (x0, y0).

• If D(x, y) has both positive and negative values inside every circle cen-
tered at (x0, y0), then are points (x, y) that are arbitrarily close to (x0, y0)
at which f(x0, y0) < f(x, y) and points (x, y) that are arbitrarily close
to (x0, y0) at which f(x0, y0) > f(x, y). In this case we say that f has a
saddle point at (x0, y0).
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Theorem 7.4.2 (Second Derivative Test). Suppose that (x0, y0) is a critical
point of f(x, y) and that f has continuous second-order partial derivatives in
some circular region centered at (x0, y0). Then:

(a) f has a relative minimum at (x0, y0) if

fxx(x0, y0)fyy(x0, y0)− f 2
xy(x0, y0) > 0 and fxx(x0, y0) > 0

(b) f has a relative maximum at (x0, y0) if

fxx(x0, y0)fyy(x0, y0)− f 2
xy(x0, y0) > 0 and fxx(x0, y0) < 0

(c) f has a saddle point at (x0, y0) if

fxx(x0, y0)fyy(x0, y0)− f 2
xy(x0, y0) < 0

(d) The test is inconclusive if

fxx(x0, y0)fyy(x0, y0)− f 2
xy(x0, y0) = 0

Remark 3. The symmetric matrix

H(x, y) =

[
fxx(x, y) fxy(x, y)
fxy(x, y) fyy(x, y)

]

is called the Hessian or Hessian matrix of f .

Theorem 7.4.3 (Hessian Form of the Second Derivative Test). Suppose that
(x0, y0) is a critical point of f(x, y) and that f has continuous second-order
partial derivatives in some circular region centered at (x0, y0). If H(x0, y0) is
the Hessian of f at x0, y0), then:

(a) f has a relative minimum at (x0, y0) if H(x0, y0) is positive definite.
(b) f has a relative maximum at (x0, y0) if H(x0, y0) is negative definite.
(c) f has a saddle point at (x0, y0) if H(x0, y0) is indefinite.
(d) The test is inconclusive otherwise.
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Example 4. Find the critical points of the function

f(x, y) = 1
3
x3 + xy2 − 8xy + 3

and use the eigenvalues of the Hessian matrix at those points to determine
which of them, if any, are relative maxima, relative minima, or saddle points.

237



Linear Algebra - 7.5 Hermitian, Unitary, and Normal Matrices

7.5 Hermitian, Unitary, and Normal Matrices

Definition 7.5.1. If A is a complex matrix, then the conjugate transpose of
A, denoted by A∗, is defined by

A∗ = A
T
.

Example 1. Find the conjugate transpose A∗ of the matrix

A =

[
1 + i −i 0
2 3− 2i i

]

Theorem 7.5.1. If k is a complex scalar, and if A and B are complex matrices
whose sizes are such that the stated operations can be performed, then:

(a) (A∗)∗ = A
(b) (A+B)∗ = A∗ +B∗

(c) (A−B)∗ = A∗ −B∗

(d) (kA)∗ = kA∗

(e) (AB)∗ = B∗A∗

Definition 7.5.2. A square matrix A is said to be unitary if

AA∗ = A∗A = I

or, equivalently, if
A∗ = A−1

and it is said to be Hermitian if

A∗ = A.

Example 2. Determine whether the matrix

A =

 1 i 1 + i
−i −5 2− i
1− i 2 + i 3


is Hermitian.
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Example 3. Determine whether the matrix

A =

[
1√
2
− 1√

2
i

− 1√
2
i 1√

2

]

is unitary.

Theorem 7.5.2. If A is a Hermitian matrix, then:

(a) The eigenvalues of A are all real numbers.
(b) Eigenvalues from different eigenspaces are orthogonal.

Example 4. Confirm that the Hermitian matrix

A =

[
2 1 + i

1− i 3

]

has real eigenvalues and that eigenvectors from different eigenspaces are or-
thogonal.
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Theorem 7.5.3. If A is an n × n matrix with complex entries, then the fol-
lowing are equivalent.

(a) A is unitary.
(b) ∥Ax∥ = ∥x∥ for all x in Cn.
(c) Ax · Ay = x · y for all x and y in Cn.
(d) The column vectors of A form an orthonormal set in Cn with respect to

the complex Euclidean inner product.
(e) The row vectors of A form an orthonormal set in Cn with respect to the

complex Euclidean inner product.

Example 5. Use Theorem 7.5.3 to show that

A =

[
1
2
(1 + i) 1

2
(1 + i)

1
2
(1− i) 1

2
(−1 + i)

]

is unitary, and then find A−1.
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Definition 7.5.3. A square complex matrix A is said to be unitarily diago-
nalizable if there is a unitary matrix P such that P ∗AP = D is a complex
diagonal matrix. Any such matrix P is said to unitarily diagonalize A.

Theorem 7.5.4. Every n × n Hermitian matrix A has an orthonormal set
of n eigenvectors and is unitarily diagonalized by any n × n matrix P whose
column vectors form an orthonormal set of eigenvectors of A.

Example 6. Find a matrix P that unitarily diagonalizes the Hermitian matrix

A =

[
2 1 + i

1− i 3

]
.

Remark 1. A square real matrix A is said to be skew-symmetric if AT = −A,
and a square complex matrix A is said to be skew-Hermitian if A∗ = −A.
Matrices with the property

AA∗ = A∗A

are said to be normal.
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Chapter 8

General Linear Transformations

8.1 General Linear Transformations

Definition 8.1.1. If T : V → W is a mapping from a vector space V to a
vector space W , then T is called a linear transformation from V to W if the
following two properties hold for all vectors u and v in V and for all scalars
k:

(i) T (ku) = kT (u)
(ii) T (u+ v) = T (u) + T (v)

In the special case where V = W , the linear transformation T is called a linear
operator on the vector space V .

Theorem 8.1.1. If T : V → W is a linear transformation, then:

(a) T (0) = 0
(b) T (u− v) = T (u)− T (v) for all u and v in V .

Proof. Let u be any vector in V . Since 0u = 0, it follows that

T (0) = T (0u) = 0T (u) = 0

which proves (a).
We can prove part (b) by rewriting T (u− v) as

T (u− v) = T (u+ (−1)v)
= T (u) + (−1)T (v)
= T (u)− T (v).
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Example 1. Verify that every matrix transformation TA : Rn → Rm is also a
linear transformation.

Example 2. Let V and W be any two vector spaces. Verify that the mapping
T : V → W such that T (v) = 0 for every v is a linear transformation, called
the zero transformation.

Example 3. Let V be any vector space. Verify that the mapping I : V → V
such that I(v) = v is a linear transformation, called the identity operator.

Example 4. If V is a vector space and c is any scalar, then verify that the
mapping T : V → V given by T (x) = cx is a linear operator on V . If
0 < c < 1, then T is called the contraction of V with factor c, and if c > 1, it
is called the dilation of V with factor c.

Example 5. Let p = p(x) = c0 + c1x+ · · ·+ cnx
n be a polynomial in Pn, and

define the transformation T : Pn → Pn+1 by

T (p) = T (p(x)) = xp(x) = c0x+ c1x
2 + · · ·+ cnx

n+1.

Verify that T is linear.
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Example 6. Let v0 be any fixed vector in a real inner product space V , and
let T : V → R be the transformation

T (x) = ⟨x,v0⟩

that maps a vector x to its inner product with v0. Verify this transformation
is linear.

Example 7. Let Mnn be the vector space of n × n matrices. In each part
determine whether the transformation is linear.

(a) T1(A) = AT

(b) T2(A) = det(A)

Example 8. If x0 is a fixed nonzero vector in a real inner product space V ,
determine whether the transformation

T (x) = x+ x0

is linear.
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Example 9. Let V be a subspace of F (−∞,∞), let

x1, x2, . . . , xn

be a sequence of distinct real numbers, and let T : V → Rn be the transfor-
mation

T (f) = (f(x1), f(x2), . . . , f(xn))

that associates with f the n-tuple of function values at x1, x2, . . . , xn. We
call this the evaluation transformation on V at x1, x2, . . . , xn. Verify that the
evaluation transformation is linear.

Theorem 8.1.2. Let T : V → W be a linear transformation, where V is
finite-dimensional. If S = {v1,v2, . . . ,vn} is a basis for V , then the image of
any vector v in V can be expressed as

T (v) = c1T (v1) + c2T (v2) + · · ·+ cnT (vn)

where c1, c2, . . . , cn are the coefficients required to express v as a linear combi-
nation of the vectors in the basis S.
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Example 10. Consider the basis S = {v1,v2,v3} for R3, where

v1 = (1, 1, 1), v2 = (1, 1, 0), v3 = (1, 0, 0).

Let T : R3 → R2 be the linear transformation for which

T (v1) = (1, 0), T (v2) = (2,−1), T (v3) = (4, 3).

Find a formula for T (x1, x2, x3), and then use that formula to compute T (2,−3, 5).

Example 11. Let V = C1(−∞,∞) be the vector space of functions with
continuous first derivatives on (−∞,∞), and let W = F (−∞,∞) be the
vector space of all real-valued functions defined on (−∞,∞). Let D : V → W
be the transformation that maps a function f = f(x) into its derivative—that
is,

D(f) = f ′(x).

Verify that D is a linear transformation.
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Example 12. Let V = C(−∞,∞) be the vector space of continuous functions
on the interval (−∞,∞), letW = C1(−∞,∞) be the vector space of functions
with continuous first derivatives on (−∞,∞), and let J : V → W be the
transformation that maps a function f in V into

J(f) =

ˆ x

0

f(t) dt.

Verify that J is a linear transformation.

Definition 8.1.2. If T : V → W is a linear transformation, then the set of
vectors in V that maps into 0 is called the kernel of T and is denoted by
ker(T ). The set of all vectors in W that are images under T of at least one
vector in V is called the range of T and is denoted by R(T ).

Example 13. If TA : Rn → Rm is multiplication by the m×n matrix A, then
what are the kernel and range of TA?

Example 14. Let T : V → W be the zero transformation. What are the
kernel and range of T?

Example 15. Let I : V → V be the identity operator. What are the kernel
and range of I?
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Example 16. Let T : R3 → R3 be the orthogonal projection onto the xy-
plane. What are the kernel and range of T?

Example 17. Let T : R2 → R2 be the linear operator that rotates each vector
in the xy-plane through some angle θ. What are the kernel and range of T?

Example 18. Let V = C1(−∞,∞) be the vector space of functions with
continuous first derivatives on (−∞,∞), let W = F (−∞,∞) be the vector
space of all real-valued functions defined on (−∞,∞), and let D : V → W be
the differentiation transformation D(f) = f ′(x). What is the kernel of D?
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Theorem 8.1.3. If T : V → W is a linear transformation, then:

(a) The kernel of T is a subspace of V .
(b) The range of T is a subspace of W .

Proof. (a) To show that ker(T ) is a subspace, we must show that it contains
at least one vector and is closed under addition and scalar multiplication. By
part (a) of Theorem 8.1.1, the vector 0 is in ker(T ), so the kernel contains at
least one vector. Let v1 and v2 be vectors in ker(T ), and let k be any scalar.
Then

T (v1 + v2) = T (v1) + T (v2) = 0+ 0 = 0,

so v1 + v2 is in ker(T ). Also,

T (kv1) = kT (v1) = k0 = 0,

so kv1 is in ker(T ).
(b) To show that R(T ) is a subspace of W , we must show that it contains
at least one vector and is closed under addition and scalar multiplication.
However, it contains at least the zero vector of W since T (0) = (0). To prove
that it is closed under addition and scalar multiplication, we must show that if
w1 and w2 are vectors in R(T ), and if k is any scalar, then there exist vectors
a and b in V for which

T (a) = w1 +w2 and T (b) = kw1.

But the fact that w1 and w2 are in R(T ) tells us there exist vectors v1 and v2

in V such that
T (v1) = w1 T (v2) = w2.

The following computations complete the proof by showing that the vectors
a = v1 + v2 and b = kv1 satisfy the desired equations:

T (a) = T (v1 + v2) = T (v1) + T (v2) = w1 +w2

T (b) = T (kv1) = kT (v1) = kw1.
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Example 19. Differential equations of the form

y′′ + ω2y = 0 (ω a positive constant)

arise in the study of vibrations. Confirm that

y1 = cosωx and y2 = sinωx

are solutions of these differential equations, and use them to find a general
solution.

Definition 8.1.3. Let T : V → W be a linear transformation. If the range of
T is finite-dimensional, then its dimension is called the rank of T ; and if the
kernel of T is finite-dimensional, then its dimension is called the nullity of T .
The rank of T is denoted by rank(T ) and the nullity of T by nullity(T ).

Theorem 8.1.4 (Dimension Theorem for Linear Transformations). If
T : V → W is a linear transformation from a finite-dimensional vector space
V to a vector space W , then the range of T is finite-dimensional, and

rank(T ) + nullity(T ) = dim(V ).
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8.2 Compositions and Inverse Transformations

Definition 8.2.1. If T : V → W is a linear transformation from a vector
space V to a vector space W , then T is said to be one-to-one if T maps
distinct vectors in V into distinct vectors in W .

Definition 8.2.2. If T : V → W is a linear transformation from a vector
space V to a vector space W , then T is said to be onto (or onto W ) if every
vector in W is the image of at least one vector in V .

Theorem 8.2.1. If T : V → W is a linear transformation, then the following
statements are equivalent.

(a) T is one-to-one.
(b) ker(T ) = {0}.

Proof. (a)⇒ (b) Since T is linear, we know that T (0) = 0. Since T is one-to-
one, there can be no other vectors in V that map into 0, so ker(T ) = {0}.
(b) ⇒ (a) Assume that ker(T ) = {0}. If u and v are distinct vectors in V ,
then u− v ̸= 0. This implies that T (u− v) ̸= 0, for otherwise ker(T ) would
contain a nonzero vector. Since T is linear, it follows that

T (u)− T (v) = T (u− v) ̸= 0,

so T maps distinct vectors in V into distinct vectors in W and hence is one-
to-one.

Example 1. Let T : R2 → R2 be the linear operator that rotates each vector
in the plane about the origin through an angle θ. Is T one-to-one? Is T onto?

Example 2. Let T : R2 → R2 be the linear operator that maps points or-
thogonally on to the x-axis in R2. Is T one-to-one? Is T onto?
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Example 3. Verify that the linear transformations T1 : P3 → R4 and
T2 : M22 → R4 defined by

T1(a+ bx+ cx2 + dx3) = (a, b, c, d)

T2

[a b
c d

] = (a, b, c, d)

are both one-to-one and onto.

Example 4. Let T : Pn → Pn+1 be the linear transformation

T (p) = T (p(x)) = xp(x)

discussed in Example 5 of Section 8.1. Is T one-to-one? Is T onto?

Example 5. Let V = R∞ be the sequence space discussed in Example 3 of
Section 4.1, and consider the linear “shifting operators” on V defined by

T1(u1, u2, . . . , un, . . .) = (0, u1, u2, . . . , un, . . .)

T2(u1, u2, . . . , un, . . .) = (u2, u3, . . . , un, . . .).

(a) Show that T1 is one-to-one but not onto.

(b) Show that T2 is onto but not one-to-one.
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Example 6. Let
D : C1(−∞,∞)→ F (−∞,∞)

be the differentiation transformation discussed in Example 11 of Section 8.1.
Is D one-to-one?

Theorem 8.2.2. If V and W are finite-dimensional vector spaces with the
same dimension, and if T : V → W is a linear transformation, then the
following statements are equivalent.

(a) T is one-to-one.
(b) ker(T ) = {0}.
(c) T is onto [i.e., R(T ) = W ].

Example 7. If TA : Rn → Rm is multiplication by an m× n matrix A, then
when is TA one-to-one and when is TA onto?

Theorem 8.2.3. If TA is a matrix transformation, then

(a) TA is one-to-one if and only if the columns of A are linearly independent.
(b) TA is onto if and only if the columns of A span Rm.

Proof. (a) It follows from Theorem 8.2.1 that TA is one-to-one if and only if
A has nullity 0, which is equivalent to saying that A has rank m, which is
equivalent to saying that the m column vectors of A are linearly independent.
(b) To say that TA is onto is equivalent to saying that the system Ax = b has
a solution for every vector b in Rm. But this is so if and only if the columns
of A span Rm.
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Theorem 8.2.4 (Equivalent Statements). If A is an n × n matrix, then the
following statements are equivalent.

(a) A is invertible.
(b) Ax = 0 has only the trivial solution.
(c) The reduced row echelon form of A is In.
(d) A is expressible as a product of elementary matrices.
(e) Ax = b is consistent for every n× 1 matrix b.
(f ) Ax = b has exactly one solution for every n× 1 matrix b.
(g) det(A) ̸= 0.
(h) The column vectors of A are linearly independent.
(i) The row vectors of A are linearly independent.
(j ) The column vectors of A span Rn.
(k) The row vectors of A span Rn.
(l) The column vectors of A form a basis for Rn.
(m) The row vectors of A form a basis for Rn.
(n) A has rank n.
(o) A has nullity 0.
(p) The orthogonal complement of the null space of A is Rn.
(q) The orthogonal complement of the row space of A is {0}.
(r) λ = 0 is not an eigenvalue of A.
(s) ATA is invertible.
(t) The kernel of TA is {0}.
(u) The range of TA is Rn.
(v) TA is one-to-one.

Example 8. Let T : R3 → R3 be the linear operator defined by the formula

T (x1, x2, x3) = (3x1 + x2,−2x1 − 4x2 + 3x3, 5x1 + 4x2 − 2x3).

Determine whether T is one-to-one; if so, find T−1(x1, x2, x3).
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Remark 1. If T : V → W is a one-to-one linear transformation with range
R(T ), and if w is any vector in R(T ), then the fact that T is one-to-one means
that there is exactly one vector v in V for which T (v) = w. This fact allows
us to define a new function, called the inverse of T (and denoted by T−1), that
is defined on the range of T and that maps w back into v.

Example 9. Find the inverse of the linear transformation T : Pn → Pn+1

given by
T (p) = T (p(x)) = xp(x).

Definition 8.2.3. If T1 : U → V and T2 : V → W are linear transformations,
then the composition of T2 with T1, denoted by T2◦T1 (which is read “T2 circle
T1”), is the function defined by the formula

(T2 ◦ T1)(u) = T2(T1(u))

where u is a vector in U .

Theorem 8.2.5. If T1 : U → V and T2 : V → W are linear transformations,
then (T2 ◦ T1) : U → W is also a linear transformation.

Proof. If u and v are vectors in U and c is a scalar, then it follows from the
linearity of T1 and T2 that

(T2 ◦ T1)(u+ v) = T2(T1(u+ v)) = T2(T1(u) + T1(v))

= T2(T1(u)) + T2(T1(v))

= (T2 ◦ T1)(u) + (T2 ◦ T1)(v)

and

(T2 ◦ T1)(cu) = T2(T1(cu)) = T2(cT1(u))

= cT2(T1(u)) = c(T2 ◦ T1)(u).

Thus, T2 ◦ T1 satisfies the two requirements of a linear transformation.
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Example 10. Let T1 : P1 → P2 and T2 : P2 → P2 be the linear transformations
given by the formulas

T1(p(x)) = xp(x) and T2(p(x)) = p(2x+ 4).

Find the composition (T2 ◦ T1) : P1 → P2 if p(x) = c0 + c1x.

Example 11. If T : V → V is any linear operator, and if I : V → V is the
identity operator, then show that for all vectors v in V that T ◦ I and I ◦ T
are the same as T .

Remark 2. Compositions can be defined for more than two linear transforma-
tions. For example, if

T1 : U → V, T2 : V → W, and T3 : W → Y

are linear transformations, then the composition T3 ◦ T2 ◦ T1 is defined by

(T3 ◦ T2 ◦ T1)(u) = T3(T2(T1(u))).
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Theorem 8.2.6. If T1 : U → V and T2 : V → W are one-to-one linear
transformations, then:

(a) T2 ◦ T1 is one-to-one.
(b) (T2 ◦ T1)

−1 = T−1
1 ◦ T−1

2 .

Proof. (a) We want to show that T2◦T1 maps distinct vectors in U into distinct
vectors in W . But if u and v are distinct vectors in U , then T1(u) and T1(v)
are distinct vectors in V since T1 is one-to-one. This and the fact that T2 is
one-to-one imply that

T2(T1(u)) and T2(T1(v))

are also distinct vectors. But these expressions can also be written as

(T2 ◦ T1)(u) and (T2 ◦ T1)(v),

so T2 ◦ T1 maps u and v into distinct vectors in W .
(b) We want to show that

(T2 ◦ T1)
−1(w) = (T−1

1 ◦ T−1
2 )(w)

for every vector w in the range of T2 ◦ T1. For this purpose, let

u = (T2 ◦ T1)
−1(w),

so our goal is to show that

u = (T−1
1 ◦ T−1

2 )(w).

But it follows from u = (T2 ◦ T1)
−1(w) that

(T2 ◦ T1)(u) = w,

or, equivalently,
T2(T1(u)) = w.

Now, taking T−1
2 of each side of this equation, then taking T−1

1 of each side of
the result yields

u = T−1
1 (T−1

2 (w)),

or, equivalently,

u = (T−1
1 ◦ T−1

2 )(w).
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8.3 Isomorphism

Definition 8.3.1. A linear transformation T : V → W that is both one-to-
one and onto is said to be an isomorphism, and W is said to be isomorphic to
V .

Theorem 8.3.1. Every real n-dimensional vector space is isomorphic to Rn.

Proof. Let V be a real n-dimensional vector space. To prove that V is isomor-
phic to Rn we must find a linear transformation T : V → Rn that is one-to-one
and onto. For this purpose, let S = {v1,v2, . . . ,vn} be any basis for V , let

u = k1v1 + k2v2 + · · ·+ knvn

be the representation of a vector u in V as a linear combination of the basis
vectors, and let T : V → Rn be the coordinate map

T (u) = (u)S = (k1, k2, . . . , kn).

We will show that T is an isomorphism. To prove the linearity, let u and v be
vectors in V , let c be a scalar, and let

u = k1v1 + k2v2 + · · ·+ knvn and v = d1v1 + d2v2 + · · ·+ dnvn

be the representations of u and v as linear combinations of the basis vectors.
Then it follows that

T (cu) = T (ck1v1 + ck2v2 + · · ·+ cknvn)

= (ck1, ck2, . . . , ckn)

= c(k1, k2, . . . , kn) = cT (u)

and that

T (u+ v) = T
(
(k1 + d1)v1 + (k2 + d2)v2 + · · ·+ (kn + dn)vn

)
= (k1 + d1, k2 + d2, . . . , kn + dn)

= (k1, k2, . . . , kn) + (d1, d2, . . . , dn)

= T (u) + T (v),

which shows that T is linear. To show that T is one-to-one, we must show
that if u and v are distinct vectors in V , then so are their images in Rn. But if
u ̸= v, and if the representations of these vectors in terms of the basis vectors
are as above, then we must have ki ̸= di for at least one i. Thus,

T (u) = (k1, k2, . . . , kn) ̸= (d1, d2, . . . , dn) = T (v),

which shows that u and v have distinct images under T . Finally, the transfor-
mation T is onto, for if w = (k1, k2, . . . , kn) is any vector in Rn, then it follows
that w is the image under T of the vector u = k1v1 + k2v2 + · · ·+ knvn.
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Theorem 8.3.2. If S is an ordered basis for a vector space V , then the coor-
dinate map

u
T−→ (u)S

is an isomorphism between V and Rn.

Example 1. Find an isomorphism between Pn−1 and Rn.

Example 2. Find an isomorphism between M22 and R4.

Example 3. Use isomorphisms to calculate the derivative

d

dx
(2 + x+ 4x2 − x3) = 1 + 8x− 3x2

as a matrix product.
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Example 4. Use the natural isomorphism between P5 and R6 to determine
whether the following polynomials are linearly independent.

p1 = 1 + 2x− 3x2 + 4x3 + x5

p2 = 1 + 3x− 4x2 + 6x3 + 5x4 + 4x5

p3 = 3 + 8x− 11x2 − 16x3 + 10x4 + 9x5

Remark 1. If V and W are inner product spaces, then we call an isomorphism
T : V → W an inner product space isomorphism if

⟨T (u), T (v)⟩ = ⟨u,v⟩ for all u and v in V.

Theorem 8.3.3. If S = {v1,v2, . . . ,vn} is an ordered orthonormal basis for
a real vector space V , then the coordinate map

u
T−→ (u)S

is an inner product space isomorphism between V and the vector space Rn with
the Euclidean inner product.
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Example 5. Show that the isomorphism in Example 1 is an inner product
space isomorphism.

Example 6. Find an inner product isomorphism between Rn and Mn, the
vector space of real n× 1 matrices.
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8.4 Matrices for General Linear Transforma-

tions

Remark 1. Suppose that V is an n-dimensional vector space, that W is an
m-dimensional vector space, and that T : V → W is a linear transformation.
Suppose further that B is a basis for V , that B′ is a basis for W , and that
for each vector x in V , the coordinate matrices for x and T (x) are [x]B and
[T (x)]B′ , respectively. Then the matrix for T relative to the bases B and B′

is denoted by the symbol [T ]B′,B and given by

[T ]B′,B =
[
[T (u1)]B′ | [T (u2)]B′ | · · · | [T (un)]B′

]
and has the property

[T ]B′,B[x]B = [T (x)]B′ .

Example 1. Let T : P1 → P2 be the linear transformation defined by

T (p(x)) = xp(x).

Find the matrix for T with respect to the standard bases

B = {u1,u2} and B′ = {v1,v2,v3}

where
u1 = 1, u2 = x; v1 = 1, v2 = x, v3 = x2.
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Example 2. Let T : P1 → P2 be the linear transformation in Example 1, and
use the three-step procedure illustrated in the following figure to perform the
computation

T (a+ bx) = x(a+ bx) = ax+ bx2.

x Direct

computation
//

(1)

��

T (x)

[x]B
Multiply by [T ]B′,B

(2)
// [T (x)]B′

(3)

OO

Example 3. Let T : R2 → R3 be the linear transformation defined by

T

[x1

x2

] =

 x2

−5x1 + 13x2

−7x1 + 16x2

 =

 0 1
−5 13
−7 16

[x1

x2

]
.

Find the matrix for the transformation T with respect to the bases
B = {u1,u2} for R2 and B′ = {v1,v2,v3} for R3, where

u1 =

[
3
1

]
, u2 =

[
5
2

]
; v1 =

 1
0
−1

 , v2 =

−12
2

 , v3 =

01
2

 .
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Remark 2. In the special case where V = W (so that T : V → V is a linear
operator), it is usual to take B = B′ when constructing a matrix for T . In
this case the resulting matrix is called the matrix for T relative to the basis
B and is usually denoted by [T ]B rather than [T ]B,B. If B = {u1,u2, . . . ,un},
then

[T ]B =
[
[T (u1)]B | [T (u2)]B | · · · | [T (un)]B

]
and has the property

[T ]B[x]B = [T (x)]B.

Example 4. If B = {u1,u2, . . . ,un} is a basis for an n-dimensional vector
space V , and if I : V → V is the identity operator on V , then find [I]B.

Example 5. Let T : P2 → P2 be the linear operator defined by

T (p(x)) = p(3x− 5),

that is, T (c0 + c1x+ c2x
2) = c0 + c1(3x− 5) + c2(3x− 5)2.

(a) Find [T ]B relative to the basis B = {1, x, x2}.

(b) Use the indirect procedure to compute T (1 + 2x+ 3x2).

(c) Check the result in (b) by computing T (1 + 2x+ 3x2) directly.
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Theorem 8.4.1. If T1 : U → V and T2 : V → W are linear transformations,
and if B, B′′, and B′ are bases for U , V , and W respectively, then

[T2 ◦ T1]B′,B = [T2]B′,B′′ [T1]B′′,B.

Theorem 8.4.2. If T : V → V is a linear operator, and if B is a basis for V ,
then the following are equivalent.

(a) T is one-to-one.
(b) [T ]B is invertible.

Moreover, when these equivalent conditions hold,

[T−1]B = [T ]−1
B .

Example 6. Let T1 : P1 → P2 be the linear transformation defined by

T1(p(x)) = xp(x)

and let T2 : P2 → P2 be the linear operator defined by

T2(p(x)) = p(3x− 5).

Find [T2 ◦ T1]B′,B relative to the bases B = {1, x} and B′ = {1, x, x2}.
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8.5 Similarity

Theorem 8.5.1. If B and B′ are bases for a finite-dimensional vector space
V , and if I : V → V is the identity operator on V , then

PB→B′ = [I]B′,B and PB′→B = [I]B,B′ .

Proof. Suppose that B = {u1,u2, . . . ,un} and B′ = {u′
1,u

′
2, . . . ,u

′
n} are bases

for V . Using the fact that I(v) = v for all v in V , it follows that

[I]B′,B =
[
[I(u1)]B′ | [I(u2)]B′ | · · · | [I(un)]B′

]
=
[
[u1]B′ | [u2]B′ | · · · | [un]B′

]
= PB→B′ .

The proof that [I]B,B′ = PB′→B is similar.

Theorem 8.5.2. Let T : V → V be a linear operator on a finite-dimensional
vector space V , and let B and B′ be bases for V . Then

[T ]B′ = P−1[T ]BP

where P = PB′→B and P−1 = PB→B′.

Theorem 8.5.3. If V is a finite-dimensional vector space, then two matrices A
and B represent the same linear operator (but possibly with respect to different
bases) if and only if they are similar. Moreover, if B = P−1AP , then P is the
transition matrix from the bases used for B to the basis used for A.
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Example 1. Show that the matrices

C =

[
1 1
−2 4

]
and D =

[
2 0
0 3

]

represent the same linear operator T : R2 → R2 where C is the matrix relative
to the basisB = {e1, e2} andD is the matrix relative to the basisB′ = {u′

1,u
′
2}

in which

u′
1 =

[
1
1

]
, u′

2 =

[
1
2

]
.

Verify that these matrices are similar by finding a matrix P for which D =
P−1CP .

Remark 1. We define the determinant of the linear operator T to be

det(T ) = det[T ]B

where B is any basis for V .
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Table 1 Similarity Invariants

Property Similarity

Determinant [T ]B and P−1[T ]BP have the same determinant.

Invertibility [T ]B is invertible if and only if P−1[T ]BP is invertible.

Rank [T ]B and P−1[T ]BP have the same rank.

Nullity [T ]B and P−1[T ]BP have the same nullity.

Trace [T ]B and P−1[T ]BP have the same trace.

Characteristic polynomial [T ]B and P−1[T ]BP have the same characteristic polynomial.

Eigenvalues [T ]B and P−1[T ]BP have the same eigenvalues.

Eigenspace dimension If λ is an eigenvalue of [T ]B and P−1[T ]BP , then the eigenspace
of [T ]B corresponding to λ and the eigenspace of P−1[T ]BP
corresponding to λ have the same dimension.

Example 2. Find det[T ] and det[T ]B′ for

[T ] =

[
1 1
−2 4

]
and [T ]B′ =

[
2 0
0 3

]
.

Example 3. Find the eigenvalues of the linear operator T : P2 → P2 defined
by

T (a+ bx+ cx2) = −2c+ (a+ 2b+ c)x+ (a+ 3c)x2.
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8.6 Geometry of Matrix Operators

Theorem 8.6.1. If T : R2 → R2 is multiplication by an invertible matrix,
then:

(a) The image of a straight line is a straight line.
(b) The image of a line through the origin is a line through the origin.
(c) The images of parallel lines are parallel lines.
(d) The image of the line segment joining points P and Q is the line segment

joining the images of P and Q.
(e) The images of three points lie on a line if and only if the points themselves

lie on a line.

Example 1. According to Theorem 8.6.1, the invertible matrix

A =

[
3 1
2 1

]

maps the line y = 2x+ 1 into another line. Find its equation.

Example 2. Sketch the image of the unit square under multiplication by the
invertible matrix

A =

[
0 1
2 1

]
.

Label the vertices of the image with their coordinates, and number the edges
of the unit square and their corresponding images.
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Table 1

Operator Standard Matrix Effect on the Unit Square

Reflection about
the x-axis

[
1 0
0 −1

]
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Table 2

Operator Standard Matrix Effect on the Unit Square

Orthogonal projection
onto the x-axis

[
1 0
0 0

]
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Table 3

Operator Standard Matrix Effect on the Unit Square

Rotation about the
origin through a
positive angle θ

[
cos θ − sin θ
sin θ cos θ

]
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Table 4

Operator Standard Matrix Effect on the Unit Square
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ᄫއ Ⴝ Գއ ވ
ކ Կއ

ÿčĂ ĄĎđ ēĆă đăʢăāēćĎč ćĒ ᄫވ Ⴝ Գކ އ
އ Կކ

�ĆĔĒܡ ēĆă ĒēÿčĂÿđĂ Čÿēđćė ĄĎđ ēĆă ĒĆăÿđ ĄĎċċĎĖăĂ ĀĘ ēĆă đăʢăāēćĎč ćĒ

ᄫވᄫއ Ⴝ Գކ އ
އ Կކ Գއ ވ

ކ Կއ Ⴝ Գކ އ
އ Կވ
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Example 3.

(a) Find the standard matrix for the operator on R2 that first shears by a
factor of 2 in the x-direction and then reflects the result about the line
y = x. Sketch the image of the unit square under this operator.

(b) Find the standard matrix for the operator on R2 that first reflects about
y = x and then shears by a factor of 2 in the x-direction. Sketch the
image of the unit square under this operator.

(c) Confirm that the shear and the reflection in parts (a) and (b) do not
commute.
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Table 6

Operator Effect on the Unit Square Standard Matrix

Contraction with
factor k in R2

(0 ≤ k < 1)
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ᄫ Ⴝ ԳĊއ ކ
ކ Ċވ

Կ
ćč ĖĆćāĆ ēĆă ăčēđćăĒ Ċއ ÿčĂ Ċވ ÿđă ďĎĒćēćĕă đăÿċ čĔČĀăđĒ ܍ܱ ܥܲއ
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(1, 1)

(–1, –1)

y

x

�
���� чѵхѵц
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ēĆă Čÿēđćė ăĐĔÿēćĎč ᄫ Ⴝ ԳႼއ ކ

ކ ႼއԿ Ⴝ ԳႼއ ކ
ކ Կއ Գއ ކ

ކ ႼއԿ
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ĒĐĔÿđă ÿĀĎĔē ēĆă ėܼÿėćĒ ÿčĂ ēĆăč đăʢăāēćčą ēĆÿē đăĒĔċē ÿĀĎĔē ēĆă ĘܼÿėćĒܥ �ĎĔ ĒĆĎĔċĂ Āă ÿĀċă ēĎ
Ēăă ēĆćĒ ÿĒ Ėăċċ ĄđĎČ �ćąĔđă ܥލܥތܥގ

[
k 0
0 k

]
Dilation with
factor k in R2

(k > 1)
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ĆÿĒ ēĆă ąăĎČăēđćā ăʗăāē ĎĄ đăʢăāēćčą ēĆă Ĕčćē ĒĐĔÿđă ÿĀĎĔē ēĆă Ďđćąćčܥ �Ďēăܡ ĆĎĖăĕăđܡ ēĆÿē
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ކ ႼއԿ Ⴝ ԳႼއ ކ
ކ Կއ Գއ ކ

ކ ႼއԿ
ēĎąăēĆăđ ĖćēĆ �ÿĀċă އ ĒĆĎĖĒ ēĆÿē ēĆă ĒÿČă đăĒĔċē āÿč Āă ĎĀēÿćčăĂ ĀĘ ʟđĒē đăʢăāēćčą ēĆă Ĕčćē
ĒĐĔÿđă ÿĀĎĔē ēĆă ėܼÿėćĒ ÿčĂ ēĆăč đăʢăāēćčą ēĆÿē đăĒĔċē ÿĀĎĔē ēĆă ĘܼÿėćĒܥ �ĎĔ ĒĆĎĔċĂ Āă ÿĀċă ēĎ
Ēăă ēĆćĒ ÿĒ Ėăċċ ĄđĎČ �ćąĔđă ܥލܥތܥގ

Example 4. Discuss the geometric effect on the unit square of multiplication
by a diagonal matrix

A =

[
k1 0
0 k2

]
in which the entries k1 and k2 are positive real numbers (̸= 1).

Example 5. Discuss the geometric effect on the unit square of multiplication
by the matrix

A =

[
−1 0
0 −1

]
.
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Example 6. Discuss the geometric effect on the unit square of multiplication
by the matrix

A =

[
0 −1
−1 0

]
.

Theorem 8.6.2. If E is an elementary matrix, then TE : R2 → R2 is one of
the following:

(a) A shear along a coordinate axis.
(b) A reflection about y = x.
(c) A compression along a coordinate axis.
(d) An expansion along a coordinate axis.
(e) A reflection about a coordinate axis.
(f ) A compression or expansion along a coordinate axis followed by a reflec-

tion about a coordinate axis.

Proof. Because a 2 × 2 elementary matrix results from performing a single
elementary row operation on the 2 × 2 identity matrix, such a matrix must
have one of the following forms:[

1 0
k 1

]
,

[
1 k
0 1

]
,

[
0 1
1 0

]
,

[
k 0
0 1

]
,

[
1 0
0 k

]
.

The first two matrices represent shears along coordinate axes, and the third
represents a reflection about y = x. If k > 0, the last two matrices represent
compressions or expansions along coordinate axes, depending on whether 0 ≤
k < 1 or k > 1. If k < 0, and if we express k in the form k = −k1 where
k1 > 0, then the last two matrices can be written as[

k 0
0 1

]
=

[
−k1 0
0 1

]
=

[
−1 0
0 1

][
k1 0
0 1

]
[
1 0
0 k

]
=

[
1 0
0 −k1

]
=

[
1 0
0 −1

][
1 0
0 k1

]

Since k1 > 0, the first product represents a compression or expansion along
the x-axis followed by a reflection about the y-axis, and the second product
represents a compression or expansion along the y-axis followed by a reflection
about the x-axis. In the case where k = −1, these transformations are simply
reflections about the y-axis and x-axis, respectively.

275



Linear Algebra - 8.6 Geometry of Matrix Operators

Theorem 8.6.3. If TA : R2 → R2 is multiplication by an invertible matrix
A, then the geometric effect of TA is the same as an appropriate succession of
shears, compressions, expansions, and reflections.

Example 7. In Example 2 we illustrated the effect on the unit square of
multiplication by

A =

[
0 1
2 1

]
.

Express this matrix as a product of elementary matrices, and then describe
the effect of multiplication by A in terms of shears, compressions, expansions,
and reflections.
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Remark 1. The right-hand rule can be used to establish a sign for an angle of
rotation about a unit vector u by cupping the fingers of your right hand so
they curl in the direction of rotation. If your thumb points in the direction of
u, then the angle of rotation is regarded to be positive relative to u, and if it
points in the direction opposite to u, then it is regarded to be be negative to
u.
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ĎďďĎĒćēă ēĎ Ĕܡ ēĆăč ćē ćĒ đăąÿđĂăĂ ēĎ Āă čăąÿēćĕă đăċÿēćĕă ēĎ Ĕ ܱ�ćąĔđă ܥĀܲކއܥތܥގ
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Axis of rotation

(a)  Angle of rotation
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y

x

u

Positive
rotation

(b)  Right-hand rule

z

y

x
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Negative
rotation

w
θ

�
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�Ďđ đĎēÿēćĎčĒ ÿĀĎĔē ēĆă āĎĎđĂćčÿēă ÿėăĒ ćč ೵ܡމ Ėă Ėćċċ ēÿĊă ēĆă Ĕčćē ĕăāēĎđĒ ēĎ Āă ćܡ ĉܡ
ÿčĂ Ċܡ ćč ĖĆćāĆ āÿĒă ÿč ÿčąċă ĎĄ đĎēÿēćĎč Ėćċċ Āă ďĎĒćēćĕă ćĄ ćē ćĒ āĎĔčēăđāċĎāĊĖćĒă ċĎĎĊćčą
ēĎĖÿđĂ ēĆă Ďđćąćč ÿċĎčą ēĆă ďĎĒćēćĕă āĎĎđĂćčÿēă ÿėćĒ ÿčĂ Ėćċċ Āă čăąÿēćĕă ćĄ ćē ćĒ āċĎāĊĖćĒăܥ
�ÿĀċă ލ ĒĆĎĖĒ ēĆă ĒēÿčĂÿđĂ ČÿēđćāăĒ ĄĎđ ēĆă đĎēÿēćĎč ĎďăđÿēĎđĒ Ďč ೵މ ēĆÿē đĎēÿēă ăÿāĆ
ĕăāēĎđ ÿĀĎĔē Ďčă ĎĄ ēĆă āĎĎđĂćčÿēă ÿėăĒ ēĆđĎĔąĆ ÿč ÿčąċă ܥྶ �ĎĔ Ėćċċ ʟčĂ ćē ćčĒēđĔāēćĕă ēĎ
āĎČďÿđă ēĆăĒă ČÿēđćāăĒ ēĎ ēĆĎĒă ćč �ÿĀċă ދ ĎĄ �ăāēćĎč ܥގܥއ

��2Ѷ �$/�#Ѷ �)� �*''
�č ÿăđĎčÿĔēćāĒ ÿčĂ ÿĒēđĎčÿĔēćāĒܡ ēĆă ĎđćăčēÿēćĎč ĎĄ ÿč ÿćđāđÿĄē
Ďđ Ēďÿāă ĒĆĔēēċă đăċÿēćĕă ēĎ ÿč ėĘęܼāĎĎđĂćčÿēă ĒĘĒēăČ ćĒ ĎĄēăč
ĂăĒāđćĀăĂ ćč ēăđČĒ ĎĄ ÿčąċăĒ āÿċċăĂ ĘÿĖܡ ďćēāĆܡ ÿčĂ đĎċċܥ �Ąܡ ĄĎđ
ăėÿČďċăܡ ÿč ÿćđāđÿĄē ćĒ ʢĘćčą ÿċĎčą ēĆă ĘܼÿėćĒ ÿčĂ ēĆă ėĘܼďċÿčă
ĂăʟčăĒ ēĆă ĆĎđćęĎčēÿċܡ ēĆăč ēĆă ÿćđāđÿĄē݆Ē ÿčąċă ĎĄ đĎēÿēćĎč ÿĀĎĔē
ēĆă ęܼÿėćĒ ćĒ āÿċċăĂ ēĆă ĘÿĖܡ ćēĒ ÿčąċă ĎĄ đĎēÿēćĎč ÿĀĎĔē ēĆă ėܼ
ÿėćĒ ćĒ āÿċċăĂ ēĆă ďćēāĆܡ ÿčĂ ćēĒ ÿčąċă ĎĄ đĎēÿēćĎč ÿĀĎĔē ēĆă Ęܼ
ÿėćĒ ćĒ āÿċċăĂ ēĆă đĎċċܥ � āĎČĀćčÿēćĎč ĎĄ ĘÿĖܡ ďćēāĆܡ ÿčĂ đĎċċ
āÿč Āă ÿāĆćăĕăĂ ĀĘ ÿ Ēćčąċă đĎēÿēćĎč ÿĀĎĔē ĒĎČă ÿėćĒ ēĆđĎĔąĆ
ēĆă Ďđćąćčܥ �ĆćĒ ćĒܡ ćč Ąÿāēܡ ĆĎĖ ÿ Ēďÿāă ĒĆĔēēċă ČÿĊăĒ ÿēēćēĔĂă
ÿĂĉĔĒēČăčēĒ݂ćē ĂĎăĒč݆ē ďăđĄĎđČ ăÿāĆ đĎēÿēćĎč ĒăďÿđÿēăċĘܢ ćē āÿċܼ
āĔċÿēăĒ Ďčă ÿėćĒܡ ÿčĂ đĎēÿēăĒ ÿĀĎĔē ēĆÿē ÿėćĒ ēĎ ąăē ēĆă āĎđđăāē Ďđćܼ

ăčēÿēćĎčܥ �ĔāĆ đĎēÿēćĎč ČÿčăĔĕăđĒ ÿđă ĔĒăĂ ēĎ ÿċćąč ÿč ÿčēăččÿܡ
ďĎćčē ēĆă čĎĒă ēĎĖÿđĂ ÿ āăċăĒēćÿċ ĎĀĉăāēܡ Ďđ ďĎĒćēćĎč ÿ ďÿĘċĎÿĂ ĀÿĘ
ĄĎđ ĂĎāĊćčąܥ

Roll

Yaw

Pitch

z

x
y

Table 6

Operator Illustration Rotation Equations Standard Matrix

Counterclockwise
rotation about the
positive x-axis through
an angle θ
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�ďăđÿēĎđ �ċċĔĒēđÿēćĎč �ĎēÿēćĎč �ĐĔÿēćĎčĒ �ēÿčĂÿđĂ �ÿēđćė

�ĎĔčēăđāċĎāĊĖćĒă
đĎēÿēćĎč ÿĀĎĔē ēĆă
ďĎĒćēćĕă ėܼÿėćĒ
ēĆđĎĔąĆ ÿč
ÿčąċă ᆇ

z

y

x

w

x
θ

Xއ Ⴝ ė
Xވ Ⴝ Ę āĎĒᆇ Ⴜ ę Ēćčᆇ
Xމ Ⴝ Ę Ēćčᆇ Ⴛ ę āĎĒᆇ Ըއ ކ ކ

ކ āĎĒᆇ Ⴜ Ēćčᆇ
ކ Ēćčᆇ āĎĒᆇ Մ

�ĎĔčēăđāċĎāĊĖćĒă
đĎēÿēćĎč ÿĀĎĔē ēĆă
ďĎĒćēćĕă ĘܼÿėćĒ
ēĆđĎĔąĆ ÿč
ÿčąċă ᆇ

z

y

x w

x

θ

Xއ Ⴝ ė āĎĒᆇ Ⴛ ę Ēćčᆇ
Xވ Ⴝ Ę
Xމ Ⴝ Ⴜė Ēćčᆇ Ⴛ ę āĎĒᆇ Ը āĎĒᆇ ކ Ēćčᆇ

ކ އ Ⴜކ Ēćčᆇ ކ āĎĒᆇՄ

�ĎĔčēăđāċĎāĊĖćĒă
đĎēÿēćĎč ÿĀĎĔē ēĆă
ďĎĒćēćĕă ęܼÿėćĒ
ēĆđĎĔąĆ ÿč
ÿčąċă ᆇ

z

y

x

wx

θ

Xއ Ⴝ ė āĎĒᆇ Ⴜ Ę Ēćčᆇ
Xވ Ⴝ ė Ēćčᆇ Ⴛ Ę āĎĒᆇ
Xމ Ⴝ ę

ԸāĎĒᆇ Ⴜ Ēćčᆇ ކ
Ēćčᆇ āĎĒᆇ ކ
ކ ކ އ

Մ

�Ďđ āĎČďċăēăčăĒĒܡ Ėă čĎēă ēĆÿē ēĆă ĒēÿčĂÿđĂ Čÿēđćė ĄĎđ ÿ āĎĔčēăđāċĎāĊĖćĒă đĎēÿēćĎč
ēĆđĎĔąĆ ÿč ÿčąċă ྶ ÿĀĎĔē ÿč ÿėćĒ ćč ೵ܡމ ĖĆćāĆ ćĒ ĂăēăđČćčăĂ ĀĘ ÿč ÿđĀćēđÿđĘ Ĕčćē ĕăāēĎđ
Ĕ Ҳ ШÿИ ĀИ āЩ ēĆÿē ĆÿĒ ćēĒ ćčćēćÿċ ďĎćčē ÿē ēĆă Ďđćąćčܡ ćĒ

ԸÿވШއ ҭ āĎĒ ྶЩ Ҭ āĎĒ ྶ ÿĀШއ ҭ āĎĒ ྶЩ ҭ ā Ēćč ྶ ÿāШއ ҭ āĎĒ ྶЩ Ҭ Ā Ēćč ྶ
ÿĀШއ ҭ āĎĒ ྶЩ Ҭ ā Ēćč ྶ ĀވШއ ҭ āĎĒ ྶЩ Ҭ āĎĒ ྶ ĀāШއ ҭ āĎĒ ྶЩ ҭ ÿ Ēćč ྶ
ÿāШއ ҭ āĎĒ ྶЩ ҭ Ā Ēćč ྶ ĀāШއ ҭ āĎĒ ྶЩ Ҭ ÿ Ēćč ྶ āވШއ ҭ āĎĒ ྶЩ Ҭ āĎĒ ྶ Մ ܲމܱ

�Ćă ĂăđćĕÿēćĎč āÿč Āă ĄĎĔčĂ ćč ēĆă ĀĎĎĊ �đćčāćďċăĒ ĎĄ �čēăđÿāēćĕă �ĎČďĔēăđ 	đÿďĆćāĒܡ ĀĘ
ܥ�ܥ� �ăĖČÿč ÿčĂ ܥ� ܥ� �ďđĎĔċċ ܱ�ăĖ�ĎđĊܤ�ā	đÿĖܼ
ćċċܡ ܥܲޏލޏއ �ĎĔČÿĘ ʟčĂ ćē ćčĒēđĔāܼ
ēćĕă ēĎ Ăăđćĕă ēĆă đăĒĔċēĒ ćč �ÿĀċă ލ ÿĒ Ēďăāćÿċ āÿĒăĒ ĎĄ ēĆćĒ ČĎđă ąăčăđÿċ đăĒĔċēܥ

�3 -�$. � / чѵх

ܥއ �Ēă ēĆăČăēĆĎĂ ĎĄ �ėÿČďċă އ ēĎ ʟčĂ ÿč ăĐĔÿēćĎč ĄĎđ ēĆă ćČÿąă
ĎĄ ēĆă ċćčă Ę Ⴝ ėފ ĔčĂăđ ČĔċēćďċćāÿēćĎč ĀĘ ēĆă Čÿēđćė

ᄫ Ⴝ Գދ ވ
ވ Կއ

ܥވ �Ēă ēĆăČăēĆĎĂ ĎĄ �ėÿČďċă އ ēĎ ʟčĂ ÿč ăĐĔÿēćĎč ĄĎđ ēĆă ćČÿąă
ĎĄ ēĆă ċćčă Ę Ⴝ ႼފėႻ މ ĔčĂăđ ČĔċēćďċćāÿēćĎč ĀĘ ēĆă Čÿēđćė

ᄫ Ⴝ Բފ Ⴜމ
މ ႼވԾ

�č �ėăđāćĒăĒ ܬޕ݌ޔ ʥčĂ ÿč ăĐĔÿēćĎč ĄĎđ ēĆă ćČÿąă ĎĄ ēĆă ċćčă Ę Ⴝ ėވ
ēĆÿē đăĒĔċēĒ ĄđĎČ ēĆă ĒēÿēăĂ ēđÿčĒĄĎđČÿēćĎčܰ
ܥމ � ĒĆăÿđ ĀĘ ÿ ĄÿāēĎđ މ ćč ēĆă ėܼĂćđăāēćĎčܥ

ܥފ � āĎČďđăĒĒćĎč ĖćēĆ ĄÿāēĎđ އ
ވ ćč ēĆă ĘܼĂćđăāēćĎčܥ

�č �ėăđāćĒăĒ ܬޗ݌ޖ ĒĊăēāĆ ēĆă ćČÿąă ĎĄ ēĆă Ĕčćē ĒĐĔÿđă ĔčĂăđ ČĔċēćďċć݇
āÿēćĎč ĀĘ ēĆă ąćĕăč ćčĕăđēćĀċă Čÿēđćėܰ �Ē ćč �ėÿČďċă ܬޓ čĔČĀăđ ēĆă
ăĂąăĒ ĎĄ ēĆă Ĕčćē ĒĐĔÿđă ÿčĂ ćēĒ ćČÿąă ĒĎ ćē ćĒ āċăÿđ ĆĎĖ ēĆĎĒă ăĂąăĒ
āĎđđăĒďĎčĂܰ

ܥދ Բމ Ⴜއ
އ ႼވԾ ܥތ Բ ވ އႼއ Ծވ

w1 = x
w2 = y cos θ − z sin θ
w3 = y sin θ + z cos θ

1 0 0
0 cos θ − sin θ
0 sin θ cos θ



Counterclockwise
rotation about the
positive y-axis through
an angle θ
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�ďăđÿēĎđ �ċċĔĒēđÿēćĎč �ĎēÿēćĎč �ĐĔÿēćĎčĒ �ēÿčĂÿđĂ �ÿēđćė

�ĎĔčēăđāċĎāĊĖćĒă
đĎēÿēćĎč ÿĀĎĔē ēĆă
ďĎĒćēćĕă ėܼÿėćĒ
ēĆđĎĔąĆ ÿč
ÿčąċă ᆇ

z

y

x

w

x
θ

Xއ Ⴝ ė
Xވ Ⴝ Ę āĎĒᆇ Ⴜ ę Ēćčᆇ
Xމ Ⴝ Ę Ēćčᆇ Ⴛ ę āĎĒᆇ Ըއ ކ ކ

ކ āĎĒᆇ Ⴜ Ēćčᆇ
ކ Ēćčᆇ āĎĒᆇ Մ

�ĎĔčēăđāċĎāĊĖćĒă
đĎēÿēćĎč ÿĀĎĔē ēĆă
ďĎĒćēćĕă ĘܼÿėćĒ
ēĆđĎĔąĆ ÿč
ÿčąċă ᆇ

z

y

x w

x

θ

Xއ Ⴝ ė āĎĒᆇ Ⴛ ę Ēćčᆇ
Xވ Ⴝ Ę
Xމ Ⴝ Ⴜė Ēćčᆇ Ⴛ ę āĎĒᆇ Ը āĎĒᆇ ކ Ēćčᆇ

ކ އ Ⴜކ Ēćčᆇ ކ āĎĒᆇՄ

�ĎĔčēăđāċĎāĊĖćĒă
đĎēÿēćĎč ÿĀĎĔē ēĆă
ďĎĒćēćĕă ęܼÿėćĒ
ēĆđĎĔąĆ ÿč
ÿčąċă ᆇ

z

y

x

wx

θ

Xއ Ⴝ ė āĎĒᆇ Ⴜ Ę Ēćčᆇ
Xވ Ⴝ ė Ēćčᆇ Ⴛ Ę āĎĒᆇ
Xމ Ⴝ ę

ԸāĎĒᆇ Ⴜ Ēćčᆇ ކ
Ēćčᆇ āĎĒᆇ ކ
ކ ކ އ

Մ

�Ďđ āĎČďċăēăčăĒĒܡ Ėă čĎēă ēĆÿē ēĆă ĒēÿčĂÿđĂ Čÿēđćė ĄĎđ ÿ āĎĔčēăđāċĎāĊĖćĒă đĎēÿēćĎč
ēĆđĎĔąĆ ÿč ÿčąċă ྶ ÿĀĎĔē ÿč ÿėćĒ ćč ೵ܡމ ĖĆćāĆ ćĒ ĂăēăđČćčăĂ ĀĘ ÿč ÿđĀćēđÿđĘ Ĕčćē ĕăāēĎđ
Ĕ Ҳ ШÿИ ĀИ āЩ ēĆÿē ĆÿĒ ćēĒ ćčćēćÿċ ďĎćčē ÿē ēĆă Ďđćąćčܡ ćĒ

ԸÿވШއ ҭ āĎĒ ྶЩ Ҭ āĎĒ ྶ ÿĀШއ ҭ āĎĒ ྶЩ ҭ ā Ēćč ྶ ÿāШއ ҭ āĎĒ ྶЩ Ҭ Ā Ēćč ྶ
ÿĀШއ ҭ āĎĒ ྶЩ Ҭ ā Ēćč ྶ ĀވШއ ҭ āĎĒ ྶЩ Ҭ āĎĒ ྶ ĀāШއ ҭ āĎĒ ྶЩ ҭ ÿ Ēćč ྶ
ÿāШއ ҭ āĎĒ ྶЩ ҭ Ā Ēćč ྶ ĀāШއ ҭ āĎĒ ྶЩ Ҭ ÿ Ēćč ྶ āވШއ ҭ āĎĒ ྶЩ Ҭ āĎĒ ྶ Մ ܲމܱ

�Ćă ĂăđćĕÿēćĎč āÿč Āă ĄĎĔčĂ ćč ēĆă ĀĎĎĊ �đćčāćďċăĒ ĎĄ �čēăđÿāēćĕă �ĎČďĔēăđ 	đÿďĆćāĒܡ ĀĘ
ܥ�ܥ� �ăĖČÿč ÿčĂ ܥ� ܥ� �ďđĎĔċċ ܱ�ăĖ�ĎđĊܤ�ā	đÿĖܼ
ćċċܡ ܥܲޏލޏއ �ĎĔČÿĘ ʟčĂ ćē ćčĒēđĔāܼ
ēćĕă ēĎ Ăăđćĕă ēĆă đăĒĔċēĒ ćč �ÿĀċă ލ ÿĒ Ēďăāćÿċ āÿĒăĒ ĎĄ ēĆćĒ ČĎđă ąăčăđÿċ đăĒĔċēܥ

�3 -�$. � / чѵх

ܥއ �Ēă ēĆăČăēĆĎĂ ĎĄ �ėÿČďċă އ ēĎ ʟčĂ ÿč ăĐĔÿēćĎč ĄĎđ ēĆă ćČÿąă
ĎĄ ēĆă ċćčă Ę Ⴝ ėފ ĔčĂăđ ČĔċēćďċćāÿēćĎč ĀĘ ēĆă Čÿēđćė

ᄫ Ⴝ Գދ ވ
ވ Կއ

ܥވ �Ēă ēĆăČăēĆĎĂ ĎĄ �ėÿČďċă އ ēĎ ʟčĂ ÿč ăĐĔÿēćĎč ĄĎđ ēĆă ćČÿąă
ĎĄ ēĆă ċćčă Ę Ⴝ ႼފėႻ މ ĔčĂăđ ČĔċēćďċćāÿēćĎč ĀĘ ēĆă Čÿēđćė

ᄫ Ⴝ Բފ Ⴜމ
މ ႼވԾ

�č �ėăđāćĒăĒ ܬޕ݌ޔ ʥčĂ ÿč ăĐĔÿēćĎč ĄĎđ ēĆă ćČÿąă ĎĄ ēĆă ċćčă Ę Ⴝ ėވ
ēĆÿē đăĒĔċēĒ ĄđĎČ ēĆă ĒēÿēăĂ ēđÿčĒĄĎđČÿēćĎčܰ
ܥމ � ĒĆăÿđ ĀĘ ÿ ĄÿāēĎđ މ ćč ēĆă ėܼĂćđăāēćĎčܥ

ܥފ � āĎČďđăĒĒćĎč ĖćēĆ ĄÿāēĎđ އ
ވ ćč ēĆă ĘܼĂćđăāēćĎčܥ

�č �ėăđāćĒăĒ ܬޗ݌ޖ ĒĊăēāĆ ēĆă ćČÿąă ĎĄ ēĆă Ĕčćē ĒĐĔÿđă ĔčĂăđ ČĔċēćďċć݇
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އ ႼވԾ ܥތ Բ ވ އႼއ Ծވ

w1 = x cos θ + z sin θ
w2 = y
w3 = −x sin θ+ z cos θ

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



Counterclockwise
rotation about the
positive z-axis through
an angle θ
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ܥދ Բމ Ⴜއ
އ ႼވԾ ܥތ Բ ވ އႼއ Ծވ

w1 = x cos θ − y sin θ
w2 = x sin θ + y cos θ
w3 = z

cos θ − sin θ 0
sin θ cos θ 0
0 0 1


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Chapter 9

Numerical Methods

9.1 LU-Decompositions

Definition 9.1.1. A factorization of square matrix A as

A = LU

where L is lower triangular and U is upper triangular, is called an LU -decom-
position (or LU -factorization) of A.
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Linear Algebra - 9.1 LU -Decompositions

Example 1. Use the factorization 2 6 2
−3 −8 0
4 9 2

 =

 2 0 0
−3 1 0
4 −3 7


1 3 1
0 1 3
0 0 1


to solve the linear system 2 6 2

−3 −8 0
4 9 2


x1

x2

x3

 =

22
3

 .

Theorem 9.1.1. If A is a square matrix that can be reduced to a row eche-
lon form U by Gaussian elimination without row interchanges, then A can be
factored as A = LU , where L is a lower triangular matrix.
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Linear Algebra - 9.1 LU -Decompositions

Example 2. Find an LU -decomposition of

A =

 2 6 2
−3 −8 0
4 9 2

 .
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Linear Algebra - 9.1 LU -Decompositions

Example 3. Find an LU -decomposition of

A =

6 −2 0
9 −1 1
3 7 5

 .
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9.2 The Power Method

Remark 1. There are many applications in which some vector x0 in Rn is
multiplied repeatedly by an n× n matrix A to produce a sequence

x0, Ax0, A2x0, . . . , Akx0, . . . .

We call a sequence of this form a power sequence generated by A.

Definition 9.2.1. If the distinct eigenvalues of a matrix A are λ1, λ2, . . . , λk,
and if |λ1| is larger than |λ2|, . . . , |λk|, then λ1 is called a dominant eigenvalue
of A. Any eigenvector corresponding to a dominant eigenvalue is called a
dominant eigenvector of A.

Example 1. Find the dominant eigenvalues, if any, of a matrix with distinct
eigenvalues

λ1 = −4, λ2 = −2, λ3 = 1, λ4 = 3

and of a matrix with distinct eigenvalues

λ1 = 7, λ2 = −7, λ3 = −2, λ4 = 5.

Theorem 9.2.1. Let A be a symmetric n×n matrix that has a positive dom-
inant eigenvalue λ. If x0 is a unit vector in Rn that is not orthogonal to the
eigenspace corresponding to λ, then the normalized power sequence

x0, x1 =
Ax0

∥Ax0∥
, x2 =

Ax1

∥Ax1∥
, . . . , xk =

Axk−1

∥Axk−1∥
, . . .

converges to a unit dominant eigenvector, and the sequence

Ax1 · x1, Ax2 · x2, Ax3 · x3, . . . , Axk · xk, . . .

converges to the dominant eigenvalue λ.

Remark 2. Theorem 9.2.1 provides us with an algorithm for approximating
the dominant eigenvalue and a corresponding unit eigenvector of a symmetric
matrix A, provided that the dominant eigenvalue is positive. This algorithm
is called the power method with Euclidean scaling.
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Linear Algebra - 9.2 The Power Method

Example 2. Apply the power method with Euclidean scaling to

A =

[
3 2
2 3

]
with x0 =

[
1
0

]
.

Stop at x5 and compare the resulting approximations to the exact values of
the dominant eigenvalue and eigenvector.
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Linear Algebra - 9.2 The Power Method

Theorem 9.2.2. Let A be a symmetric n×n matrix that has a positive dom-
inant eigenvalue λ. If x0 is a nonzero vector in Rn that is not orthogonal to
the eigenspace corresponding to λ, then the sequence

x0, x1 =
Ax0

max(Ax0)
, x2 =

Ax1

max(Ax1)
, . . . , xk =

Axk−1

max(Axk−1)
, . . .

converges to an eigenvector corresponding to λ, and the sequence

Ax0 · x0

x0 · x0

,
Ax1 · x1

x1 · x1

, . . . ,
Axk · xk

xk · xk

, . . .

converges to λ.

Remark 3. The algorithm provided by Theorem 9.2.2 is called the power
method with maximum entry scaling, where max(x) denotes the maximum
absolute value of the entries in a vector x.

Example 3. Apply the power method with maximum entry scaling to

A =

[
3 2
2 2

]
with x0 =

[
1
0

]
.

Stop at x5 and compare the resulting approximations to the exact values and
to the approximations obtained in Example 2.
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Linear Algebra - 9.2 The Power Method

Remark 4. If λ is the exact value of the dominant eigenvalue, and if a power
method produces the approximation λ(k) at the kth iteration, then we call∣∣∣∣∣λ− λ(k)

λ

∣∣∣∣∣
the relative error in λ(k). Expressed as a percentage it is called the percentage
error in λ(k). It is usual to estimate λ by λ(k) and stop computations when∣∣∣∣∣λ(k) − λ(k−1)

λ(k)

∣∣∣∣∣ < E

for a known relative error E. The quantity on the left side is called the es-
timated relative error in λ(k) and its percentage form is called the estimated
percentage error in λ(k).

Example 4. For the computations in Example 3, find the smallest value of k
for which the estimated percentage error in λ(k) is less than 0.1%.
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9.3 Comparison of Procedures for Solving Lin-

ear Systems

Remark 1. In computer jargon, an arithmetic operation (+,−, ∗,÷) on two
real numbers is called a flop, which is an acronym for “floating-point opera-
tion.” The total number of flops required to solve a problem, which is called
the cost of the solution, provides a convenient way of choosing between various
algorithms for solving the problem.

Table 1 Approximate Cost for an n× n matrix A with Large n

Algorithm Cost in Flops

Gauss-Jordan elimination (forward phase) ≈ 2
3
n3

Gauss-Jordan elimination (backward phase) ≈ n2

LU -decomposition of A ≈ 2
3
n3

Forward substitution to solve Ly = b ≈ n2

Backward substitution to solve Ux = y ≈ n2

A−1 by reducing [A | I] to [I | A−1] ≈ 2n3

Compute A−1b ≈ 2n3

Example 1. Approximate the time required to execute the forward and back-
ward phases of Gauss-Jordan elimination for a system of one million (= 106)
equations in one million unknowns using a computer that can execute 10
petaflops per second (1 petaflop = 1015 flops).
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9.4 Singular Value Decomposition

Theorem 9.4.1. If A is an m× n matrix, then:

(a) A and ATA have the same null space.
(b) A and ATA have the same row space.
(c) AT and ATA have the same column space.
(d) A and ATA have the same rank.

Theorem 9.4.2. If A is an m× n matrix, then:

(a) ATA is orthogonally diagonalizable.
(b) The eigenvalues of ATA are nonnegative real numbers.

Proof. (a) The matrix ATA, being symmetric, is orthogonally diagonalizable.
(b) Since ATA is orthogonally diagonalizable, there is an orthonormal ba-
sis for Rn consisting of eigenvectors of ATA, say {v1,v2, . . . ,vn}. If we let
λ1, λ2, . . . , λn be the corresponding eigenvalues, then for 1 ≤ i ≤ n we have

∥Avi∥2 = Avi · Avi = vi · ATAvi

= vi · λivi = λi(vi · vi) = λi∥vi∥2 = λi.

It follows from this relationship that λi ≥ 0.

Definition 9.4.1. If A is an m×n matrix, and if λ1, λ2, . . . , λn are the eigen-
values of ATA, then the numbers

σ1 =
√
λ1, σ2 =

√
λ2, . . . , σn =

√
λn.

are called the singular values of A.

Example 1. Find the singular values of matrix1 1
0 1
1 0

 .
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× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×




× × × ×
× × × ×
× × × ×
× × × ×
× × × ×
× × × ×
× × × ×





Remark 1. We define the main diagonal of an m × n matrix to
be the line of entries shown in the figure—it starts at the upper
left corner and extends diagonally as far as it can go. We will
refer to the entries on the main diagonal as diagonal entries.

Theorem 9.4.3 (Singular Value Decomposition (Brief Form)).
If A is an m×n matrix of rank k, then A can be expressed in the
form A = UΣV T , where Σ has size m× n and can be expressed
in partitioned form as

Σ =

[
D 0k×(n−k)

0(m−k)×k 0(m−k)×(n−k)

]

in which D is a diagonal k × k matrix whose successive entries
are the first k singular values of A in nonincreasing order, U
is an m × n orthogonal matrix, and V is an n × n orthogonal
matrix.

Theorem 9.4.4 (Singular Value Decomposition (Expanded Form)). If A is
an m× n matrix of rank k, then A can be factored as

A = UΣV T =
[
u1 u2 · · · uk | uk+1 · · · um

]


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σk

0k×(n−k)

0(m−k)×k 0(m−k)×(n−k)





vT
1

vT
2

...

vT
k

vT
k+1

...

vT
n


in which U , Σ, and V have sizes m × m, m × n, and n × n, respectively,
and in which:

(a) V =
[
v1 v2 · · · vn

]
orthogonally diagonalizes ATA.

(b) The nonzero diagonal entries of Σ are
σ1 =

√
λ1, σ2 =

√
λ2, . . . , σk =

√
λk, where λ1, λ2, . . . , λk are the nonzero

eigenvalues of ATA corresponding to the column vectors of V .
(c) The column vectors of V are ordered so that σ1 ≥ σ2 ≥ · · · ≥ σk > 0.

(d) ui =
Avi

∥Avi∥
=

1

σi

Avi (i = 1, 2, . . . , k).

(e) {u1,u2, . . . ,uk} is an orthonormal basis for col(A).
(f ) {u1,u2, . . . ,uk,uk+1, . . . ,um} is an extension of {u1,u2, . . . ,uk} to an

orthonormal basis for Rm.
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Example 2. Find a singular value decomposition of the matrix

A =

1 1
0 1
1 0

 .
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9.5 Data Compression Using Singular Value

Decomposition

Remark 1. The zero rows and columns of the matrix Σ in Theorem 9.4.4 can be
eliminated by multiplying out the expression UΣV T using block multiplication
and the partitioning shown in that formula. The products that involve zero
blocks as factors drop out, leaving

[
u1 u2 · · · uk

]
σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σk




vT
1

vT
2

...

vT
k


,

which is called a reduced singular value decomposition of A. We will denote
the matrices on the right side by U1, Σ1, and V T

1 , respectively, and we will
write this equation as

A = U1Σ1V
T
1 .

Note that the sizes of U1, Σ1, and V T
1 , are m×k, k×k, and k×n, respectively,

and that the matrix Σ1 is invertible since its diagonal entries are positive.
If we multiply out the right side of the equation using the column-row rule,
then we obtain

A = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σkukv

T
k ,

which is called a reduced singular value expansion of A.
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Example 1. Find a reduced singular value decomposition and a reduced sin-
gular value expansion of the matrix

A =

1 1
0 1
1 0

 .
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Remark 2. If a matrix A has size m × n, then one might store each of its
mn entries individually. An alternative procedure is to compute the reduced
singular value decomposition

A = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σkukv

T
k

in which σ1 ≥ σ2 ≥ · · · ≥ σk, and store the σ’s, the u’s, and v’s. When needed,
the matrix A can be reconstructed from this decomposition. Since each uj has
m entries and each vj has n entries, this method requires storage space for

km+ kn+ k = k(m+ n+ 1)

numbers. Suppose, however, that the singular values σr+1, . . . , σk are suf-
ficiently small that dropping the corresponding terms in the decomposition
produces an acceptable approximation

Ar = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σrurv

T
r

to A and the image that it represents. We call this the rank r approximation
of A. This matrix requires storage space for only

rm+ rn+ r = r(m+ n+ 1)

numbers, compared to mn numbers required for entry-by-entry storage of A.

Example 2. Suppose A is a 1000 × 1000 matrix. How many numbers must
be stored in the rank 100 approximation of A? Compare this with the number
of entries of A.
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Chapter 10

Applications of Linear Algebra

10.1 Constructing Curves and Surfaces Through

Specified Points

Theorem 10.1.1. A homogeneous linear system with as many equations as
unknowns has a nontrivial solution if and only if the determinant of the coef-
ficient matrix is zero.

Remark 1. The line with equation

c1x+ c2y + c3 = 0

that passes through two distinct points (x1, y1) and (x2, y2) is given by the
determinant equation ∣∣∣∣∣∣∣

x y 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣∣ = 0.

Example 1. Find the equation of the line that passes through the two points
(2, 1) and (3, 7).
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Remark 2. The circle with equation

c1(x
2 + y2) + c2x+ c3y + c4 = 0

that passes through three noncollinear points (x1, y1), (x2, y2), and (x3, y3) is
given by the determinant equation∣∣∣∣∣∣∣∣∣∣

x2 + y2 x y 1

x2
1 + y21 x1 y1 1

x2
2 + y22 x2 y2 1

x2
3 + y23 x3 y3 1

∣∣∣∣∣∣∣∣∣∣
= 0.

Example 2. Find the equation of the circle that passes through the three
points (1, 7), (6, 2), and (4, 6).

Remark 3. The conic section with equation

c1x
2 + c2xy + c3y

2 + c4x+ c5y + c6 = 0

that passes through five distinct points (x1, y1), (x2, y2), (x3, y3), (x4, y4), and
(x5, y5) is given by the determinant equation∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 xy y2 x y 1

x2
1 x1y1 y21 x1 y1 1

x2
2 x2y2 y22 x2 y2 1

x2
3 x3y3 y23 x3 y3 1

x2
4 x4y4 y24 x4 y4 1

x2
5 x5y5 y25 x5 y5 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.
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Example 3. An astronomer who wants to determine the orbit of an asteroid
about the Sun sets up a Cartesian coordinate system in the plane of the orbit
with the Sun at the origin. Astronomical units of measurement are used along
the axes (1 astronomical unit = mean distance of Earth to Sun = 93 million
miles). By Kepler’s first law, the orbit must be an ellipse, so the astronomer
makes five observations of the asteroid at five different times and finds five
points along the orbit to be

(8.025, 8.310), (10.170, 6.355), (11.202, 3.212), (10.736, 0.375), (9.092,−2.267).

Find the equation of the orbit.

Remark 4. The plane in 3-space with equation

c1x+ c2y + c3z + c4 = 0

that passes through three noncollinear points (x1, y1, z1), (x2, y2, z2), and
(x3, y3, z3) is given by the determinant equation∣∣∣∣∣∣∣∣∣

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣∣∣ = 0.
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Example 4. Find the equation of the plane that passes through the three
points (1, 1, 0), (2, 0,−1), and (2, 9, 2).

Remark 5. The sphere in 3-space with equation

c1(x
2 + y2 + z2) + c2x+ c3y + c4z + c5 = 0

that passes through four noncoplanar points (x1, y1, z1), (x2, y2, z2), (x3, y3, z3),
and (x4, y4, z4) is given by the determinant equation∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 + y2 + z2 x y z 1

x2
1 + y21 + z21 x1 y1 z1 1

x2
2 + y22 + z22 x2 y2 z2 1

x2
3 + y23 + z23 x3 y3 z3 1

x2
4 + y24 + z24 x4 y4 z4 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Example 5. Find the equation of the sphere that passes through the four
points (0, 3, 2), (1,−1, 1), (2, 1, 0), and (5, 1, 3).
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10.2 The Earliest Applications of Linear Al-

gebra

Example 1.

Problem 40 of the Ahmes Papyrus

The Ahmes (or Rhind) Papyrus is the source of most of our information about
ancient Egyptian mathematics. This 5-meter-long papyrus contains 84 short
mathematical problems, together with their solutions, and dates from about
1650 B.C. Problem 40 in this papyrus is the following:

Divide 100 hekats of barley among five men in arithmetic progression
so that the sum of the two smallest is one-seventh the sum of the three
largest.
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Example 2. The Old Babylonian Empire flourished in Mesopotamia between
1900 and 1600 B.C. Many clay tablets containing mathematical tables and
problems survive from that period, one of which (designated Ca MLA 1950)
contains the next problem. The statement of the problem is a bit muddled
because of the condition of the tablet, but the diagram and solution on the
tablet indicate that the problem is as follows:
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)�ѵѶ �'' -$"#/. - . -1 �

рпѵс �# ��-'$ ./ �++'$��/$*). *! 
$) �- �'" �-� ффт
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x
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Area = 320
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� ēđÿďăęĎćĂ ĖćēĆ ÿč ÿđăÿ ĎĄ ޑޓޔ ĒĐĔÿđă ĔčćēĒ ćĒ āĔē Ďʝ ĄđĎČ ÿ đćąĆē ēđćÿčąċă ĀĘ ÿ ċćčă ďÿđ݇
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�Ćă ČĎĒē ćČďĎđēÿčē ēđăÿēćĒă ćč ēĆă ĆćĒēĎđĘ ĎĄ �ĆćčăĒă ČÿēĆăČÿēćāĒ ćĒ ēĆă �ĆćĔ �Ćÿčą �Ĕÿč
�ĆĔܡ Ďđ ݇�Ćă �ćčă �ĆÿďēăđĒ ĎĄ ēĆă �ÿēĆăČÿēćāÿċ �đē݉ܥ �ĆćĒ ēđăÿēćĒăܡ ĖĆćāĆ ćĒ ÿ āĎċċăāēćĎč ĎĄ
ތފވ ďđĎĀċăČĒ ÿčĂ ēĆăćđ ĒĎċĔēćĎčĒܡ ĖÿĒ ÿĒĒăČĀċăĂ ćč ćēĒ ʟčÿċ ĄĎđČ ĀĘ �ćĔ 
Ĕć ćč ܥ�ܥ� ܥމތވ �ēĒ
āĎčēăčēĒܡ ĆĎĖăĕăđܡ ąĎ ĀÿāĊ ēĎ ÿē ċăÿĒē ēĆă Āăąćččćčą ĎĄ ēĆă
ÿč ĂĘčÿĒēĘ ćč ēĆă ĒăāĎčĂ āăčēĔđĘ
ܥ�ܥ� �Ćă ăćąĆēĆ ĎĄ ćēĒ čćčă āĆÿďēăđĒܡ ăčēćēċăĂ ݇�Ćă �ÿĘ ĎĄ �ÿċāĔċÿēćčą ĀĘ �đđÿĘĒ݉ܡ āĎčēÿćčĒ
ގއ ĖĎđĂ ďđĎĀċăČĒ ēĆÿē ċăÿĂ ēĎ ċćčăÿđ ĒĘĒēăČĒ ćč ēĆđăă ēĎ Ēćė ĔčĊčĎĖčĒܥ �Ćă ąăčăđÿċ ĒĎċĔēćĎč
ďđĎāăĂĔđă ĂăĒāđćĀăĂ ćĒ ÿċČĎĒē ćĂăčēćāÿċ ēĎ ēĆă 	ÿĔĒĒćÿč ăċćČćčÿēćĎč ēăāĆčćĐĔă ĂăĕăċĎďăĂ ćč
�ĔđĎďă ćč ēĆă čćčăēăăčēĆ āăčēĔđĘ ĀĘ �ÿđċ �đćăĂđćāĆ 	ÿĔĒĒ ܱĒăă ďÿąă ܥܲތއ �Ćă ʟđĒē ďđĎĀċăČ ćč
ēĆă ăćąĆēĆ āĆÿďēăđ ćĒ ēĆă ĄĎċċĎĖćčąܤ

A trapezoid with an area of 320 square units is cut off from a right triangle
by a line parallel to one of its sides. The other side has length 50 units,
and the height of the trapezoid is 20 units. What are the upper and the
lower widths of the trapezoid?
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Example 3. The most important treatise in the history of Chinese mathemat-
ics is the Chiu Chang Suan Shu, or “The Nine Chapters of the Mathematical
Art.” This treatise, which is a collection of 246 problems and their solutions,
was assembled in its final form by Liu Hui in A.D. 263. Its contents, however,
go back to at least the beginning of the Han dynasty in the second century
B.C. The eighth of its nine chapters, entitled “The Way of Calculating by
Arrays,” contains 18 word problems that lead to linear systems in three to
six unknowns. The general solution procedure described is almost identical
to the Gaussian elimination technique developed in Europe in the nineteenth
century by Carl Friedrich Gauss. The first problem in the eighth chapter is
the following:

There are three classes of corn, of which three bundles of the first class,
two of the second, and one of the third make 39 measures. Two of the
first, three of the second, and one of the third make 34 measures. And one
of the first, two of the second, and three of the third make 26 measures.
How many measures of grain are contained in one bundle of each class?
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Example 4. Perhaps the most famous system of linear equations from antiq-
uity is the one associated with the first part of Archimedes’ celebrated Cattle
Problem. This problem supposedly was posed by Archimedes as a challenge
to his colleague Eratosthenes. No solution has come down to us from ancient
times, so that it is not known how, or even whether, either of these two ge-
ometers solved it.

If thou art diligent and wise, O stranger, compute the number of cattle
of the Sun, who once upon a time grazed on the fields of the Thrinacian
isle of Sicily, divided into four herds of different colors, one milk white,
another glossy black, a third yellow, and the last dappled. In each herd
were bulls, mighty in number according to these proportions: Understand,
stranger, that the white bulls were equal to a half and a third of the black
together with the whole of the yellow, while the black were equal to the
fourth part of the dappled and a fifth, together with, once more, the whole
of the yellow. Observe further that the remaining bulls, the dappled, were
equal to a sixth part of the white and a seventh, together with all of the
yellow. These were the proportions of the cows: The white were precisely
equal to the third part and a fourth of the whole herd of the black; while
the black were equal to the fourth part once more of the dappled and with
it a fifth part, when all, including the bulls, went to pasture together.
Now the dappled in four parts were equal in number to a fifth part and
a sixth of the yellow herd. Finally the yellow were in number equal to a
sixth part and a seventh of the white herd. If thou canst accurately tell,
O stranger, the number of cattle of the Sun, giving separately the number
of well-fed bulls and again the number of females according to each color,
thou wouldst not be called unskilled or ignorant of numbers, but not yet
shalt thou be numbered among the wise.

300



Linear Algebra - 10.2 The Earliest Applications of Linear Algebra

Example 5. The Bakhshali Manuscript is an ancient work of Indian/Hindu
mathematics dating from around the fourth century A.D., although some of its
materials undoubtedly come from many centuries before. It consists of about
70 leaves or sheets of birch bark containing mathematical problems and their
solutions. Many of its problems are so-called equalization problems that lead
to systems of linear equations. One such problem on the fragment shown is
the following:

One merchant has seven asava horses, a second has nine haya horses,
and a third has ten camels. They are equally well off in the value of their
animals if each gives two animals, one to each of the others. Find the
price of each animal and the total value of the animals possessed by each
merchant.
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10.3 Cubic Spline Interpolation

Remark 1. A curve that passes through a set of points in the plane is said
to interpolate those points, and the curve is called an interpolating curve for
those points.

Theorem 10.3.1 (Cubic Spline Interpolation). Given n points
(x1, y1), (x2, y2), . . . , (xn, yn) with xi+1 − xi = h, i = 1, 2, . . . , n − 1, the cubic
spline

S(x) =



a1(x− x1)
3 + b1(x− x1)

2 + c1(x− x1) + d1, x1 ≤ x ≤ x2

a2(x− x2)
3 + b2(x− x2)

2 + c2(x− x2) + d2, x2 ≤ x ≤ x3

...

an−1(x− xn−1)
3 + bn−1(x− xn−1)

2

+ cn−1(x− xn−1) + dn−1, xn−1 ≤ x ≤ xn

that interpolates these points is given by

ai = (Mi+1 −Mi)/6h

bi = Mi/2

ci = (yi+1 − yi)/h− [(Mi+1 + 2Mi)h/6]

di = yi

for i = 1, 2, . . . , n− 1, where Mi = S ′′(xi), i = 1, 2, . . . , n.
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Table 1

Natural
Spline

The second
derivative of the
spline is zero at the
endpoints.

M1 = 0

Mn = 0


4 1 0 · · · 0 0 0

1 4 1 · · · 0 0 0
...
...
...

...
...
...

0 0 0 · · · 1 4 1
0 0 0 · · · 0 1 4




M2

M3
...

Mn−2

Mn−1

=
6

h2


y1 − 2y2 + y3
y2 − 2y3 + y4

...
yn−2 − 2yn−1 + yn


Parabolic
Runout
Spline

The spline reduces
to a parabolic curve
on the first and last
intervals.

M1 = M2

Mn = Mn−1


5 1 0 · · · 0 0 0

1 4 1 · · · 0 0 0
...
...
...

...
...
...

0 0 0 · · · 1 4 1
0 0 0 · · · 0 1 5




M2

M3
...

Mn−2

Mn−1

=
6

h2


y1 − 2y2 + y3
y2 − 2y3 + y4

...
yn−2 − 2yn−1 + yn


Cubic
Runout
Spline

The spline is a
single cubic curve
on the first two and
last two intervals.

M1 = 2M2 −M3

Mn = 2Mn−1 −Mn−2


6 1 0 · · · 0 0 0

1 4 1 · · · 0 0 0
...
...
...

...
...
...

0 0 0 · · · 1 4 1
0 0 0 · · · 0 1 6




M2

M3
...

Mn−2

Mn−1

=
6

h2


y1 − 2y2 + y3
y2 − 2y3 + y4

...
yn−2 − 2yn−1 + yn


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Table 2

Temperature (°C) Density (g/cm3)

−10 .99815

0 .99987

10 .99973

20 .99823

30 .99567

Example 1. The density of water is well known to
reach a maximum at a temperature slightly above
freezing. Table 2, from the Handbook of Chem-
istry and Physics (CRC Press, 2009), gives the den-
sity of water in grams per cubic centimeter for five
equally spaced temperatures from −10°C to 30°C.
Interpolate these five temperature-density measure-
ments with a parabolic runout spline and find the
maximum density of water in this range by finding
the maximum value on this cubic spline.
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10.4 Markov Chains

Remark 1. Suppose a physical or mathematical system undergoes a process of
change such that at any moment it can occupy one of a finite number of states.
Suppose that such a system changes with time from one state to another and at
scheduled times the state of the system is observed. If the state of the system
at any observation cannot be predicted with certainty, but the probability that
a given state occurs can be predicted by just knowing the state of the system
at the preceding observation, then the process of change is called a Markov
chain or Markov process.

Definition 10.4.1. If a Markov chain has k possible states, which we label as
1, 2, . . . , k, then the probability that the system is in state i at any observation
after it was in state j at the preceding observation is denoted by pij and is
called the transition probability from state j to state i. The matrix P = [pij]
is called the transition matrix of the Markov chain.

Example 1. A car rental agency has three rental locations, denoted by 1, 2,
and 3. A customer may rent a car from any of the three locations and return
the car to any of the three locations. The manager finds that customers return
the cars to the various locations according to the following probabilities:

Rented from Location
1 2 3

.8 .3 .2 1
Returned

to
Location

.1 .2 .6 2

.1 .5 .2 3

Find the probability that a car rented from location 3 will be returned to loca-
tion 2, and the probability that a car rented from location 1 will be returned
to location 1.

Example 2. By reviewing its donation records, the alumni office of a college
finds that 80% of its alumni who contribute to the annual fund one year will
also contribute the next year, and 30% of those who do not contribute one
year will contribute the next. What is the transition matrix?
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Definition 10.4.2. The state vector for an observation of a Markov chain
with k states is a column vector x whose ith component xi is the probability
that the system is in the ith state at that time.

Theorem 10.4.1. If P is the transition matrix of a Markov chain and x(n) is
the state vector at the nth observation, then x(n+1) = Px(n).

Example 3. Use the transition matrix from Example 2 to construct the prob-
able future donation record of a new graduate who did not give a donation in
the initial year after graduation.
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Example 4. Determine whether the state vectors for Example 1 approach a
fixed vector.
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� ēđÿʚā Ďʚāăđ ćĒ ÿĒĒćąčăĂ ēĎ āĎčēđĎċ ēĆă ēđÿʚā ÿē ēĆă ăćąĆē ćčēăđĒăāēćĎčĒ ćčĂćāÿēăĂ ćč
�ćąĔđă ܥއܥފܥކއ �Ćă ćĒ ćčĒēđĔāēăĂ ēĎ đăČÿćč ÿē ăÿāĆ ćčēăđĒăāēćĎč ĄĎđ ÿč ĆĎĔđ ÿčĂ ēĆăč ēĎ ăćēĆăđ
đăČÿćč ÿē ēĆă ĒÿČă ćčēăđĒăāēćĎč Ďđ ČĎĕă ēĎ ÿ čăćąĆĀĎđćčą ćčēăđĒăāēćĎčܥ �Ď ÿĕĎćĂ ăĒēÿĀċćĒĆćčą
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�Ą ēĆă ēđÿʚā Ďʚāăđ ĀăąćčĒ ÿē ćčēăđĒăāēćĎč ܡދ Ćăđ ďđĎĀÿĀċă ċĎāÿēćĎčĒܡ ĆĎĔđ ĀĘ ĆĎĔđܡ ÿđă ąćĕăč
ĀĘ ēĆă Ēēÿēă ĕăāēĎđĒ ąćĕăč ćč �ÿĀċă ܥވ �Ďđ ÿċċ ĕÿċĔăĒ ĎĄ č ąđăÿēăđ ēĆÿč ܡވވ ÿċċ Ēēÿēă ĕăāēĎđĒ ÿđă
ăĐĔÿċ ēĎ ėᆷވވᆸ ēĎ ēĆđăă ĂăāćČÿċ ďċÿāăĒܥ �ĆĔĒܡ ÿĒ ĖćēĆ ēĆă ʟđĒē ēĖĎ ăėÿČďċăĒܡ ēĆă Ēēÿēă ĕăāēĎđĒ
ÿďďđĎÿāĆ ÿ ʟėăĂ ĕăāēĎđ ÿĒ č ćčāđăÿĒăĒܥ

Example 5. A traffic officer is assigned to control the traffic at
the eight intersections indicated in the figure. She is instructed
to remain at each intersection for an hour and then to either
remain at the same intersection or move to a neighboring in-
tersection. To avoid establishing a pattern, she is told to choose
her new intersection on a random basis, with each possible choice
equally likely. For example, if she is at intersection 5, her next
intersection can be 2, 4, 5, or 8, each with probability 1

4
. Every

day she starts at the location where she stopped the day before.
Find the transition matrix for this Markov chain and use it to
determine whether the state vectors approach a fixed vector.
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Example 6. Let

P =

[
0 1
1 0

]
and x(0) =

[
1
0

]
.

Determine whether the state vectors approach a fixed vector.

Definition 10.4.3. A transition matrix is regular if some integer power of it
has all positive entries.

Theorem 10.4.2 (Behavior of P n as n → ∞). If P is a regular transition
matrix, then as n→∞,

P n →


q1 q1 · · · q1
q2 q2 · · · q2
...

...
...

qk qk · · · qk


where the qi are positive numbers such that q1 + q2 + · · ·+ qk = 1.

Theorem 10.4.3 (Behavior of P nx as n → ∞). If P is a regular transition
matrix and x is any probability vector, then as n→∞,

P nx→


q1
q2
...
qk

 = q

where q is a fixed probability vector, independent of n, all of whose entries are
positive.

Theorem 10.4.4 (Steady-State Vector). The steady-state vector q of a regular
transition matrix P is the unique probability vector that satisfies the equation
Pq = q.
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Example 7. Find the steady-state vector from Example 2.

310



Linear Algebra - 10.4 Markov Chains

Example 8. Find the steady-state vector from Example 1.
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Example 9. Find the steady-state vector from Example 5.
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10.5 Graph Theory
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ĄĎđ ćܡ ĉ Ҳ Иއ Иވ М М М Иčܥ �Ďđ ēĆă ēĆđăă ĂćđăāēăĂ ąđÿďĆĒ ćč�ćąĔđă ܡވܥދܥކއ ēĆă āĎđđăĒďĎčĂćčą ĕăđēăė
ČÿēđćāăĒ ÿđă
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�Ę ēĆăćđ ĂăʟčćēćĎčܡ ĕăđēăė ČÿēđćāăĒ Ćÿĕă ēĆă ĄĎċċĎĖćčą ēĖĎ ďđĎďăđēćăĒܤ

ܱćܲ �ċċ ăčēđćăĒ ÿđă ăćēĆăđ ކ Ďđ ܥއ
ܱććܲ �ċċ ĂćÿąĎčÿċ ăčēđćăĒ ÿđă ܥކ

Remark 1. A directed graph is a finite set of elements,
{P1, P2, . . . , Pn}, together with a finite collection of ordered pairs
(Pi, Pj) of distinct elements of this set, with no ordered pair be-
ing repeated. The elements of the set are called vertices, and the
ordered pairs are called directed edges, of the directed graph.
We use the notation Pi → Pj (which is read “Pi is connected to
Pj”) to indicate that the directed edge (Pi, Pj) belongs to the
directed graph. Geometrically, we can visualize a directed graph (see the fig-
ure) by representing the vertices as points in the plane and representing the
directed edge Pi → Pj by drawing a line or arc from vertex Pi to vertex Pj,
with an arrow pointing from Pi to Pj. If both Pi → Pj and Pj → Pi hold (de-
noted Pi ↔ Pj), we draw a single line between Pi and Pj with two oppositely
pointing arrows (as with P2 and P3 in the figure).

With a directed graph having n vertices, we may associate an n×n matrix
M = [mij], called the vertex matrix of the directed graph. Its elements are
defined by

mij =

{
1, if Pi → Pj,

0, otherwise.

Example 1. A certain family consists of a mother, father, daughter, and two
sons. The family members have influence, or power, over each other in the
following ways: the mother can influence the daughter and the oldest son; the
father can influence the two sons; the daughter can influence the father; the
oldest son can influence the youngest son; and the youngest son can influence
the mother. We may model this family influence pattern with a directed graph
whose vertices are the five family members. If family member A influences
family member B, we write A → B. Determine the resulting directed graph
and vertex matrix of this directed graph.
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ēĆă ĄÿēĆăđܢ ēĆă ĎċĂăĒē ĒĎč āÿč ćčʢĔăčāă ēĆă ĘĎĔčąăĒē ĒĎčܢ ÿčĂ ēĆă ĘĎĔčąăĒē ĒĎč āÿč ćčʢĔăčāă
ēĆăČĎēĆăđܥ�ăČÿĘČĎĂăċ ēĆćĒ ĄÿČćċĘ ćčʢĔăčāă ďÿēēăđčĖćēĆ ÿ ĂćđăāēăĂ ąđÿďĆĖĆĎĒă ĕăđēćāăĒ
ÿđă ēĆă ʟĕă ĄÿČćċĘ ČăČĀăđĒܥ �Ą ĄÿČćċĘ ČăČĀăđ ᄫ ćčʢĔăčāăĒ ĄÿČćċĘ ČăČĀăđ ᄬܡ Ėă Ėđćēăᄫ צ ᄬܥ �ćąĔđă ފܥދܥކއ ćĒ ēĆă đăĒĔċēćčą ĂćđăāēăĂ ąđÿďĆܡ ĖĆăđă Ėă Ćÿĕă ĔĒăĂ ĎĀĕćĎĔĒ ċăēēăđ
ĂăĒćąčÿēćĎčĒ ĄĎđ ēĆă ʟĕă ĄÿČćċĘ ČăČĀăđĒܥ �Ćă ĕăđēăė Čÿēđćė ĎĄ ēĆćĒ ĂćđăāēăĂ ąđÿďĆ ćĒ
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�
���� рпѵфѵч

�����
� с Ҟ �ăđēăė �ÿēđćėܤ �ĎĕăĒ Ďč ÿ �ĆăĒĒĀĎÿđĂ

�č āĆăĒĒ ēĆă ĊčćąĆē ČĎĕăĒ ćč ÿč ݇�ܼ݉ĒĆÿďăĂ ďÿēēăđč ÿĀĎĔē ēĆă āĆăĒĒĀĎÿđĂܥ �Ďđ ēĆă ĀĎÿđĂ
ćč �ćąĔđă ދܥދܥކއ ćē ČÿĘ ČĎĕă ĆĎđćęĎčēÿċċĘ ēĖĎ ĒĐĔÿđăĒ ÿčĂ ēĆăč ĕăđēćāÿċċĘ Ďčă ĒĐĔÿđăܡ Ďđ
ćē ČÿĘ ČĎĕă ĕăđēćāÿċċĘ ēĖĎ ĒĐĔÿđăĒ ÿčĂ ēĆăč ĆĎđćęĎčēÿċċĘ Ďčă ĒĐĔÿđăܥ �ĆĔĒܡ ĄđĎČ ēĆă āăčܼ
ēăđ ĒĐĔÿđă ćč ēĆă ʟąĔđăܡ ēĆă ĊčćąĆē ČÿĘ ČĎĕă ēĎ ÿčĘ ĎĄ ēĆă ăćąĆē ČÿđĊăĂ ĒĆÿĂăĂ ĒĐĔÿđăĒܥ
�ĔďďĎĒă ēĆÿē ēĆă ĊčćąĆē ćĒ đăĒēđćāēăĂ ēĎ ēĆă čćčă čĔČĀăđăĂ ĒĐĔÿđăĒ ćč �ćąĔđă ܥތܥދܥކއ �Ą ĀĘ
ćצ ĉĖăČăÿč ēĆÿē ēĆă ĊčćąĆē ČÿĘ ČĎĕă ĄđĎČ ĒĐĔÿđă ć ēĎ ĒĐĔÿđă ĉܡ ēĆă ĂćđăāēăĂ ąđÿďĆ ćč �ćąܼ
Ĕđă ލܥދܥކއ ćċċĔĒēđÿēăĒ ÿċċ ďĎĒĒćĀċăČĎĕăĒ ēĆÿē ēĆă ĊčćąĆēČÿĘČÿĊă ÿČĎčą ēĆăĒă čćčă ĒĐĔÿđăĒܥ
�č �ćąĔđă ގܥދܥކއ Ėă Ćÿĕă ݇ĔčđÿĕăċăĂ݉ �ćąĔđă ލܥދܥކއ ēĎ ČÿĊă ēĆă ďÿēēăđč ĎĄ ďĎĒĒćĀċă ČĎĕăĒ
āċăÿđăđܥ

�Ćă ĕăđēăė Čÿēđćė ĎĄ ēĆćĒ ĂćđăāēăĂ ąđÿďĆ ćĒ ąćĕăč ĀĘ

ᄷ Ⴝ
ጂጃጃጃጃጃጃጃጃጃጃጃጄ
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އ ކ އ ކ ކ ކ ކ ކ ކ
ކ އ ކ އ ކ ކ ކ ކ ކ

ጅጆጆጆጆጆጆጆጆጆጆጆጇ

�*1 (� - ртѶ спрч рцѷрс �рп �#  / )0(� - тф ��" )0(� - фцш �4�)(�" )/� 4 ''*2 �'��& Ҷ спрчѶ �)/*) � 3/�**&.Ѷ 
)�ѵѶ �'' -$"#/. - . -1 �

рпѵф �-�+# �# *-4 фцш

�ĎčĕăđĒăċĘܡ ÿčĘČÿēđćė ĖćēĆ ēĆăĒă ēĖĎ ďđĎďăđēćăĒ ĂăēăđČćčăĒ ÿ ĔčćĐĔă ĂćđăāēăĂ ąđÿďĆ Ćÿĕܼ
ćčą ēĆă ąćĕăč Čÿēđćė ÿĒ ćēĒ ĕăđēăė Čÿēđćėܥ �Ďđ ăėÿČďċăܡ ēĆă Čÿēđćė

೰ Ҳ ጂጃጃጃጄ
ކ އ އ ކ
ކ ކ އ ކ
އ ކ ކ އ
ކ ކ ކ ކ

ጅጆጆጆጇ
ĂăēăđČćčăĒ ēĆă ĂćđăāēăĂ ąđÿďĆ ćč �ćąĔđă ܥމܥދܥކއ

P1

P2

P3

P4

�
���� рпѵфѵт

M

D F

YS

OS

�
���� рпѵфѵу

�����
� р Ҟ �čʢĔăčāăĒ �ćēĆćč ÿ �ÿČćċĘ

� āăđēÿćč ĄÿČćċĘ āĎčĒćĒēĒ ĎĄ ÿ ČĎēĆăđܡ ĄÿēĆăđܡ ĂÿĔąĆēăđܡ ÿčĂ ēĖĎ ĒĎčĒܥ �Ćă ĄÿČćċĘ ČăČĀăđĒ
Ćÿĕă ćčʢĔăčāăܡ Ďđ ďĎĖăđܡ Ďĕăđ ăÿāĆ ĎēĆăđ ćč ēĆă ĄĎċċĎĖćčąĖÿĘĒܤ ēĆăČĎēĆăđ āÿč ćčʢĔăčāă ēĆă
ĂÿĔąĆēăđ ÿčĂ ēĆă ĎċĂăĒē ĒĎčܢ ēĆă ĄÿēĆăđ āÿč ćčʢĔăčāă ēĆă ēĖĎ ĒĎčĒܢ ēĆă ĂÿĔąĆēăđ āÿč ćčʢĔăčāă
ēĆă ĄÿēĆăđܢ ēĆă ĎċĂăĒē ĒĎč āÿč ćčʢĔăčāă ēĆă ĘĎĔčąăĒē ĒĎčܢ ÿčĂ ēĆă ĘĎĔčąăĒē ĒĎč āÿč ćčʢĔăčāă
ēĆăČĎēĆăđܥ�ăČÿĘČĎĂăċ ēĆćĒ ĄÿČćċĘ ćčʢĔăčāă ďÿēēăđčĖćēĆ ÿ ĂćđăāēăĂ ąđÿďĆĖĆĎĒă ĕăđēćāăĒ
ÿđă ēĆă ʟĕă ĄÿČćċĘ ČăČĀăđĒܥ �Ą ĄÿČćċĘ ČăČĀăđ ᄫ ćčʢĔăčāăĒ ĄÿČćċĘ ČăČĀăđ ᄬܡ Ėă Ėđćēăᄫ צ ᄬܥ �ćąĔđă ފܥދܥކއ ćĒ ēĆă đăĒĔċēćčą ĂćđăāēăĂ ąđÿďĆܡ ĖĆăđă Ėă Ćÿĕă ĔĒăĂ ĎĀĕćĎĔĒ ċăēēăđ
ĂăĒćąčÿēćĎčĒ ĄĎđ ēĆă ʟĕă ĄÿČćċĘ ČăČĀăđĒܥ �Ćă ĕăđēăė Čÿēđćė ĎĄ ēĆćĒ ĂćđăāēăĂ ąđÿďĆ ćĒ
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�
���� рпѵфѵч

�����
� с Ҟ �ăđēăė �ÿēđćėܤ �ĎĕăĒ Ďč ÿ �ĆăĒĒĀĎÿđĂ

�č āĆăĒĒ ēĆă ĊčćąĆē ČĎĕăĒ ćč ÿč ݇�ܼ݉ĒĆÿďăĂ ďÿēēăđč ÿĀĎĔē ēĆă āĆăĒĒĀĎÿđĂܥ �Ďđ ēĆă ĀĎÿđĂ
ćč �ćąĔđă ދܥދܥކއ ćē ČÿĘ ČĎĕă ĆĎđćęĎčēÿċċĘ ēĖĎ ĒĐĔÿđăĒ ÿčĂ ēĆăč ĕăđēćāÿċċĘ Ďčă ĒĐĔÿđăܡ Ďđ
ćē ČÿĘ ČĎĕă ĕăđēćāÿċċĘ ēĖĎ ĒĐĔÿđăĒ ÿčĂ ēĆăč ĆĎđćęĎčēÿċċĘ Ďčă ĒĐĔÿđăܥ �ĆĔĒܡ ĄđĎČ ēĆă āăčܼ
ēăđ ĒĐĔÿđă ćč ēĆă ʟąĔđăܡ ēĆă ĊčćąĆē ČÿĘ ČĎĕă ēĎ ÿčĘ ĎĄ ēĆă ăćąĆē ČÿđĊăĂ ĒĆÿĂăĂ ĒĐĔÿđăĒܥ
�ĔďďĎĒă ēĆÿē ēĆă ĊčćąĆē ćĒ đăĒēđćāēăĂ ēĎ ēĆă čćčă čĔČĀăđăĂ ĒĐĔÿđăĒ ćč �ćąĔđă ܥތܥދܥކއ �Ą ĀĘ
ćצ ĉĖăČăÿč ēĆÿē ēĆă ĊčćąĆē ČÿĘ ČĎĕă ĄđĎČ ĒĐĔÿđă ć ēĎ ĒĐĔÿđă ĉܡ ēĆă ĂćđăāēăĂ ąđÿďĆ ćč �ćąܼ
Ĕđă ލܥދܥކއ ćċċĔĒēđÿēăĒ ÿċċ ďĎĒĒćĀċăČĎĕăĒ ēĆÿē ēĆă ĊčćąĆēČÿĘČÿĊă ÿČĎčą ēĆăĒă čćčă ĒĐĔÿđăĒܥ
�č �ćąĔđă ގܥދܥކއ Ėă Ćÿĕă ݇ĔčđÿĕăċăĂ݉ �ćąĔđă ލܥދܥކއ ēĎ ČÿĊă ēĆă ďÿēēăđč ĎĄ ďĎĒĒćĀċă ČĎĕăĒ
āċăÿđăđܥ

�Ćă ĕăđēăė Čÿēđćė ĎĄ ēĆćĒ ĂćđăāēăĂ ąđÿďĆ ćĒ ąćĕăč ĀĘ

ᄷ Ⴝ
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ጅጆጆጆጆጆጆጆጆጆጆጆጇ

Example 2. In chess the knight moves in an “L”-shaped pattern
about the chessboard. For the board in the top figure it may
move horizontally two squares and then vertically one square,
or it may move vertically two squares and then horizontally one
square. Thus, from the center square in the figure, the knight
may move to any of the eight marked shaded squares. Suppose
that the knight is restricted to the nine numbered squares in
the bottom figure. If by i → j we mean that the knight may
move from square i to square j, determine the resulting directed
graph and vertex matrix that illustrates all possible moves that
the knight may make among these nine squares.

Remark 2. We call Pi → Pj in a directed graph a 1-step connection and
Pi → Pk → Pj a 2-step connection. Similarly, we call
Pi → Pk1 → Pk2 → · · · → Pkr−1 → Pj a r-step connection.

Theorem 10.5.1. Let M be the vertex matrix of a directed graph and let m
(r)
ij

be the (i, j)-th element of M r. Then m
(r)
ij is equal to the number of r-step

connections from Pi to Pj.
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Linear Algebra - 10.5 Graph Theory
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�č �ėÿČďċă އ ēĆă ĄÿēĆăđ āÿččĎē ĂćđăāēċĘ ćčʢĔăčāă ēĆă ČĎēĆăđܢ ēĆÿē ćĒܡ ೩ צ ೰ ćĒ čĎē
ēđĔăܥ �Ĕē Ćă āÿč ćčʢĔăčāă ēĆă ĘĎĔčąăĒē ĒĎčܡ ĖĆĎ āÿč ēĆăč ćčʢĔăčāă ēĆăČĎēĆăđܥ�ăĖđćēă
ēĆćĒ ÿĒ ೩ צ ೼೶ צ ೰ ÿčĂ āÿċċ ćē ÿ Ēēăď݇ޓ āĎččăāēćĎč ĄđĎČ ೩ ēĎ ೰ܥ �čÿċĎąĎĔĒċĘܡ Ėă āÿċċ೰ צ ೧ ÿ Ēēăď݇ޒ āĎččăāēćĎčܡ ೩ צ ೲ೶ צ ೼೶ צ ೰ ÿ Ēēăď݇ޔ āĎččăāēćĎčܡ ÿčĂ ĒĎ ĄĎđēĆܥ �ăē
ĔĒ čĎĖ āĎčĒćĂăđ ÿ ēăāĆčćĐĔă ĄĎđ ʟčĂćčą ēĆă čĔČĀăđ ĎĄ ÿċċ ďĎĒĒćĀċă đܼĒēăď āĎččăāēćĎčĒ Шđ Ҳ
Иއ Иވ М М М Щ ĄđĎČ Ďčă ĕăđēăė ೳć ēĎ ÿčĎēĆăđ ĕăđēăė ೳĉ ĎĄ ÿč ÿđĀćēđÿđĘ ĂćđăāēăĂ ąđÿďĆܥ ܱ�ĆćĒ Ėćċċ
ćčāċĔĂă ēĆă āÿĒă ĖĆăč ೳć ÿčĂ ೳĉ ÿđă ēĆă ĒÿČă ĕăđēăėܲܥ �Ćă čĔČĀăđ ĎĄ Ēēăďܼއ āĎččăāēćĎčĒ
ĄđĎČ ೳć ēĎ ೳĉ ćĒ ĒćČďċĘ Čćĉܥ �Ćÿē ćĒܡ ēĆăđă ćĒ ăćēĆăđ ęăđĎ Ďđ Ďčă Ēēăďܼއ āĎččăāēćĎč ĄđĎČ ೳć
ēĎ ೳĉܡ ĂăďăčĂćčą Ďč ĖĆăēĆăđČćĉ ćĒ ęăđĎ Ďđ Ďčăܥ �Ďđ ēĆă čĔČĀăđ ĎĄ Ēēăďܼވ āĎččăāēćĎčĒܡ Ėă
āĎčĒćĂăđ ēĆă ĒĐĔÿđă ĎĄ ēĆă ĕăđēăė Čÿēđćėܥ �Ą Ėă ċăē ČႾވႿ

ćĉ Āă ēĆă ШćИ ĉЩܼēĆ ăċăČăčē ĎĄ ೰ܡވ Ėă
Ćÿĕă

ČႾވႿ
ćĉ Ҳ ČćއČއĉ ҬČćވČވĉ Ҭ ޒ ޒ ޒ ҬČćčČčĉ ܲއܱ

�ĎĖܡ ćĄČćއ Ҳ Čއĉ Ҳ ܡއ ēĆăđă ćĒ ÿ Ēēăďܼވ āĎččăāēćĎč ೳć צ ೳއ צ ೳĉ ĄđĎČ ೳć ēĎ ೳĉܥ �Ĕē ćĄ ăćēĆăđ
Čćއ Ďđ Čއĉ ćĒ ęăđĎܡ ĒĔāĆ ÿ Ēēăďܼވ āĎččăāēćĎč ćĒ čĎē ďĎĒĒćĀċăܥ �ĆĔĒ ೳć צ ೳއ צ ೳĉ ćĒ ÿ Ēēăďܼވ
āĎččăāēćĎč ćĄ ÿčĂ ĎčċĘ ćĄ ČćއČއĉ Ҳ ܥއ �ćČćċÿđċĘܡ ĄĎđ ÿčĘ Ċ Ҳ Иއ Иވ М М М Иčܡ ೳć צ ೳĊ צ ೳĉ ćĒ ÿ
Ēēăďܼވ āĎččăāēćĎč ĄđĎČ ೳć ēĎ ೳĉ ćĄ ÿčĂ ĎčċĘ ćĄ ēĆă ēăđČČćĊČĊĉ Ďč ēĆă đćąĆē ĒćĂă ĎĄ ܲއܱ ćĒ Ďčăܢ
ĎēĆăđĖćĒăܡ ēĆă ēăđČ ćĒ ęăđĎܥ �ĆĔĒܡ ēĆă đćąĆē ĒćĂă ĎĄ ܲއܱ ćĒ ēĆă ēĎēÿċ čĔČĀăđ ĎĄ ēĖĎ Ēēăďܼވ
āĎččăāēćĎčĒ ĄđĎČ ೳć ēĎ ೳĉܥ

� ĒćČćċÿđ ÿđąĔČăčē Ėćċċ ĖĎđĊ ĄĎđ ʟčĂćčą ēĆă čĔČĀăđ ĎĄ Иܼމ Иܼފ М М М И đܼĒēăď āĎččăāēćĎčĒ
ĄđĎČ ೳć ēĎ ೳĉܥ �č ąăčăđÿċܡ Ėă Ćÿĕă ēĆă ĄĎċċĎĖćčą đăĒĔċēܥ

�# *- ( рпѵфѵр

�ăē೰ Āă ēĆă ĕăđēăė Čÿēđćė ĎĄ ÿ ĂćđăāēăĂ ąđÿďĆ ÿčĂ ċăēČႾđႿ
ćĉ Āă ēĆă ШćИ ĉЩܼēĆ ăċăČăčē ĎĄ೰đܥ �ĆăčČႾđႿ

ćĉ ćĒ ăĐĔÿċ ēĎ ēĆă čĔČĀăđ ĎĄ đܼĒēăď āĎččăāēćĎčĒ ĄđĎČ ೳć ēĎ ೳĉܥ

P1

P2

P3

P4

�
���� рпѵфѵш

�����
� т Ҟ �Ēćčą �ĆăĎđăČ އܥދܥކއ

�ćąĔđă ޏܥދܥކއ ćĒ ēĆă đĎĔēă Čÿď ĎĄ ÿ ĒČÿċċ ÿćđċćčă ēĆÿē ĒăđĕćāăĒ ēĆă ĄĎĔđ āćēćăĒ ᄺܡއ ᄺܡވ ᄺܡމ ᄺܥފ
�Ē ÿ ĂćđăāēăĂ ąđÿďĆܡ ćēĒ ĕăđēăė Čÿēđćė ćĒ

ᄷ Ⴝ ጂጃጃጃጄ
ކ އ އ ކ
އ ކ އ ކ
އ ކ ކ އ
ކ އ އ ކ

ጅጆጆጆጇ
�ă Ćÿĕă ēĆÿē

ᄷވ Ⴝ ጂጃጃጃጄ
ވ ކ އ އ
އ އ އ އ
ކ ވ ވ ކ
ވ ކ އ އ

ጅጆጆጆጇ
ÿčĂ ᄷމ Ⴝ ጂጃጃጃጄ

އ މ މ އ
ވ ވ މ އ
ފ ކ ވ ވ
އ މ މ އ

ጅጆጆጆጇ
�Ą Ėă ÿđă ćčēăđăĒēăĂ ćč āĎččăāēćĎčĒ ĄđĎČ āćēĘ ᄺފ ēĎ āćēĘ ᄺܡމ Ėă ČÿĘ ĔĒă �ĆăĎđăČ އܥދܥކއ ēĎ
ʟčĂ ēĆăćđ čĔČĀăđܥ �ăāÿĔĒăČމފ Ⴝ ܡއ ēĆăđă ćĒ Ďčă Ēēăďܼއ āĎččăāēćĎčܢ ĀăāÿĔĒăČᆷވᆸ

މފ Ⴝ ܡއ ēĆăđă
ćĒ Ďčă Ēēăďܼވ āĎččăāēćĎčܢ ÿčĂ ĀăāÿĔĒăČᆷމᆸ

މފ Ⴝ ܡމ ēĆăđă ÿđă ēĆđăă Ēēăďܼމ āĎččăāēćĎčĒܥ �Ď ĕăđćĄĘ
ēĆćĒܡ ĄđĎČ �ćąĔđă ޏܥދܥކއ Ėă ʟčĂ

Ēēăďܼއ āĎččăāēćĎčĒ ĄđĎČ ᄺފ ēĎ ᄺۚމ ᄺފ צ ᄺމ

Ēēăďܼވ āĎččăāēćĎčĒ ĄđĎČ ᄺފ ēĎ ᄺۚމ ᄺފ צ ᄺވ צ ᄺމ

Ēēăďܼމ āĎččăāēćĎčĒ ĄđĎČ ᄺފ ēĎ ᄺۚމ ᄺފ צ ᄺމ צ ᄺފ צ ᄺމᄺފ צ ᄺވ צ ᄺއ צ ᄺމᄺފ צ ᄺމ צ ᄺއ צ ᄺމ

Example 3. The figure is the route map of a small airline that
services the four cities P1, P2, P3, P4. Find the number of 1, 2,
or 3-step connections from P4 to P3.

Definition 10.5.1. A subset of a directed graph is called a clique if it satisfies
the following three conditions:

(i) The subset contains at least three vertices.
(ii) For each pair of vertices Pi and Pj in the subset, both Pi → Pj and

Pj → Pi are true.
(iii) The subset is as large as possible; that is, it is not possible to add another

vertex to the subset and still satisfy condition (ii).
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�ċćĐĔăĒ
�č ăĕăđĘĂÿĘ ċÿčąĔÿąă ÿ ݇āċćĐĔă݉ ćĒ ÿ āċĎĒăċĘ Ċčćē ąđĎĔď ĎĄ ďăĎďċă ܱĔĒĔÿċċĘ ēĆđăă Ďđ ČĎđăܲ
ēĆÿē ēăčĂĒ ēĎ āĎČČĔčćāÿēă ĖćēĆćč ćēĒăċĄ ÿčĂ ĆÿĒ čĎ ďċÿāă ĄĎđ ĎĔēĒćĂăđĒܥ �č ąđÿďĆ ēĆăĎđĘ
ēĆćĒ āĎčāăďē ćĒ ąćĕăč ÿ ČĎđă ďđăāćĒă Čăÿčćčąܥ

� !$)$/$*) р

� ĒĔĀĒăē ĎĄ ÿ ĂćđăāēăĂ ąđÿďĆ ćĒ āÿċċăĂ ÿ āċćĐĔă ćĄ ćē ĒÿēćĒʟăĒ ēĆă ĄĎċċĎĖćčą ēĆđăă
āĎčĂćēćĎčĒܤ
ܱćܲ �Ćă ĒĔĀĒăē āĎčēÿćčĒ ÿē ċăÿĒē ēĆđăă ĕăđēćāăĒܥ
ܱććܲ �Ďđ ăÿāĆ ďÿćđ ĎĄ ĕăđēćāăĒ ೳć ÿčĂ ೳĉ ćč ēĆă ĒĔĀĒăēܡ ĀĎēĆ ೳć צ ೳĉ ÿčĂ ೳĉ צ ೳć ÿđă

ēđĔăܥ
ܱćććܲ �Ćă ĒĔĀĒăē ćĒ ÿĒ ċÿđąă ÿĒ ďĎĒĒćĀċăܢ ēĆÿē ćĒܡ ćē ćĒ čĎē ďĎĒĒćĀċă ēĎ ÿĂĂ ÿčĎēĆăđ ĕăđēăė

ēĎ ēĆă ĒĔĀĒăē ÿčĂ Ēēćċċ ĒÿēćĒĄĘ āĎčĂćēćĎč ܱććܲܥ

�ĆćĒ ĂăʟčćēćĎč ĒĔąąăĒēĒ ēĆÿē āċćĐĔăĒ ÿđă ČÿėćČÿċ ĒĔĀĒăēĒ ēĆÿē ÿđă ćč ďăđĄăāē ݇āĎČČĔčćāÿܼ
ēćĎč݉ ĖćēĆ ăÿāĆ ĎēĆăđܥ �Ďđ ăėÿČďċăܡ ćĄ ēĆă ĕăđēćāăĒ đăďđăĒăčē āćēćăĒܡ ÿčĂ ೳć צ ೳĉČăÿčĒ ēĆÿē
ēĆăđă ćĒ ÿ Ăćđăāē ÿćđċćčă ʢćąĆē ĄđĎČ āćēĘ ೳć ēĎ āćēĘ ೳĉܡ ēĆăč ēĆăđă ćĒ ÿ Ăćđăāē ʢćąĆē ĀăēĖăăč
ÿčĘ ēĖĎ āćēćăĒ ĖćēĆćč ÿ āċćĐĔă ćč ăćēĆăđ ĂćđăāēćĎčܥ

P1

P2

P3

P7

P4

P6

P5

�
���� рпѵфѵрп

�����
� у Ҟ � �ćđăāēăĂ 	đÿďĆ ĖćēĆ �ĖĎ �ċćĐĔăĒ

�Ćă ĂćđăāēăĂ ąđÿďĆ ćċċĔĒēđÿēăĂ ćč �ćąĔđă ކއܥދܥކއ ܱĖĆćāĆ ČćąĆē đăďđăĒăčē ēĆă đĎĔēă Čÿď ĎĄ ÿč
ÿćđċćčăܲ ĆÿĒ ēĖĎ āċćĐĔăĒܤ Ьᄺއᆠ ᄺވᆠ ᄺމᆠ ᄺފЭ ÿčĂ Ьᄺމᆠ ᄺފᆠ ᄺތЭ
�ĆćĒ ăėÿČďċă ĒĆĎĖĒ ēĆÿē ÿ ĂćđăāēăĂ ąđÿďĆ ČÿĘ āĎčēÿćč Ēăĕăđÿċ āċćĐĔăĒ ÿčĂ ēĆÿē ÿ ĕăđēăė ČÿĘ
ĒćČĔċēÿčăĎĔĒċĘ ĀăċĎčą ēĎ ČĎđă ēĆÿč Ďčă āċćĐĔăܥ

�Ďđ ĒćČďċă ĂćđăāēăĂ ąđÿďĆĒܡ āċćĐĔăĒ āÿč Āă ĄĎĔčĂ ĀĘ ćčĒďăāēćĎčܥ �Ĕē ĄĎđ ċÿđąă ĂćđăāēăĂ
ąđÿďĆĒܡ ćē ĖĎĔċĂ Āă ĂăĒćđÿĀċă ēĎ Ćÿĕă ÿ ĒĘĒēăČÿēćā ďđĎāăĂĔđă ĄĎđ Ăăēăāēćčą āċćĐĔăĒܥ �Ďđ ēĆćĒ
ďĔđďĎĒăܡ ćē Ėćċċ Āă ĆăċďĄĔċ ēĎ Ăăʟčă ÿ Čÿēđćė ೶ Ҳ ЪĒćĉЫ đăċÿēăĂ ēĎ ÿ ąćĕăč ĂćđăāēăĂ ąđÿďĆ ÿĒ
ĄĎċċĎĖĒܤ

Ēćĉ Ҳ ՊއИ ćĄ ೳć ת ೳĉ
Иކ ĎēĆăđĖćĒă

�Ćă Čÿēđćė ೶ ĂăēăđČćčăĒ ÿ ĂćđăāēăĂ ąđÿďĆ ēĆÿē ćĒ ēĆă ĒÿČă ÿĒ ēĆă ąćĕăč ĂćđăāēăĂ ąđÿďĆܡ
ĖćēĆ ēĆă ăėāăďēćĎč ēĆÿē ēĆă ĂćđăāēăĂ ăĂąăĒ ĖćēĆ ĎčċĘ Ďčă ÿđđĎĖ ÿđă ĂăċăēăĂܥ �Ďđ ăėÿČďċăܡ
ćĄ ēĆă Ďđćąćčÿċ ĂćđăāēăĂ ąđÿďĆ ćĒ ąćĕăč ĀĘ �ćąĔđă ܡÿއއܥދܥކއ ēĆă ĂćđăāēăĂ ąđÿďĆ ēĆÿē ĆÿĒ ೶
ÿĒ ćēĒ ĕăđēăė Čÿēđćė ćĒ ąćĕăč ćč �ćąĔđă ܥĀއއܥދܥކއ �Ćă Čÿēđćė ೶ ČÿĘ Āă ĎĀēÿćčăĂ ĄđĎČ ēĆă

P1 P5

P2

P3

P4

(a)

P1 P5

P2

P3

P4

(b)

�
���� рпѵфѵрр

ĕăđēăėČÿēđćė೰ ĎĄ ēĆă Ďđćąćčÿċ ĂćđăāēăĂ ąđÿďĆ ĀĘ Ēăēēćčą Ēćĉ Ҳ އ ćĄČćĉ Ҳ Čĉć Ҳ އ ÿčĂ Ēăēēćčą
Ēćĉ Ҳ ކ ĎēĆăđĖćĒăܥ

�Ćă ĄĎċċĎĖćčą ēĆăĎđăČܡ ĖĆćāĆ ĔĒăĒ ēĆă Čÿēđćė ೶ܡ ćĒ ĆăċďĄĔċ ĄĎđ ćĂăčēćĄĘćčą āċćĐĔăĒܥ
�# *- ( рпѵфѵс

�ĂăčēćĄĘćčą �ċćĐĔăĒ
�ăē ĒႾމႿćĉ Āă ēĆă ШćИ ĉЩܼēĆ ăċăČăčē ĎĄ ೶ܥމ �Ćăč ÿ ĕăđēăė ೳć ĀăċĎčąĒ ēĎ ĒĎČă āċćĐĔă ćĄ ÿčĂ
ĎčċĘ ćĄ ĒႾމႿćć ܍ ܥކ

Example 4. What are the cliques for the graph illustrated in
the figure?

Remark 3. The matrix S = [sij] related to a given directed graph
is defined as follows:

sij =

{
1, if Pi ↔ Pj,

0, otherwise.

Theorem 10.5.2 (Identifying Cliques). Let s
(3)
ij be the (i, j)-th element of S3.

Then a vertex Pi belongs to some clique if and only if s
(3)
ii ̸= 0.

Proof. If s
(3)
ii ̸= 0, then there is at least one 3-step connection from Pi to itself

in the modified directed graph determined by S. Suppose it is
Pi → Pj → Pk → Pi. In the modified directed graph, all of the directed
relations are two-way, so we also have the connections Pi ↔ Pj ↔ Pk ↔ Pi.
But this means that {Pi, Pj, Pk} is either a clique or a subset of a clique. In
either case, Pi must belong to some clique. The converse statement, “if Pi

belongs to a clique, then s
(3)
ii ̸= 0,” follows in a similar manner.

Example 5. Suppose that a directed graph has as its vertex matrix

M =


0 1 1 1
1 0 1 0
0 1 0 1
1 0 0 0

 .

What are the cliques of the directed graph?
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Example 6. Suppose that a directed graph has as its vertex matrix

M =


0 1 0 1 1
1 0 0 1 0
1 1 0 1 0
1 1 0 0 0
1 0 0 1 0

 .

What are the cliques of the directed graph?

Definition 10.5.2. A dominance-directed graph is a directed graph such that
for any distinct pair of vertices Pi and Pj, either Pi → Pj or Pj → Pi, but not
both.

Theorem 10.5.3 (Connections in Dominance-Directed Graphs). In any
dominance-directed graph, there is at least one vertex from which there is a
1-step or 2-step connection to any other vertex.

Proof. Consider a vertex (there may be several) with the largest total number
of 1-step and 2-step connections to other vertices in the graph. By renumbering
the vertices, we may assume that P1 is such a vertex. Suppose there is some
vertex Pi such that there is no 1-step or 2-step connection from P1 to Pi.
Then, in particular, P1 → Pi is not true, so that by definition of a dominance-
directed graph, it must be that Pi → P1. Next, let Pk be any vertex such that
P1 → Pk is true. Then we cannot have Pk → Pi, as then P1 → Pk → Pi would
be a 2-step from P1 to Pi. Thus, it must be that Pi → Pk. That is, Pi has
1-step connections to all the vertices to which P1 has 1-step connections. The
vertex Pi must then also have 2-step connections to all the vertices to which P1

has 2-step connections. But because, in addition, we have that Pi → P1, this
means that Pi has more 1-step connections and 2-step connections to other
vertices than does P1. However, this contradicts the way in which P1 was
chosen. Hence, there can be no vertex Pi to which P1 has no 1-step or 2-step
connection.
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� ц Ҟ �Ēćčą �ĆăĎđăČ މܥދܥކއ

�ĔďďĎĒă ēĆÿē ʟĕă ĀÿĒăĀÿċċ ēăÿČĒ ďċÿĘ ăÿāĆ ĎēĆăđ ăėÿāēċĘ Ďčāăܡ ÿčĂ ēĆă đăĒĔċēĒ ÿđă ÿĒ ćčĂćāÿēăĂ
ćč ēĆă ĂĎČćčÿčāăܼĂćđăāēăĂ ąđÿďĆ ĎĄ �ćąĔđă ܥމއܥދܥކއ �Ćă ĕăđēăė Čÿēđćė ĎĄ ēĆă ąđÿďĆ ćĒ

ᄷ Ⴝ
ጂጃጃጃጃጃጄ

ކ ކ އ އ ކ
އ ކ އ ކ އ
ކ ކ ކ އ ކ
ކ އ ކ ކ ކ
އ ކ އ އ ކ

ጅጆጆጆጆጆጇ
ĒĎ

ᄫ Ⴝ ᄷ Ⴛᄷވ Ⴝ
ጂጃጃጃጃጃጄ

ކ ކ އ އ ކ
އ ކ އ ކ އ
ކ ކ ކ އ ކ
ކ އ ކ ކ ކ
އ ކ އ އ ކ

ጅጆጆጆጆጆጇ
Ⴛ
ጂጃጃጃጃጃጄ

ކ އ ކ އ ކ
އ ކ ވ މ ކ
ކ އ ކ ކ ކ
އ ކ އ ކ އ
ކ އ އ ވ ކ

ጅጆጆጆጆጆጇ
Ⴝ
ጂጃጃጃጃጃጄ

ކ އ އ ވ ކ
ވ ކ މ މ އ
ކ އ ކ އ ކ
އ އ އ ކ އ
އ އ ވ މ ކ

ጅጆጆጆጆጆጇ
�Ćă đĎĖ ĒĔČĒ ĎĄᄫ ÿđă

Ēēއ đĎĖ ĒĔČ Ⴝ ފ
čĂވ đĎĖ ĒĔČ Ⴝ ޏ
đĂމ đĎĖ ĒĔČ Ⴝ ވ
ēĆފ đĎĖ ĒĔČ Ⴝ ފ
ēĆދ đĎĖ ĒĔČ Ⴝ ލ

�ăāÿĔĒă ēĆă ĒăāĎčĂ đĎĖ ĆÿĒ ēĆă ċÿđąăĒē đĎĖ ĒĔČܡ ēĆă ĕăđēăė ᄺވ ČĔĒē Ćÿĕă ÿ Ēēăďܼއ Ďđ Ēēăďܼވ
āĎččăāēćĎč ēĎ ÿčĘ ĎēĆăđ ĕăđēăėܥ �ĆćĒ ćĒ ăÿĒćċĘ ĕăđćʟăĂ ĄđĎČ �ćąĔđă ܥމއܥދܥކއ

P5

P4

P2

P1

P3

�
���� рпѵфѵрт

�ă Ćÿĕă ćčĄĎđČÿċċĘ ĒĔąąăĒēăĂ ēĆÿē ÿ ĕăđēăė ĖćēĆ ēĆă ċÿđąăĒē čĔČĀăđ ĎĄ Ēēăďܼއ ÿčĂ ܼވ
Ēēăď āĎččăāēćĎčĒ ēĎ ĎēĆăđ ĕăđēćāăĒ ćĒ ÿ ݇ďĎĖăđĄĔċ݉ ĕăđēăėܥ �ă āÿč ĄĎđČÿċćęă ēĆćĒ āĎčāăďē
ĖćēĆ ēĆă ĄĎċċĎĖćčą ĂăʟčćēćĎčܥ

� !$)$/$*) т

�Ćă ďĎĖăđ ĎĄ ÿ ĕăđēăė ĎĄ ÿ ĂĎČćčÿčāăܼĂćđăāēăĂ ąđÿďĆ ćĒ ēĆă ēĎēÿċ čĔČĀăđ ĎĄ Ēēăďܼއ
ÿčĂ Ēēăďܼވ āĎččăāēćĎčĒ ĄđĎČ ćē ēĎ ĎēĆăđ ĕăđēćāăĒܥ �ċēăđčÿēćĕăċĘܡ ēĆă ďĎĖăđ ĎĄ ÿ ĕăđēăėೳć ćĒ ēĆă ĒĔČ ĎĄ ēĆă ăčēđćăĒ ĎĄ ēĆă ćēĆ đĎĖ ĎĄ ēĆă Čÿēđćė೤ Ҳ ೰ Ҭ೰ܡވ ĖĆăđă೰ ćĒ ēĆă
ĕăđēăė Čÿēđćė ĎĄ ēĆă ĂćđăāēăĂ ąđÿďĆܥ

�����
� ч Ҟ �ėÿČďċă ލ �ăĕćĒćēăĂ

�ăē ĔĒ đÿčĊ ēĆă ʟĕă ĀÿĒăĀÿċċ ēăÿČĒ ćč �ėÿČďċă ލ ÿāāĎđĂćčą ēĎ ēĆăćđ ďĎĖăđĒܥ �đĎČ ēĆă āÿċāĔܼ
ċÿēćĎčĒ ĄĎđ ēĆă đĎĖ ĒĔČĒ ćč ēĆÿē ăėÿČďċăܡ Ėă Ćÿĕă

�ĎĖăđ ĎĄ ēăÿČ ᄺއ Ⴝ ފ
�ĎĖăđ ĎĄ ēăÿČ ᄺވ Ⴝ ޏ
�ĎĖăđ ĎĄ ēăÿČ ᄺމ Ⴝ ވ
�ĎĖăđ ĎĄ ēăÿČ ᄺފ Ⴝ ފ
�ĎĖăđ ĎĄ ēăÿČ ᄺދ Ⴝ ލ


ăčāăܡ ēĆă đÿčĊćčą ĎĄ ēĆă ēăÿČĒ ÿāāĎđĂćčą ēĎ ēĆăćđ ďĎĖăđĒ ĖĎĔċĂ Āăᄺވ ܱʟđĒēܲᆠ ᄺދ ܱĒăāĎčĂܲᆠ ᄺއ ÿčĂ ᄺފ ܱēćăĂ ĄĎđ ēĆćđĂܲᆠ ᄺމ ܱċÿĒēܲ

Example 7. Suppose that five baseball teams play each other
exactly once, and the results are as indicated in the dominance-
directed graph of the figure. Use Theorem 10.5.3 to show that
P2 must have a 1-step or 2-step connection to any other vertex.

Definition 10.5.3. The power of a vertex of a dominance-directed graph is
the total number of 1-step and 2-step connections from it to other vertices.
Alternatively, the power of a vertex Pi is the sum of the entries of the ith row
of the matrix A = M + M2, where M is the vertex matrix of the directed
graph.

Example 8. Rank the five baseball teams in Example 7 according to their
powers.

318



Linear Algebra - 10.6 Games of Strategy

10.6 Games of Strategy

Remark 1. In a two-person zero-sum matrix game the term zero-sum means
that in each play of the game, the positive gain of one player is equal to the
negative gain (loss) of the other player. The term matrix game is used to
describe a two-person game in which each player has only a finite number of
moves, so that all possible outcomes of each play, and the corresponding gains
of the players, can be displayed in tabular or matrix form.

In a general game of this type, let player R have m possible moves and let
player C have n possible moves. In a play of the game, each player makes one
of his or her possible moves, and then a payoff is made from player C to player
R, depending on the moves. For i = 1, 2, . . . ,m, and j = 1, 2, . . . , n, let us set

aij = payoff that player C makes to player R if player R

makes move i and player C makes move j.

If an entry aij is negative, we mean that player C receives a payoff of |aij|
from player R. We arrange these mn possible payoffs in the form of an m× n
matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 ,

which we call the payoff matrix of the game.
Each player is to make his or her moves on a probabilistic basis. In the

general case we make the following definitions:

pi = probability that player R makes move i (i = 1, 2, . . . ,m)

qj = probability that player C makes move j (j = 1, 2, . . . , n).

With the probabilities pi and qj we form two vectors:

p =
[
p1 p2 · · · pm

]
and q =


q1
q2
...
qn

 .

We call the row vector p the strategy of player R and the column vector q the
strategy of player C.

If we multiply each possible payoff by its corresponding probability and
sum over all possible payoffs, we obtain the expression

a11p1q1 + a12p1q2 + · · ·+ a1np1qn + a21p2q1 + · · ·+ amnpmqn,
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which is a weighted average of the payoffs to player R called the expected pay-
off to player R. We denote this expected payoff by E(p,q) to emphasize the
fact that it depends on the strategies of the two players. From the definition
of the payoff matrix A and the strategies p and q, it can be verified that we
may express the expected payoff in matrix notation as

E(p,q) =
[
p1 p2 · · · pm

]
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn



q1
q2
...
qn

 = pAq.

Because E(p,q) is the expected payoff to player R, it follows that −E(p,q)
is the expected payoff to player C.
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ēĆă ąÿćčĒ ĎĄ ďċÿĘăđ ೵ ÿčĂ ēĆă ċĎĒĒăĒ ĎĄ ďċÿĘăđ ೦ܡ ÿčĂ ēĆă čăąÿēćĕă ăčēđćăĒ ÿđă ēĆă ąÿćčĒ ĎĄ
ďċÿĘăđ ೦ ÿčĂ ēĆă ċĎĒĒăĒ ĎĄ ďċÿĘăđ ೵ܥ

�č ēĆćĒ ąÿČă ēĆă ďċÿĘăđĒ Ćÿĕă čĎ āĎčēđĎċ Ďĕăđ ēĆăćđ ČĎĕăĒܢ ăÿāĆ ČĎĕă ćĒ ĂăēăđČćčăĂ
ĀĘ āĆÿčāăܥ 
ĎĖăĕăđܡ ćĄ ăÿāĆ ďċÿĘăđ āÿč ĂăāćĂă ĖĆăēĆăđ Ćă Ďđ ĒĆă ĖÿčēĒ ēĎ ďċÿĘܡ ēĆăč ăÿāĆ
ĖĎĔċĂ Ėÿčē ēĎ ĊčĎĖ ĆĎĖ ČĔāĆ Ćă Ďđ ĒĆă āÿč ăėďăāē ēĎ Ėćč Ďđ ċĎĒă Ďĕăđ ēĆă ċĎčą ēăđČ
ćĄ Ćă Ďđ ĒĆă āĆĎĎĒăĒ ēĎ ďċÿĘܥ ܱ�ÿēăđ ćč ēĆă ĒăāēćĎč Ėă Ėćċċ ĂćĒāĔĒĒ ēĆćĒ ĐĔăĒēćĎč ÿčĂ ÿċĒĎ
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Example 1. Consider the following carnival-type game where each
player has a stationary wheel with a movable pointer on it as in the
figure. We will call player R’s wheel the row-wheel and player C’s wheel
the column-wheel. The row-wheel is divided into three sectors numbered
1, 2, and 3, and the column-wheel is divided into four sectors numbered
1, 2, 3, and 4. The fractions of the area occupied by the various sec-
tors are indicated in the figure. To play the game, each player spins
the pointer of his or her wheel and lets it come to rest at random. The
number of the sector in which each pointer comes to rest is called the
move of that player. Depending on the move each player makes, player
C then makes a payment of money to player R according to Table 1.

Table 1 Payment to Player R

Player C’s Move

1 2 3 4

1 $3 $5 −$2 −$1

2 −$2 $4 −$3 −$4Player R’s Move

3 $6 −$5 $0 $3

Find the expected payoff to player R.
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Theorem 10.6.1 (Fundamental Theorem of Zero-Sum Games). There exist
strategies p∗ and q∗ such that

E(p∗,q) ≥ E(p∗,q∗) ≥ E(p,q∗)

for all strategies p and q.

Definition 10.6.1. If p∗ and q∗ are strategies such that

E(p∗,q) ≥ E(p∗,q∗) ≥ E(p,q∗)

for all strategies p and q, then

(i) p∗ is called an optimal strategy for player R.
(ii) q∗ is called an optimal strategy for player C.
(iii) v = E(p∗,q∗) is called the value of the game.

Definition 10.6.2. An entry ars in a payoff matrix A is called a saddle point
if

(i) ars is the smallest entry in its row, and
(ii) ars is the largest entry in its column.

A game whose payoff matrix has a saddle point is called strictly determined.

Remark 2. If a matrix has a saddle point ars, it turns out that the following
strategies are optimal strategies for the two players:

p∗ =
[
0 0 · · · 1 · · · 0

]
, q∗ =



0
0
...
1
...
0

↗
rth entry

← sth entry

That is, an optimal strategy for player R is to always make the rth move, and
an optimal strategy for player C is to always make the sth move. Such strate-
gies for which only one move is possible are called pure strategies. Strategies
for which more than one move is possible are called mixed strategies.
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Example 2. Two competing television networks, R and C, are scheduling
one-hour programs in the same time period. Network R can schedule one
of three possible programs, and network C can schedule one of four possible
programs. Neither network knows which program the other will schedule.
Both networks ask the same outside polling agency to give them an estimate
of how all possible pairings of the programs will divide the viewing audience.
The agency gives them each Table 2, whose (i, j)-th entry is the percentage
of the viewing audience that will watch network R if network R’s program i
is paired against network C’s program j. What program should each network
schedule in order to maximize its viewing audience?

Table 2 Audience Percentage for
Network R

Network C’s
Program

1 2 3 4

1 60 20 30 55

2 50 75 45 60
Network R’s
Program

3 70 45 35 30
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Theorem 10.6.2 (Optimal Strategies for a 2× 2 Matrix Game). For a 2× 2
game that is not strictly determined, optimal strategies for players R and C
are

p∗ =

[
a22 − a21

a11 + a22 − a12 − a21

a11 − a12
a11 + a22 − a12 − a21

]
and

q∗ =


a22 − a12

a11 + a22 − a12 − a21
a11 − a21

a11 + a22 − a12 − a21

 .

The value of the game is

v =
a11a22 − a12a21

a11 + a22 − a12 − a21
.

Example 3. The federal government desires to inoculate its citizens against
a certain flu virus. The virus has two strains, and the proportions in which
the two strains occur in the virus population is not known. Two vaccines have
been developed and each citizen is given only one of them. Vaccine 1 is 85%
effective against strain 1 and 70% effective against strain 2. Vaccine 2 is 60%
effective against strain 1 and 90% effective against strain 2. What inoculation
policy should the government adopt?
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10.7 Forest Management

Remark 1. The optimal sustainable yield of a forest is the largest yield that
can be attained continually without depleting the forest. The column vector

x =


x1

x2
...
xn


is called the nonharvest vector, where xi are the number of trees within the
ith class that remain after each harvest and pi is the economic value of a tree
in the ith class. We set

x1 + x2 + · · ·+ xn = s

where s is predetermined by the amount of land available and the amount of
space each tree requires. We define the following growth parameters gi for
i = 1, 2, . . . , n− 1:

gi = the fraction of trees in the ith class that grow into

the (i+ 1)-st class during a growth period.

Assuming that a tree can move at most one height class upward in one growth
period, we form the following n× n growth matrix:

G =



1− g1 0 0 · · · 0
g1 1− g2 0 · · · 0
0 g2 1− g3 · · · 0
...

...
...

...
...

0 0 0 · · · 1− gn−1 0
0 0 0 · · · gn−1 1


.

The column vector

y =


y1
y2
...
yn


is called the harvest vector, where yi are the number of trees removed from
the ith class. If we define the following n× n replacement matrix

R =


1 1 · · · 1
0 0 · · · 0
...

...
...

0 0 · · · 0


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then the equation
Gx− y +Ry = x

represents the sustainable harvesting condition.

Theorem 10.7.1 (Optimal Sustainable Yield). The optimal sustainable yield
is achieved by harvesting all the trees from one particular height class and none
of the trees from any other height class.

Theorem 10.7.2 (Finding the Optimal Sustainable Yield). The optimal sus-
tainable yield is the largest value of

pks
1

g1
+

1

g2
+ · · ·+ 1

gk−1

for k = 2, 3, . . . , n. The corresponding value of k is the number of the class
that is completely harvested.

Example 1. For a Scots pine forest in Scotland with a growth period of
six years, the following growth matrix was found (see M. B. Usher, “A Matrix
Approach to the Management of Renewable Resources, with Special Reference
to Selection Forests,” Journal of Applied Ecology, vol. 3, 1966, pp. 355-367):

G =



.72 0 0 0 0 0

.28 .69 0 0 0 0
0 .31 .75 0 0 0
0 0 .25 .77 0 0
0 0 0 .23 .63 0
0 0 0 0 .37 1.00


.

Suppose that the prices of trees in the five tallest height classes are

p2 = $50, p3 = $100, p4 = $150, p5 = $200, p6 = $250.

Which class should be completely harvested to obtain the optimal sustainable
yield, and what is that yield?
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10.8 Computer Graphics

Remark 1. Suppose that we want to visualize a three-dimensional object by
displaying various views of it on a video screen. The object we have in mind to
display is to be determined by a finite number of straight line segments. As an
example, consider the truncated right pyramid with hexagonal base illustrated
in the figure.
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We first introduce an xyz-coordinate system in which to embed the object.
As in the figure, we orient the coordinate system so that its origin is at the
center of the video screen and the xy-plane coincides with the plane of the
screen. Consequently, an observer will see only the projection of the view of
the three-dimensional object onto the two-dimensional xy-plane.
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�
�� рр �ćăĖ އ ĒĆăÿđăĂ ÿċĎčą
ēĆă ĘܼÿėćĒ ĀĘ ތܥ ĖćēĆ đăĒďăāē ēĎ
ēĆă ėܼāĎĎđĂćčÿēă ܱ�ėăđāćĒă ܥܲވ

ܥމ ÿܥ �Ćă đăʨăāēćĎč ÿĀĎĔē ēĆă ėę݇ďċÿčă ćĒ ĂăʟčăĂ ÿĒ ēĆă ēđÿčĒĄĎđܼ
ČÿēćĎč ēĆÿē ēÿĊăĒ ÿ ďĎćčē Ⴞėćᆠ Ęćᆠ ęćႿ ēĎ ēĆă ďĎćčē ႾėćᆠႼĘćᆠ ęćႿ
ܱăܥąܡܥ �ćăĖ ܥܲވއ �Ą ᄺ ÿčĂ ᄺኜ ÿđă ēĆă āĎĎđĂćčÿēă ČÿēđćāăĒ ĎĄ ÿ
ĕćăĖ ÿčĂ ćēĒ đăʢăāēćĎč ÿĀĎĔē ēĆă ėęܼďċÿčăܡ đăĒďăāēćĕăċĘܡ ʟčĂ
ÿ Čÿēđćėᄷ ĒĔāĆ ēĆÿē ᄺኜ Ⴝ ᄷᄺܥ

Āܥ �čÿċĎąĎĔĒ ēĎ ďÿđē ܱÿܲܡ Ăăʟčă ēĆă đăʨăāēćĎč ÿĀĎĔē ēĆă Ęę݇
ďċÿčă ÿčĂ āĎčĒēđĔāē ēĆă āĎđđăĒďĎčĂćčą ēđÿčĒĄĎđČÿēćĎč
Čÿēđćėܥ �đÿĖ ÿ ĒĊăēāĆ ĎĄ �ćăĖ އ đăʢăāēăĂ ÿĀĎĔē ēĆă Ęęܼ
ďċÿčăܥ

āܥ �čÿċĎąĎĔĒ ēĎ ďÿđē ܱÿܲܡ Ăăʟčă ēĆă đăʨăāēćĎč ÿĀĎĔē ēĆă ėĘ݇
ďċÿčă ÿčĂ āĎčĒēđĔāē ēĆă āĎđđăĒďĎčĂćčą ēđÿčĒĄĎđČÿēćĎč
Čÿēđćėܥ �đÿĖ ÿ ĒĊăēāĆ ĎĄ �ćăĖ އ đăʢăāēăĂ ÿĀĎĔē ēĆă ėĘܼ
ďċÿčăܥ

0
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�
�� рс �ćăĖ އ đăʢăāēăĂ
ÿĀĎĔē ēĆă ėęܼďċÿčă ܱ�ėăđāćĒă ܥܲމ

ܥފ ÿܥ �ćăĖ މއ ćĒ �ćăĖ އ ĒĔĀĉăāē ēĎ ēĆă ĄĎċċĎĖćčą ʟĕă ēđÿčĒĄĎđČÿܼ
ēćĎčĒܤ
ܥއ �āÿċă ĀĘ ÿ ĄÿāēĎđ ĎĄ އ

ވ ćč ēĆă ėܼĂćđăāēćĎčܡ ވ ćč ēĆă Ęܼ
ĂćđăāēćĎčܡ ÿčĂ އ

މ ćč ēĆă ęܼĂćđăāēćĎčܥ

ܥވ �đÿčĒċÿēă އ
ވ Ĕčćē ćč ēĆă ėܼĂćđăāēćĎčܥ

ܥމ �Ďēÿēă ٷކވ ÿĀĎĔē ēĆă ėܼÿėćĒܥ
ܥފ �ĎēÿēăႼٷދފ ÿĀĎĔē ēĆă ĘܼÿėćĒܥ
ܥދ �Ďēÿēă ٷކޏ ÿĀĎĔē ēĆă ęܼÿėćĒܥ
�ĎčĒēđĔāē ēĆă ʟĕă ČÿēđćāăĒ ᄷܡއ ᄷܡވ ᄷܡމ ᄷܡފ ÿčĂ ᄷދ
ÿĒĒĎāćÿēăĂ ĖćēĆ ēĆăĒă ʟĕă ēđÿčĒĄĎđČÿēćĎčĒܥ

Āܥ �Ą ᄺ ćĒ ēĆă āĎĎđĂćčÿēă Čÿēđćė ĎĄ �ćăĖ އ ÿčĂ ᄺኜ ćĒ ēĆă āĎĎđĂćܼ
čÿēă Čÿēđćė ĎĄ �ćăĖ ܡމއ ăėďđăĒĒ ᄺኜ ćč ēăđČĒ ĎĄᄷܡއᄷܡވᄷܡމᄷܡފᄷܡދ ÿčĂ ᄺܥ
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�
�� рт �ćăĖ އ ĒāÿċăĂܡ
ēđÿčĒċÿēăĂܡ ÿčĂ đĎēÿēăĂ
ܱ�ėăđāćĒă ܥܲފ

ܥދ ÿܥ �ćăĖ ފއ ćĒ �ćăĖ އ ĒĔĀĉăāē ēĎ ēĆă ĄĎċċĎĖćčą Ēăĕăč ēđÿčĒĄĎđܼ
ČÿēćĎčĒܤ
ܥއ �āÿċă ĀĘ ÿ ĄÿāēĎđ ĎĄ މܥ ćč ēĆă ėܼĂćđăāēćĎč ÿčĂ ĀĘ ÿ ĄÿāēĎđ

ĎĄ ދܥ ćč ēĆă ĘܼĂćđăāēćĎčܥ
ܥވ �Ďēÿēă ٷދފ ÿĀĎĔē ēĆă ėܼÿėćĒܥ
ܥމ �đÿčĒċÿēă އ Ĕčćē ćč ēĆă ėܼĂćđăāēćĎčܥ
ܥފ �Ďēÿēă ٷދމ ÿĀĎĔē ēĆă ĘܼÿėćĒܥ
ܥދ �ĎēÿēăႼٷދފ ÿĀĎĔē ēĆă ęܼÿėćĒܥ
ܥތ �đÿčĒċÿēă އ Ĕčćē ćč ēĆă ęܼĂćđăāēćĎčܥ
ܥލ �āÿċă ĀĘ ÿ ĄÿāēĎđ ĎĄ ވ ćč ēĆă ėܼĂćđăāēćĎčܥ
�ĎčĒēđĔāē ēĆă ČÿēđćāăĒ ᄷއᆠᄷވᆠ ᆡ ᆡ ᆡ ᆠᄷލ ÿĒĒĎāćÿēăĂ ĖćēĆ
ēĆăĒă Ēăĕăč ēđÿčĒĄĎđČÿēćĎčĒܥ

Āܥ �Ą ᄺ ćĒ ēĆă āĎĎđĂćčÿēă Čÿēđćė ĎĄ �ćăĖ އ ÿčĂ ᄺኜ ćĒ ēĆă
āĎĎđĂćčÿēă Čÿēđćė ĎĄ �ćăĖ ܡފއ ăėďđăĒĒ ᄺኜ ćč ēăđČĒ ĎĄᄷއᆠᄷވᆠ ᆡ ᆡ ᆡ ᆠᄷܡލ ÿčĂ ᄺܥ

0
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�
�� ру �ćăĖ އ ĒāÿċăĂܡ
ēđÿčĒċÿēăĂܡ ÿčĂ đĎēÿēăĂ
ܱ�ėăđāćĒă ܥܲދ

ܥތ �ĔďďĎĒă ēĆÿē ÿ ĕćăĖ ĖćēĆ āĎĎđĂćčÿēă Čÿēđćė ᄺ ćĒ ēĎ Āă đĎēÿēăĂ
ēĆđĎĔąĆ ÿč ÿčąċă ᆇ ÿĀĎĔē ÿč ÿėćĒ ēĆđĎĔąĆ ēĆă Ďđćąćč ÿčĂ Ēďăāܼ
ćʟăĂ ĀĘ ēĖĎ ÿčąċăĒ ᆀ ÿčĂ ᆁ ܱĒăă �ćąĔđă �ėܼܥܲތ �Ą ᄺኜ ćĒ ēĆă āĎĎđܼ
Ăćčÿēă Čÿēđćė ĎĄ ēĆă đĎēÿēăĂ ĕćăĖܡ ʟčĂ đĎēÿēćĎč ČÿēđćāăĒ ᄼܡއᄼܡވ ᄼܡމ ᄼܡފ ÿčĂ ᄼދ ĒĔāĆ ēĆÿēᄺኜ Ⴝ ᄼދᄼފᄼމᄼވᄼއᄺ
ܳ
ćčēܯ �Ćă ĂăĒćđăĂ đĎēÿēćĎč āÿč Āă ÿāāĎČďċćĒĆăĂ ćč ēĆă ĄĎċċĎĖܼ
ćčą ʟĕă ĒēăďĒܤ
ܥއ �Ďēÿēă ēĆđĎĔąĆ ÿč ÿčąċă ĎĄ ᆁ ÿĀĎĔē ēĆă ĘܼÿėćĒܥ
ܥވ �Ďēÿēă ēĆđĎĔąĆ ÿč ÿčąċă ĎĄ ᆀ ÿĀĎĔē ēĆă ęܼÿėćĒܥ
ܥމ �Ďēÿēă ēĆđĎĔąĆ ÿč ÿčąċă ĎĄ ᆇ ÿĀĎĔē ēĆă ĘܼÿėćĒܥ
ܥފ �Ďēÿēă ēĆđĎĔąĆ ÿč ÿčąċă ĎĄႼᆀ ÿĀĎĔē ēĆă ęܼÿėćĒܥ
ܥދ �Ďēÿēă ēĆđĎĔąĆ ÿč ÿčąċă ĎĄႼᆁ ÿĀĎĔē ēĆă ĘܼÿėćĒܴܥ

Example 1. The top view represents line segments of the truncated
right pyramid with hexagonal base as they would appear on a video
screen.
(a) The bottom view is the top view subject to the following five

transformations:
1. Scale by a factor of 1

2
in the x-direction, 2 in the y-

direction, and 1
3
in the z-direction.

2. Translate 1
2
unit in the x-direction.

3. Rotate 20° about the x-axis.
4. Rotate −45° about the y-axis.
5. Rotate 90° about the z-axis.

Construct the five matricesM1,M2,M3,M4, andM5 associated
with these five transformations.

(b) If P is the coordinate matrix of the original view and P ′ is the coordinate
matrix of the transformed view, express P ′ in terms ofM1,M2,M3,M4,M5,
and P .
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10.9 Equilibrium Temperature Distributions

Theorem 10.9.1 (The Mean-Value Property). Let a plate be in thermal equi-
librium and let P be a point inside the plate. Then if C is any circle with
center at P that is completely contained in the plate, the temperature at P is
the average value of the temperature on the circle.

Remark 1. A plate can be overlaid with a succession of finer and finer square
nets or meshes. The points of intersection of the net lines are called mesh
points. We classify them as boundary mesh points if they fall on the boundary
of the plate or as interior mesh points if they lie in the interior of the plate.

Theorem 10.9.2 (Discrete Mean-Value Property). At each interior mesh
point, the temperature is approximately the average of the temperatures at the
four neighboring mesh points.

Remark 2. The technique of generating successive approximations to the so-
lution of the equation

t = Mt+ b

where t and b are column vectors whose numbers of entries are equal to the
number of interior mesh points and M is a matrix whose number of rows
and columns is equal to the number of interior mesh points, is called Jacobi
iteration.
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n t*

1
2
3
4
5
6
7
8
9

10

1.0000
1.5000
1.3333
1.0000
1.2000
1.0000
1.1429
1.0000
1.1111
1.0000

n (t* + ... + t*)/n (t* + ... + t*)/nn1

1
2
1
0
2
0
2
0
2
0

n t*

20
30
40
50

100
150
200
250
500

1000

0.9500
0.8000
0.8250
0.8400
0.8300
0.8000
0.8050
0.8240
0.7860
0.7550

n n1

1
0
0
2
0
1
0
1
1
0

�3 -�$. � / рпѵш

ܥއ � ďċÿēă ćč ēĆă ĄĎđČ ĎĄ ÿ āćđāĔċÿđ ĂćĒĊ ĆÿĒ ĀĎĔčĂÿđĘ ēăČďăđÿܼ
ēĔđăĒ ĎĄ ٷކ Ďč ēĆă ċăĄē ĎĄ ćēĒ āćđāĔČĄăđăčāă ÿčĂ ٷއ Ďč ēĆă đćąĆē
ĆÿċĄ ĎĄ ćēĒ āćđāĔČĄăđăčāăܥ � čăē ĖćēĆ ĄĎĔđ ćčēăđćĎđ ČăĒĆ ďĎćčēĒ
ćĒ ĎĕăđċÿćĂ Ďč ēĆă ĂćĒĊ ܱĒăă �ćąĔđă �ėܼܥܲއ
ÿܥ �Ēćčą ēĆă ĂćĒāđăēă ČăÿčܼĕÿċĔă ďđĎďăđēĘܡ Ėđćēă ēĆă ފ Ұ ފ ċćčܼ

ăÿđ ĒĘĒēăČ ē ႽᄷēႻ Ā ēĆÿē ĂăēăđČćčăĒ ēĆă ÿďďđĎėćČÿēă
ēăČďăđÿēĔđăĒ ÿē ēĆă ĄĎĔđ ćčēăđćĎđ ČăĒĆ ďĎćčēĒܥ

Āܥ �Ďċĕă ēĆă ċćčăÿđ ĒĘĒēăČ ćč ďÿđē ܱÿܲܥ
āܥ �Ēă ēĆă �ÿāĎĀć ćēăđÿēćĎč ĒāĆăČă ĖćēĆ ēᆷކᆸ Ⴝ ކ ēĎ ąăčăđÿēă

ēĆă ćēăđÿēăĒ ēᆷއᆸᆠ ēᆷވᆸᆠ ēᆷމᆸᆠ ēᆷފᆸܡ ÿčĂ ēᆷދᆸ ĄĎđ ēĆă ċćčăÿđ ĒĘĒēăČ
ćč ďÿđē ܱÿܲܥ�Ćÿē ćĒ ēĆă ݇ăđđĎđ ĕăāēĎđ݉ ēᆷދᆸ Ⴜ ēܡ ĖĆăđă ē ćĒ ēĆă
ĒĎċĔēćĎč ĄĎĔčĂ ćč ďÿđē ܱĀܲܩ

Ăܥ �Ę āăđēÿćč ÿĂĕÿčāăĂČăēĆĎĂĒܡ ćē āÿč Āă ĂăēăđČćčăĂ ēĆÿē ēĆă
ăėÿāē ēăČďăđÿēĔđăĒ ēĎ ĄĎĔđ ĂăāćČÿċ ďċÿāăĒ ÿē ēĆă ĄĎĔđ ČăĒĆ
ďĎćčēĒ ÿđă ēއ Ⴝ ēމ Ⴝ ᆡއލގވ ÿčĂ ēވ Ⴝ ēފ Ⴝ ᆡܥޏވއލ �Ćÿē ÿđă
ēĆă ďăđāăčēÿąă ăđđĎđĒ ćč ēĆă ĕÿċĔăĒ ĄĎĔčĂ ćč ďÿđē ܱĀܲܩ
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ܥވ �Ēă �ĆăĎđăČ އܥޏܥކއ ēĎ ʟčĂ ēĆă ăėÿāē ăĐĔćċćĀđćĔČ ēăČďăđÿēĔđă
ÿē ēĆă āăčēăđ ĎĄ ēĆă ĂćĒĊ ćč �ėăđāćĒă ܥއ

ܥމ �ÿċāĔċÿēă ēĆă ʟđĒē ēĖĎ ćēăđÿēăĒ ēᆷއᆸ ÿčĂ ēᆷވᆸ ĄĎđ āÿĒă ܱĀܲ ĎĄ �ćąܼ
Ĕđă މܥޏܥކއ ĖćēĆ čćčă ćčēăđćĎđ ČăĒĆ ďĎćčēĒ ܳ�ĐĔÿēćĎč ܴܲވܱ ĖĆăč
ēĆă ćčćēćÿċ ćēăđÿēă ćĒ āĆĎĒăč ÿĒ

ēᆷކᆸ Ⴝ Ъއ އ އ އ އ އ އ އ Ыሷއ
ܥފ �Ćă đÿčĂĎČ ĖÿċĊ ćċċĔĒēđÿēăĂ ćč �ćąĔđă �ėܼފÿ āÿč Āă ĂăĒāđćĀăĂ

ĀĘ Ēćė ÿđđĎĖĒ צפצצרע
ēĆÿē ĒďăāćĄĘ ēĆă ĂćđăāēćĎčĒ ĎĄ ĂăďÿđēĔđă ĄđĎČ ēĆă ĒĔāāăĒĒćĕă
ČăĒĆ ďĎćčēĒ ÿċĎčą ēĆă ďÿēĆܥ �ćąĔđă �ėܼފĀ ćĒ ÿč ÿđđÿĘ ĎĄ ކކއ

āĎČďĔēăđܼąăčăđÿēăĂܡ đÿčĂĎČċĘ ĎđćăčēăĂ ÿđđĎĖĒ ÿđđÿčąăĂ ćč ÿ
ކއ Ұ ކއ ÿđđÿĘܥ �Ēă ēĆăĒă ÿđđĎĖĒ ēĎ ĂăēăđČćčă đÿčĂĎČ ĖÿċĊĒ
ēĎ ÿďďđĎėćČÿēă ēĆă ēăČďăđÿēĔđă ēܡދ ÿĒ ćč �ÿĀċă ܥވ �đĎāăăĂ ÿĒ
ĄĎċċĎĖĒܤ
ܥއ �ÿĊă ēĆă ċÿĒē ēĖĎ ĂćąćēĒ ĎĄ ĘĎĔđ ēăċăďĆĎčă čĔČĀăđܥ �Ēă

ēĆă ċÿĒē Ăćąćē ēĎ ĒďăāćĄĘ ÿ đĎĖ ÿčĂ ēĆă ĎēĆăđ ēĎ ĒďăāćĄĘ ÿ
āĎċĔČčܥ

ܥވ 	Ď ēĎ ēĆă ÿđđĎĖ ćč ēĆă ÿđđÿĘ ĖćēĆ ēĆÿē đĎĖ ÿčĂ āĎċĔČč
čĔČĀăđܥ

ܥމ �Ēćčą ēĆćĒ ÿđđĎĖ ÿĒ ÿ Ēēÿđēćčą ďĎćčēܡ ČĎĕă ēĆđĎĔąĆ ēĆă
ÿđđÿĘ ĎĄ ÿđđĎĖĒ ÿĒ ĘĎĔ ĖĎĔċĂ đăÿĂ ÿ ĀĎĎĊ ܱċăĄē ēĎ đćąĆē
ÿčĂ ēĎď ēĎ ĀĎēēĎČܲܥ �ăąćččćčą ÿē ēĆă ďĎćčē ċÿĀăċăĂ ēދ ćč
�ćąĔđă �ėܼފÿ ÿčĂ ĔĒćčą ēĆćĒ ĒăĐĔăčāă ĎĄ ÿđđĎĖĒ ēĎ ĒďăāćĄĘ
ÿ ĒăĐĔăčāă ĎĄ ĂćđăāēćĎčĒܡ ČĎĕă ĄđĎČČăĒĆ ďĎćčē ēĎ ČăĒĆ
ďĎćčē Ĕčēćċ ĘĎĔ đăÿāĆ ÿ ĀĎĔčĂÿđĘ ČăĒĆ ďĎćčēܥ �ĆćĒ āĎČܼ
ďċăēăĒ ĘĎĔđ ʟđĒē đÿčĂĎČĖÿċĊܥ �ăāĎđĂ ēĆă ēăČďăđÿēĔđă ÿē
ēĆă ĀĎĔčĂÿđĘ ČăĒĆ ďĎćčēܥ ܱ�Ą ĘĎĔ đăÿāĆ ēĆă ăčĂ ĎĄ ēĆă
ÿđđĎĖ ÿđđÿĘܡ āĎčēćčĔă ĖćēĆ ēĆă ÿđđĎĖ ćč ēĆă Ĕďďăđ ċăĄē
āĎđčăđܲܥ

ܥފ �ăēĔđč ēĎ ēĆă ćčēăđćĎđ ČăĒĆ ďĎćčē ċÿĀăċăĂ ēދ ÿčĂ Āăąćč
ĖĆăđă ĘĎĔ ċăĄē Ďʗ ćč ēĆă ÿđđĎĖ ÿđđÿĘܢ ąăčăđÿēă ĘĎĔđ čăėē
đÿčĂĎČ ĖÿċĊܥ �ăďăÿē ēĆćĒ ďđĎāăĒĒ Ĕčēćċ ĘĎĔ Ćÿĕă āĎČܼ
ďċăēăĂ ކއ đÿčĂĎČ ĖÿċĊĒ ÿčĂ Ćÿĕă đăāĎđĂăĂ ކއ ĀĎĔčĂÿđĘ
ēăČďăđÿēĔđăĒܥ

ܥދ �ÿċāĔċÿēă ēĆă ÿĕăđÿąă ĎĄ ēĆă ކއ ĀĎĔčĂÿđĘ ēăČďăđÿēĔđăĒ
đăāĎđĂăĂܥ ܱ�Ćă ăėÿāē ĕÿċĔă ćĒ ēދ Ⴝ ᆡܲܥއޏފލ
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Example 1. A plate in the form of a circular disk has bound-
ary temperatures of 0° on the left of its circumference and
1 deg on the right half of its circumference. A net with four
interior mesh points is overlaid on the disk (see the figure).
(a) Using the discrete mean-value property, write the 4× 4

linear system t = Mt + b that determines the approxi-
mate temperatures at the four interior mesh points.
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(b) Solve the linear system in part (a).

(c) Use the Jacobi iteration scheme with t(0) = 0 to generate the iterates
t(1), t(2), t(3), t(4), and t(5) for the linear system in part (a). What is the
“error vector” t(5) − t, where t is the solution found in part (b)?

(d) By certain advanced methods, it can be determined that the exact tem-
peratures to four decimal places at the four mesh points are t1 = t3 =
.2871 and t2 = t4 = .7129. What are the percentage errors in the values
found in part (b)?
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Remark 3. By a discrete random walk along a net we mean a directed path
along the net lines that joins a succession of mesh points such that the direction
of departure from each mesh point is chosen at random.

Theorem 10.9.3 (Random Walk Property). Let W1,W2, . . . ,Wn be a succes-
sion of random walks, all of which begin at a specified interior mesh point. Let
t∗1, t

∗
2, . . . , t

∗
n be the temperatures at the boundary mesh points first encountered

along each of these random walks. Then the average value (t∗1+ t∗2+ · · ·+ t∗n)/n
of these boundary temperatures approaches the temperature at the specified in-
terior mesh point as the number of random walks n increases without bound.

330



Linear Algebra - 10.9 Equilibrium Temperature Distributions

Example 2. The random walk illustrated in Figure (a) can be described by
six arrows

←↓→→↑→

that specify the directions of departure from the successive mesh points along
the path. Figure (b) is an array of 100 computer-generated, random oriented
arrows arranged in a 10 × 10 array. Use these arrows to determine random
walks to approximate the temperature t5. Proceed as follows:

1. Take the last two digits of your telephone number. Use the last digit to
specify a row and the other to specify a column.

2. Go to the arrow in the array with that row and column number.
3. Using this arrow as a starting point, move through the array of arrows as

you would read a book (left to right and top to bottom). Beginning at the
point labeled t5 in Figure (a) and using this sequence of arrows to specify
a sequence of directions, move from mesh point to mesh point until you
reach a boundary mesh point. This completes your first random walk.
Record the temperature at the boundary mesh point. (If you reach the
end of the arrow array, continue with the arrow in the upper left corner.)

4. Return to the interior mesh point labeled t5 and begin where you left
off in the arrow array; generate your next random walk. Repeat this
process until you have completed 10 random walks and have recorded 10
boundary temperatures.

5. Calculate the average of the 10 boundary temperatures recorded. (The
exact value is t5 = .7491.)
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n t*

1
2
3
4
5
6
7
8
9

10

1.0000
1.5000
1.3333
1.0000
1.2000
1.0000
1.1429
1.0000
1.1111
1.0000

n (t* + ... + t*)/n (t* + ... + t*)/nn1

1
2
1
0
2
0
2
0
2
0

n t*

20
30
40
50

100
150
200
250
500

1000

0.9500
0.8000
0.8250
0.8400
0.8300
0.8000
0.8050
0.8240
0.7860
0.7550

n n1

1
0
0
2
0
1
0
1
1
0

�3 -�$. � / рпѵш

ܥއ � ďċÿēă ćč ēĆă ĄĎđČ ĎĄ ÿ āćđāĔċÿđ ĂćĒĊ ĆÿĒ ĀĎĔčĂÿđĘ ēăČďăđÿܼ
ēĔđăĒ ĎĄ ٷކ Ďč ēĆă ċăĄē ĎĄ ćēĒ āćđāĔČĄăđăčāă ÿčĂ ٷއ Ďč ēĆă đćąĆē
ĆÿċĄ ĎĄ ćēĒ āćđāĔČĄăđăčāăܥ � čăē ĖćēĆ ĄĎĔđ ćčēăđćĎđ ČăĒĆ ďĎćčēĒ
ćĒ ĎĕăđċÿćĂ Ďč ēĆă ĂćĒĊ ܱĒăă �ćąĔđă �ėܼܥܲއ
ÿܥ �Ēćčą ēĆă ĂćĒāđăēă ČăÿčܼĕÿċĔă ďđĎďăđēĘܡ Ėđćēă ēĆă ފ Ұ ފ ċćčܼ

ăÿđ ĒĘĒēăČ ē ႽᄷēႻ Ā ēĆÿē ĂăēăđČćčăĒ ēĆă ÿďďđĎėćČÿēă
ēăČďăđÿēĔđăĒ ÿē ēĆă ĄĎĔđ ćčēăđćĎđ ČăĒĆ ďĎćčēĒܥ

Āܥ �Ďċĕă ēĆă ċćčăÿđ ĒĘĒēăČ ćč ďÿđē ܱÿܲܥ
āܥ �Ēă ēĆă �ÿāĎĀć ćēăđÿēćĎč ĒāĆăČă ĖćēĆ ēᆷކᆸ Ⴝ ކ ēĎ ąăčăđÿēă

ēĆă ćēăđÿēăĒ ēᆷއᆸᆠ ēᆷވᆸᆠ ēᆷމᆸᆠ ēᆷފᆸܡ ÿčĂ ēᆷދᆸ ĄĎđ ēĆă ċćčăÿđ ĒĘĒēăČ
ćč ďÿđē ܱÿܲܥ�Ćÿē ćĒ ēĆă ݇ăđđĎđ ĕăāēĎđ݉ ēᆷދᆸ Ⴜ ēܡ ĖĆăđă ē ćĒ ēĆă
ĒĎċĔēćĎč ĄĎĔčĂ ćč ďÿđē ܱĀܲܩ

Ăܥ �Ę āăđēÿćč ÿĂĕÿčāăĂČăēĆĎĂĒܡ ćē āÿč Āă ĂăēăđČćčăĂ ēĆÿē ēĆă
ăėÿāē ēăČďăđÿēĔđăĒ ēĎ ĄĎĔđ ĂăāćČÿċ ďċÿāăĒ ÿē ēĆă ĄĎĔđ ČăĒĆ
ďĎćčēĒ ÿđă ēއ Ⴝ ēމ Ⴝ ᆡއލގވ ÿčĂ ēވ Ⴝ ēފ Ⴝ ᆡܥޏވއލ �Ćÿē ÿđă
ēĆă ďăđāăčēÿąă ăđđĎđĒ ćč ēĆă ĕÿċĔăĒ ĄĎĔčĂ ćč ďÿđē ܱĀܲܩ
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1
t1 t2

t3 t4
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ܥވ �Ēă �ĆăĎđăČ އܥޏܥކއ ēĎ ʟčĂ ēĆă ăėÿāē ăĐĔćċćĀđćĔČ ēăČďăđÿēĔđă
ÿē ēĆă āăčēăđ ĎĄ ēĆă ĂćĒĊ ćč �ėăđāćĒă ܥއ

ܥމ �ÿċāĔċÿēă ēĆă ʟđĒē ēĖĎ ćēăđÿēăĒ ēᆷއᆸ ÿčĂ ēᆷވᆸ ĄĎđ āÿĒă ܱĀܲ ĎĄ �ćąܼ
Ĕđă މܥޏܥކއ ĖćēĆ čćčă ćčēăđćĎđ ČăĒĆ ďĎćčēĒ ܳ�ĐĔÿēćĎč ܴܲވܱ ĖĆăč
ēĆă ćčćēćÿċ ćēăđÿēă ćĒ āĆĎĒăč ÿĒ

ēᆷކᆸ Ⴝ Ъއ އ އ އ އ އ އ އ Ыሷއ
ܥފ �Ćă đÿčĂĎČ ĖÿċĊ ćċċĔĒēđÿēăĂ ćč �ćąĔđă �ėܼފÿ āÿč Āă ĂăĒāđćĀăĂ

ĀĘ Ēćė ÿđđĎĖĒ צפצצרע
ēĆÿē ĒďăāćĄĘ ēĆă ĂćđăāēćĎčĒ ĎĄ ĂăďÿđēĔđă ĄđĎČ ēĆă ĒĔāāăĒĒćĕă
ČăĒĆ ďĎćčēĒ ÿċĎčą ēĆă ďÿēĆܥ �ćąĔđă �ėܼފĀ ćĒ ÿč ÿđđÿĘ ĎĄ ކކއ

āĎČďĔēăđܼąăčăđÿēăĂܡ đÿčĂĎČċĘ ĎđćăčēăĂ ÿđđĎĖĒ ÿđđÿčąăĂ ćč ÿ
ކއ Ұ ކއ ÿđđÿĘܥ �Ēă ēĆăĒă ÿđđĎĖĒ ēĎ ĂăēăđČćčă đÿčĂĎČ ĖÿċĊĒ
ēĎ ÿďďđĎėćČÿēă ēĆă ēăČďăđÿēĔđă ēܡދ ÿĒ ćč �ÿĀċă ܥވ �đĎāăăĂ ÿĒ
ĄĎċċĎĖĒܤ
ܥއ �ÿĊă ēĆă ċÿĒē ēĖĎ ĂćąćēĒ ĎĄ ĘĎĔđ ēăċăďĆĎčă čĔČĀăđܥ �Ēă

ēĆă ċÿĒē Ăćąćē ēĎ ĒďăāćĄĘ ÿ đĎĖ ÿčĂ ēĆă ĎēĆăđ ēĎ ĒďăāćĄĘ ÿ
āĎċĔČčܥ

ܥވ 	Ď ēĎ ēĆă ÿđđĎĖ ćč ēĆă ÿđđÿĘ ĖćēĆ ēĆÿē đĎĖ ÿčĂ āĎċĔČč
čĔČĀăđܥ

ܥމ �Ēćčą ēĆćĒ ÿđđĎĖ ÿĒ ÿ Ēēÿđēćčą ďĎćčēܡ ČĎĕă ēĆđĎĔąĆ ēĆă
ÿđđÿĘ ĎĄ ÿđđĎĖĒ ÿĒ ĘĎĔ ĖĎĔċĂ đăÿĂ ÿ ĀĎĎĊ ܱċăĄē ēĎ đćąĆē
ÿčĂ ēĎď ēĎ ĀĎēēĎČܲܥ �ăąćččćčą ÿē ēĆă ďĎćčē ċÿĀăċăĂ ēދ ćč
�ćąĔđă �ėܼފÿ ÿčĂ ĔĒćčą ēĆćĒ ĒăĐĔăčāă ĎĄ ÿđđĎĖĒ ēĎ ĒďăāćĄĘ
ÿ ĒăĐĔăčāă ĎĄ ĂćđăāēćĎčĒܡ ČĎĕă ĄđĎČČăĒĆ ďĎćčē ēĎ ČăĒĆ
ďĎćčē Ĕčēćċ ĘĎĔ đăÿāĆ ÿ ĀĎĔčĂÿđĘ ČăĒĆ ďĎćčēܥ �ĆćĒ āĎČܼ
ďċăēăĒ ĘĎĔđ ʟđĒē đÿčĂĎČĖÿċĊܥ �ăāĎđĂ ēĆă ēăČďăđÿēĔđă ÿē
ēĆă ĀĎĔčĂÿđĘ ČăĒĆ ďĎćčēܥ ܱ�Ą ĘĎĔ đăÿāĆ ēĆă ăčĂ ĎĄ ēĆă
ÿđđĎĖ ÿđđÿĘܡ āĎčēćčĔă ĖćēĆ ēĆă ÿđđĎĖ ćč ēĆă Ĕďďăđ ċăĄē
āĎđčăđܲܥ

ܥފ �ăēĔđč ēĎ ēĆă ćčēăđćĎđ ČăĒĆ ďĎćčē ċÿĀăċăĂ ēދ ÿčĂ Āăąćč
ĖĆăđă ĘĎĔ ċăĄē Ďʗ ćč ēĆă ÿđđĎĖ ÿđđÿĘܢ ąăčăđÿēă ĘĎĔđ čăėē
đÿčĂĎČ ĖÿċĊܥ �ăďăÿē ēĆćĒ ďđĎāăĒĒ Ĕčēćċ ĘĎĔ Ćÿĕă āĎČܼ
ďċăēăĂ ކއ đÿčĂĎČ ĖÿċĊĒ ÿčĂ Ćÿĕă đăāĎđĂăĂ ކއ ĀĎĔčĂÿđĘ
ēăČďăđÿēĔđăĒܥ

ܥދ �ÿċāĔċÿēă ēĆă ÿĕăđÿąă ĎĄ ēĆă ކއ ĀĎĔčĂÿđĘ ēăČďăđÿēĔđăĒ
đăāĎđĂăĂܥ ܱ�Ćă ăėÿāē ĕÿċĔă ćĒ ēދ Ⴝ ᆡܲܥއޏފލ
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10.10 Computed Tomography
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āĘāċă ĎĄ ēĆă ćēăđÿēćĕă ďđĎāăĒĒܥ �ē āÿč Āă ĒĆĎĖč ēĆÿē ēĆă ċćČćē āĘāċă ćĒ ćčĂăďăčĂăčē ĎĄ ēĆă
Ēēÿđēćčą ďĎćčē ėܥކ

�ăėē Ėă ĂćĒāĔĒĒ ēĆă Ēďăāćʟā ĄĎđČĔċÿĒ čăăĂăĂ ēĎ ăʗăāē ēĆă ĎđēĆĎąĎčÿċ ďđĎĉăāēćĎčĒ ćč
�ċąĎđćēĆČ ܥއ �ćđĒēܡ ĀăāÿĔĒă ēĆă ăĐĔÿēćĎč ĎĄ ÿ ċćčă ćč ėއėܼވĒďÿāă ćĒ

ÿއėއ Ҭ ÿވėވ Ҳ Ā

Ėă āÿč ăėďđăĒĒ ćē ćč ĕăāēĎđ ĄĎđČ ÿĒ
ÿᄾė Ҳ Ā

ĖĆăđă
ÿ Ҳ ԲÿއÿވԾ ÿčĂ ė Ҳ ԲėއėވԾ

�Ćă ĄĎċċĎĖćčą ēĆăĎđăČ ąćĕăĒ ēĆă čăāăĒĒÿđĘ ďđĎĉăāēćĎč ĄĎđČĔċÿ ܱ�ėăđāćĒă ܥܲދ

L

x*

xp

x2

x1

�
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�đēĆĎąĎčÿċ �đĎĉăāēćĎč �ĎđČĔċÿ
�ăē ೯ Āă ÿ ċćčă ćč ೵ވ ĖćēĆ ăĐĔÿēćĎč ÿᄾė Ҳ ĀИ ÿčĂ ċăē ėٶ Āă ÿčĘ ďĎćčē ćč ೵ވ ܱ�ćąĔđă
ܥܲކއܥކއܥކއ �Ćăč ēĆă ĎđēĆĎąĎčÿċ ďđĎĉăāēćĎčܡ ėďИ ĎĄ ėٶ ĎčēĎ ೯ ćĒ ąćĕăč ĀĘ

ėď Ҳ ėٶ Ҭ ШĀ ҭ ÿᄾėٶЩ
ÿᄾÿ ÿ

���
� р

x1 x2

1.00000

.00000

.40000
1.30000

1.20000
.88000

1.42000

1.08000
.83200

1.40800

1.09200
.83680

1.40920

1.09080
.83632

1.40908

1.09092
.83637

1.40909

3.00000

2.00000
1.20000

.90000

.80000
1.44000
1.26000

.92000
1.41600
1.22400

.90800
1.41840
1.22760

.90920
1.41816
1.22724

.90908
1.41818
1.22728

x0

x1
x2
x3

(1)

(1)

(1)

(2)

(2)

(2)

x1
x2
x3

(3)

(3)

(3)

x1
x2
x3

(4)

(4)

(4)

x1
x2
x3

(5)

(5)

(5)

x1
x2
x3

(6)

(6)

(6)

x1
x2
x3
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� р Ҟ �Ēćčą �ċąĎđćēĆČ އ

�ă āÿč ĔĒă �ċąĎđćēĆČ އ ēĎ ʟčĂ ÿč ÿďďđĎėćČÿēă ĒĎċĔēćĎč ĎĄ ēĆă ċćčăÿđ ĒĘĒēăČ ąćĕăč ćč ܲދܱ ÿčĂ
ćċċĔĒēđÿēăĂ ćč �ćąĔđă ܥޏܥކއܥކއ �Ą Ėă Ėđćēă ēĆă ăĐĔÿēćĎčĒ ĎĄ ēĆă ēĆđăă ċćčăĒ ÿĒᄶۚއ ÿሷއ ė Ⴝ Āއᄶۚވ ÿሷވ ė Ⴝ Āވᄶۚމ ÿሷމ ė Ⴝ Āމ
ĖĆăđă

ė Ⴝ ԳėއėވԿᆠ ÿއ Ⴝ ԳއއԿᆠ ÿވ Ⴝ Գ ԿᆠވႼއ ÿމ Ⴝ Գ ԿᆠއႼމ
Āއ Ⴝ ᆠވ Āވ Ⴝ Ⴜވᆠ Āމ Ⴝ މ

ēĆăčܡ ĔĒćčą �ĆăĎđăČ ܡއܥކއܥކއ Ėă āÿč ăėďđăĒĒ ēĆă ćēăđÿēćĎč ĒāĆăČă ćč �ċąĎđćēĆČ އ ÿĒ

ėᆷďᆸĊ Ⴝ ėᆷďᆸĊᆵއ Ⴛ ႾĀĊ Ⴜ ÿሷĊ ėᆷďᆸĊᆵއႿ
ÿሷĊ ÿĊ ÿĊᆠ Ċ Ⴝ ᆠއ ᆠވ މ

ĖĆăđă ď Ⴝ އ ĄĎđ ēĆă ʟđĒē āĘāċă ĎĄ ćēăđÿēăĒܡ ď Ⴝ ވ ĄĎđ ēĆă ĒăāĎčĂ āĘāċă ĎĄ ćēăđÿēăĒܡ ÿčĂ ĒĎ ĄĎđēĆܥ
�Ąēăđ ăÿāĆ āĘāċă ĎĄ ćēăđÿēăĒ ܱćܥăܡܥ ÿĄēăđ ėᆷďᆸމ ćĒ āĎČďĔēăĂܲܡ ēĆă čăėē āĘāċă ĎĄ ćēăđÿēăĒ ćĒ ĀăąĔč
ĖćēĆ ėᆷďᆴއᆸކ Ēăē ăĐĔÿċ ēĎ ėᆷďᆸމ ܥ

�ÿĀċă އ ąćĕăĒ ēĆă čĔČăđćāÿċ đăĒĔċēĒ ĎĄ Ēćė āĘāċăĒ ĎĄ ćēăđÿēćĎčĒ Ēēÿđēćčą ĖćēĆ ēĆă ćčćēćÿċ
ďĎćčē ėކ Ⴝ Ⴞއᆠ ܥႿމ

�Ēćčą āăđēÿćč ēăāĆčćĐĔăĒ ēĆÿē ÿđă ćČďđÿāēćāÿċ ĄĎđ ċÿđąă ċćčăÿđ ĒĘĒēăČĒܡ Ėă āÿč ĒĆĎĖ ēĆă
ăėÿāē ĕÿċĔăĒ ĎĄ ēĆă ďĎćčēĒ ĎĄ ēĆă ċćČćē āĘāċă ćč ēĆćĒ ăėÿČďċă ēĎ Āă

ėއٶ Ⴝ ԕ އއވއ И ԡއއކއ Ⴝ Ⴞއᆡކޏކޏކ ᆡ ᆡ ᆡ ᆠ ᆡޏކޏކޏ ᆡ ᆡ ᆡႿ
ėވٶ Ⴝ ԕ ދދތފ И ԡދދގލ Ⴝ Ⴞᆡތމތމގ ᆡ ᆡ ᆡ ᆠ ގއގއފᆡއ ᆡ ᆡ ᆡႿ
ėމٶ Ⴝ ԕ ވވއމ И ԡވވލވ Ⴝ Ⴞއᆡޏކޏކފ ᆡ ᆡ ᆡ ᆠ ލވލވވᆡއ ᆡ ᆡ ᆡႿ

Theorem 10.10.1 (Orthogonal Projection Formula). Let L
be a line in R2 with equation aTx = b, and let x∗ be any point
in R2 (see the figure). Then the orthogonal projection, xp, of
x∗ onto L is given by

xp = x∗ +
(b− aTx∗)

aTa
a.

Example 1. Find an approximate solution of the linear system

x1 + x2 = 2L1 :

x1 − 2x2 = −2L2 :

3x1 − x2 = 3L3 :

shown in the figure.

�*1 (� - ртѶ спрч рцѷрс �рп �#  / )0(� - цш ��" )0(� - хст �4�)(�" )/� 4 ''*2 �'��& Ҷ спрчѶ �)/*) � 3/�**&.Ѷ 
)�ѵѶ �'' -$"#/. - . -1 �

рпѵрп �*(+0/ � �*(*"-�+#4 хст

�ċąăĀđÿćā �ăāĎčĒēđĔāēćĎč �ăāĆčćĐĔăĒ
�Ćăđă Ćÿĕă Āăăč ČÿčĘ ČÿēĆăČÿēćāÿċ ÿċąĎđćēĆČĒ ĂăĕćĒăĂ ēĎ ēđăÿē ēĆă ĎĕăđĂăēăđČćčăĂ ċćčܼ
ăÿđ ĒĘĒēăČ ܥܲފܱ �Ćă ĎčăĖăĖćċċ ĂăĒāđćĀă ĀăċĎčąĒ ēĎ ēĆă āċÿĒĒ ĎĄ ĒĎܼāÿċċăĂ�ċąăĀđÿćā �ăāĎč݇
ĒēđĔāēćĎč�ăāĆčćĐĔăĒ ܱ���Ēܲܥ �ĆćĒČăēĆĎĂܡ ĖĆćāĆ āÿč Āă ēđÿāăĂ ēĎ ÿč ćēăđÿēćĕă ēăāĆčćĐĔă
ĎđćąćčÿċċĘ ćčēđĎĂĔāăĂ ĀĘ ܥ� 
ÿāęČÿđę ćč ܡލމޏއ ĖÿĒ ēĆă Ďčă ĔĒăĂ ćč ēĆă ʟđĒē āĎČČăđāćÿċ
ČÿāĆćčăܥ �Ď ćčēđĎĂĔāă ēĆćĒ ēăāĆčćĐĔăܡ āĎčĒćĂăđ ēĆă ĄĎċċĎĖćčą ĒĘĒēăČ ĎĄ ēĆđăă ăĐĔÿēćĎčĒ
ćč ēĖĎ ĔčĊčĎĖčĒܤ ೯ۚއ ėއ Ҭ ėވ Ҳ ۚވ೯ވ ėއ ҭ ވėވ Ҳ ҭވ೯ۚމ އėމ ҭ ėވ Ҳ މ

ܲދܱ

x2

x1

3x1 – x2 = 3

x1 + x2 = 2
x1 – 2x2 = –2

L2

L1L3

(a)

x2 x0

x1

x1

L2

L1L3

(b)

x2

x1

L2

L1L3

(c)

(1)

x2
(1) x3

(1)

x2
(2)

x1
(2)

x3
(2)

x2
*

x1
*

x3
*
Limit cycle
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�Ćă ċćčăĒ ೯ܡއ ೯ܡވ ೯މ ĂăēăđČćčăĂ ĀĘ ēĆăĒă ēĆđăă ăĐĔÿēćĎčĒ ÿđă ďċĎēēăĂ ćč ēĆă ėއėܼވďċÿčăܥ �Ē
ĒĆĎĖč ćč �ćąĔđă ܡÿޏܥކއܥކއ ēĆă ēĆđăă ċćčăĒ ĂĎ čĎē Ćÿĕă ÿ āĎČČĎč ćčēăđĒăāēćĎčܡ ÿčĂ ĒĎ ēĆă
ēĆđăă ăĐĔÿēćĎčĒ ĂĎ čĎē Ćÿĕă ÿč ăėÿāē ĒĎċĔēćĎčܥ 
ĎĖăĕăđܡ ēĆă ďĎćčēĒ ШėއИ ėވЩ Ďč ēĆă ĒĆÿĂăĂ
ēđćÿčąċă ĄĎđČăĂ ĀĘ ēĆă ēĆđăă ċćčăĒ ÿđă ÿċċ ĒćēĔÿēăĂ ݇čăÿđ݉ ēĆăĒă ēĆđăă ċćčăĒ ÿčĂ āÿč Āă
ēĆĎĔąĆē ĎĄ ÿĒ āĎčĒēćēĔēćčą ݇ÿďďđĎėćČÿēă݉ ĒĎċĔēćĎčĒ ēĎ ĎĔđ ĒĘĒēăČܥ �Ćă ĄĎċċĎĖćčą ćēăđÿēćĕă
ďđĎāăĂĔđă ĂăĒāđćĀăĒ ÿ ąăĎČăēđćā āĎčĒēđĔāēćĎč ĄĎđ ąăčăđÿēćčą ďĎćčēĒ Ďč ēĆă ĀĎĔčĂÿđĘ ĎĄ
ēĆÿē ēđćÿčąĔċÿđ đăąćĎč ܱ�ćąĔđă ܤĀܲޏܥކއܥކއ
�ċąĎđćēĆČ އ
�ēăď ܥކ �ĆĎĎĒă ÿč ÿđĀćēđÿđĘ Ēēÿđēćčą ďĎćčē ėކ ćč ēĆă ėއėܼވďċÿčăܥ

�ēăď ܥއ �đĎĉăāē ėކ ĎđēĆĎąĎčÿċċĘ ĎčēĎ ēĆă ʟđĒē ċćčă ೯އ ÿčĂ āÿċċ ēĆă ďđĎĉăāēćĎč ėႾއႿއ ܥ �Ćă ĒĔďăđܼ
Ēāđćďē ܲއܱ ćčĂćāÿēăĒ ēĆÿē ēĆćĒ ćĒ ēĆă ʟđĒē ĎĄ Ēăĕăđÿċ āĘāċăĒ ēĆđĎĔąĆ ēĆă ĒēăďĒܥ

�ēăď ܥވ �đĎĉăāē ėႾއႿއ ĎđēĆĎąĎčÿċċĘ ĎčēĎ ēĆă ĒăāĎčĂ ċćčă ೯ވ ÿčĂ āÿċċ ēĆă ďđĎĉăāēćĎč ėႾއႿވ ܥ

�ēăď ܥމ �đĎĉăāē ėႾއႿވ ĎđēĆĎąĎčÿċċĘ ĎčēĎ ēĆă ēĆćđĂ ċćčă ೯މ ÿčĂ āÿċċ ēĆă ďđĎĉăāēćĎč ėႾއႿމ ܥ

�ēăď ܥފ �ÿĊă ėႾއႿމ ÿĒ ēĆă čăĖ ĕÿċĔă ĎĄ ėކ ÿčĂ āĘāċă ēĆđĎĔąĆ �ēăďĒ އ ēĆđĎĔąĆ މ ÿąÿćčܥ �č ēĆă
ĒăāĎčĂ āĘāċăܡ ċÿĀăċ ēĆă ďđĎĉăāēăĂ ďĎćčēĒ ėႾވႿއ ܡ ėႾވႿވ ܡ ėႾވႿމ ܢ ćč ēĆă ēĆćđĂ āĘāċăܡ ċÿĀăċ ēĆă
ďđĎĉăāēăĂ ďĎćčēĒ ėႾމႿއ ܡ ėႾމႿވ ܡ ėႾމႿމ ܢ ÿčĂ ĒĎ ĄĎđēĆܥ

�ĆćĒ ÿċąĎđćēĆČ ąăčăđÿēăĒ ēĆđăă ĒăĐĔăčāăĒ ĎĄ ďĎćčēĒ೯ۚއ ėႾއႿއ И ėႾވႿއ И ėႾމႿއ И М М М೯ۚވ ėႾއႿވ И ėႾވႿވ И ėႾމႿވ И М М М೯ۚމ ėႾއႿމ И ėႾވႿމ И ėႾމႿމ И М М М
ēĆÿē ċćă Ďč ēĆă ēĆđăă ċćčăĒ ೯ܡއ ೯ܡވ ÿčĂ ೯ܡމ đăĒďăāēćĕăċĘܥ �ē āÿč Āă ĒĆĎĖč ēĆÿē ÿĒ ċĎčą ÿĒ ēĆă
ēĆđăă ċćčăĒ ÿđă čĎē ÿċċ ďÿđÿċċăċܡ ēĆăč ēĆă ʟđĒē ĒăĐĔăčāă āĎčĕăđąăĒ ēĎ ÿ ďĎćčē ėއٶ Ďč ೯ܡއ ēĆă
ĒăāĎčĂ ĒăĐĔăčāă āĎčĕăđąăĒ ēĎ ÿ ďĎćčē ėވٶ Ďč ೯ܡވ ÿčĂ ēĆă ēĆćđĂ ĒăĐĔăčāă āĎčĕăđąăĒ ēĎ ÿ
ďĎćčē ėމٶ Ďč ೯މ ܱ�ćąĔđă ܥāܲޏܥކއܥކއ �ĆăĒă ēĆđăă ċćČćē ďĎćčēĒ ĄĎđČ ĖĆÿē ćĒ āÿċċăĂ ēĆă ċćČćē
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Linear Algebra - 10.10 Computed Tomography

Example 2. Find the unknown pixel densities of the 9 pixels arranged in the
3 × 3 array illustrated in the figure. These 9 pixels are scanned using the
parallel mode with 12 beams whose measured beam densities are indicated in
the figure.
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ĂĎăĒ čĎē ĂăďăčĂ Ďč ēĆă āĆĎćāă ĎĄ ēĆă ćčćēćÿċ ďĎćčē ėܥކ �č āĎČďĔēăĂ ēĎČĎąđÿďĆĘܡ Ďčă ĎĄ ēĆă
ćēăđÿēăĒ ėႾďႿᄷ ĄĎđ ď ĒĔʚāćăčēċĘ ċÿđąă ćĒ ēÿĊăč ÿĒ ÿč ÿďďđĎėćČÿēă ĒĎċĔēćĎč ĎĄ ēĆă ċćčăÿđ ĒĘĒēăČ
ĄĎđ ēĆă ďćėăċ ĂăčĒćēćăĒܥ

�Ďēă ēĆÿē ĄĎđ ēĆă āăčēăđܼĎĄܼďćėăċ ČăēĆĎĂܡ ēĆă Ēāÿċÿđ ĐĔÿčēćēĘ ÿᄾĊ ÿĊ ÿďďăÿđćčą ćč ēĆă
ăĐĔÿēćĎč ćč �ēăď ވ ĎĄ ēĆă ÿċąĎđćēĆČ ćĒ ĒćČďċĘ ēĆă čĔČĀăđ ĎĄ ďćėăċĒ ćč ĖĆćāĆ ēĆă ĊēĆ ĀăÿČ
ďÿĒĒăĒ ēĆđĎĔąĆ ēĆă āăčēăđܥ �ćČćċÿđċĘܡ čĎēă ēĆÿē ēĆă Ēāÿċÿđ ĐĔÿčēćēĘ

ĀĊ ҭ ÿᄾĊ ėႾďႿĊႼއ
ćč ēĆÿē ĒÿČă ăĐĔÿēćĎč āÿč Āă ćčēăđďđăēăĂ ÿĒ ēĆă ăėāăĒĒ ĊēĆ ĀăÿČ ĂăčĒćēĘ ēĆÿē đăĒĔċēĒ ćĄ ēĆă
ďćėăċ ĂăčĒćēćăĒ ÿđă Ēăē ăĐĔÿċ ēĎ ēĆă ăčēđćăĒ ĎĄ ėႾďႿĊႼܥއ �ĆćĒ ďđĎĕćĂăĒ ēĆă ĄĎċċĎĖćčą ćčēăđďđăēÿܼ
ēćĎč ĎĄ ĎĔđ ��� ćēăđÿēćĎč ĒāĆăČă ĄĎđ ēĆă āăčēăđܼĎĄܼďćėăċ ČăēĆĎĂܤ 	ăčăđÿēă ēĆă ďćėăċ Ăăč݇
ĒćēćăĒ ĎĄ ăÿāĆ ćēăđÿēă ĀĘ ĂćĒēđćĀĔēćčą ēĆă ăėāăĒĒ ĀăÿČ ĂăčĒćēĘ ĎĄ ĒĔāāăĒĒćĕă ĀăÿČĒ ćč ēĆă Ēāÿč
ăĕăčċĘ ÿČĎčą ēĆĎĒă ďćėăċĒ ćč ĖĆćāĆ ēĆă ĀăÿČ ďÿĒĒăĒ ēĆđĎĔąĆ ēĆă āăčēăđܰ �Ćăč ēĆă ċÿĒē ĀăÿČ
ćč ēĆă Ēāÿč ĆÿĒ Āăăč đăÿāĆăĂܬ đăēĔđč ēĎ ēĆă ʥđĒē ĀăÿČ ÿčĂ āĎčēćčĔăܥ

�����
� с Ҟ �Ēćčą �ċąĎđćēĆČ ވ

�ă āÿč ĔĒă �ċąĎđćēĆČ ވ ēĎ ʟčĂ ēĆă ĔčĊčĎĖč ďćėăċ ĂăčĒćēćăĒ ĎĄ ēĆă ޏ ďćėăċĒ ÿđđÿčąăĂ ćč ēĆă
މ Ұ މ ÿđđÿĘ ćċċĔĒēđÿēăĂ ćč �ćąĔđă ܥއއܥކއܥކއ �ĆăĒă ޏ ďćėăċĒ ÿđă ĒāÿččăĂ ĔĒćčą ēĆă ďÿđÿċċăċ ČĎĂă
ĖćēĆ ވއ ĀăÿČĒ ĖĆĎĒă ČăÿĒĔđăĂ ĀăÿČ ĂăčĒćēćăĒ ÿđă ćčĂćāÿēăĂ ćč ēĆă ʟąĔđăܥ �ă āĆĎĎĒă ēĆă
āăčēăđܼĎĄܼďćėăċ ČăēĆĎĂ ēĎ Ēăē Ĕď ēĆă ވއ ĀăÿČ ăĐĔÿēćĎčĒܥ ܱ�č �ėăđāćĒăĒ ލ ÿčĂ ܡގ ĘĎĔ ÿđă ÿĒĊăĂ
ēĎ Ēăē Ĕď ēĆă ĀăÿČ ăĐĔÿēćĎčĒ ĔĒćčą ēĆă āăčēăđ ċćčă ÿčĂ ÿđăÿ ČăēĆĎĂĒܲܥ �Ē ĘĎĔ āÿč ĕăđćĄĘܡ ēĆă
ĀăÿČ ăĐĔÿēćĎčĒ ÿđă

ėލ Ⴛ ėގ Ⴛ ėޏ Ⴝ ކކᆡމއ ėމ Ⴛ ėތ Ⴛ ėޏ Ⴝ ކކᆡގއ
ėފ Ⴛ ėދ Ⴛ ėތ Ⴝ ކކᆡދއ ėވ Ⴛ ėދ Ⴛ ėގ Ⴝ ކކᆡވއ
ėއ Ⴛ ėވ Ⴛ ėމ Ⴝ ކކᆡގ ėއ Ⴛ ėފ Ⴛ ėލ Ⴝ ކކᆡތ
ėތ Ⴛ ėގ Ⴛ ėޏ Ⴝ ޏލᆡފއ ėވ Ⴛ ėމ Ⴛ ėތ Ⴝ އދᆡކއ
ėމ Ⴛ ėދ Ⴛ ėލ Ⴝ އމᆡފއ ėއ Ⴛ ėދ Ⴛ ėޏ Ⴝ މއᆡތއ
ėއ Ⴛ ėވ Ⴛ ėފ Ⴝ އގᆡމ ėފ Ⴛ ėލ Ⴛ ėގ Ⴝ ފކᆡލ

�ÿĀċă ވ ćċċĔĒēđÿēăĒ ēĆă đăĒĔċēĒ ĎĄ ēĆă ćēăđÿēćĎč ĒāĆăČă Ēēÿđēćčą ĖćēĆ ÿč ćčćēćÿċ ćēăđÿēă ėކ Ⴝ ܥކ
�Ćă ēÿĀċă ąćĕăĒ ēĆă ĕÿċĔăĒ ĎĄ ăÿāĆ ĎĄ ēĆă ʟđĒē āĘāċă ĎĄ ćēăđÿēăĒܡ ėᆷއᆸއ ēĆđĎĔąĆ ėᆷއᆸވއ ܡ ĀĔē
ēĆăđăÿĄēăđ ąćĕăĒ ēĆă ćēăđÿēăĒ ėᆷďᆸވއ ĎčċĘ ĄĎđ ĕÿđćĎĔĒ ĕÿċĔăĒ ĎĄ ďܥ �Ćă ćēăđÿēăĒ ėᆷďᆸވއ Ēēÿđē
đăďăÿēćčą ēĎ ēĖĎ ĂăāćČÿċ ďċÿāăĒ ĄĎđ ď ܔ ܡދފ ÿčĂ ĒĎ Ėă ēÿĊă ēĆă ăčēđćăĒ ĎĄ ėᆷދފᆸވއ ÿĒ ÿďďđĎėćܼ
Čÿēă ĕÿċĔăĒ ĎĄ ēĆă ޏ ďćėăċ ĂăčĒćēćăĒܥ

1 2

4 5 6

7 8 9

3 b3 = 8.00

b2 = 15.00

b1 = 13.00

1 2

4 5 6

7 8 9

3

b8 = 12.00
b9 = 6.00 b7 = 18.00

1 2

4 5 6

7 8 9

3

b6 = 3.81
b5 = 14.31

b4 = 14.79
1 2

4 5 6

7 8 9

3

b10 = 10.51
b11 = 16.13

b12 = 7.04
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�ă āċĎĒă ēĆćĒ ĒăāēćĎč ĀĘ čĎēćčą ēĆÿē ēĆă ʟăċĂ ĎĄ āĎČďĔēăĂ ēĎČĎąđÿďĆĘ ćĒ ďđăĒăčēċĘ ÿ
ĕăđĘ ÿāēćĕă đăĒăÿđāĆ ÿđăÿܥ �č Ąÿāēܡ ēĆă ��� ĒāĆăČă ĂćĒāĔĒĒăĂ Ćăđă ĆÿĒ Āăăč đăďċÿāăĂ ćč
āĎČČăđāćÿċ ĒĘĒēăČĒ ĀĘ ČĎđă ĒĎďĆćĒēćāÿēăĂ ēăāĆčćĐĔăĒ ēĆÿē ÿđă ĄÿĒēăđ ÿčĂ ďđĎĕćĂă ÿ ČĎđă
ÿāāĔđÿēă ĕćăĖ ĎĄ ēĆă āđĎĒĒ ĒăāēćĎčܥ 
ĎĖăĕăđܡ ÿċċ ēĆă čăĖ ēăāĆčćĐĔăĒ ÿĂĂđăĒĒ ēĆă ĒÿČă ĀÿĒćā
ČÿēĆăČÿēćāÿċ ďđĎĀċăČܤ ʟčĂćčą ÿ ąĎĎĂ ÿďďđĎėćČÿēă ĒĎċĔēćĎč ĎĄ ÿ ċÿđąă ĎĕăđĂăēăđČćčăĂ
ćčāĎčĒćĒēăčē ċćčăÿđ ĒĘĒēăČ ĎĄ ăĐĔÿēćĎčĒܥ
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10.11 Fractals

Remark 1. We call a set in R2 bounded if it can be enclosed by a suitably
large circle and closed if it contains all of its boundary points. Two sets in R2

will be called congruent if they can be made to coincide exactly by translating
and rotating them appropriately within R2.

If T : R2 → R2 is the linear operator that scales by a factor of s (see Table
7 of Section 4.9), and if Q is a set in R2, then the set T (Q) (the set of images of
points in Q under T is called a dilation of the set Q if s > 1 and a contraction
of Q if 0 < s < 1. In either case we say that T (Q) is the set Q scaled by the
factor s.

Definition 10.11.1. A closed and bounded subset of the Euclidean plane R2

is said to be self-similar if it can be expressed in the form

S = S1 ∪ S2 ∪ S3 ∪ · · · ∪ Sk

where S1, S2, S3, . . . , Sk are nonoverlapping sets, each of which is congruent to
S scaled by the same factor s (0 < s < 1).

Example 1. A line segment in R2 can be expressed as the union of two
nonoverlapping congruent line segments. Determine the values of k and s for
this self-similar set.

Example 2. A square can be expressed as the union of four nonoverlapping
congruent squares. Determine the values of k and s for this self-similar set.
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�����
� р Ҟ �ćčă �ăąČăčē

� ċćčă ĒăąČăčē ćčᄼވ ܱ�ćąĔđă ÿܲތܥއއܥކއ āÿč Āă ăėďđăĒĒăĂ ÿĒ ēĆă ĔčćĎč ĎĄ ēĖĎ čĎčĎĕăđċÿďďćčą
āĎčąđĔăčē ċćčă ĒăąČăčēĒ ܱ�ćąĔđă ܥĀܲތܥއއܥކއ �č �ćąĔđă Āތܥއއܥކއ Ėă Ćÿĕă ĒăďÿđÿēăĂ ēĆă ēĖĎ
ċćčă ĒăąČăčēĒ ĒċćąĆēċĘ ĒĎ ēĆÿē ēĆăĘ āÿč Āă Ēăăč ČĎđă ăÿĒćċĘܥ �ÿāĆ ĎĄ ēĆăĒă ēĖĎ ĒČÿċċăđ ċćčă
ĒăąČăčēĒ ćĒ āĎčąđĔăčē ēĎ ēĆă Ďđćąćčÿċ ċćčă ĒăąČăčē ĒāÿċăĂ ĀĘ ÿ ĄÿāēĎđ ĎĄ އ

ވ ܥ 
ăčāăܡ ÿ ċćčă
ĒăąČăčē ćĒ ÿ ĒăċĄܼĒćČćċÿđ Ēăē ĖćēĆ Ċ Ⴝ ވ ÿčĂ Ē Ⴝ އ

ވ ܥ

(a)

(b)

�
���� рпѵррѵх

(a)

(b)

�
���� рпѵррѵц

�����
� с Ҟ �ĐĔÿđă

� ĒĐĔÿđă ܱ�ćąĔđă ÿܲލܥއއܥކއ āÿč Āă ăėďđăĒĒăĂ ÿĒ ēĆă ĔčćĎč ĎĄ ĄĎĔđ čĎčĎĕăđċÿďďćčą āĎčąđĔăčē
ĒĐĔÿđăĒ ܱ�ćąĔđă ĖĆăđăܡĀܲލܥއއܥކއ Ėă Ćÿĕă ÿąÿćč ĒăďÿđÿēăĂ ēĆă ĒČÿċċăđ ĒĐĔÿđăĒ ĒċćąĆēċĘܥ �ÿāĆ
ĎĄ ēĆă ĄĎĔđ ĒČÿċċăđ ĒĐĔÿđăĒ ćĒ āĎčąđĔăčē ēĎ ēĆă Ďđćąćčÿċ ĒĐĔÿđă ĒāÿċăĂ ĀĘ ÿ ĄÿāēĎđ ĎĄ ވއ ܥ 
ăčāăܡ
ÿ ĒĐĔÿđă ćĒ ÿ ĒăċĄܼĒćČćċÿđ Ēăē ĖćēĆ Ċ Ⴝ ފ ÿčĂ Ē Ⴝ އ

ވ ܥ

�����
� т Ҟ �ćăđďćčĒĊć �ÿđďăē

�Ćă Ēăē ĒĔąąăĒēăĂ ĀĘ �ćąĔđă ܡÿގܥއއܥކއ ēĆă �ćăđďćčĒĊć ݇āÿđďăē݉ܡ ĖÿĒ ʟđĒē ĂăĒāđćĀăĂ ĀĘ ēĆă �Ďċܼ
ćĒĆ ČÿēĆăČÿēćāćÿč �ÿāċÿĖ �ćăđďćčĒĊć ܥܲޏތޏއ݁ވގގއܱ �ē āÿč Āă ăėďđăĒĒăĂ ÿĒ ēĆă ĔčćĎč ĎĄ ăćąĆē
čĎčĎĕăđċÿďďćčą āĎčąđĔăčē ĒĔĀĒăēĒ ܱ�ćąĔđă ܡĀܲގܥއއܥކއ ăÿāĆ ĎĄ ĖĆćāĆ ćĒ āĎčąđĔăčē ēĎ ēĆă Ďđćąܼ
ćčÿċ Ēăē ĒāÿċăĂ ĀĘ ÿ ĄÿāēĎđ ĎĄ މއ ܥ 
ăčāăܡ ćē ćĒ ÿ ĒăċĄܼĒćČćċÿđ Ēăē ĖćēĆ Ċ Ⴝ ގ ÿčĂ Ē Ⴝ އ

މ ܥ �Ďēă ēĆÿē
ēĆă ćčēđćāÿēă ĒĐĔÿđăܼĖćēĆćčܼÿܼĒĐĔÿđă ďÿēēăđč āĎčēćčĔăĒ ĄĎđăĕăđ Ďč ÿ ĒČÿċċăđ ÿčĂ ĒČÿċċăđ Ēāÿċă
ܱÿċēĆĎĔąĆ ēĆćĒ āÿč ĎčċĘ Āă ĒĔąąăĒēăĂ ćč ÿ ʟąĔđă ĒĔāĆ ÿĒ ēĆă Ďčă ĒĆĎĖčܲܥ

(a) (b)

�
���� рпѵррѵч

�����
� у Ҟ �ćăđďćčĒĊć �đćÿčąċă

�ćąĔđă ÿޏܥއއܥކއ ćċċĔĒēđÿēăĒ ÿčĎēĆăđ Ēăē ĂăĒāđćĀăĂ ĀĘ �ćăđďćčĒĊćܥ �ē ćĒ ÿ ĒăċĄܼĒćČćċÿđ ĒăēĖćēĆ Ċ Ⴝ
މ ÿčĂ Ē Ⴝ އ

ވ ܱ�ćąĔđă ܥĀܲޏܥއއܥކއ �Ē ĖćēĆ ēĆă �ćăđďćčĒĊć āÿđďăēܡ ēĆă ćčēđćāÿēă ēđćÿčąċăܼĖćēĆćčܼ
ÿܼēđćÿčąċă ďÿēēăđč āĎčēćčĔăĒ ĄĎđăĕăđ Ďč ÿ ĒČÿċċăđ ÿčĂ ĒČÿċċăđ Ēāÿċăܥ

Example 3. The set suggested by the figure, the Sierpinski
“carpet,” was first described by the Polish mathematician Wa-
claw Sierpinski (1882–1969). Determine the values of k and s
for this self-similar set.
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(a) (b)

�
���� рпѵррѵш

�Ćă �ćăđďćčĒĊć āÿđďăē ÿčĂ ēđćÿčąċă Ćÿĕă ÿ ČĎđă ćčēđćāÿēă ĒēđĔāēĔđă ēĆÿč ēĆă ċćčă Ēăąܼ
Čăčē ÿčĂ ēĆă ĒĐĔÿđă ćč ēĆÿē ēĆăĘ ăėĆćĀćē ÿ ďÿēēăđč ēĆÿē ćĒ đăďăÿēăĂ ćčĂăʟčćēăċĘܥ �ĆćĒ ĂćĄܼ
Ąăđăčāă Ėćċċ Āă ăėďċĎđăĂ ċÿēăđ ćč ēĆćĒ ĒăāēćĎčܥ

�ĎďĎċĎąćāÿċ �ćČăčĒćĎč ĎĄ ÿ �ăē
�č �ăāēćĎč ދܥފ Ėă ĂăʟčăĂ ēĆă ĂćČăčĒćĎč ĎĄ ÿ ĒĔĀĒďÿāă ĎĄ ÿ ĕăāēĎđ Ēďÿāă ēĎ Āă ēĆă čĔČĀăđ
ĎĄ ĕăāēĎđĒ ćč ÿ ĀÿĒćĒܡ ÿčĂ Ėă ĄĎĔčĂ ēĆÿē ĂăʟčćēćĎč ēĎ āĎćčāćĂă ĖćēĆ ĎĔđ ćčēĔćēćĕă ĒăčĒă ĎĄ
ĂćČăčĒćĎčܥ �Ďđ ăėÿČďċăܡ ēĆă Ďđćąćč ĎĄ ೵ވ ćĒ ęăđĎܼĂćČăčĒćĎčÿċܡ ċćčăĒ ēĆđĎĔąĆ ēĆă Ďđćąćč
ÿđă ĎčăܼĂćČăčĒćĎčÿċܡ ÿčĂ ೵ވ ćēĒăċĄ ćĒ ēĖĎܼĂćČăčĒćĎčÿċܥ �ĆćĒ ĂăʟčćēćĎč ĎĄ ĂćČăčĒćĎč ćĒ ÿ
Ēďăāćÿċ āÿĒă ĎĄ ÿ ČĎđă ąăčăđÿċ āĎčāăďē āÿċċăĂ ēĎďĎċĎąćāÿċ ĂćČăčĒćĎčܡ ĖĆćāĆ ćĒ ÿďďċćāÿĀċă
ēĎ ĒăēĒ ćč ೵č ēĆÿē ÿđă čĎē čăāăĒĒÿđćċĘ ĒĔĀĒďÿāăĒܥ � ďđăāćĒă ĂăʟčćēćĎč ĎĄ ēĆćĒ āĎčāăďē ćĒ
ĒēĔĂćăĂ ćč ÿ ĀđÿčāĆ ĎĄ ČÿēĆăČÿēćāĒ āÿċċăĂ ēĎďĎċĎąĘܥ �ċēĆĎĔąĆ ēĆÿē ĂăʟčćēćĎč ćĒ ĀăĘĎčĂ
ēĆă ĒāĎďă ĎĄ ēĆćĒ ēăėēܡ Ėă āÿč Ēēÿēă ćčĄĎđČÿċċĘ ēĆÿē

ݗ ÿ ďĎćčē ćč ೵ވ ĆÿĒ ēĎďĎċĎąćāÿċ ĂćČăčĒćĎč ęăđĎܢ
ݗ ÿ āĔđĕă ćč ೵ވ ĆÿĒ ēĎďĎċĎąćāÿċ ĂćČăčĒćĎč Ďčăܢ
ݗ ÿ đăąćĎč ćč ೵ވ ĆÿĒ ēĎďĎċĎąćāÿċ ĂćČăčĒćĎč ēĖĎܥ

�ē āÿč Āă ďđĎĕăĂ ēĆÿē ēĆă ēĎďĎċĎąćāÿċ ĂćČăčĒćĎč ĎĄ ÿ Ēăē ćč ೵čČĔĒē Āă ÿč ćčēăąăđ ĀăēĖăăč ކ
ÿčĂ čܡ ćčāċĔĒćĕăܥ �č ēĆćĒ ēăėē Ėă Ėćċċ ĂăčĎēă ēĆă ēĎďĎċĎąćāÿċ ĂćČăčĒćĎč ĎĄ ÿ Ēăē ೶ ĀĘ ĂᄾШ೶Щܥ

�����
� ф Ҟ �ĎďĎċĎąćāÿċ �ćČăčĒćĎčĒ ĎĄ �ăēĒ

�ÿĀċă އ ąćĕăĒ ēĆă ēĎďĎċĎąćāÿċ ĂćČăčĒćĎčĒ ĎĄ ēĆă ĒăēĒ ĒēĔĂćăĂ ćč ĎĔđ ăÿđċćăđ ăėÿČďċăĒܥ �Ćă
ʟđĒē ēĖĎ đăĒĔċēĒ ćč ēĆćĒ ēÿĀċă ÿđă ćčēĔćēćĕăċĘ ĎĀĕćĎĔĒܢ ĆĎĖăĕăđܡ ēĆă ċÿĒē ēĖĎ ÿđă čĎēܥ �čĄĎđČÿċċĘ
ĒēÿēăĂܡ ēĆă �ćăđďćčĒĊć āÿđďăē ÿčĂ ēđćÿčąċă ĀĎēĆ āĎčēÿćč ĒĎČÿčĘ ݇ĆĎċăĒ݉ ēĆÿē ēĆĎĒă ĒăēĒ đăĒăČܼ
Āċă ĖăĀܼċćĊă čăēĖĎđĊĒ ĎĄ ċćčăĒ đÿēĆăđ ēĆÿč đăąćĎčĒܥ 
ăčāă ēĆăĘ Ćÿĕă ēĎďĎċĎąćāÿċ ĂćČăčĒćĎč
Ďčăܥ �Ćă ďđĎĎĄĒ ÿđă ĐĔćēă ĂćʚāĔċēܥ

���
� р

Set S dT(S)

Line segment

Square

Sierpinski carpet

Sierpinski triangle

1

2

1

1


ÿĔĒĂĎđʗ �ćČăčĒćĎč ĎĄ ÿ �ăċĄܼ�ćČćċÿđ �ăē
�č ޏއޏއ ēĆă 	ăđČÿč ČÿēĆăČÿēćāćÿč �ăċćė 
ÿĔĒĂĎđʗ ܲވފޏއ݁ގތގއܱ ąÿĕă ÿč ÿċēăđčÿēćĕă ĂăĄܼ
ćčćēćĎč ĄĎđ ēĆă ĂćČăčĒćĎč ĎĄ ÿč ÿđĀćēđÿđĘ Ēăē ćč ೵čܥ 
ćĒ ĂăʟčćēćĎč ćĒ ĐĔćēă āĎČďċćāÿēăĂܡ ĀĔē
ĄĎđ ÿ ĒăċĄܼĒćČćċÿđ Ēăēܡ ćē đăĂĔāăĒ ēĎ ĒĎČăēĆćčą đÿēĆăđ ĒćČďċăܤ

Example 4. The figure illustrates another set described by
Sierpinski. Determine the values of k and s for this self-similar
set.

Remark 2. The definition of the dimension of a subspace given
in Section 4.5 is a special case of a more general concept called
topological dimension, which is applicable to sets in Rn that are not necessarily
subspaces. We denote the topological dimension of a set S by dT (S).

Example 5. What are the topological dimensions of the sets given in Exam-
ples 1-4?

Definition 10.11.2. The Hausdorff dimension of a self-similar set S is denoted
by dH(S) and is defined by

dH(S) =
ln k

ln(1/s)
.

Example 6. What are the Hausdorff dimensions of the sets given in Examples
1-4?

335



Linear Algebra - 10.11 Fractals

Definition 10.11.3. A fractal is a subset of a Euclidean space whose Haus-
dorff dimension and topological dimension are not equal.

Definition 10.11.4. A similitude with scale factor s is a mapping of R2 into
R2 of the form

T

[x
y

] = s

[
cos θ − sin θ
sin θ cos θ

][
x
y

]
+

[
e
f

]

where s, θ, e, and f are scalars.

Example 7. Consider the line segment S connecting the points (0, 0) and
(1, 0) in the xy-plane. Find similitudes whose union is S.

�*1 (� - ртѶ спрч рцѷрс �рп �#  / )0(� - шр ��" )0(� - хтф �4�)(�" )/� 4 ''*2 �'��& Ҷ спрчѶ �)/*) � 3/�**&.Ѷ 
)�ѵѶ �'' -$"#/. - . -1 �

рпѵрр �-��/�'. хтф

�ćČćċćēĔĂăĒ ÿđă ćČďĎđēÿčē ćč ēĆă ĒēĔĂĘ ĎĄ ĄđÿāēÿċĒ ĀăāÿĔĒă ĎĄ ēĆă ĄĎċċĎĖćčą Ąÿāēܤ

�Ą ೷ۚ೵ވ צ ೵ވ ćĒ ÿ ĒćČćċćēĔĂă ĖćēĆ Ēāÿċă ĄÿāēĎđ Ē ÿčĂ ćĄ ೶ ćĒ ÿ āċĎĒăĂ ÿčĂ ĀĎĔčĂăĂ Ēăē ćč೵ވИ ēĆăč ēĆă ćČÿąă ೷Ш೶Щ ĎĄ ēĆă Ēăē ೶ ĔčĂăđ ೷ ćĒ āĎčąđĔăčē ēĎ ೶ ĒāÿċăĂ ĀĘ Ēܰ
�ăāÿċċ ĄđĎČ ēĆă ĂăʟčćēćĎč ĎĄ ÿ ĒăċĄܼĒćČćċÿđ Ēăē ćč ೵ވ ēĆÿē ÿ āċĎĒăĂ ÿčĂ ĀĎĔčĂăĂ Ēăē ೶ ćč ೵ވ
ćĒ ĒăċĄܼĒćČćċÿđ ćĄ ćē āÿč Āă ăėďđăĒĒăĂ ćč ēĆă ĄĎđČ೶ Ҳ ೶އ ڠ ೶ވ ڠ ೶މ ڠ ޒ ޒ ޒ ڠ ೶Ċ
ĖĆăđă ೶އИ ೶ވИ ೶މИ М М М И ೶Ċ ÿđă čĎčĎĕăđċÿďďćčą ĒăēĒ ăÿāĆ ĎĄ ĖĆćāĆ ćĒ āĎčąđĔăčē ēĎ ೶ ĒāÿċăĂ ĀĘ
ēĆă ĒÿČă ĄÿāēĎđ Ē Шކ ҳ Ē ҳ Щއ ܳĒăă ܥܴܲއܱ �č ēĆă ĄĎċċĎĖćčą ăėÿČďċăĒܡ Ėă Ėćċċ ʟčĂ ĒćČćċćēĔĂăĒ
ēĆÿē ďđĎĂĔāă ēĆă ĒăēĒ ೶އИ ೶ވИ ೶މИ М М М И ೶Ċ ĄđĎČ ೶ ĄĎđ ēĆă ċćčă ĒăąČăčēܡ ĒĐĔÿđăܡ �ćăđďćčĒĊć āÿđܼ
ďăēܡ ÿčĂ �ćăđďćčĒĊć ēđćÿčąċăܥ

�����
� ц Ҟ �ćčă �ăąČăčē

�ă Ėćċċ ēÿĊă ÿĒ ĎĔđ ċćčă ĒăąČăčē ēĆă ċćčă ĒăąČăčē ᄽ āĎččăāēćčą ēĆă ďĎćčēĒ Ⴞކᆠ Ⴟކ ÿčĂ Ⴞއᆠ Ⴟކ
ćč ēĆă ėĘܼďċÿčă ܱ�ćąĔđă ܥÿܲއއܥއއܥކއ �ĎčĒćĂăđ ēĆă ēĖĎ ĒćČćċćēĔĂăĒ

ᄾއԚԲėĘԾԦ Ⴝ އ
ވ Գއ ކ

ކ Կއ ԳėĘԿ
ᄾވԚԲėĘԾԦ Ⴝ އ

ވ Գއ ކ
ކ Կއ ԳėĘԿ Ⴛ Գ ވއ

ކ
Կ ܲފܱ

ĀĎēĆ ĎĄĖĆćāĆ Ćÿĕă Ē Ⴝ އ
ވ ÿčĂᆇ Ⴝ ܥކ �č�ćąĔđă ĀĖăއއܥއއܥކއ ĒĆĎĖĆĎĖ ēĆăĒă ēĖĎ ĒćČćċćēĔĂăĒ

Čÿď ēĆă Ĕčćē ĒĐĔÿđăᄿܥ �Ćă ĒćČćċćēĔĂă ᄾއ ČÿďĒᄿ ĎčēĎ ēĆă ĒČÿċċăđ ĒĐĔÿđă ᄾއႾᄿႿܡ ÿčĂ ēĆă
ĒćČćċćēĔĂă ᄾވ ČÿďĒ ᄿ ĎčēĎ ēĆă ĒČÿċċăđ ĒĐĔÿđă ᄾވႾᄿႿܥ �ē ēĆă ĒÿČă ēćČăܡ ᄾއ ČÿďĒ ēĆă ċćčă
ĒăąČăčē ᄽ ĎčēĎ ēĆă ĒČÿċċăđ ċćčă ĒăąČăčē ᄾއႾᄽႿܡ ÿčĂ ᄾވ ČÿďĒ ᄽ ĎčēĎ ēĆă ĒČÿċċăđ čĎčĎĕăđܼ
ċÿďďćčą ċćčă ĒăąČăčē ᄾވႾᄽႿܥ �Ćă ĔčćĎč ĎĄ ēĆăĒă ēĖĎ ĒČÿċċăđ čĎčĎĕăđċÿďďćčą ċćčă ĒăąČăčēĒ
ćĒ ďđăāćĒăċĘ ēĆă Ďđćąćčÿċ ċćčă ĒăąČăčē ᄽܢ ēĆÿē ćĒܡᄽ Ⴝ ᄾއႾᄽႿ ڠ ᄾވႾᄽႿ ܲދܱ
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1
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T3(U) T4(U)

T1(U) T2(U)

(b)
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� ч Ҟ �ĐĔÿđă

�ăē ĔĒ āĎčĒćĂăđ ēĆă Ĕčćē ĒĐĔÿđăᄿ ćč ēĆă ėĘܼďċÿčă ܱ�ćąĔđă ÿܲވއܥއއܥކއ ÿčĂ ēĆă ĄĎċċĎĖćčą ĄĎĔđ
ĒćČćċćēĔĂăĒܡ ÿċċ Ćÿĕćčą Ē Ⴝ އ

ވ ÿčĂ ᆇ Ⴝ ܤކ

ᄾއԚԲėĘԾԦ Ⴝ އ
ވ Գއ ކ

ކ Կއ ԳėĘԿ ᄾވԚԲėĘԾԦ Ⴝ އ
ވ Գއ ކ

ކ Կއ ԳėĘԿ Ⴛ Գ ވއ
ކ
Կ

ᄾމԚԲėĘԾԦ Ⴝ އ
ވ Գއ ކ

ކ Կއ ԳėĘԿ Ⴛ Դއކ
ވ
Հ ᄾފԚԲėĘԾԦ Ⴝ އ

ވ Գއ ކ
ކ Կއ ԳėĘԿ Ⴛ Ե އވއ

ވ
Ձ ܲތܱ

�Ćă ćČÿąăĒ ĎĄ ēĆă Ĕčćē ĒĐĔÿđăᄿ ĔčĂăđ ēĆăĒă ĄĎĔđ ĒćČćċćēĔĂăĒ ÿđă ēĆă ĄĎĔđ ĒĐĔÿđăĒ ĒĆĎĖč ćč
�ćąĔđă ܥĀވއܥއއܥކއ �ĆĔĒܡ ᄿ Ⴝ ᄾއႾᄿႿ ڠ ᄾވႾᄿႿ ڠ ᄾމႾᄿႿ ڠ ᄾފႾᄿႿ ܲލܱ

ćĒ ÿ ĂăāĎČďĎĒćēćĎč ĎĄᄿ ćčēĎ ĄĎĔđ čĎčĎĕăđċÿďďćčą ĒĐĔÿđăĒ ēĆÿē ÿđă āĎčąđĔăčē ēĎᄿ ĒāÿċăĂ ĀĘ
ēĆă ĒÿČă Ēāÿċă ĄÿāēĎđ ԗĒ Ҳ އ

ܥԣވ

Example 8. Consider the unit square U in the xy-plane, as
shown in the figure. Find similitudes whose union is U .
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� ш Ҟ �ćăđďćčĒĊć �ÿđďăē

�ăē ĔĒ āĎčĒćĂăđ ÿ �ćăđďćčĒĊć āÿđďăēᄽ Ďĕăđ ēĆă Ĕčćē ĒĐĔÿđăᄿ ĎĄ ēĆă ėĘܼďċÿčă ܱ�ćąĔđă ÿܲމއܥއއܥކއ
ÿčĂ ēĆă ĄĎċċĎĖćčą ăćąĆē ĒćČćċćēĔĂăĒܡ ÿċċ Ćÿĕćčą Ē Ⴝ އ

މ ÿčĂ ᆇ Ⴝ ܤކ

ᄾćԚԲėĘԾԦ Ⴝ އ
މ Գއ ކ

ކ Կއ ԳėĘԿ Ⴛ Գ ăćᅊćԿᆠ ć Ⴝ ᆠއ ᆠވ ᆠމ ᆡ ᆡ ᆡ ᆠ ގ ܲގܱ

ĖĆăđă ēĆă ăćąĆē ĕÿċĔăĒ ĎĄ Գ ăćᅊćԿ ÿđă
Գކ
ކ
Կᆠ Գ މއ

ކ
Կᆠ Գ މވ

ކ
Կᆠ Դއކ

މ
Հᆠ Ե އމވ

މ
Ձᆠ Դވކ

މ
Հᆠ Ե ވމއ

މ
Ձᆠ Ե ވމވ

މ
Ձ

�Ćă ćČÿąăĒ ĎĄ ᄽ ĔčĂăđ ēĆăĒă ăćąĆē ĒćČćċćēĔĂăĒ ÿđă ēĆă ăćąĆē ĒăēĒ ĒĆĎĖč ćč �ćąĔđă ܥĀމއܥއއܥކއ
�ĆĔĒܡ ᄽ Ⴝ ᄾއႾᄽႿ ڠ ᄾވႾᄽႿ ڠ ᄾމႾᄽႿ ڠ ޒ ޒ ޒ ڠ ᄾގႾᄽႿ ܲޏܱ
ćĒ ÿ ĂăāĎČďĎĒćēćĎč ĎĄ ᄽ ćčēĎ ăćąĆē čĎčĎĕăđċÿďďćčą ĒăēĒ ēĆÿē ÿđă āĎčąđĔăčē ēĎ ᄽ ĒāÿċăĂ ĀĘ ēĆă
ĒÿČă Ēāÿċă ĄÿāēĎđ ԗĒ Ҳ އ

ܥԣމ

S(0, 0)

(0, 1) (1, 1)

(1, 0)

y
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T1(S)

T2(S)

T7(S)

T4(S)

T6(S)

T3(S)

T5(S)

T8(S)

(b)(a)

�
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�����
� рп Ҟ �ćăđďćčĒĊć �đćÿčąċă

�ăē ĔĒ āĎčĒćĂăđ ÿ �ćăđďćčĒĊć ēđćÿčąċă ᄽ ʟēēăĂ ćčĒćĂă ēĆă Ĕčćē ĒĐĔÿđă ᄿ ĎĄ ēĆă ėĘܼďċÿčăܡ ÿĒ
ĒĆĎĖč ćč �ćąĔđă ܡÿފއܥއއܥކއ ÿčĂ ēĆă ĄĎċċĎĖćčą ēĆđăă ĒćČćċćēĔĂăĒܡ ÿċċ Ćÿĕćčą Ē Ⴝ އ

ވ ÿčĂ ᆇ Ⴝ ܤކ

ᄾއԚԲėĘԾԦ Ⴝ އ
ވ Գއ ކ

ކ Կއ ԳėĘԿ
ᄾވԚԲėĘԾԦ Ⴝ އ

ވ Գއ ކ
ކ Կއ ԳėĘԿ Ⴛ Գ ވއ

ކ
Կ

ᄾމԚԲėĘԾԦ Ⴝ އ
ވ Գއ ކ

ކ Կއ ԳėĘԿ Ⴛ Դއކ
ވ
Հ

ܲކއܱ

�Ćă ćČÿąăĒ ĎĄ ᄽ ĔčĂăđ ēĆăĒă ēĆđăă ĒćČćċćēĔĂăĒ ÿđă ēĆă ēĆđăă ĒăēĒ ćč �ćąĔđă ܥĀފއܥއއܥކއ �ĆĔĒܡᄽ Ⴝ ᄾއႾᄽႿ ڠ ᄾވႾᄽႿ ڠ ᄾމႾᄽႿ ܲއއܱ

ćĒ ÿ ĂăāĎČďĎĒćēćĎč ĎĄ ᄽ ćčēĎ ēĆđăă čĎčĎĕăđċÿďďćčą ĒăēĒ ēĆÿē ÿđă āĎčąđĔăčē ēĎ ᄽ ĒāÿċăĂ ĀĘ ēĆă
ĒÿČă Ēāÿċă ĄÿāēĎđ ԗĒ Ҳ އ

ܥԣވ

Example 9. Consider the Sierpinski carpet S over the unit
square U of the xy-plane, as shown in the figure. Find simil-
itudes whose union is S.
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(0, 1) (1, 1)
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y
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T1(S)

T3(S)

T2(S)

(   , 0)

(0,   )1
2

1
2

(b)(a)
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�č ēĆă ďđăāăĂćčą ăėÿČďċăĒ Ėă ĒēÿđēăĂ ĖćēĆ ÿ Ēďăāćʟā Ēăē ೶ ÿčĂ ĒĆĎĖăĂ ēĆÿē ćē ĖÿĒ
ĒăċĄܼĒćČćċÿđ ĀĘ ʟčĂćčą ĒćČćċćēĔĂăĒ ೷އИ ೷ވИ ೷މИ М М М И ೷Ċ ĖćēĆ ēĆă ĒÿČă Ēāÿċă ĄÿāēĎđ ĒĔāĆ ēĆÿē೷އШ೶ЩИ ೷ވШ೶ЩИ ೷މШ೶ЩИ М М М И ೷ĊШ೶Щ Ėăđă čĎčĎĕăđċÿďďćčą ĒăēĒ ÿčĂ ĒĔāĆ ēĆÿē೶ Ҳ ೷އШ೶Щ ڠ ೷ވШ೶Щ ڠ ೷މШ೶Щ ڠ ޒ ޒ ޒ ڠ ೷ĊШ೶Щ ܲވއܱ

�Ćă ĄĎċċĎĖćčą ēĆăĎđăČ ÿĂĂđăĒĒăĒ ēĆă āĎčĕăđĒă ďđĎĀċăČ ĎĄ ĂăēăđČćčćčą ÿ ĒăċĄܼĒćČćċÿđ Ēăē
ĄđĎČ ÿ āĎċċăāēćĎč ĎĄ ĒćČćċćēĔĂăĒܥ

�# *- ( рпѵррѵр

�Ą ೷ Иއ ೷ Иވ ೷ Иމ М М М И ೷ Ċ ÿđă āĎčēđÿāēćčą ĒćČćċćēĔĂăĒ ĖćēĆ ēĆă ĒÿČă Ēāÿċă ĄÿāēĎđܡ ēĆăč
ēĆăđă ćĒ ÿ ĔčćĐĔă čĎčăČďēĘ āċĎĒăĂ ÿčĂ ĀĎĔčĂăĂ Ēăē ೶ ćč ēĆă �ĔāċćĂăÿč ďċÿčă ĒĔāĆ
ēĆÿē ೶ Ҳ ೷އШ೶Щ ڠ ೷ވШ೶Щ ڠ ೷މШ೶Щ ڠ ޒ ޒ ޒ ڠ ೷ĊШ೶Щ
�ĔđēĆăđČĎđăܡ ćĄ ēĆă ĒăēĒ ೷އШ೶ЩИ ೷ވШ೶ЩИ ೷މШ೶ЩИ М М М И ೷ĊШ೶Щ ÿđă čĎčĎĕăđċÿďďćčąܡ ēĆăč ೶ ćĒ
ĒăċĄܼĒćČćċÿđܥ

�ċąĎđćēĆČĒ ĄĎđ 	ăčăđÿēćčą �đÿāēÿċĒ
�č ąăčăđÿċܡ ēĆăđă ćĒ čĎ ĒćČďċă ĖÿĘ ēĎ ĎĀēÿćč ēĆă Ēăē ೶ ćč ēĆă ďđăāăĂćčą ēĆăĎđăČ ĂćđăāēċĘܥ�ă
čĎĖ ĂăĒāđćĀă ÿč ćēăđÿēćĕă ďđĎāăĂĔđă ēĆÿē Ėćċċ ĂăēăđČćčă ೶ ĄđĎČ ēĆă ĒćČćċćēĔĂăĒ ēĆÿē Ăăʟčă
ćēܥ �ă ʟđĒē ąćĕă ÿč ăėÿČďċă ĎĄ ēĆă ďđĎāăĂĔđă ÿčĂ ēĆăč ąćĕă ÿč ÿċąĎđćēĆČ ĄĎđ ēĆă ąăčăđÿċ
āÿĒăܥ

�����
� рр Ҟ �ćăđďćčĒĊć �ÿđďăē

�ćąĔđă ދއܥއއܥކއ ĒĆĎĖĒ ēĆă Ĕčćē ĒĐĔÿđă đăąćĎč ᄽކ ćč ēĆă ėĘܼďċÿčăܡ ĖĆćāĆ Ėćċċ Ēăđĕă ÿĒ ÿč
݇ćčćēćÿċ݉ Ēăē ĄĎđ ÿč ćēăđÿēćĕă ďđĎāăĂĔđă ĄĎđ ēĆă āĎčĒēđĔāēćĎč ĎĄ ēĆă �ćăđďćčĒĊć āÿđďăēܥ �Ćă Ēăē ᄽއ
ćč ēĆă ʟąĔđă ćĒ ēĆă đăĒĔċē ĎĄ Čÿďďćčą ᄽކ ĖćēĆ ăÿāĆ ĎĄ ēĆă ăćąĆē ĒćČćċćēĔĂăĒᄾć Ⴞć Ⴝ ᆠއ ᆠވ ᆡ ᆡ ᆡ ᆠ Ⴟގ
ćč ܲގܱ ēĆÿē ĂăēăđČćčă ēĆă �ćăđďćčĒĊć āÿđďăēܥ �ē āĎčĒćĒēĒ ĎĄ ăćąĆē ĒĐĔÿđă đăąćĎčĒܡ ăÿāĆ ĎĄ ĒćĂă
ċăčąēĆ އ

މ ܡ ĒĔđđĎĔčĂćčą ÿč ăČďēĘ ČćĂĂċă ĒĐĔÿđăܥ �ăėē Ėă ÿďďċĘ ēĆă ăćąĆē ĒćČćċćēĔĂăĒ ēĎ ᄽއ
ÿčĂ ÿđđćĕă ÿē ēĆă Ēăē ᄽܥވ �ćČćċÿđċĘܡ ÿďďċĘćčą ēĆă ăćąĆē ĒćČćċćēĔĂăĒ ēĎ ᄽވ đăĒĔċēĒ ćč ēĆă Ēăē ᄽܥމ �ē
Ėă āĎčēćčĔă ēĆćĒ ďđĎāăĒĒ ćčĂăʟčćēăċĘܡ ēĆă ĒăĐĔăčāă ĎĄ ĒăēĒ ᄽއᆠ ᄽވᆠ ᄽމᆠ ᆡ ᆡ ᆡ Ėćċċ ݇āĎčĕăđąă݉ ēĎ ÿ
Ēăē ᄽܡ ĖĆćāĆ ćĒ ēĆă �ćăđďćčĒĊć āÿđďăēܥ

Example 10. Consider the Sierpinski triangle S fitted inside
the unit square U of the xy-plane, as shown in the figure. Find
similitudes whose union is S.

Theorem 10.11.1. If T1, T2, . . . , Tk are contracting similitudes with the same
scale factor, then there is a unique nonempty closed and bounded set in S in
the Euclidean plane such that

S = T1(S) ∪ T2(S) ∪ T3(S) ∪ · · · ∪ Tk(S).

Furthermore, if the sets T1(S), T2(S), T3(S), . . . , Tk(S) are nonoverlapping, then
S is self-similar.
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Example 11. Use similitudes to construct the Sierpinski carpet, starting with
the unit square in the xy-plane.
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ĒćČćċćēĔĂăĒ ćč ܥܲގܱ �ďďċĘćčą ēĆă ăćąĆē ĒćČćċćēĔĂăĒ ēĎ ೶އ đăĒĔċēĒ ćč ēĆă Ēăē ೶ܥވ �Ē ĀăĄĎđăܡ
ÿďďċĘćčą ēĆă ăćąĆē ĒćČćċćēĔĂăĒ ćčĂăʟčćēăċĘ ĘćăċĂĒ ēĆă �ćăđďćčĒĊć āÿđďăē ೶ ÿĒ ēĆă ċćČćēćčą
Ēăēܥ

�Ćă ąăčăđÿċ ÿċąĎđćēĆČ ćċċĔĒēđÿēăĂ ćč ēĆă ďđăāăĂćčą ăėÿČďċă ćĒ ÿĒ ĄĎċċĎĖĒܤ �ăē ೷ Иއ ೷ И೷ވ Иމ М М М И ೷ Ċ Āă āĎčēđÿāēćčą ĒćČćċćēĔĂăĒ ĖćēĆ ēĆă ĒÿČă Ēāÿċă ĄÿāēĎđܡ ÿčĂ ĄĎđ ÿč ÿđĀćēđÿđĘ Ēăē೴
ćč ೵ܡވ Ăăʟčă ēĆă ĒăēරШ೴Щ ĀĘරШ೴Щ Ҳ ೷ Ш೴Щއ ڠ ೷ Ш೴Щވ ڠ ೷ Ш೴Щމ ڠ ޒ ޒ ޒ ڠ ೷ ĊШ೴Щ
�Ćă ĄĎċċĎĖćčą ÿċąĎđćēĆČ ąăčăđÿēăĒ ÿ ĒăĐĔăčāă ĎĄ ĒăēĒ ೶ކИ ೶އИ М М М И ೶čИ М М М ēĆÿē āĎčĕăđąăĒ ēĎ
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Example 12. Use similitudes to construct the Sierpinski tri-
angle, starting with the arbitrary closed and bounded set S0

in the figure.
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Example 13. Consider the following two similitudes:

T1

[x
y

] =
1

2

[
1 0
0 1

]

T2

[x
y

] =
1

2

[
cos θ − sin θ
sin θ cos θ

][
x
y

]
+

[
.3
.3

]

Describe the actions of these two similitudes on the unit square U for various
values of θ.

Definition 10.11.5. An affine transformation is a mapping of R2 into R2 of
the form

T

[x
y

] =

[
a b
c d

][
x
y

]
+

[
e
f

]
where a, b, c, d, e, and f are scalars.
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10.12 Chaos

Remark 1. Arnold’s cat map is the transformation Γ : R2 → R2 defined by
the formula

Γ : (x, y)→ (x+ y, x+ 2y)mod 1

or, in matrix notation,

Γ

[x
y

] =

[
1 1
1 2

][
x
y

]
mod 1.

Under Arnold’s cat map each pixel point of the unit square

S = {(x, y) | 0 ≤ x < 1, 0 ≤ y < 1}

is transformed into another pixel point of S. To see why this is so, observe
that the image of the pixel point (m/p, n/p) under Γ is given in matrix form
by

Γ



m

p
n

p


 =

[
1 1
1 2

]
m

p
n

p

mod 1 =


m+ n

p

m+ 2n

p

mod 1.

Example 1. Determine the successive iterates of the point
(
27
76
, 58
76

)
under

Arnold’s cat map.

Remark 2. We say that a set D of points in S is dense in S if every circle
centered at any point of S encloses points of D, no matter how small the
radius of the circle is taken. It can be shown that the rational points are dense
in S and the iterates of most (but not all) of the irrational points are dense in
S.

Definition 10.12.1. A mapping T of S onto itself is said to be chaotic if:

(i) S contains a dense set of periodic points of the mapping T .
(ii) There is a point in S whose iterates under T are dense in S.
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10.13 Cryptography

Remark 1. The study of encoding and decoding secret messages is called cryp-
tography. In the language of cryptography, codes are called ciphers, uncoded
messages are called plaintext, and coded messages are called ciphertext. The
process of converting from plaintext to ciphertext is called enciphering, and
the reverse process of converting from ciphertext to plaintext is called deci-
phering.

The simplest ciphers, called substitution ciphers, are those that replace
each letter of the alphabet by a different letter. A system of cryptography in
which the plaintext is divided into sets of n letters, each of which is replaced
by a set of n cipher letters, is called a polygraphic system. Hill ciphers are a
class of polygraphic systems based on matrix transformations.

Example 1. Use the matrix [
1 2
0 3

]
to obtain the Hill cipher for the plaintext message

I AM HIDING.
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Definition 10.13.1. If m is a positive integer and a and b are any integers,
then we say that a is equivalent to b modulo m, written

a = b (mod m)

if a− b is an integer multiple of m.

Example 2. Determine values for m that make these equivalences true:

7 = 2 (mod m)

19 = 3 (mod m)

−1 = 25 (mod m)

12 = 0 (mod m)

Remark 2. For any modulus m it can be proved that every integer a is equiv-
alent, modulo m, to exactly one of the integers

0, 1, 2, . . . ,m− 1.

We call this integer the residue of a modulo m, and we write

Zm = {0, 1, 2, . . . ,m− 1}

to denote the set of residues modulo m.

Theorem 10.13.1. For any integer a and modulus m, let

R = remainder of
|a|
m

.

Then the residue r of a modulo m is given by

r =


R if a ≥ 0

m−R if a < 0 and R ̸= 0

0 if a < 0 and R = 0.

Example 3. Find the residue modulo 26 of (a) 87, (b) −38, and (c) −26.
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Definition 10.13.2. If a is a number in Zm, then a number a−1 in Zm is
called a reciprocal or multiplicative inverse of a modulo m if
aa−1 = a−1a = 1 (mod m).

Example 4. Find the reciprocal of the number 3 modulo 26, if it exists.

Example 5. Find the reciprocal of the number 4 modulo 26, if it exists.

Theorem 10.13.2. A square matrix A with entries in Zm is invertible modulo
m if and only if the residue of det(A) modulo m has a reciprocal modulo m.

Theorem 10.13.3. A square matrix A with entries in Zm is invertible modulo
m if and only if m and the residue of det(A) modulo m have no common prime
factors.

Theorem 10.13.4. A square matrix A with entries in Z26 is invertible modulo
26 if and only if the residue of det(A) modulo 26 is not divisible by 2 or 13.

Example 6. Find the inverse of

A =

[
5 6
2 3

]

modulo 26.
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Example 7. Decode the following Hill 2-cipher, which was enciphered by the
matrix in Example 6:

GTNKGKDUSK.

Theorem 10.13.5 (Determining the Deciphering Matrix). Let p1,p2, . . . ,pn

be linearly independent plaintext vectors, and let c1, c2, . . . , cn be the corre-
sponding ciphertext vectors in a Hill n-cipher. If

P =


pT
1

pT
2
...
pT
n


is the n× n matrix with row vectors pT

1 ,p
T
2 , . . . ,p

T
n and if

C =


cT1
cT2
...
cTn


is the n × n matrix with row vectors cT1 , c

T
2 , . . . , c

T
n , then the sequence of ele-

mentary row operations that reduces C to I transforms P to (A−1)T .
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Example 8. The following Hill 2-cipher is intercepted:

IOSBTGXESPXHOPDE.

Decipher the message, given that it starts with the word DEAR.
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10.14 Genetics

Remark 1. In this section we will assume that inherited traits are governed
by a set of two genes, which we designate by A and a. Under autosomal in-
heritance each individual in the population of either gender possesses two of
these genes, the possible pairings being designated AA, Aa, and aa. This pair
of genes is called the individual’s genotype, and it determines how the trait
controlled by the genes is manifested in the individual.

Table 1

Genotypes of ParentsGenotype
of Offspring

AA–AA AA–Aa AA–aa Aa–Aa Aa–aa aa–aa

AA 1 1
2

0 1
4

0 0

Aa 0 1
2

1 1
2

1
2

0

aa 0 0 0 1
4

1
2

1

Example 1. Suppose that a farmer has a large population of plants consisting
of some distribution of all three possible genotypes AA, Aa, and aa. The farmer
desires to undertake a breeding program in which each plant in the population
is always fertilized with a plant of genotype AA and is then replaced by one
of its offspring.

For n = 0, 1, 2, . . . , let us set

an = fraction of plants of genotype AA in nth generation

bn = fraction of plants of genotype Aa in nth generation

cn = fraction of plants of genotype aa in nth generation.

Derive an expression for the distribution of the three possible genotypes in the
population after any number of generations.
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Example 2. Modify Example 1 so that instead of each plant being fertilized
with one of genotype AA, each plant is fertilized with a plant of its own geno-
type. Derive an expression for the distribution of the three possible genotypes
in the population after any number of generations.
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10.15 Age-Specific Population Growth

Remark 1. Suppose the maximum age attained by any female in a population
is L years and divide the population into n age classes. We define the age
distribution vector x(k) at time tk by

x(k) =


x
(k)
1

x
(k)
2
...

x
(k)
n


where x

(k)
i is the number of females in the ith age class at time tk. Then

x(k) = Lx(k−1), k = 1, 2, . . .

where L is the Leslie matrix

L =


a1 a2 a3 · · · an−1 an
b1 0 0 · · · 0 0
0 b2 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · bn−1 0

 .

Example 1. Suppose that the oldest age attained by the females in a cer-
tain animal population is 15 years and we divide the population into three
age classes with equal durations of five years. Let the Leslie matrix for this
population be

L =

0 4 3
1
2

0 0
0 1

4
0

 .

If there are initially 1000 females in each of the three age classes, then find the
number of females in each age class after 15 years.

350



Linear Algebra - 10.15 Age-Specific Population Growth

Theorem 10.15.1 (Existence of a Positive Eigenvalue). A Leslie matrix L
has a unique positive eigenvalue λ1. This eigenvalue has multiplicity 1 and an
eigenvector x1 all of whose entries are positive.

Theorem 10.15.2 (Eigenvalues of a Leslie Matrix). If λ1 is the unique positive
eigenvalue of a Leslie matrix L, and λk is any other real or complex eigenvalue
of L, then |λk| ≤ λ1.

Example 2. Find the eigenvalues of

L =


0 0 6
1
2

0 0

0 1
3

0

 .

Theorem 10.15.3 (Dominant Eigenvalue). If two successive entries ai and
ai+1 in the first row of a Leslie matrix L are nonzero, then the positive eigen-
value of L is dominant.

Example 3. Find the limiting proportion of the age distribution of the pop-
ulation in Example 1.
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Example 4. In this example we use birth and parameters from the year 1965
for Canadian females. Because few women over 50 years of age bear children,
we restrict ourselves to the portion of the female population between 0 and 50
years of age. The birth and death parameters are as follows:

Age Interval ai bi

[0, 5) 0.00000 0.99651

[5, 10) 0.00024 0.99820

[10, 15) 0.05861 0.99802

[15, 20) 0.28608 0.99729

[20, 25) 0.44791 0.99694

[25, 30) 0.36399 0.99621

[30, 35) 0.22259 0.99460

[35, 40) 0.10457 0.99184

[40, 45) 0.02826 0.98700

[45, 50) 0.00240 —

Using numerical techniques, we can approximate the positive eigenvalue and
corresponding eigenvector by

λ1 = 1.07622 and x1 =



1.00000
0.92594
0.85881
0.79641
0.73800
0.68364
0.63281
0.58482
0.53897
0.49429


.

Interpret these results in the context of this example.
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10.16 Harvesting of Animal Populations

Definition 10.16.1. A harvesting policy in which an animal population is
periodically harvested is said to be sustainable if the yield of each harvest
is the same and the age distribution of the population remaining after each
harvest is the same.

Remark 1. To describe this harvesting model mathematically, let

x =


x1

x2
...
xn


be the age distribution vector of the population at the beginning of the growth
period. Then

(I −H)Lx = x

where L is the Leslie matrix describing the growth of the population, H is the
harvesting matrix

H =


h1 0 0 · · · 0
0 h2 0 · · · 0
0 0 h3 · · · 0
...

...
...

...
0 0 0 · · · hn

 ,

and hi, for i = 1, 2, . . . , n, is the fraction of females from the ith class that is
harvested.
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Example 1. For a certain species of domestic sheep in New Zealand with a
growth period of 1 year, the following Leslie matrix was found (see G. Caugh-
ley, “Parameters for Seasonally Breeding Populations,” Ecology, 48, 1967, pp.
834-839).

L =



.000 .045 .391 .472 .484 .546 .543 .502 .468 .459 .433 .421

.845 0 0 0 0 0 0 0 0 0 0 0
0 .975 0 0 0 0 0 0 0 0 0 0
0 0 .965 0 0 0 0 0 0 0 0 0
0 0 0 .950 0 0 0 0 0 0 0 0
0 0 0 0 .926 0 0 0 0 0 0 0
0 0 0 0 0 .895 0 0 0 0 0 0
0 0 0 0 0 0 .850 0 0 0 0 0
0 0 0 0 0 0 0 .786 0 0 0 0
0 0 0 0 0 0 0 0 .691 0 0 0
0 0 0 0 0 0 0 0 0 .561 0 0
0 0 0 0 0 0 0 0 0 0 .370 0



.

The sheep have a lifespan of 12 years, so they are divided into 12 age classes of
duration 1 year each. By the use of numerical techniques, the unique positive
eigenvalue of L can be found to be

λ1 = 1.176.

Determine the uniform harvesting policy for this population.
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Example 2. In some populations only the youngest females are of any eco-
nomic value, so the harvester seeks to harvest only the females from the
youngest age class. Apply this type of sustainable harvesting policy to the
sheep population in Example 1.

Theorem 10.16.1 (Optimal Sustainable Yield). An optimal sustainable har-
vesting policy is one in which either one or two age classes are harvested. If
two age classes are harvested, then the older age class is completely harvested.
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10.17 A Least Squares Model for Human Hear-

ing

Theorem 10.17.1. (Minimizing the Mean Square Error on [0, 2π]). If f(t) is
continuous on [0, 2π], then the trigonometric function g(t) of the form

g(t) =
1

2
a0 + a1 cos t+ · · ·+ an cosnt+ b1 sin t+ · · ·+ bn sinnt

that minimizes the mean square error

ˆ 2π

0

[f(t)− g(t)]2 dt

has coefficients

ak =
1

π

ˆ 2π

0

f(t) cos kt dt, k = 0, 1, 2, . . . , n

bk =
1

π

ˆ 2π

0

f(t) sin kt dt, k = 1, 2, . . . , n.

Theorem 10.17.2. (Minimizing the Mean Square Error on [0, T ]). If f(t) is
continuous on [0, T ], then the trigonometric function g(t) of the form

g(t) =
1

2
a0 + a1 cos

2π

T
t+ · · ·+ an cos

2nπ

T
t+ b1 sin

2π

T
t+ · · ·+ bn sin

2nπ

T
t

that minimizes the mean square error

ˆ 2π

0

[f(t)− g(t)]2 dt

has coefficients

ak =
2

T

ˆ T

0

f(t) cos
2kπt

T
dt, k = 0, 1, 2, . . . , n

bk =
2

T

ˆ T

0

f(t) sin
2kπt

T
dt, k = 1, 2, . . . , n.
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މ Ēćč

ᆏᄾތ ēႻ އ
ފ Ēćč

ᆏᄾގ ēԽ
�Ćă ĄĎĔđ ĒćčĔĒĎćĂÿċ ēăđČĒ Ćÿĕă ĄđăĐĔăčāćăĒ ĎĄ ܡކކކދ ܡކކކܡކއ ܡކކކܡދއ ÿčĂ ކކކܡކވ āďĒܡ đăĒďăāܼ
ēćĕăċĘܥ �č �ćąĔđă ގܥލއܥކއ Ėă Ćÿĕă ďċĎēēăĂ ďႾēႿ ÿčĂ ĐႾēႿ Ďĕăđ Ďčă ďăđćĎĂܥ �ċēĆĎĔąĆ ĐႾēႿ ćĒ čĎē
ÿ ĕăđĘ ąĎĎĂ ďĎćčēܼĀĘܼďĎćčē ÿďďđĎėćČÿēćĎč ēĎ ďႾēႿܡ ēĎ ēĆă ăÿđܡ ĀĎēĆ ďႾēႿ ÿčĂ ĐႾēႿ ďđĎĂĔāă ēĆă
ĒÿČă ĒăčĒÿēćĎč ĎĄ ĒĎĔčĂܥ

t

y

T = .0002

q(t)

p(t)
1
2 A

1
2 A

–A

A

0

–

�
���� рпѵрцѵч

Example 1. Let a sound wave p(t) have a saw-tooth pattern
with a basic frequency of 5000 cps (see the figure). Assume
units are chosen so that the normal atmospheric pressure is at
the zero level and the maximum amplitude of the wave is A.
The basic period of the wave is T = 1/5000 = .0002 second.
From t = 0 to t = T , the function p(t) has the equation

p(t) =
2A

T

(
T

2
− t

)
.

Investigate how the sound wave p(t) is perceived by the human ear.
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photographs of a woman taken over a 50-year period (the four diagonal pictures from
top left to bottom right) have been pairwise morphed by different amounts to suggest the
gradual aging of the woman.

The most visible application of warping and morphing images has been the produc-
tion of special effects in motion pictures and television. However, many scientific and
technological applications of such techniques have also arisen—for example, studying
the evolution, growth, and development of living organisms, assisting in reconstructive
and cosmetic surgery, exploring various designs of a product, and “aging” photographs of
missing persons or police suspects.

Warps
We begin by describing a simple warp of a triangular region in the plane. Let the three
vertices of a triangle be given by the three noncollinear points v1, v2, and v3 (Figure
10.18.2a). We will call this triangle the begin-triangle. If v is any point in the begin-

v

w

y

x

y

x

v = c1v1 + c2v2 + c3v3

w = c1w1 + c2w2 + c3w3

v1

v2

v3

w1
w2

w3

(a)

(b)
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triangle, then there are unique constants c1 and c2 such that
v − v3 = c1(v1 − v3) + c2(v2 − v3) (1)

Equation (1) expresses the vector v − v3 as a (unique) linear combination of the two lin-
early independent vectors v1 − v3 and v2 − v3 with respect to an origin at v3. If we set
c3 = 1 − c1 − c2, then we can rewrite (1) as

v = c1v1 + c2v2 + c3v3 (2)
where

c1 + c2 + c3 = 1 (3)
from the definition of c3. We say that v is a convex combination of the vectors v1, v2, and
v3 if (2) and (3) are satisfied and, in addition, the coefficients c1, c2, and c3 are nonnegative.
It can be shown (Exercise 6) that v lies in the triangle determined by v1, v2, and v3 if and
only if it is a convex combination of those three vectors.

Next, given three noncollinear points w1, w2, and w3 of an end-triangle (Figure
10.18.2b), there is a unique affine transformation that maps v1 tow1, v2 tow2, and v3
tow3. That is, there is a unique 2 × 2 invertible matrix𝑀 and a unique vector b such that

wi = 𝑀vi + b for i = 1, 2, 3 (4)
(See Exercise 5 for the evaluation of𝑀 and b.) Moreover, it can be shown (Exercise 3) that
the imagew of the vector v in (2) under this affine transformation is

w = c1w1 + c2w2 + c3w3 (5)
This is a basic property of affine transformations: They map a convex combination of vec-
tors to the same convex combination of the images of the vectors.

Now suppose that the begin-triangle contains a picture within it (Figure 10.18.3a).
That is, to each point in the begin-triangle we assign a gray level, say 0 for white and 100

y

x

y

x

w1

v1

v = c1v1 + c2v2 + c3v3

w = c1w1 + c2w2 + c3w3

v2

v3
v

w2

w3

w

ρ1(w) = ρ0(v)

(a)

(b)
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for black, with any other gray level lying between 0 and 100. In particular, let a scalar-
valued function 𝜌0, called the picture-density of the begin-triangle, be defined so that𝜌0(v) is the gray level at the point v in the begin-triangle. We can now define a picture
in the end-triangle, called a warp of the original picture, with a picture-density 𝜌1 by
defining the gray level at the point w within the end-triangle to be the gray level of the
point v in the begin-triangle that maps onto w. In equation form, the picture-density 𝜌1
is determined by 𝜌1(w) = 𝜌0(c1v1 + c2v2 + c3v3) (6)
In this way, as c1, c2, and c3 vary over all nonnegative values that add to one, (5) generates
all points w in the end-triangle, and (6) generates the gray levels 𝜌1(w) of the warped
picture at those points (Figure 10.18.3b).

Equation (6) determines a very simple warp of a picture within a single triangle.More
generally, we can break up a picture into many triangular regions and warp each trian-
gular region differently. This gives us much freedom in designing a warp through our
choice of triangular regions and how we change them. To this end, suppose we are given

Remark 1. Let the three vertices of a triangle be given by the
three noncollinear points v1, v2, and v3 (see the figure). We
will call this triangle the begin-triangle. If v is any point in the
begin-triangle, then there are unique constants c1 and c2 such
that

v − v3 = c1(v1 − v3) + c2(v2 − v3).

If we set c3 = 1− c1 − c2, then we can rewrite this equation as

v = c1v1 + c2v2 + c3v3

where
c1 + c2 + c3 = 1.

We say that v is a convex combination of the vectors v1, v2, and v3 if these
equations are satisfied and, in addition, the coefficients c1, c2, and c3 are
nonnegative. It can be shown that v lies in the triangle determined by v1, v2,
and v3 if and only if it is a convex combination of those three vectors.
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Example 1. Determine whether the vector v is a convex combination of the
vectors v1, v2, and v3.

(a) v =

[
3
3

]
, v1 =

[
1
1

]
, v2 =

[
3
5

]
, v3 =

[
4
2

]
.

(b) v =

[
2
4

]
, v1 =

[
1
1

]
, v2 =

[
3
5

]
, v3 =

[
4
2

]
.

(c) v =

[
0
0

]
, v1 =

[
3
3

]
, v2 =

[
−2
−2

]
, v3 =

[
3
0

]
.

(d) v =

[
1
0

]
, v1 =

[
3
3

]
, v2 =

[
−2
−2

]
, v3 =

[
3
0

]
.
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photographs of a woman taken over a 50-year period (the four diagonal pictures from
top left to bottom right) have been pairwise morphed by different amounts to suggest the
gradual aging of the woman.

The most visible application of warping and morphing images has been the produc-
tion of special effects in motion pictures and television. However, many scientific and
technological applications of such techniques have also arisen—for example, studying
the evolution, growth, and development of living organisms, assisting in reconstructive
and cosmetic surgery, exploring various designs of a product, and “aging” photographs of
missing persons or police suspects.

Warps
We begin by describing a simple warp of a triangular region in the plane. Let the three
vertices of a triangle be given by the three noncollinear points v1, v2, and v3 (Figure
10.18.2a). We will call this triangle the begin-triangle. If v is any point in the begin-

v

w

y

x

y

x

v = c1v1 + c2v2 + c3v3

w = c1w1 + c2w2 + c3w3

v1

v2

v3

w1
w2

w3

(a)

(b)
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triangle, then there are unique constants c1 and c2 such that
v − v3 = c1(v1 − v3) + c2(v2 − v3) (1)

Equation (1) expresses the vector v − v3 as a (unique) linear combination of the two lin-
early independent vectors v1 − v3 and v2 − v3 with respect to an origin at v3. If we set
c3 = 1 − c1 − c2, then we can rewrite (1) as

v = c1v1 + c2v2 + c3v3 (2)
where

c1 + c2 + c3 = 1 (3)
from the definition of c3. We say that v is a convex combination of the vectors v1, v2, and
v3 if (2) and (3) are satisfied and, in addition, the coefficients c1, c2, and c3 are nonnegative.
It can be shown (Exercise 6) that v lies in the triangle determined by v1, v2, and v3 if and
only if it is a convex combination of those three vectors.

Next, given three noncollinear points w1, w2, and w3 of an end-triangle (Figure
10.18.2b), there is a unique affine transformation that maps v1 tow1, v2 tow2, and v3
tow3. That is, there is a unique 2 × 2 invertible matrix𝑀 and a unique vector b such that

wi = 𝑀vi + b for i = 1, 2, 3 (4)
(See Exercise 5 for the evaluation of𝑀 and b.) Moreover, it can be shown (Exercise 3) that
the imagew of the vector v in (2) under this affine transformation is

w = c1w1 + c2w2 + c3w3 (5)
This is a basic property of affine transformations: They map a convex combination of vec-
tors to the same convex combination of the images of the vectors.

Now suppose that the begin-triangle contains a picture within it (Figure 10.18.3a).
That is, to each point in the begin-triangle we assign a gray level, say 0 for white and 100

y

x

y

x

w1

v1

v = c1v1 + c2v2 + c3v3

w = c1w1 + c2w2 + c3w3

v2

v3
v

w2

w3

w

ρ1(w) = ρ0(v)

(a)

(b)
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for black, with any other gray level lying between 0 and 100. In particular, let a scalar-
valued function 𝜌0, called the picture-density of the begin-triangle, be defined so that𝜌0(v) is the gray level at the point v in the begin-triangle. We can now define a picture
in the end-triangle, called a warp of the original picture, with a picture-density 𝜌1 by
defining the gray level at the point w within the end-triangle to be the gray level of the
point v in the begin-triangle that maps onto w. In equation form, the picture-density 𝜌1
is determined by 𝜌1(w) = 𝜌0(c1v1 + c2v2 + c3v3) (6)
In this way, as c1, c2, and c3 vary over all nonnegative values that add to one, (5) generates
all points w in the end-triangle, and (6) generates the gray levels 𝜌1(w) of the warped
picture at those points (Figure 10.18.3b).

Equation (6) determines a very simple warp of a picture within a single triangle.More
generally, we can break up a picture into many triangular regions and warp each trian-
gular region differently. This gives us much freedom in designing a warp through our
choice of triangular regions and how we change them. To this end, suppose we are given

Remark 2. Given three noncollinear points w1, w2, and w3 of
an end-triangle (see the figure), there is a unique affine transfor-
mation that maps v1 to w1, v2 to w2, and v3 to w3. That is,
there is a unique 2× 2 invertible matrix M and a unique vector
b such that

wi = Mvi + b for i = 1, 2, 3.

Moreover, it can be shown that the image w of the vector v
under this affine transformation is

w = c1w1 + c2w2 + c3w3.

To each point in the begin-triangle we assign a gray level, say 0 for white and
100 for black, with any other gray level lying between 0 and 100. In particular,
let a scalar-valued function ρ0, called the picture-density of the begin-triangle,
be defined so that ρ0(v) is the gray level at the point v in the begin-triangle.
We can now define a picture in the end-triangle, called a warp of the original
picture, with a picture-density ρ1 by defining the gray level at the point w
within the end-triangle to be the gray level of the point v in the begin-triangle
that maps onto w. In equation form, the picture-density ρ1 is determined by

ρ1(w) = ρ0(c1v1 + c2v2 + c3v3).

Suppose we are given a picture contained within some rectangular region of
the plane. We choose n points v1,v2, . . . ,vn within the rectangle, which we
call vertex points, so that they fall on key elements or features of the picture
we wish to warp. Once the vertex points are chosen, we complete a triangula-
tion of the region.
A time-varying warp is the set of warps generated when the vertex points of a
beginning picture are moved continually in time from their original positions to
specified final positions. A time-varying morph can be described as a blending
of two time-varying warps of two different pictures using two triangulations
that match corresponding features in the two pictures.
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Example 2. Find the 2 × 2 matrix M and two-dimensional vector b that
define the affine transformation that maps the three vectors v1, v2, and v3 to
the three vectors w1, w2, and w3. Do this by setting up a system of six linear
equations for the four entries of the matrix M and the two entries of the vector
b.

(a) v1 =

[
1
1

]
, v2 =

[
2
3

]
, v3 =

[
2
1

]
,

w1 =

[
4
3

]
, w2 =

[
9
5

]
, w3 =

[
5
3

]
.

(b) v1 =

[
−2
2

]
, v2 =

[
0
0

]
, v3 =

[
2
1

]
,

w1 =

[
−8
1

]
, w2 =

[
0
1

]
, w3 =

[
5
4

]
.
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(c) v1 =

[
−2
1

]
, v2 =

[
3
5

]
, v3 =

[
1
0

]
,

w1 =

[
0
−2

]
, w2 =

[
5
2

]
, w3 =

[
3
−3

]
.

(d) v1 =

[
0
2

]
, v2 =

[
2
2

]
, v3 =

[
−4
−2

]
,

w1 =

[
5
2

−1

]
, w2 =

[
7
2

3

]
, w3 =

[
−7

2

−9

]
.
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10.19 Internet Search Engines

Remark 1. A network of links between web pages can provide a means of
measuring their relative importance. A diagram called a webgraph shows the
links among the web pages. A directed path from the ith page to the jth page
means that the ith page has an outgoing link to the jth page (i.e., it references
that page). The adjacency matrix of a webgraph with n pages is the n × n
matrix A whose ijth entry aij is 1 if the jth page has an outgoing link to the
ith page and 0 otherwise.

Definition 10.19.1. If a webgraph with n pages is “surfed” by clicking a
mouse, then the state vector x(k) is the n× 1 column vector whose ith entry is
the probability that the surfer is on the ith page after k random mouse clicks.

Definition 10.19.2. The probability transition matrix B = [bij] associated
with an adjacency matrix A = [aij] is the matrix obtained by dividing each
entry of A by the sum of the entries in the same column; that is,

bij =
aij∑n
k=1 akj

.
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1пѵ1ш Internet Search Engines
In this section we describe a basic technique used by Internet search engines to rank web
pages according to their importance.

PREREQUISITES: Basic Probability Concepts
Intuitive Understanding of Limits
Eigenvalues and Eigenvectors
Dynamical Systems and Markov Chains (Section 5.5) or
Markov Chains (Section 10.4)

Web Surfing
Assume that Alice and Bob are each given a set of six web pages containing key words on
a topic of common interest. Each has his or her own strategy for establishing an order of
importance for the pages.

Alice’s Strategy
Alice decides that the network of links (references) between the pages can provide a
means of measuring their relative importance, so she draws a diagram called awebgraph
that shows the links among the six web pages (Figure 10.19.1). A directed path from the

1

4

2

5

3

6

�I�URE 1пѵ1шѵ1

ith page to the jth page means that the ith page has an outgoing link to the jth page (i.e.,
it references that page).

Alice proceeds as follows:

• She disregards links to or from pages outside the six given pages.
• She disregards links from a page to itself.
• She disregards duplicate links.
• She assumes there are no dangling pages (i.e., pages with no outgoing links).

Alice then designs a “web surfing” strategy in which she picks one of the pages (say
Page 2), clicks on one of its links chosen at random, and connects to another page. She
then repeats the procedure starting from the new page, and thereby surfs from page to
page. She tracks howmany times she visits each page in the set after 10, 100, 1000, 10,000,
and 20,000 mouse clicks and creates Table 1. (Notice that the number of pages visited is
one more than the number of mouse clicks.)

TA�LE 1 Number of Visits to Each Page

Total Number of Mouse Clicks
Page 0 10 100 1,000 10,000 20,000
1 0 3 21 165 1,504 3,012
2 1 2 16 148 1,391 2,790
3 0 3 27 271 2,706 5,424
4 0 0 4 100 1,096 2,206
5 0 2 22 155 1,415 2,745
6 0 1 11 162 1,889 3,824

She also creates Table 2 in which she computes the fraction of visits to each page to four
decimal places.

Example 1. Suppose we know with certainty that Alice is
initially on Page 2 of the webgraph in the figure. Determine
her successive state vectors.
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Remark 2. Suppose there is a probability δ, called the damping factor, that
one will go to the next page in a network by choosing a link on the current
page and a probability of 1− δ that the next page will be chosen at random.
Then there is a new probability transition matrix M = [mij] in which

mij = δbij +
1− δ

n

with bij as given in Definition 10.19.2.
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that no pages in that cluster will ever be accessed. A more subtle example is illustrated in
Figure 10.19.2b. In this case the cluster of Pages 1, 2, and 3 has no outgoing links to the
cluster of Pages 4, 5, and 6, so once a surfer exits cluster 4, 5, 6 the surfer will be “trapped”
in cluster 1, 2, 3 and the fractional page counts for Pages 4, 5, and 6 will approach zero,
thereby assigning the pages in that cluster a page rank of 0.
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6
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2

5

3

6

(a) (b)
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Bob’s solution to this problem is to assume that he is not required to follow only the
links on his current page but canwith a certain probability choose any page in the network
to go to next. Specifically, Bob assumes that there is a probability of ྲ, called the damping
factor, that he will go to the next page by choosing a link on the current page and a
probability of 1 − ྲ that he will choose the next page at random. If there are n pages in
the network, then in the latter case the probability that he will choose any particular page
at random is

1 − ྲ
n

To implement his strategy Bob creates a new probability transition matrix 𝑀 = [mij] in
which

mij = ྲbij + 1 − ྲ
n (6)

with bij as given in Definition 2. He then replaces (4) with the iterative scheme
x(k) = 𝑀x(k−1), k = 1, 2, 3, . . . (7)

In Exercise 4 we will ask you to show that 𝑀 is a probability transition matrix; that
is, its entries are nonnegative and the entries in each column sum to 1. We will also ask
you to show that𝑀 can be written as

𝑀 = ྲ೥ + 1 − ྲ
n

⎡⎢⎢⎢⎢⎣
1 1 ⋅ ⋅ ⋅ 1
1 1 ⋅ ⋅ ⋅ 1
...

...
. . .

...
1 1 ⋅ ⋅ ⋅ 1

⎤⎥⎥⎥⎥⎦
(8)

with ೥ as given in Definition 2. It follows from this that the iterative scheme in (7) can be
written in the form

x(k) = ྲ೥x(k−1) + 1 − ྲ
n

⎡⎢⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎥⎦
(9)

As an example, consider thewebgraph inFigure 10.19.2b. Its adjacencymatrix and accom-
panying transition matrix are

𝐴 =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 1 1
0 0 1 0 1 1
1 1 0 1 0 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and ೥ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1
2 0 0 1

3
1
4

0 0 1 0 1
3

1
4

1 1
2 0 1

2 0 1
4

0 0 0 0 0 1
4

0 0 0 0 0 0
0 0 0 1

2
1
3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Example 2. Consider the webgraph in the figure. Determine
the successive state vectors with and without a damping factor
of δ = 0.85.
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10.20 Facial Recognition

Example 1. Suppose we have grayscale images of 1000 faces and we reduce
the resolution of each image to only 3 pixels. The facial images can then be
represented by vectors (or points) pi, i = 1, 2, . . . , 1000 in the unit box in R3

(see the figure).
Let us pick the following 10 face vectors as our training set (shown as red dots
in the figure).
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3. Suppose q is a caricature vector not in the subspace ᄽ spanned
by the eigenfaces {e1, e2, . . . , e9}. If we use Formula (6) to
define its features ᅊi, show that ᅊ1e1 +ᅊ2e2 + ⋅ ⋅ ⋅ + ᅊ9e9 is
the orthogonal projection of q onto ᄽ.

4. a. What do the sums of the columns in Table 1 have in
common?

b. Explain the reason for the result you observed in part (a).

5. a. State a formula for the Euclidean distance between the ith
and jth eigenfaces of a training set?

b. What is themaximumpossible Euclidean distance between
two eigenfaces of the presidential scenario?

c. What is themaximumpossible Euclidean distance between
two vectors in the unit hyperbox of the presidential
scenario?

6. Suppose that a training set hasm caricature vectors and those
vectors span a subspace ᄽ of dimension k < m. Show that the
corresponding correlationmatrix��𝑇 has precisely k positive
eigenvalues.

7. Show that every vector orthogonal to the subspace ᄽ spanned
by the m caricature vectors of a training set is an eigenvector
of the correlation matrix ᄭ and its corresponding eigenvalue
is 0.

8. Let 𝐿 be a line through the origin of 𝑅2, let 𝑃1, 𝑃2, . . . , 𝑃k be
points in 𝑅2, let vi be the vector from the origin to the point𝑃i, and let ai and bi be as shown in Figure Ex-8. Show that the
line that maximizes the sum of the squares of the projections,
a21 + a22 + ⋅ ⋅ ⋅ + a2k, also minimizes the sums of the squares
of the distances b21 + b22 + ⋅ ⋅ ⋅ + b2k. [�ote: This result readily
generalizes to 𝑅n.]

y

ai

vi

bi

Pi L

x
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9. Find the components of the feature vector of the ith eigenface
of a training set.

T1. Suppose we have grayscale images of 1000 faces and we
reduce the resolution of each image to only 3 pixels. The
facial images can then be represented by vectors (or points)
pi, i = 1, 2, . . . , 1000 in the unit box in 𝑅3 (Figure Ex-T1).
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Let us pick the following 10 face vectors as our training set
(shown as red dots in the figure).

p1 = Զ0.72720.2826
0.7404Ղ,p2 = Զ0.67630.3489

0.7039Ղ,p3 = Զ0.54310.4740
0.5756Ղ,

p4 = Զ0.14250.8826
0.2801Ղ,p5 = Զ0.30340.6640

0.5243Ղ,
p6 = Զ0.58060.4154

0.6729Ղ,p7 = Զ0.49480.5350
0.5946Ղ,p8 = Զ0.67700.3386

0.7375Ղ,
p9 = Զ0.34950.5876

0.4980Ղ,p10 = Զ0.58160.3480
0.7132Ղ.

a. Find the meanm of the training set, and use it to find the
caricature vectors q1,q2, . . . ,q10.

b. Find the 3 × 10 caricature matrix 𝑄, the 3 × 3 correlation
matrix ᄭ = 𝑄𝑄𝑇, and the 10 × 10 matrix𝐴 = 𝑄𝑇𝑄.

c. Find the eigenvalues 𝜆1, 𝜆2, 𝜆3 and corresponding normal-
ized eigenvectors u1,u2,u3 of the correlation matrix ᄭ.

d. Find the 10 eigenvalues of the matrix𝐴 and verify that the
eigenvalues 𝜆1, 𝜆2, 𝜆3 of the matrix ᄭ in part (c) are the
nonzero eigenvalues of 𝐴 and that corresponding eigen-
vectors are 𝑄u1,𝑄u2,𝑄u3 with norms √𝜆1, √𝜆2, √𝜆3
[�ote: In this example it is easier to work with the 3 ×
3 matrix ᄭ rather than the 10 × 10 matrix 𝐴. However,
that is a result of the small size of our training set. In
most facial-recognition applications, 𝐴 will be very much
smaller than ᄭ.]

p1 =

0.72720.2826
0.7404

 ,p2 =

0.67630.3489
0.7039

 ,p3 =

0.54310.4740
0.5756

 ,

p4 =

0.14250.8826
0.2801

 ,p5 =

0.30340.6640
0.5243

 ,p6 =

0.58060.4154
0.6729

 ,p7 =

0.49480.5350
0.5946

 ,

p8 =

0.66700.3386
0.7375

 ,p9 =

0.34950.5876
0.4980

 ,p10 =

0.58160.3480
0.7132

 .

(a) Find the mean m of the training set, and use it to find the caricature
vectors q1,q2, . . . ,q10.
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(b) Find the 3 × 10 caricature matrix Q, the 3 × 3 correlation matrix C =
QQT , and the 10× 10 matrix A = QTQ.

(c) Find the eigenvalues λ1, λ2, λ3 and corresponding normalized eigenvec-
tors u1,u2,u3 of the correlation matrix C.
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(d) Find the 10 eigenvalues of the matrix A and verify that the eigenvalues
λ1, λ2, λ3 of the matrix C in part (c) are the nonzero eigenvalues of
A and that corresponding eigenvectors are Qu1, Qu2, Qu3 with norms√
λ1,
√
λ2,
√
λ3. [Note: In this example it is easier to work with the 3×3

matrix C rather than the 10× 10 matrix A. However, that is a result of
the small size of our training set. In most facial-recognition applications
A will be very much smaller than C.]

(e) Compute the three eigenfaces e1, e2, e3 determined by the training set.
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(f) Compute the 3 features of each of the 10 faces in the training set.
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(g) Let fij denote the jth feature of the ith face vector in the training set, so
that the ith caricature vector is qi = fi1e1 + fi2e2 + fi3e3. Suppose that
qi is approximated by fi1e1 (that is, each caricature vector is approxi-
mated by the feature corresponding to the largest eigenvalue of C). Find
the Euclidean distance between each caricature vector and its approxi-
mation. [Note: In the figure, the blue line passes through the average
coordinates of the 1000 pictured points and lies in the direction of the
eigenface e1. Thus, the distances computed in this part are the distances
of the red training-set points to the line.]
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LU -decomposition, 278
r-step connection, 314
2-space, 85
3-space, 85

adjoint, 81
affine transformation, 339, 360
algebraic multiplicity, 172
angle between vectors, 91
associative law, 86
augmented matrix, 5
autosomal inheritance, 347

back-substitution, 13
backward phase, 10
basis, 136
begin-triangle, 358
best approximation, 208
boundary mesh points, 328
bounded, 334

central conic, 229
central quadric, 229
chaotic, 340
characteristic equation, 160
characteristic polynomial, 160
cipher, 341
ciphertext, 341
clique, 315
closed, 334
codomain, 46
coefficient matrix, 22
coefficients, 20, 88
cofactor, 70
cofactor expansion, 71
column space, 146

column vector, 16
column-row expansion, 21
column-vector form, 46
comma-delimited form, 46
complex n-space, 173
complex n-tuple, 173
complex Euclidean inner product, 173
component, 86
composition, 255
congruent, 334
conic section, 229
conjugate transpose, 238
consistent linear system, 3
constrained extremum theorem, 233
consumption matrix, 67
contraction, 243, 334
convex combination, 358
coordinate map, 144
coordinate vector, 139
coordinates, 139
cost, 286
critical points, 235
cross product, 108
cross product terms, 227
cryptography, 341

damping factor, 364
deciphering, 341
degenerate conic, 229
determinant, 71, 267
diagonal entries, 288
diagonal matrix, 42
diagonalizable, 167
differential equation, 178

general solution, 178

370



Linear Algebra - 10.20 Index

initial condition, 178
order, 178

dilation, 243, 334
dimension, 141
directed edges, 313
directed graph, 313
discrete random walk, 330
distance between points, 90
distance between vectors, 189
dominance-directed graph, 317
dominant eigenvalue, 282
dominant eigenvector, 282
dot product, 91
dynamical system, 181

eigenspace, 162
eigenvalue, 159
eigenvector, 159
elementary matrix, 33
elementary row operations, 6
elimination procedure, 10
enciphering, 341
end-triangle, 360
entries, 16
Euclidean inner product, 188
Euclidean norm, 173
evaluation transformation, 245
expected payoff, 320

finite-dimensional, 136
flop, 286
forward phase, 10
Fourier coefficients, 216
fractal, 336
free variables, 9
function, 46
fundamental spaces, 154

Gauss-Jordan elimination, 10
Gaussian elimination, 10
general solution, 147
general solution of a system, 10
genotype, 347

geometric multiplicity, 172
geometric vectors, 85
growth matrix, 324

harvest vector, 324
harvesting matrix, 353
Hausdorff dimension, 335
Hermitian, 238
Hessenberg’s Theorem, 226
Hessian matrix, 236
Hill cipher, 341
homogeneous, 12
homogeneous linear equation, 1

identity matrix, 26
identity operator, 243
image, 46
inconsistent linear system, 3
indefinite form, 231
infinite-dimensional, 136
initial-value problem, 178
inner product, 188
inner product space, 188
inner product space isomorphism, 260
interior mesh points, 328
intermediate demand vector, 67
interpolate, 302
interpolating curve, 302
invariant, 167
inverse, 255
inverse operator, 60
invertible, 26
isomorphism, 258

Jacobi iteration, 328

kernel, 125, 247

leading 1, 8
leading variables, 9
least squares approximation, 216
left null space, 154
left nullity, 154
Leontief equation, 67
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Leontief matrix, 67
Leslie matrix, 350
level curves, 235
line segment, 105
linear combination, 20, 88, 126
linear equation, 1
linear form, 227
linear operator, 242
linear system, 2
linear transformation, 49, 242
linearity conditions, 49
linearly dependent, 131
linearly independent, 131
links, 363
lower triangular matrix, 43

magnitude, 89
main diagonal, 17, 288
maps, 47
Markov chain, 183, 305
matrix, 16

difference, 17
equal, 17
inverse, 26
product, 18
scalar multiple, 18
scalar product, 18
size, 16
sum, 17

matrix inner products, 191
matrix of cofactors, 81
matrix operator, 47
matrix polynomial, 31
matrix transformation, 47
mean square error, 216
minor, 70
modular equivalence, 342
multiplicative inverse, 343

negative definite form, 231
nonharvest vector, 324
nonsingular, 26
norm, 89, 188

normal, 95
normal matrix, 241
normal system, 208
normalize, 89
normalizing, 199
null space, 146
nullity, 152, 250

one-to-one, 251
onto, 251
operator, 47
optimal sustainable yield, 324
ordered n-tuple, 2, 87
ordered pair, 2
ordered triple, 2
orthogonal, 95, 196, 199, 218
orthogonal basis, 200
orthogonal complement, 155, 197
orthogonal projection, 97, 202
orthogonally diagonalizable, 223
orthogonally similar, 223
orthonormal, 199
orthonormal basis, 200
outside demand vector, 67
overdetermined system, 157

parameter, 102
particular solution, 147
partitioned matrix, 19
payoff matrix, 319
percentage error, 285
picture-density, 360
pivot, 15
pivot column, 15
pivot position, 15
pivot row, 15
plaintext, 341
point-normal equations, 95
polygraphic system, 341
polynomial interpolation, 65
positive definite form, 231
power method, 282, 284
power sequence, 282
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principal submatrix, 232
probability, 183
probability transition matrix, 363
production vector, 67

quadratic form, 227

range, 46, 247
rank, 152, 250
reciprocal, 343
reduced row echelon form, 8
reflection operators, 53
regular, 309
regular Markov chain, 186
regular matrix, 186
relative error, 285
relative maximum, 235
relative minimum, 235
replacement matrix, 324
residue, 342
right-hand rule, 277
rotation operators, 53
row echelon form, 8
row equivalent, 33
row matrix, 16
row space, 146
row vector, 16
row-column rule, 19

saddle point, 235, 321
scalar, 113
scalar multiplication, 113
scalar triple product, 110
scalars, 16
Schur’s Theorem, 226
second derivative test, 236
self-similar, 334
similar matrices, 167
similarity invariant, 167
similarity transformations, 167
similitude, 336
singular, 26
singular values, 287

skew-Hermitian, 241
skew-symmetric, 241
solution, 2
span, 126
spectral decomposition, 225
spring constant, 214
square matrix, 17
standard basis for Rn, 136
standard basis vectors, 46
standard inner product, 188, 191, 192
standard matrix, 50
standard unit vectors, 90
state of a variable, 181
state vector, 181, 306, 363
steady-state vector, 186
stochastic matrix, 183
stochastic processes, 183
strictly determined, 321
subspace, 120
substitution cipher, 341
sustainable, 353
sustainable harvesting condition, 325
symmetric matrix, 44
system of linear equations, 2

time-varying morph, 360
time-varying warp, 360
trace, 23
transformation, 47

composition, 56
transition matrix, 183
transition probability, 305
transpose, 22
triangular matrix, 43
triangulation, 360
trigonometric polynomial, 216
trivial solution, 12
two-point vector equation, 104

underdetermined system, 157
unit circle, 190
unit sphere, 190
unit vector, 89, 189
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unitarily diagonalizable, 241
unitary, 238
unknowns, 2
upper triangular matrix, 43

vector
difference, 86
direction, 85
equivalent vectors, 85, 87
initial point, 85
length, 85, 89
negative, 86
scalar product, 86
sum, 85
terminal point, 85

vector space, 113
vectors, 46
vertex

power, 318
vertex matrix, 313
vertex points, 360
vertices, 313

warp, 360
webgraph, 363
weighted Euclidean inner product, 189
Wronskian, 135

zero matrix, 25
zero subspace, 120
zero transformation, 243
zero vector, 85, 113

374



Bibliography

[1] Anton, H., Rorres, C., & Kaul, A. Elementary Linear Algebra: Applications
Version Hoboken, NJ, USA: Wiley, 2019. Print.

375


	Systems of Linear Equations and Matrices
	Introduction to Systems of Linear Equations
	Gaussian Elimination
	Matrices and Matrix Operations
	Inverses; Algebraic Properties of Matrices
	Elementary Matrices and a Method for Finding A-1
	More on Linear Systems and Invertible Matrices
	Diagonal, Triangular, and Symmetric Matrices
	Introduction to Linear Transformations
	Compositions of Matrix Transformations
	Applications of Linear Systems
	Leontief Input-Output Models

	Determinants
	Determinants by Cofactor Expansion
	Evaluating Determinants by Row Reduction
	Properties of Determinants; Cramer's Rule

	Euclidean Vector Spaces
	Vectors in 2-Space, 3-Space, and n-Space
	Norm, Dot Product, and Distance in Rn
	Orthogonality
	The Geometry of Linear Systems
	Cross Product

	General Vector Spaces
	Real Vector Spaces
	Subspaces
	Spanning Sets
	Linear Independence
	Coordinates and Basis
	Dimension
	Change of Basis
	Row Space, Column Space, and Null Space
	Rank, Nullity, and the Fundamental Matrix Spaces

	Eigenvalues and Eigenvectors
	Eigenvalues and Eigenvectors
	Diagonalization
	Complex Vector Spaces
	Differential Equations
	Dynamical Systems and Markov Chains

	Inner Product Spaces
	Inner Products
	Angle and Orthogonality in Inner Product Spaces
	Gram-Schmidt Process; QR-Decomposition
	Best Approximation; Least Squares
	Mathematical Modeling Using Least Squares
	Function Approximation; Fourier Series

	Diagonalization and Quadratic Forms
	Orthogonal Matrices
	Orthogonal Diagonalization
	Quadratic Forms
	Optimization Using Quadratic Forms
	Hermitian, Unitary, and Normal Matrices

	General Linear Transformations
	General Linear Transformations
	Compositions and Inverse Transformations
	Isomorphism
	Matrices for General Linear Transformations
	Similarity
	Geometry of Matrix Operators

	Numerical Methods
	LU-Decompositions
	The Power Method
	Comparison of Procedures for Solving Linear Systems
	Singular Value Decomposition
	Data Compression Using Singular Value Decomposition

	Applications of Linear Algebra
	Constructing Curves and Surfaces Through Specified Points
	The Earliest Applications of Linear Algebra
	Cubic Spline Interpolation
	Markov Chains
	Graph Theory
	Games of Strategy
	Forest Management
	Computer Graphics
	Equilibrium Temperature Distributions
	Computed Tomography
	Fractals
	Chaos
	Cryptography
	Genetics
	Age-Specific Population Growth
	Harvesting of Animal Populations
	A Least Squares Model for Human Hearing
	Warps and Morphs
	Internet Search Engines
	Facial Recognition

	Index
	Bibliography

