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Chapter 1

Systems of Linear Equations
and Matrices

1.1 Introduction to Systems of Linear Equa-
tions

Definition 1.1.1. A linear equation in the n variables xq,zs,...,z, is one
that can be expressed in the form

a171 + sy + - - + apx, = b,

where a1, as,...,a, and b are constants, and the a’s are not all zero.
In the special case where b = 0, this equation has the form

a1x1 + asxs + -+ - + ap,x, =0,

which is called a homogeneous linear equation in the variables zq, s, ..., z,.

Example 1. The following are linear equations:

r+3y="7 Ty — 29— 3x3+x24=0
1
5x—y+322—1 T+ x4+ a1, =1

The following are not linear equations:

r4+3y° =4 3T 42y —xy =95
smx+y=0 T+ 2T + 23 = 1.
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Definition 1.1.2. A finite set of linear equations is called a system of linear
equations or, more briefly, a linear system. The variables are called unknowns.
A general linear system of m equations in the n unknowns x1, s, ..., x, can
be written as

a1 + @192 + -+ a1, = by
a911 + A99%y + -+ - + Gopx, = by

Am1T1 + AmaTs + -+ -+ ATy = bm

Definition 1.1.3. A solution of a linear system in n unknowns x1, s, ..., Z,
is a sequence of n numbers s, so, ..., s, for which the substitution
xr1 = S, Lo = S9,..., Tpn = Sp

makes each equation a true statement. A solution can be written as

(317 52,4, Sn)a

which is called an ordered n-tuple. If n = 2, then the n-tuple is called an
ordered pair, and if n = 3, then it is called an ordered triple.

Remark 1. Consider the linear system

ar+ by =

asT + boy = co

in which the graphs of the equations are lines in the xy-plane. Each solution
(x,y) of this system corresponds to a point of intersections of the lines, so
there are three possibilities:

1. The lines may be parallel and distinct, in which case there is no inter-
section and consequently no solution.

2. The lines may intersect at only one point in which case the system has
exactly one solution.

3. The lines may coincide, in which case there are infinitely many points of
intersection (the points on the common line) and consequently infinitely
many solutions.

AY AY J ,
/
/

\\ ’ 4
N2

No solution One solution Infinitely many
solutions
(coincident lines)

Y <
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In general, we say that a linear system is consistent if it has at least one
solution and inconsistent if it has no solutions. Thus, a consistent linear system
of two equations in two unknowns has either one solution or infinitely many
solutions—there are no other possibilities. The same is true for a linear system
of three equations in three unknowns

a1+ by + iz =dy

as® + by + coz = ds

aszr + b3y + c3z = ds
in which the graphs of the equations are planes. The solutions of the system,
if any, correspond to points where all three planes intersect, so again we see

that there are only three possibilities—no solutions, one solution, or infinitely
many solutions.

< 4

No solutions No solutions No solutions No solutions
(three parallel planes; (two parallel planes; (no common intersection) (two coincident planes
no common intersection) no common intersection) parallel to the third;

no common intersection)

One solution Infinitely many solutions Infinitely many solutions Infinitely many solutions
(intersection is a point) (intersection is a line) (planes are all coincident; (two coincident planes;
intersection is a plane) intersection is a line)

Theorem 1.1.1. Every system of linear equations has zero, one, or infinitely
many solutions. There are no other possibilities.
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Example 2. Solve the linear system

r—y=1
2z +y = 6.

Example 3. Solve the linear system

r+ y=4
3z + 3y = 6.

Example 4. Solve the linear system

dr —2y =1
16z — 8y = 4.
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Example 5. Solve the linear system

r— y+2z= 5
20 — 2y +42 =10
3r — 3y + 62 = 15.

Definition 1.1.4. The linear system

1121 + @12T2 + -+ ATy = b1
a21T1 + @22T9 + ** + QAopTy = b2

Am1T1 + A2l + - - - + AppTy = bm

can be abbreviated by writing only the rectangular array of numbers

a1l Q12 A1n by
G21  A22 agn by
Am1 Am2 **° Amn bm

This is called the augmented matrix for the system.
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Remark 2. The basic method for solving a linear system is to perform algebraic
operations on the system that do not alter the solution set and that produce a
succession of increasingly simpler systems, until a point is reached where it can
be ascertained whether the system is consistent, and if so, what its solutions
are. Typically, the algebraic operations are:

1. Multiply an equation through by a nonzero constant.
2. Interchange two equations.
3. Add a constant times one equation to another.

Since the rows (horizontal lines) of an augmented matrix correspond to the
equations in the associated system, these three operations correspond to the
following operations on the rows of the augmented matrix:

1. Multiply a row through by a nonzero constant.
2. Interchange two rows.

3. Add a constant times one row to another.

These are called elementary row operations on a matrix.

Example 6. Solve the linear system
r+ y+22=9
20 +4y —32 =1
3r+6y—52=0

by operating on the equations in the system, and by operating on the rows of
the augmented matrix for the system.
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1.2 Gaussian Elimination

Definition 1.2.1. To be of reduced row echelon form, a matrix must have the
following properties:

1. If a row does not consist entirely of zeros, then the first nonzero number
in the row is a 1. We call this a leading 1.

2. If there are any rows that consist entirely of zeros, then they are grouped
together at the bottom of the matrix.

3. In any two successive rows that do not consist entirely of zeros, the
leading 1 in the lower row occurs farther to the right than the leading 1
in the higher row.

4. Each column that contains a leading 1 has zeros everywhere else in that
column.

A matrix that has the first three properties is said to be in row echelon form.
(Thus, a matrix in reduced row echelon form is of necessity in row echelon
form, but not conversely.)

Example 1. The following matrices are in reduced row echelon form.

1 0 0 4 1 00 0 1 =201
0O 0 0 1 3 0 0
o 1 0 7/, |01 0], , .
0 0 1 -1 00 1 00 0 00 00
0 0 0 0 0

The following matrices are in row echelon form but not reduced row echelon

1 4 -3 7 110 0 1 2 6 0
0 1 6 2/, [o1o|l, o o 1-1 0
0 0 1 5 00 0 0 0 0 0 1

Example 2. With any real numbers substituted for the *’s, all matrices of
the following types are in row echelon form:

-0 1 % % * % x * %
* k% 1 * *x % 1 * % x

00 0 1 = * % x %
1 * 0 1 % = 0 1 % = 0000 1 % = % #
0 1 x|’ 0 0 1 x|’ 0 00 0} 00000 1 % % x
0 01 0 00O 0 00O 000000001

* X X X *x
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All matrices of the following types are in reduced row echelon form:

01 = 000 x x 0

000 1 0 0 =« 1 0 x =x
000100 % % 0

1 0 0 01 0 =* 0 1 % =x
, , 1000010 % %0

01 0 00 1 0000
00 1 0000 0000 0-0 00 0 1 w0
00000000 1

Example 3. Suppose that the augmented matrix for a linear system in the
unknowns x1, xs, x3, and x4 has been reduced by elementary row operations
to

oo o
oo~ o
o~ oo
_o oo
|
Gl O = W

Solve the system.

Definition 1.2.2. The variables that correspond to the leading 1’s in a ma-
trix in reduced row echelon form are called leading variables. The remaining
variables are called free variables.

Example 4. In each part, suppose that the augmented matrix for a linear
system in the unknowns z, y, and z has been reduced by the elementary row
operations to the given reduced row echelon form. Solve the system.

()

S O =
o = O
SN O
_ o O

1 0 3 -1
() [0 1 -4 2
0 0 0 0
1 -5 1 4
© 0o 0o 0 o0
0 0 0 0

* K X X X




Linear Algebra - 1.2 Gaussian Elimination

Definition 1.2.3. If a linear system has infinitely many solutions, then a set
of parametric equations from which all solutions can be obtained by assigning
numerical values to the parameters is called a general solution of the system.

Theorem 1.2.1. The following step-by-step elimination procedure can be used
to reduce any matrix to reduced row echelon form.

Step 1.
Step 2.

Step 3.
Step 4.

Step 5.

Step 0.

Locate the leftmost column that does not consist entirely of zeros.
Interchange the top row with another row, if necessary, to bring a
nonzero entry to the top of the column found in Step 1.

If the entry that is now at the top of the column found in Step 1 is
a, multiply the first row by 1/a in order to introduce a leading 1.

Add suitable multiples of the top row to the rows below so that all
entries below the leading 1 become zeros.

Now cover the top row in the matriz and begin again with Step 1
applied to the submatriz that remains. Continue in this way until
the entire matriz is in row echelon form.

Beginning with the last nonzero row and working upward, add suit-
able multiples of each row to the rows above to introduce zeros above
the leading 1’s.

This procedure (or algorithm) is called Gauss-Jordan elimination and consists
of two parts, a forward phase in which zeros are introduced below the leading
1’s and a backward phase in which zeros are introduced above the leading 1’s.

If only the forward phase is used, then the procedure produces a row echelon
form and is called Gaussian elimination.

10
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Example 5. Solve by Gauss-Jordan elimination.

T, + 39 — 223 + 2x5 =
201 + 619 — brs — 214 +4dxs — 3x6 =
5x3 + 10z4 + 15z =

2xr1 + 614 + 8z4 +4xs+ 18z =

11

0
-1

6
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Definition 1.2.4. A system of linear equations is said to be homogeneous if
the constant terms are all zero; that is, the system has the form

a11T1 + a1y + -+ a1px, =0
a91%1 + a99%9 + -+ Aonly — 0

A1 T1 + ApaTo + -+ + AppTy = 0

Every homogeneous system of linear equations is consistent because all such
systems have x1 = 0,29 = 0,..., 2, = 0 as a solution. This solution is called
the trivial solution; if there are other solutions, they are called nontrivial so-
lutions.

Remark 1. Because a homogeneous system of linear equations always has the
trivial solution, there are only two possibilities for its solutions:

e The system has only the trivial solution.
e The system has infinitely many solutions in addition to the trivial solu-
tion.

Example 6. Use Gauss-Jordan elimination to solve the homogeneous system
linear system

r1 + 3x9 — 223 + 2x5 =0
2x1 4+ 629 — drs — 214+ 4x5 — 326 =0
53 + 1024 + 1526 =0

2x1 + 614 4+ 8xy + 4as + 1826 = 0.

12
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Theorem 1.2.2 (Free Variable Theorem for Homogeneous Systems). If a
homogeneous linear system has n unknowns, and if the reduced row echelon
form of its augmented matriz has r nonzero rows, then the system has n —r
free variables.

Theorem 1.2.3. A homogeneous linear system with more unknowns than
equations has infinitely many solutions.

Remark 2. For large linear systems that require a computer solution, it is
generally more efficient to use Gaussian elimination followed by a technique
known as back-substitution to complete the process of solving the system.

Example 7. From the computations in Example 5, a row echelon form of the
augmented matrix is

o O O =
OO O W
O = =N
S O N O
O O O N
O = w o
QWi = O

Solve the corresponding system of equations.

13
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Example 8. Suppose that the matrices below are augmented matrices for
linear systems in the unknowns x1, x2, 3, and x4. These matrices are all in
row echelon form but not reduced row echelon form. Discuss the existence and
uniqueness of solutions to the corresponding linear systems.

1 -3 7 2 5
<)012—41
Yo 0 1 6 9
00 0 0 1
1-3 7 2 5
0 1 2 -4 1
® 1o 0 1 6 9
00 0 0 0
1 -3 7 2 5
()012—41
1o 0 1 6 9
00 0 1 0

14
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Remark 3. There are three facts about row echelon forms and reduced row
echelon forms that are important to know:

1. Every matrix has a unique reduced row echelon form.

2. Row echelon forms are not unique.

3. Although row echelon forms are not unique, the reduced row echelon
form and all row echelon forms of a matrix A have the same number of
zero rows, and the leading 1’s always occur in the same positions. Those
are called the pivot positions of A. The columns containing leading 1’s
in a row echelon or reduced row echelon form of A are called the pivot
columns of A, and the rows containing the leading 1’s are called the pivot
rows of A. A nonzero entry in a pivot position of A is called a pivot of

A.

Example 9. Given that the row echelon form of
0 0 -2 0 7 12
2 4 —10 6 12 28
2 4 =5 6 -5 -1

18

1 2-5 3 6 14
0 0 1 0-I-6
0 0 0 0 1 2

Determine the pivot positions, pivot columns, pivot rows, and pivots of A.

15
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1.3 Matrices and Matrix Operations

Definition 1.3.1. A matrix is a rectangular array of numbers. The numbers
in the array are called the entries.

Example 1. Some examples of matrices are

1 2 e T —\/5 1
3 0|, 2 1 o0 —3], o i o1, H 14].
1 4 0 0 0

Remark 1. The size of a matrix is described in terms of rows (horizontal lines)
and columns (vertical lines) it contains. In a size description, the first number
always denotes the number of rows, and the second denotes the number of
columns. A matrix with only one row is called a row vector (or a row matrix),
and a matrix with only one column is called a column vector (or a column
matrix).

Remark 2. We will use capital letters to denote matrices and lowercase letters
to denote numerical quantities; thus we may write

2 1 7 a b ¢
]orC—def].

3 4 2
When discussing matrices, it is common to refer to numerical quantities as
scalars. The entry that occurs in row 7 and column j of a matrix A will be
denoted by a;;. Thus a general m x n matrix might be written as

A:

11 Q2 - Qip

Q21 Q22 - Q2p
A=

Am1 Am2 **° Omnp

When a compact notation is desired, the preceding matrix can be written as
[@ijlmxn  [ais]-

Remark 3. A general 1 x n row vector a and a general m x 1 column vector
b would be written as

a:[al Qg -+ Ay and b=

16
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Remark 4. A matrix A with n rows and n columns is called a square matrix
of order n, and the shaded entries aq1, ass, ..., a,, are said to be on the main
diagonal of A.

aij; Q2 -+ Qip
ag1 Q22 -° QA2p
Am1 Am2  **° Qmnp

Definition 1.3.2. Two matrices are defined to be equal if they have the same
size and their corresponding entries are equal.

Example 2. Consider the matrices

A:?):v

For what values of x are the matrices equal?

Definition 1.3.3. If A and B are matrices of the same size, then the sum
A+ B is the matrix obtained by adding the entries of B to the corresponding
entries of A, and the difference A — B is the matrix obtained by subtracting
the entries of B from the corresponding entries of A. Matrices of different sizes
cannot be added or subtracted.

Example 3. Consider the matrices

2 1 0 3 4 3 5 1 .
A=]-1 0 2 4|, B=|2 2 0-1, C=]|, 2].
4 -2 7 0 3 2-4 5

Find A+ B,A+C,B+C, A— B, A—C, and B — C, if possible.

17
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Definition 1.3.4. If A is any matrix and ¢ is any scalar, then the product cA
is the matrix obtained by multiplying each entry of the matrix A by ¢. The
matrix cA is said to be a scalar multiple of A.

Example 4. For the matrices

9 -6 3
3 0 12)°

find 24, (-1)B, and 3C.

Definition 1.3.5. If A is an m X r matrix and B is an r X n matrix, then the
product AB is the m x n matrix whose entries are determined as follows: To
find the entry in row 7 and column j of AB, single out row i from the matrix
A and column j from the matrix B. Multiply the corresponding entries from
the row and column together, and then add up the resulting products.

Example 5. Consider the matrices

4 1 4 3
ac[te s
2 7 5 2

Find AB.

18
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Example 6. Suppose that A, B, and C are matrices with the following sizes:

A B C
3 x4 4 x7 7 x3

Determine whether the products AB, AC, BC, BA, C'A, and C'B are defined.

Remark 5. In general, if A = [a;;] is an m X r matrix and B = [b;;] is an r x n
matrix, then, as illustrated by the shading in the following display,

a1;p  ai2 -0 Qip
ao1 Q92 -+ A9y bll b12 Ce blj ce bln
b21 b22 T b2j e b2n
AB = . , .
Qi1 Q2 0 Qyp : : : :
b'rl br2 e brj e brn
Am1 Am2 = Qmp

the entry (AB);; in row ¢ and column j of AB is given by
(AB)ij = ainbij + aigby; + aizbzj + - -+ + aiby; .

This is called the row-column rule for matrix multiplication.

Remark 6. A matrix can be subdivided or partitioned into smaller matrices by
inserting horizontal and vertical rules between selected rows and columns. The
following formulas show how individual column vectors of AB can be obtained
by partitioning B into column vectors and how individual row vectors of AB
can be obtained by partitioning A into row vectors.

AB:A[bl by - bn]:[Abl Aby --- Ab,

(AB computed column by column)

a; a B

a a B
AB=| =17

a,, a,,B

(AB computed row by row)

19
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Example 7. If A and B are the matrices in Example 5, then compute the
second column vector and first row vector of AB.

Definition 1.3.6. If Ay, A,,..., A, are matrices of the same size, and if
c1,Ca, ..., C. are scalars, then an expression of the form

ClAl -+ CQAQ + 4 CTAT

is called a linear combination of A;, As, ..., A, with coefficients ¢, co, ..., ¢,.

Theorem 1.3.1. If A is an m X n matriz, and if X is an n X 1 column vector,
then the product Ax can be expressed as a linear combination of the column
vectors of A in which the coefficients are the entries of x.

Proof. Let
aix Qaiz2 - Qip |
21 Q22 -+ Qap )
A= . ] ] and x =
Am1 Qm2 - Qmp Tp
Then
a11%1 + Q122 + -+ A1n Ty ain a12 A1n
211 + QAo2T2 + -+ + AopXy a9 a2 Q2n
Ax=| . : : =z | . |t | |+t T,
Am1T1 + Am2T2 + -+ AmnTy am1 Am?2 Amn

Example 8. Write the matrix product

-1 3 2 2 1
1 2 -3 |-1|=1-9
2 1 =2 3 -3

as a linear combination of column vectors.

20
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Example 9. If A and B are the matrices in Example 5, then write the column
vectors of the matrix product AB as linear combinations of column vectors.

Remark 7. Suppose that an m x r matrix A is partitioned into its r column
vectors ¢1, Cy, . . ., ¢, (each of size m x 1) and an r X n matrix B is partitioned
into its r row vectors ry, ry, ..., r, (each of size 1 x n). Then

AB = CiI; + Col'y + - - - + C,I'pr,

and this equation is called the column-row expansion of AB.

Example 10. Find the column-row expansion of the product

1 3 2 0 4
AB_Q—l][—B ) 1]'

21
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Remark 8. Consider a system of m linear equations in n unknowns:

a11T1 + 199 + -+ A1y — bl
A T1 + G9oTo + -+ + A9nTy, = by

Am1T1 + AmaTa + - -+ ATy, = bm

We can replace the m equations in this system by the matrix equation

@11 Q12 - Aip x by
Q21 Q22 -+ A2y X2 by
Am1 Am2 - Omp Tp bm

If we designate these matrices by A, x, and b, respectively, then we can replace
the original system of m equations in n unknowns by the single matrix equation

Ax = b.

The matrix A in this equation is called the coefficient matrix of the system.
The augmented matrix for the system is obtained by adjoining b to A as the
last column; thus the augmented matrix is

aix Qa2 - Qip by

a1 Q@ - Qo | bo
[A]b] =

Am1 Am2 *°° Amn bm

Definition 1.3.7. If A is any m x n matrix, then the transpose of A, denoted
by AT, is defined to be the n x m matrix that results by interchanging the
rows and columns of A; that is, the first column of A’ is the first row of A,
the second column of A7 is the second row of A, and so forth.

Example 11. Find the transposes of the following matrices:

11 Q12 Aaiz daig
A= |an a2 a3 au , B=

, C:[l 3 5}, D =[4].

(S il \V)
S =W

a31 a3z aAz3 aAz4

22
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Remark 9. Not only are the columns of A” the rows of A, but the rows of A
are the columns of A. Thus the entry in row ¢ and column j of A7 is the entry
in row j and column ¢ of A; that is,

(A7) = (A)ji.

In the special case where A is a square matrix, the transpose of A can be
obtained by interchanging entries that are symmetrically positioned about the
main diagonal.

Definition 1.3.8. If A is a square matrix, then the trace of A, denoted by
tr(A), is defined to be the sum of the entries on the main diagonal of A. The
trace of A is undefined if A is not a square matrix.

Example 12. Find the traces of the following matrices:
aip Qi2 a3

A= Q21 Q22 A23| , B =
a31 dAdgzz G33

N DO Ot DN
|
=~ 00 I
|
o w ik O

-1
3
1
4 —
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Linear Algebra - 1.4 Inverses; Algebraic Properties of Matrices

1.4 Inverses; Algebraic Properties of Matrices

Theorem 1.4.1 (Properties of Matrix Arithmetic). Assuming that the sizes
of the matrices are such that the indicated operations can be performed, the
following rules of matrixz arithmetic are valid.
(a) A+ B=B+ A
) A+ (B+C)=(A+B)+C
) A(BC) = (AB)C
) A(B+C)=AB+ AC
) (B+C)A=BA+CA
) A(B-C)=AB - AC
) (B—C)A=BA—-CA
) a(B+C)=aB+aC
) a(B—-C)=aB —aC
7) (a+b)C =aC+0bC
k) (a—0b)C =aC —bC
) a(bC) = (ab)C
m) a(BC) = (aB)C = B(aC)

Example 1. Consider

4 3

o 1| =

1 2
A= |3 4|, B=
0 1

10
2 3

Compute (AB)C and A(BC).
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Linear Algebra - 1.4 Inverses; Algebraic Properties of Matrices

Example 2. Consider the matrices

-1 O] and B =

A=15 3

1 2
3 01

Compute AB and BA.

Remark 1. A matrix whose entries are all zero is called a zero matrix. Some
examples are

F 1 8 88 [00()q
0 0 00 o 0000

We will denote a zero matrix by 0 unless it is important to specify its size, in
which case we will denote the m X n zero matrix by 0, xx.

o O O O
=)

Theorem 1.4.2 (Properties of Zero Matrices). If ¢ is a scalar, and if the sizes
of the matrices are such that the operations can be performed, then:

() A+0=0+A=A

(b)) A—0=A

(¢) A—A=A+(-A) =0

(d) 0A=10

(e) IfcA= 10, thenc=0 or A= 0.

Example 3. Consider the matrices

01
0 2

11

A= 3 4

B: y C:

Y

2 5
3 41

Compute AB and AC.
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Linear Algebra - 1.4 Inverses; Algebraic Properties of Matrices

Example 4. Consider the matrices

01

A=1q 9

] and B =

37
0 0]

Compute AB.

Remark 2. A square matrix with 1’s on the main diagonal and zeros elsewhere
is called an identity matrix. Some examples are

1000
] 10 3(1)8 0100
’01’001’0010
0001

An identity matrix is denoted by the letter I. If it is important to emphasize
the size, we will write [,, for the n x n identity matrix.
If A is any m x n matrix, then

Al,=A and [,A=A.

Theorem 1.4.3. If R is the reduced row echelon form of an n x n matrix A,
then either R has a row of zeros or R is the identity matriz I,,.

Proof. Suppose that the reduced row echelon form of A is

i1 Ti2 - Tin

o1 To2 -+ Topn
R =

Tn1 Th2 - Thn

Either the last row in this matrix consists entirely of zeros or it does not. If
not, the matrix contains no zero rows, and consequently each of the n rows
has a leading entry of 1. Since these leading 1’s occur progressively farther to
the right as we move down the matrix, each of these 1’s must occur on the
main diagonal. Since the other entries in the same column as one of these 1’s
are zero, R must be I,,. Thus, either R has a row of zeros or R = I,,. O

Definition 1.4.1. If A is a square matrix, and if a matrix B of the same
size can be found such that AB = BA = I, then A is said to be invertible
(or nonsingular) and B is called an inverse of A. If no such matrix B can be
found, then A is said to be singular.
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Linear Algebra - 1.4 Inverses; Algebraic Properties of Matrices

Example 5. Let

A:

2 —5
1 3] and B =

3 5
1 2]

Are A and B inverses of each other?

Example 6. Consider the matrix

A:

w N =
S Ot =~
o O O

Is A singular?

Theorem 1.4.4. If B and C are both inverses of the matrix A, then B = C.

Proof. Since B is an inverse of A, we have BA = I. Multiplying both sides
on the right by C gives (BA)C = IC = C. But it is also true that (BA)C =
B(AC) = BI = B, so C = B. O

Remark 3. If A is invertible, then its inverse will be denoted by the symbol
A~ Thus,
AA™ =T and A'A=1.
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Theorem 1.4.5. The matriz

A:

a b
c d
is invertible if and only if ad — be # 0, in which case the inverse is given by

the formula
1 d —b
At = .
ad — be [—C a]

Example 7. In each part, determine whether the matrix is invertible. If so,
find its inverse.

Example 8. Solve the equations

u = ax + by
v=-cr+dy

for x and y in terms of v and v.
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Linear Algebra - 1.4 Inverses; Algebraic Properties of Matrices

Theorem 1.4.6. If A and B are invertible matrices with the same size, then
AB s invertible and
(AB) ' =B'A™"

Proof. We can establish the invertibility and obtain the stated formula at the
same time by showing that

(AB)(B'A™") = (B'A™Y)(AB) = I.
But
(AB)(B'A™) = A(BB YA ' = ATA ' = AA =T
and similarly, (B~'A"1)(AB) = I. O

Remark 4. A product of any number of invertible matrices is invertible, and
the inverse of the product is the product of the inverses in the reverse order.

Example 9. Consider the matrices

1 2

A=17 3

, B=

3 2
2 2

Compute AB, (AB)™!, and B~1A~1.

29



Linear Algebra - 1.4 Inverses; Algebraic Properties of Matrices

Remark 5. If A is a square matrix, then we define the nonnegative integer
powers of A to be
A=T and A"=AA---A
—_—

and if A is invertible, then we define the negative integer powers of A to be

A=Ay =47 AT

-
n

Because these definitions parallel those for real numbers, the usual laws of
nonnegative exponents hold; for example,

ATA® = A and  (AT)* = A

Theorem 1.4.7. If A is invertible and n is a nonnegative integer, then:
(a) A7'is invertible and (A7)~ = A.
(b) A™ is invertible and (A")™1 = A7 = (A71)",
(¢) kA is invertible for any nonzero scalar k, and (kA)™! = k1AL

Example 10. Let A be the matrix in Example 9. Compute (A7!)3 and (A43%)7L.
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Example 11. Calculate (A + B)? for matrices A and B.

Definition 1.4.2. If A is a square matrix, say n X n, and if
p(z) = ag + a1x + axx® + - - + @™
is any polynomial, then we define the n x n matrix p(A) to be
p(A) = apl + ay A+ agA* + - + a,, A

where [ is the n x n identity matrix; that is, p(A) is obtained by substituting
A for x and replacing the constant term ay by the matrix ag/. An expression
of this form is called a matrix polynomial in A.

Example 12. Find p(A) for

pz)=2"-22 -5 and A=

-1 2
1 3

Remark 6. For any polynomials p; and p, we have

p1(A)pa(A) = pa(A)p1(A).

Theorem 1.4.8. If the sizes of the matrices are such that the stated operations
can be performed, then:

(a) (AT)T =4
A+ Bl = AT+ BT
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Remark 7. The transpose of a product of any number of matrices is the product
of the transposes in the reverse order.

Theorem 1.4.9. If A is an invertible matriz, then AT is also invertible and
(AT)~1 = (AT
Proof. We can establish the invertibility and obtain the formula at the same
time by showing that
AT(A Y = A HTAT = 1.
But from part (e) of Theorem 1.4.8 and the fact that I7 = I, we have

AT<A71>T — (AflA)T — [T —
(AHTAT = (AA Y =TT =1 O

Example 13. Compute (AT)™' and (A™')T for a general 2 x 2 invertible
matrix.
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1.5 Elementary Matrices and a Method for
Finding A~!

Definition 1.5.1. Matrices A and B are said to be row equivalent if either
(hence each) can be obtained from the other by a sequence of elementary row
operations.

Definition 1.5.2. A matrix E is called an elementary matrix if it can be
obtained from an identity matrix by performing a single elementary row op-
eration.

Example 1. What are the operations that produce the following elementary
matrices?

L 000 103 1 00
1 0 0 001
010 010
0 -3 0010 00 1 00 1
0100

Theorem 1.5.1 (Row Operations by Matrix Multiplication). If the elemen-
tary matriz E results from performing a certain row operation on I, and if A
s an m X n matriz, then the product EA is the matrixz that results when this
same row operation is performed on A.

Example 2. Consider the matrices

1 0 2 3 100
A=1]2-1 3 6|, E=1]01 0
1 4 4 0 301

Compute the product FA.
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Example 3. What are the operations that produce the following elementary
matrices, and what are the operations that restore them to the identity matrix?

R

Theorem 1.5.2. FEvery elementary matriz is invertible, and the inverse is
also an elementary matriz.

Proof. If E is an elementary matrix, then FE results by performing some row
operation on I. Let Ejy be the matrix that results when the inverse of this
operation is performed on I. Applying Theorem 1.5.1 and using the fact that
inverse row operations cancel the effect of each other, it follows that

EoE =1 and FEy=1.
Thus, the elementary matrix Ej is the inverse of E. O]

Theorem 1.5.3 (Equivalent Statements). If A is an n X n matriz, then the
following statements are equivalent, that is, all true or all false.

(a) A is invertible.

(b) Ax =0 has only the trivial solution.

(¢) The reduced row echelon form of A is I,.

(d) A is expressible as a product of elementary matrices.

Remark 1 (Inversion Algorithm). To find the inverse of an invertible matrix
A, find a sequence of elementary row operations that reduces A to the identity
and then perform that same sequence of operations on I,, to obtain A~!.
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Example 4. Find the inverse of

1
A= 12
1

S ot N
o W W
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Example 5. Consider the matrix

Is this matrix invertible?

Example 6. Use Theorem 1.5.3 to determine whether the given homogeneous
system has nontrivial solutions.

(a) x4+ 229+ 323 =10
2I1 +5.T2—|—3$3 =0
T +8ZE3:0

(b) $1+6$2+4£L‘3:0
2I1+4$2— 1’3:0
—[E1+2ZL’2+5I3:0
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1.6 More on Linear Systems and Invertible
Matrices

Theorem 1.6.1. A system of linear equations has zero, one, or infinitely
many solutions. There are no other possibilities.

Proof. 1If Ax = b is a system of linear equations, exactly one of the following is
true: (a) the system has no solutions, (b) the system has exactly one solution,
or (c) the system has more than one solution. The proof will be complete if
we can show that the system has infinitely many solutions in case (c).
Assume that Ax = b has more than one solution, and let xy = x; — Xy, where
x; and X, are any two distinct solutions. Because x; and x, are distinct, the
matrix Xy is nonzero; moreover,

AX0:A<X1—X2):Axl—AXQZb—bZO.
If we now let k£ be any scalar, then

A(Xl + ]ﬂXO) = AXl + A(l{,’XO) = AXl + ]{(AXO)
=b+k0=b+0=Dh.

But this says that x; + kxq is a solution of Ax = b. Since xq is nonzero and
there are infinitely many choices for k, the system Ax = b has infinitely many
solutions. O

Theorem 1.6.2. If A is an invertible n x n matriz, then for each n x 1 matriz
b, the system of equations Ax = b has ezactly one solution, name, x = A~ 'b.

Proof. Since A(A™'b) = b, it follows that x = A™'b is a solution of Ax = b.
To show that this is the only solution, we will assume that x, is an arbitrary
solution and then show that x, must be the solution A~!b.

If x¢ is any solution of Ax = b, then Axy = b. Multiplying both sides of this
equation by A~!, we obtain xq = A™'b. O
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Example 1. Solve the system of linear equations

Ty + 2952 + 31173 =5
2.771 + 51’2 + 3$3 =3
T + 81’3 =17.

Example 2. Solve the systems

(a) x1 42w+ 323=4 (b) @ +2x9+3x3= 1
21+ bxy+ 323 =5 201 + D519+ 3x3= 6
T + 85[}3 =9 T + 833'3 = —6.
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Linear Algebra - 1.6 More on Linear Systems and Invertible Matrices

Theorem 1.6.3. Let A be a square matriz.
(a) If B is a square matrix satisfying BA = I, then B = A™L.
(b) If B is a square matriz satisfying AB = I, then B = A™L.

Proof. (a) Assume that BA = I. If we can show that A is invertible, the proof
can be completed by multiplying BA = I on both sides by A~! to obtain

BAA'=TA' or BI=IA"' or B=A""'.

To show that A is invertible, it suffices to show that the system Ax = 0 has
only the trivial solution. Let xy be any solution of this system. If we multiply
both sides of Axy = 0 on the left by B, we obtain BAxy = B0 or Ixg = 0 or
xo = 0. Thus, the system of equations Ax = 0 has only the trivial solution.
(b) Assume that AB = I. By part (a), A = B~'. By multiplying A = B!
both sides by B, we obtain

BA=BB!' or BA=1.
The result then follows by (a). O

Theorem 1.6.4 (Equivalent Statements). If A is an n X n matriz, then the
following are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(¢) The reduced row echelon form of A is I,.

(d) A s expresszble as a product of elementary matrices.

(e) Ax = Db is consistent for every n x 1 matriz b.

(f) Ax= b has exactly one solution for every n x 1 matriz b.

Theorem 1.6.5. Let A and B be square matrices of the same size. If AB is

wnvertible, then A and B must also be invertible.

Proof. We will show first that B is invertible by showing that the homogeneous
system Bx = 0 has only the trivial solution. If we assume that xq is any
solution of this system, then

(AB)xg = A(Bxp) = A0 =0

so Xo = 0 by parts (a) and (b) of Theorem 1.6.4 applied to the invertible
matrix AB. But the invertibility of B implies the invertibility of B~!, which
in turn implies that

(AB)B™ = A(BB™") = Al = A

is invertible since the left side is a product of invertible matrices. n
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Example 3. What conditions must by, bo, and bs satisfy in order for the system
of equations
$1+$2+2$3:b1

T + J]3Zb2

2ZE1 +l’2+31’3 = bg

to be consistent?
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Example 4. What conditions must by, bo, and b3 satisfy in order for the system
of equations
x|+ 2%2 + 3373 = b1

21‘1 + 5]32 + 31’3 = bg
T + 81’3 = b3

to be consistent?
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1.7 Diagonal, Triangular, and Symmetric Ma-
trices

Definition 1.7.1. A square matrix in which all the entries off the main diag-
onal are zero is called a diagonal matrix. A general n x n diagonal matrix D
can be written as

d 0 - 0
0 dy -+ 0
0 0 --- d,

Remark 1. A diagonal matrix is invertible if and only if all of its diagonal
entries are nonzero; in this case the inverse of the diagonal matrix D is

1/d, 0 - 0
o 0 1/dy --- O
0 0 - 1/d,

If k is a positive integer, then

a0 0
. 0 d 0
0 0 d*
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Remark 2. To multiply a matrix A on the left by a diagonal matrix D, multiply
successive rows of A by the successive diagonal entries of D, and to multiply A
on the right by D, multiply successive columns of A by the successive diagonal
entries of D.

Definition 1.7.2. A square matrix in which all the entries above the main
diagonal are zero is called lower triangular, and a square matrix in which all
the entries below the main diagonal are zero is called upper triangular. A
matrix that is either upper triangular or lower triangular is called triangular.

Example 2. What are general 4 x 4 upper and lower triangular matrices?

Remark 3. Observe that diagonal matrices are both upper triangular and lower
triangular since they have zeros below and above the main diagonal. Observe
also that a square matrix in row echelon form is upper triangular since it has
zeros below the main diagonal.

Theorem 1.7.1.

(a) The transpose of a lower triangular matriz is upper triangular, and the
transpose of an upper triangular matrix is lower triangular.

(b) The product of lower triangular matrices is lower triangular, and the
product of upper triangular matrices is upper triangular.

(¢) A triangular matriz is invertible if and only if its diagonal entries are
all nonzero.

(d) The inverse of an invertible lower triangular matriz is lower triangular,
and the inverse of an invertible upper triangular matriz is upper trian-
qular.
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Example 3. Consider the upper triangular matrices

1
A= |0
0

O o W
U
oyl
|
oo w

What can you say about A~!, B~!, AB, and BA?

Definition 1.7.3. A square matrix is said to be symmetric if A = AT.

Example 4. Which of the following matrices are symmetric?

d 0 0 0

7 -3 i_gg 0 do 0 0
=3 5] |z 5 .| |0 0 d 0
0 0 0 d

Theorem 1.7.2. If A and B are symmetric matrices with the same size, and
if k is any scalar, then:

(a) AT is symmetric.

(b) A+ B and A — B are symmetric.

(¢) kA is symmetric.

Theorem 1.7.3. The product of two symmetric matrices is symmetric if and
only if the matrices commute.

Proof. Let A and B be symmetric matrices with the same size. Then
(AB)' = BTA” = BA.
Thus, (AB)T = AB if and only if AB = BA, that is, if and only if A and B

commute. O
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Example 5. Which of these products is symmetric?

EEREIEE

Theorem 1.7.4. If A is an invertible symmetric matriz, then A™! is symmet-
Tic.

Proof. Assume that A is symmetric and invertible. Then

(A—I)T — (AT)_l — A_l. N
Theorem 1.7.5. If A is an invertible matriz, then AAT and AT A are also
invertible.
Proof. Since A is invertible, so is AT. Thus AAT and AT A are invertible, since
they are the products of invertible matrices. O]

Remark 4. If Ais an m xn matrix, then A7 is an n xm matrix, so the products
AAT and AT A are both square matrices—the matrix AA” has size m x m,
and the matrix AT A has size n x n. Such products are always symmetric since

(AATYT = (AT)TAT = AAT and (ATA)T = AT(AT)T = AT A
Example 6. Compute ATA and AAT for the 2 x 3 matrix

1 -2 4
A= 3 0—5]'
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1.8 Introduction to Linear Transformations

Remark 1. The set of all ordered n-tuples of real numbers is denoted by the
symbol R". The elements of R™ are called vectors and are denoted in boldface
type. Ordered n-tuples can be expressed as

(317827 .- '7Sn)a

called the comma-delimited form of a vector, or as the matrix

called the column-vector form. For eachi =1,2,...,n, let e; denote the vector
in R™ with a 1 in the ith position and zeros elsewhere. In column form these
vectors are

1 0 0
1 0
e = 0 s €y = 0 yee ey e, = 0
0] 0] 1]
We call the vectors ej,es, ..., e, the standard basis vectors for R". They

are termed “basis vectors” because all other vectors in R™ are expressible in
exactly one way as a linear combination of them. For example, if

X
X2

then we can express x as
X =T1€1 + X9€g + - -+ Tp€ey.

Remark 2. A function is a rule that associates with each element of a set A
one and only one element in a set B. If f associates the element b with the
element a, then we write

b= f(a)
and we say that b is the image of a under f and the set B the codomain of

f. The subset of the codomain that consists of all images of elements in the
domain is called the range of f.
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Definition 1.8.1. If T" is a function with domain R" and codomain R™, then
we say that T is a transformation from R"™ to R™ or that T" maps from R" to
R™, which we denote by writing

T:R"— R™.

In the special case where m = n, a transformation is sometimes called an
operator on R".

Remark 3. Suppose that we have the system of linear equations written in
matrix notation as
w = Ax,

which we can view as a transformation that maps a vector x in R" into the
vector w in R™ by multiplying = on the left by A. We call this a matrix trans-
formation (or matrix operator in the special case where m = n). We denote
it by

Th:R"— R™.

In situations where specifiying the domain and codomain is not essential, we
will write

w = Ty(x).

We call the transformation 74 multiplication by A. On occasion we will find
it convenient to express this in the schematic form

Ta
X — W,

which is read “T’4y maps x into w.”
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Example 1. Find the image of the vector

under the transformation from R* to R?® defined by the equations

UJ1:2.CE1—35132+ 333—5.274
we =4x1+ X9 —2T3+ X4

W3 = 5[E1 — T3 +4ZE3

Example 2. Find T} (x) for an arbitrary vector x in R".

Example 3. Find 7;(x) for an arbitrary vector x in R™.
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Theorem 1.8.1. For every matriz A the matrix transformation Ty : R" —
R™ has the following properties for all vectors u and v and for every scalar k:

(a) Ta(0) =

( ) TA(ku) —kTA( )

(¢) Ta(u+v)="Ta(u)+ Ta(v)
(d) Ta(u—v)=Ta(a) = Ta(v)

Theorem 1.8.2. T': R" — R™ is a matrix transformation if and only if the
following relationships hold for all vectors w and v in R™ and for every scalar
k:

(i) Tla+v)=T(a)+T(v)

(i) T(ku) = kT (u)

Proof. 1f T is a matrix transformation, then properties (i) and (ii) follow re-
spectively from parts (c) and (b) of Theorem 1.8.1.

Conversely, assume that properties (i) and (ii) hold. We must show that there
exists an m x n matrix A such that

T(x) = Ax

for every vector x in R". Using the additivity and homogeneity properties of
Ty, we get

T(k1u1 + k2u2 + 4 kTuT) = le(ul) -+ kgT(llg) + 4 krT(ur)

for all scalars ki, ks, ..., k, and all vectors uy,us,...,u, in R". Let A be the
matrix

A=[T(e1) | T(e2) |- | T(en)]
where e, e, ..., e, are the standard basis vectors for R". Thus Ax is a linear

combination of the columns of A in which the successive cofficients are the
entries 1, Ta, ..., x, of x. That is,

Ax = 11T(ey) + 22T (e3) + -+ - + 2, T(e,)
=T (r1e1 + 2960+ -+ + T,€y)
=T(x). O

Remark 4. The additivity and homogeneity properties in Theorem 1.8.2 are
called linearity conditions, and a transformation that satisfies these conditions
is called a linear transformation. Using this terminology Theorem 1.8.2 can
be restated as follows.

Theorem 1.8.3. FEvery linear transformation from R"™ to R™ is a matriz
transformation, and conversely, every matriz transformation from R™ to R™
s a linear transformation.
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Theorem 1.8.4. If Ty : R* — R™ and I : R® — R™ are matriz transfor-
mations, and if Ta(x) = Tg(x) for every vector x in R", then A = B.

Proof. To say that Ty(x) = Ts(x) for every vector in R" is the same as saying
that Ax = Bx for every vector x in R™. This will be true, in particular, if x
is any of the standard basis vectors ey, es, ..., e, for R"; that is,

Aej:Bej (j21,2,,77,)

Since every entry of e; is 0 except for the jth, which is 1, it follows that Ae;
is the jth column of A and Be; is the jth column of B. Since Ae; = Be;, this
implies that corresponding columns of A and B are the same, and hence that

A=B. [l

Remark 5. Theorem 1.8.4 tells us that every m x n matrix A produces exactly
one matrix transformation (multiplication by A) and every matrix transfor-
mation from R"™ to R™ arises from exactly one m X n matrix; we call that
matrix the standard matrix for the transformation.

Remark 6 (Finding the Standard Matrix for a Matrix Transformation).

Step 1. Find the images of the standard basis vectors ey, e,, ..., e, for R".

Step 2. Construct the matrix that has the images obtained in Step 1 as
its successive columns. This matrix is the standard matrix for the
transformation.

Example 4. Find the standard matrix A for the linear transformation 7T :
R? — R3 defined by the formula

2r1 + 2o

T 1 = T — 3x
s = 1 2
-1+ X2
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Example 5. For the linear transformation in Example 4, use the standard
matrix A obtained in that example to find

1

s

Example 6. Rewrite the transformation T'(x1,x2) = (321 + @9, 221 — 423) in
column-vector form and find its standard matrix.
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Example 7. Find the standard matrix A for the linear transformation T :
R? — R? for which
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Remark 7. Some of the most basic operators on R? and R? are those that map
each point into its symmetric image about a fixed line or a fixed plane that

contains the origin; these are called reflection operators.

Matrix operators

on R? that move points along arcs of circles centered at the origin are called
rotation operators.

Table 1
Operator [lustration Images of e; and ey Standard Matrix
Ay )
) yal
Reﬂecthn about | i Tley) = T(1,0) = (1,0) -
the x-axis 1 = 1 , )
) 9 X)
(x7 —Y)
Reflection about
the y-axis wy | Tlen)=T(1,0) = (1,0 [—1 o]
T(ey) =T(0,1) = (0,1 0 1
T(z,y) = (—z,y) . (e2) =T7(0,1) = (0,1)
Roflecti b - »,x) -
eflection about T(x
the line y =z N T(er) =T(1,0) = (0,1) 0 1
T(z,y) = (y, x) X0y o | 1(€2) =T(0,1) = (1,0) 1 0
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Table 2

Operator

Ilustration

Images of ey, es, €3

Standard Matrix

Reflection about T(ey)=T(1,0,0) = (1,0,0) 1 0 0
the zy-plane T(ey) =T(0,1,0) = (0,1,0) 0 1 0
T(x,y,2) = (z,y,—2) T(es) =T(0,0,1) = (0,0,—1) 0 0 —1
A%
. (x’ =Y Z) | (x’ Y Z)
Reflection about K T(e;) =T(1,0,0) = (1,0,0) 1 0 0
the zz-plane TS X y | T(ey) =T(0,1,0) = (0,—1,0) 0 -1 0
T(z,y,z) = (x,—y,2) T(e3) =T(0,0,1) = (0,0,1) 0 0 1
X
z
Reflection about T®) I%(‘x’y’ | T(e)) =T(1,0,0) = (—1,0,0) 1 0 0
the yz-plane . ’(x,y,z) y T(e;) =T(0,1,0) = (0,1,0) 0 1 0
T(x,y,z)=(—x,y,2) T(e3) =T(0,0,1) =(0,0,1) 0 0 1

Table 3

Operator

Ilustration

Standard Matrix

Orthogonal projection

. T(e)) = T(1,0) = (1,0) [1 0]
onto the z-axis ’ ’
T(es) = T(0,1) = (0,0 0 0
T(z,y) = (z,0) (e2) = T(0,1) = (0,0)
oo tro o T(e,) = T(1,0) = (0,0) 0 0
i T(es) = T(0,1) = (0,1) 0 1

T(z,y) = (0,y)
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Table 4
Operator Ilustration Images of ey, es, €3 Standard Matrix
e
Orthogonal projection T T(e;) =T(1,0,0) = (1,0,0) 1 0 0
onto the zy-plane W(X“y’ 2 y T(ey) =T(0,1,0) = (0,1,0) 1 0
T(z,y,2) = (z,y,0) . > T(es) = T(0,0,1) = (0,0,0) 0 0 0
/m
X (.0
Z
Orthogonal projection | T T(e;) =T(1,0,0) = (1,0,0) 1 0 0
%02 =T g 2N 632 B _
onto the zz-plane T(W y | T(e2) =T(0,1,0) = (0,0,0) 0 0 0
T(z,y,2) = (,0,2) i > | T(e3) = 7(0,0,1) = (0,0,1) 0 0 1
Z
T 0,52
Orthogonal projection T(x) /(/ ) T(e;)=T(1,0,0) = (0,0,0) 0 0 0
onto the yz-plane - N “ y T(ey) =T(0,1,0) = (0,1,0 0 1 0
T(z,y,2) = (0,y,2) > T(es) =1T(0,0,1) = (0,0,1 0 0 1
Table 5
Operator [lustration Images of e; and e, Standard Matrix
Counterclockwise (W, w,)
rotation about the T(e;) =T(1,0) = (cosb,sinb) cosf) —sinf
origin through an (x,) T(es) =T(0,1) = (—sinf, cosh) sinf  cosf
angle 6 | R
Example 8. Find the image of x = (1,1) under a rotation of 7/6 radians

(= 30°) about the origin.
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1.9 Compositions of Matrix Transformations

Remark 1. Suppose that T is a matrix transformation from R" to R* and
Tp is a matrix transformation from R* to R™. If x is a vector in R", then
T, maps this vector into a vector Ty(x) in R*, and Tp, in turn, maps that
vector into the vector Tp(7T'4(x)) in R™. This process creates a transformation
from R™ to R™ that we call the composition of T with Ty and denote by the
symbol

TB o TA7

which is read “I'g circle T4.” The transformation 74 in the formula is per-
formed first; that is,

(TgoTy)(x) =Tp(Ta(x)).

Theorem 1.9.1. If Ty : R — R* and Ty : R* — R™ are matriz transforma-
tions, then Tg o Ty is also a matriz transformation and

TB OTA == TBA-

Proof. First we will show that Tg o T4 is a linear transformation, thereby
establishing that it is a matrix transformation. Then we will show that the
standard matrix for this transformation is BA to complete the proof.

To prove that Tg o T}y is linear we must show that it has the required
additivity and homogeneity properties. For this purpose, let x and y be vectors
in R" and observe that

(TpoTa)(x+y) =Tp(Ta(x+y))
= Tp(Ta(x) + Taly))
=Tp(Ta(x)) + Ts(Ta(y))
= (T o Ta)(x) + (Tp o Ta)(y),

which proves additivity. Moreover,

(T o Ta)(kx) = Tp(Ta(kx)

)
= Tp(k(Ta(x))
= kT5(Ta(x))
— k(T 0 Ty)(x),

which proves homogeneity and establishes that T o Ty is a matrix transfor-
mation. Thus, there is an m x n matrix C such that

TB OTA == ch.
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To find the appropriate matrix C' that satisfies this equation, observe that
To(x) = (TgoTy)(x) =Tp(Ta(x)) = Tp(Ax) = B(Ax) = (BA)x = Ta(x).
It now follows that C' = BA. O

Example 1. Let T} : R?* — R?>and T5 : R? — R? be the linear transformations
given by
Ti(z,y,2) = (v +2y,2 + 22 — y)
and
Ty(z,y) = (37 + y,, v — 2y).

Find the standard matrices for T o T} and T3 o T5.

Example 2. Let T,y : R? — R? be the reflection about the line y = x, and let
Tp : R? — R? be the orthogonal projection onto the y — azis. What are the
standard matrices for Ty o Tz and Ty 0 T'4?
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Example 3. Let Ty, : R? — R? and Ty, : R?> — R? be the matrix operators
that rotate vectors about the origin through the angles 6, and 6, respectively.
Verify that TA1 9} TA2 = TA2 o TAl'

Example 4. Let T} : R? — R? be the reflection about the y-axis, and let
Ty : R? — R? be the reflection about the x-axis. Verify that T} o Ty, = T5 o T}.
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Remark 2. Compositions can be defined for any finite succession of matrix
transformations whose domains and ranges have the appropriate dimensions.
For example, consider the matrix transformations

Ti:R"— RF, Ty:RF - R, T.:R — R™
We define the composition (T o T oTy4) : R — R™ by
(TeoTpoTa)(x)=To(Tp(Ta(x))).

As above, it can be shown that this is a matrix transformation whose standard
matrix is CBA and that

TC OTB OTA = TCBA-

Example 5. Find the image of a vector

<k

under the matrix transformation that first rotates x about the origin through
an angle 7/6, then reflects the resulting vector about the line y = z, and then
projects that vector orthogonally onto the y-axis.
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Remark 3. If T4 : R® — R™ is a matrix operator whose standard matrix A is
invertible, then we say that T4 is invertible, and we define the inverse of Ty as

T, =Ty,

or restated in words, the inverse of multiplication by A is multiplication by the
wverse of A. Thus, by definition, the standard matrix for T° gl is A~!, from
which it follows that

Tgl oy =Tp-10Ty =Th-14="17J.
It follows from this that for any vector x in R"
(T ' oTy)(x) =Ti(x) = Ix =%

and similarly that (T4 o T;')(x) = x. Thus, when T4 and T;" are composed
in either order they cancel out the effect of one another.

Example 6. Let T : R? — R? be the operator that rotates each vector in R?
through the angle 6. Find the standard matrix for 7!,

Example 7. Consider the operator T : R? — R? defined by the equations

w, = 221+ X9

Wy = 31’1 + 4.7}2.

Find T (wy, ws).

60



Linear Algebra - 1.10 Applications of Linear Systems

1.10 Applications of Linear Systems

Example 1. The figure shows a network with four nodes in 30
which the flow rate and direction of flow in certain branches
are known. Find the flow rates and directions of flow in the
remaining branches.
35 55

60
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Example 2. The network in the figure shows a proposed plan for the traf-
fic flow around a new park that will house the Liberty Bell in Philadelphia,
Pennsylvania. The plan calls for a computerized traffic light at the north exit
on Fifth Street, and the diagram indicates the average number of vehicles
per hour that are expected to flow in and out of the streets that border the
complex. All streets are one-way.

N @
200 Traffic 200 x
WQE light
S A Y A
Market St. . C X3 B
500 > At+— H—>»—400 500 > > > 400
< | Liberty | & Xy A X
Al Park |&
700 < v  —<€«—400 700 < < < 400
Chestnut St. D x |A
A A
600 600

(a) How many vehicles per hour should the traffic light let through to ensure
that the average number of vehicles per hour flowing into the complex is
the same as the average number of vehicles flowing out?

(b) Assuming that the traffic light has been set to balance the total flow in
and out of the complex, what can you say about the average number of
vehicles per hour that will flow along the streets that border the complex?
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Theorem 1.10.1 (Ohm’s Law). If a current of I amperes passes through a
resistor with a resistance of R ohms, then there is a resulting drop of E volts
in electrical potential that is the product of the current and resistance; that is,

E=1R.

Theorem 1.10.2 (Kirchhoft’s Current Law). The sum of the currents flowing
into any node is equal to the sum of the currents flowing out.

Theorem 1.10.3 (Kirchhoff’s Voltage Law). In one traversal of any closed
loop, the sum of the voltage rises equals the sum of the voltage drops.

Example 3. Determine the current [ in the circuit shown in the I
figure. >

6V

|||+
'
M
w
o

Example 4. Determine the currents I, I5, and I3 in the circuit I A L
shown in the figure. > <
I
250 Q 200 Q 2100
|1 |1
+'- g +I'-
50V 30V
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Example 5. Balance the chemical equation

HCI + Na3P04 — H3PO4 + NaCl

[hydrochloric acid] + [sodium phosphate] — [phosphoric acid] + [sodium chloride].
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Theorem 1.10.4 (Polynomial Interpolation). Given any n points in the xy-
plane that have distinct x-coordinates, there is a unique polynomial of degree
n — 1 or less whose graph passes through those points.

Example 6. Find a cubic polynomial whose graph passes through the points

(1,3), (2,-2), (3,-5), (4,0).
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Example 7. Use polynomial interpolation to approximate the integral

1 2
/ sin <K> dz.
O 2
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1.11 Leontief Input-Output Models

Remark 1. Suppose the open sector of an economy (the sector that does not
produce outputs) wants the economy to supply it with goods, products, and
utilities with monetary values. The column vector d that has these numbers as
successive components is called the outside demand vector. Since the product-
producing sectors consume some of their own output, the monetary value of
their output must cover their own needs plus the outside demand. The column
vector x that has these monetary value numbers as successive components is
called the production vector for the economy.

By multiplying x by the consumption matrix C' for the economy, whose
columns are the inputs required for each output, we obtain C'x, the portion of
the production vector x that will be consumed by the productive sectors. The
vector C'x is called the intermediate demand vector for the economy. Once
the intermediate demand is met, the portion of the production that is left to
satisfy the outside demand is x — Cx. Thus x must satisfy the equation

x — Cx =d,
which we will find convenient to rewrite as
(I —C)x=d.

The matrix I — C'is called the Leontief matrix and (I — C')x = d is called the
Leontief equation.
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Example 1. Consider the economy described in the table.

Input Required per Dollar Output

Manufacturing | Agriculture | Utilities
& | Manufacturing $ 0.50 $0.10 $0.10
g Agriculture $0.20 $ 0.50 $0.30
= | Utilities $0.10 § 0.30 $ 0.40

Suppose that the open sector has a demand for $7900 worth of manufacturing
products, $3950 worth of agricultural products and $1975 worth of utilities.

(a) Can the economy meet this demand?
(b) If so, find a production vector x that will meet it exactly.
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Remark 2. In the case where an open economy has n product-producing sec-
tors, the consumption matrix, production vector, and outside demand vector
have the form

Ci1 Ci2 - Cip xq d;

Co1 Co2 -+ Cop T2 ds
O = s X = s d =

Cpnl Cp2 *°° Cpp Tp dn

where all entries are nonnegative and
¢;j = the monetary value of the output of the ith sector that is needed
by the jth sector to produce one unit of output
x; = the monetary value of the output of the ith sector
d; = the monetary value of the output of the ith sector that is required

to meet the demand of the open sector.

Theorem 1.11.1. If C s the consumption matrix for an open economy, and
if all of the column sums are less than 1, then the matriz I — C' s invertible,
the entries (I — C)™' are nonnegative, and the economy is productive.

Example 2. The column sums of the consumption matrix C' in Example
1 are less than 1, so (I — C)~! exists and has nonnegative entries. Use a
calculating utility to confirm this, and use this inverse to solve the linear
system in Example 1.
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Chapter 2

Determinants

2.1 Determinants by Cofactor Expansion

Definition 2.1.1. If A is a square matrix, then the minor of entry a,; is
denoted by M;; and is defined to be the determinant of the submatrix that
remains after the ¢th row and jth column are deleted from A. The number
(—1)"*7 M,; is denoted by C; and is called the cofactor of entry a;.

Example 1. Let

3
A=12
1

= Ot =
o O =

Find the minors and cofactors of entries a7 and ass.
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Example 2. Express det(A) for a 2 x 2 matrix A in terms of cofactors and
entries that all come from the same row or same column of A.

Theorem 2.1.1. If A is an n X n matriz, then regardless of which row or
column of A is chosen, the number obtained by multiplying the entries in that
row or column by the corresponding cofactors and adding the resulting products
1s always the same.

Definition 2.1.2. If A is an n X n matrix, then the number obtained by mul-
tiplying the entries in any row or column of A by the corresponding cofactors
and adding the resulting products is called the determinant of A, and the sums
themselves are called cofactor expansions of A. That is,

det(A) = alelj -+ anggj + -+ &njcn]'

and
det(A) = aﬂC'ﬂ + CLZ'QCZ‘Q +---+ (lmCm
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Example 3. Find the determinant of the matrix

3 1 0
A=1-2 -4 3
5 4 =2

by cofactor expansion along the first row.

Example 4. Let A be the matrix in Example 3, and evaluate det(A) by
cofactor expansion along the first column of A.

Example 5. Find the determinant of the matrix

N = o
o O = O
|
SN NN O
— =N =
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Example 6. Find the determinant of a 4 x 4 lower triangular matrix.

Theorem 2.1.2. If A is an n X n triangular matriz (upper triangular, lower

triangular, or diagonal), then det(A) is the product of the entries on the main
diagonal of the matriz; that is, det(A) = aj1a22 - -+ Ay

Example 7. Evaluate

1 2 3
i_; and |-4 5 6.
78 9

73



Linear Algebra - 2.2 Evaluating Determinants by Row Reduction

2.2 Evaluating Determinants by Row Reduc-
tion

Theorem 2.2.1. Let A be a square matriz. If A has a row of zeros or a
column of zeros, then det(A) = 0.

Proof. Since the determinant of A can be found by a cofactor expansion along
any row or column, we can use the row or column of zeros. Thus, if we let
C1,Cs, ..., C, denote the cofactors of A along that row or column, then it
follows that

det(A):0'C1+0'02+"‘+0'Cn20. OJ

Theorem 2.2.2. Let A be a square matriz. Then det(A) = det(AT).

Proof. Since transposing a matrix changes its columns to rows and rows to
columns, the cofactor expansion of A along any row is the same as the cofactor
expansion of AT along the corresponding column. Thus, both have the same
determinant. O

Theorem 2.2.3. Let A be an n X n matrix.

(a) If B is the matriz that results when a single row or single column of A
is multiplied by a scalar k, then det(B) = kdet(A).

(b) If B is the matrix that results when two rows or two columns of A are
interchanged, then det(B) = — det(A).

(¢) If B is the matriz that results when a multiple of one row of A is added
to another or when a multiple of one column is added to another, then

det(B) = det(A).

Theorem 2.2.4. Let E be an n X n elementary matrix.

(a) If E results from multiplying a row of I, by a nonzero number k, then
det(E) = k.

(b) If E results from interchanging two rows of I, then det(E) = —1.

(¢) If E results from adding a multiple of one row of I,, to another, then
det(E) =1.

Example 1. Evaluate the following determinants of elementary matrices.

100 0 0001 1 007
03 00 0100 0100
0010 0010 0010
00 01 100 0 0 001
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Theorem 2.2.5. If A is a square matriz with two proportional rows or two
proportional columns, then det(A) = 0.

Example 2. What are the determinants of the following matrices?

3 -1 4 =5
-1 4 _i_g g 6 -2 5 2
-2 8 5 4 3 5 8 1 4

-9 3 -12 15

Example 3. Evaluate det(A) where

1)
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Example 4. Compute the determinant of

1 0 0 3
2 7 0 6
A= 0 6 3 0
7T 3 1 -5
Example 5. Evaluate det(A) where
3 5 -2 6
1 2 -1 1
A= 2 4 1 5
3 7 5 3

76



Linear Algebra - 2.3 Properties of Determinants; Cramer’s Rule

2.3 Properties of Determinants; Cramer’s Rule

Remark 1. Suppose that A and B are n X n matrices and k is any scalar. Since
a common factor of any row of a matrix can be moved through the determinant
sign, and since each of the n rows in kA has a common factor of k, it follows
that

det(kA) = k" det(A).

Example 1. Consider

1 2

A=15 5

, B=

31
1 3

Calculate det(A), det(B), and det(A + B).

Theorem 2.3.1. Let A, B, and C be n x n matrices that differ only in a
single row, say the rth, and assume that the rth row of C' can be obtained by
adding corresponding entries in the rth rows of A and B. Then

det(C') = det(A) + det(B).
The same result holds for columns.

Example 2. Consider

175 1 7 5 175
A=12 03|, B=|2 0 3|, c=|20 3
147 0 1 -1 156

Calculate det(A), det(B), and det(C).
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Lemma 2.3.2. If B is an n xXn matriz and E is an n X n_elementary matriz,
then
det(EB) = det(F) det(B).

Proof. We will consider three cases, each in accordance with the row operation
that produces the matrix F.

Case 1: If E results from multiplying a row of [, by k, then E'B results from
B by multiplying the corresponding row by k; so we have

det(EB) = kdet(B).
But we also have det(FE) = k, so
det(EB) = det(E) det(B).

Cases 2 and 3: The proofs of the cases where E results from interchanging two
rows of I, or from adding a multiple of one row to another follow the same
pattern as Case 1. O

Remark 2. Tt follows by repeated applications of Lemma 2.3.2 that if B is an
n X n matrix and Fq, Es, ..., E, are n X n elementary matrices, then

det(E1E2 ce ETB) = det(E1> det(EQ) ce det(Er) det(B)

Theorem 2.3.3. A square matriz A is invertible if and only if det(A) # 0.

Proof. Let R be the reduced row echelon form of A. As a preliminary step,
we will show that det(A) and det(R) are both zero or both nonzero: Let
Ey, Es, ..., E, be the elementary matrices that correspond to the elementary
row operations that produce R from A. Thus

R:ET"'EQElA

and so
det(R) = det(E,) - - - det(FE,) det(E;) det(A).

Since the determinant of an elementary matrix is nonzero, it follows that
det(A) and det(R) are either both zero or both nonzero. If we assume first
that A is invertible, then it follows that R = I and hence that det(R) = 1
(# 0). This, in turn, implies that det(A) # 0.

Conversely, assume that det(A) # 0. It follows from this that det(R) # 0,
which tells us that R cannot have a row of zeros. Thus R = I and hence A is
invertible. [
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Example 3. Is the matrix

b
Il
DO =
= O N
D = W

invertible?

Theorem 2.3.4. If A and B are square matrices of the same size, then

det(AB) = det(A) det(B).

Proof. We divide the proof into two cases that depend on whether or not A is
invertible. If the matrix A is not invertible, then neither is the product AB.
Thus we have det(AB) = 0 and det(A) = 0, so it follows that det(AB) =
det(A) det(B).

Now assume that A is invertible. Then the matrix A is expressible as a product
of elementary matrices, say

A=E\B;--E,

SO
AB = ElEQ te ETB

Therefore,

det(AB) = det(E,) det(Es) - - - det(E,) det(B)
= det(E1Es - - - E,) det(B)
= det(A) det(B). O

Example 4. Consider the matrices

31

A=151

, B=

-1 3
5 8|

Calculate det(A), det(B), and det(AB).
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Theorem 2.3.5. If A is invertible, then

1
 det(A)

det(A™1)

Proof. Since A™'A = I, it follows that det(A~*A) = det(I). Therefore, we
must have det(A™!) det(A) = 1. Since det(A) # 0, the proof can be completed
by dividing through by det(A). O]

Example 5. Let

Compute det(A) using cofactor expansions along the first row and first column,
and then compute the sum of the products of the entries in the first row by
the corresponding cofactors in the second row, and the sum of the products
of the entries in the first column by the corresponding cofactors in the second
column.
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Definition 2.3.1. If A is any n x n matrix and Cj; is the cofactor of a;;, then
the matrix

Cll C(12 T Cln
C’21 022 e C2n
Cnl CnZ e Cnn

is called the matrix of cofactors from A. The transpose of this matrix is called
the adjoint of A and is denoted by adj(A).

Example 6. Let

Find adj(A).
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Theorem 2.3.6 (Inverse of a Matrix Using Its Adjoint). If A is an invertible

matriz, then
1

~ det(A)

At adj(A).

Proof. We show first that
Aadj(A) = det(A)I.

Consider the product

apn Q2 - Qin
g1 Qo2 -+ Q9on 011 021 c. le c. Cnl
) C112 C122 o Cj2 o CnQ
Aadj(A) = : . . .
i1 Q2 - Qin : : : :
Cln C2n T Cjn T Cnn
Qp1 Qp2 - App

The entry in the ith row and jth column of the product Aadj(A) is
airCin + ainCia + -+ + ainCip.

If ¢ = j, then this is the cofactor expansion of det(A) along the ith row of A,
and if ¢ # 7, then the a’s and the cofactors come from different rows of A, so
the value of this entry is zero. Therefore,

det(A) 0 -+ 0
dadiia) — |0 det(A) 0
adj(4) = | . : .| =det(A)1.
6 0 -+ det(A)

Since A is invertible, det(A) # 0. Therefore, we can write

1
det(A)

[Aadj(A)] =1 or A [detl(A) adj(A)} =1.

Multiplying both sides on the left by A=! yields

1

-1 _
AT = det(A)

adj(A). O
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Example 7. Use Theorem 2.3.6 to find the inverse of the matrix A in Example
6.

Theorem 2.3.7 (Cramer’s Rule). If Ax = b is a system of n linear equations
in n unknowns such that det(A) # 0, then the system has a unique solution.
This solution s

det(A;) det(Ay) det(A,)
’CC]. - —’ x2 = —7 AR xn = —7
det(A) det(A) det(A)
where Aj is the matriz obtained by replacing the entries in the jth column of
A by the entries in the matrix

by

Proof. 1f det(A) # 0, then A is invertible and x = A~'b is the unique solution
of Ax = b. Therefore, we have

—Cu Cy -+ Cn by
1 1 Cia Co -+ Chpo by

TS : _
x=A"b= det(A) adJ(A)b N det(A) : : : :
Cln C2n e Cn?’b bn

[0,C11 + b3C1 A+ -+ + b,Cos
B 1 b1Cia + b2Co + -+ 4+ b,Cho
a det(A) : : :

_blCln + b202nx2 + - annn
The entry in the jth row of x is therefore
o blClj + bQCQj + -+ annj

€T =
! det(A)
Now let
aix Qi - A15-1 by A1j41 - Q1n
Q21 Q22 -+ A25-1 by Aj41 - Q2qp
Aj = : . :
Ap1 Qp2 - Apj-1 bn Apj+1  *° Qnn
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Since A; differs from A only in the jth column, it follows that the cofactors of
entries by, b, ..., b, in A; are the same as the cofactors of the corresponding
entries in the jth column of A. The cofactor expansion of det(A;) along the
jth column is therefore

det(Aj) = blClj + bQCQj + -+ ann]

Substituting this result in gives

_ det(4y)
YT et(A)

Example 8. Use Cramer’s rule to solve

I + 2l’3 = 6
—33171 + 4ZL'2 + 6[)33 =30
—x1 — 229 + 33 = 8.

Theorem 2.3.8 (Equivalent Statements). If A is an n x n matriz, then the
following are equivalent.

(a) A is invertible.

) Ax = 0 has only the trivial solution.

) The reduced row echelon form of A is I,.

) A is expressible as a product of elementary matrices.

) Ax = b is consistent for every n x 1 matriz b.

) Ax = b has ezxactly one solution for every n x 1 matriz b.
)

det(A) # 0.
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Chapter 3

Euclidean Vector Spaces

3.1 Vectors in 2-Space, 3-Space, and n-Space

Remark 1. Geometric vectors in two dimensions (also called 2-space) or in
three dimensions (also called 3-space) are represented by arrows. The direction
of the arrowhead specifies the direction of the vector and the length of the
arrow specifies the magnitude. The tail of the arrow is called the initial point
of the vector and the tip the terminal point.

We will denote vectors in boldface type such as a, b, v, w, and x, and we
will denote scalars in lowercase italic type such as a, k, v, w, and x. When
we want to indicate that a vector v has initial point A and terminal point B,
then we will write

v = AB.

Vectors with the same length and direction are said to be equivalent. Equiva-
lent vectors are also said to be equal, which we indicate by writing

V=W.

The vector whose initial and terminal points coincide has length zero, so we
call this the zero vector and denote it by O.

Definition 3.1.1 (Parallelogram Rule for Vector Addition). If v and w are
vectors in 2-space or 3-space that are positioned so their initial points coincide,
then the two vectors form adjacent sides of a parallelogram, and the sum v +w
is the vector represented by the arrow from the common initial point of v and
w to the opposite vertex of the parallelogram.
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Linear Algebra - 3.1 Vectors in 2-Space, 3-Space, and n-Space

Definition 3.1.2 (Triangle Rule for Vector Addition). If v and w are vectors
in 2-space or 3-space that are positioned so the initial point of w is at the
terminal point of v, then the sum v+ w is the vector represented by the
arrow from the common initial point of v and w to the terminal point of w.

Remark 2 (Vector Addition Viewed as Translation). If v, w, and v + w are
positioned so their initial points coincide, then the terminal point of v + w
can be viewed in two ways:

1. The terminal point of v + w is the point that results when the terminal
point of v is translated in the direction of w by a distance equal to the
length of w.

2. The terminal point of v + w is the point that results when the terminal
point of w is translated in the direction of v by a distance equal to the
length of v.

Definition 3.1.3 (Vector Subtraction). The negative of a vector v, denoted
by —v, is the vector that has the same length as v but is oppositely directed,
and the difference of v from w, denoted by w — v, is taken to be the sum

wW—v=w+(—v).

Definition 3.1.4 (Scalar Multiplication). If v is a nonzero vector in 2-space
or 3-space, and if k is a nonzero scalar, then we define the scalar product of
v by k to be the vector whose length is |k| times the length of v and whose
direction is the same as that of v if k is positive and opposite to that of v if
k is negative. If k = 0 or v = 0, then we define kv to be 0.

Remark 3. Observe that (—1)v has the same length as v but is oppositely
directed; therefore,
(—1)v =—v.

Remark 4. Since translating a vector does not change it, we agree that the
terms parallel and collinear mean the same thing when applied to vectors. We
regard the vector 0 as parallel to all vectors.

Remark 5. Vector addition satisfies the associative law for addition, that is,

ut+ (v+w)=(u+v)+w.

Remark 6. If a vector v in 2-space or 3-space is positioned with its initial
point at the origin of a rectangular coordinate system, then the vector is
completely determined by the coordinates of its terminal point. We call these
coordinates the components of v relative to the coordinate system. We will
write v = (v1, v3) to denote a vector v in 2-space with components (v, v3), and
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v = (v1,v2,v3) to denote a vector v in 3-space with components (vy, va, v3).

Two vectors in 2-space or 3-space are equivalent if and only if they have the
same terminal point when their initial points are at the origin. Algebraically,
this means that two vectors are equivalent if and only if their corresponding
components are equal. Thus, for example, the vectors

v = (v1,v2,v3) and W = (wy,ws, w3)
in 3-space are equivalent if and only if
Uy = Wy, V2 =Wz, Uz= Ws3.

—
Remark 7. If P; P, denotes the vector with initial point P;(x1, ;) and terminal
point Pa(xs,ys2), then the components of this vector are given by the formula

—
PP, = (352 —T1,Y2 — yl)-

The components of a vector in 3-space that has initial point P;(x1, 41, 21) and
terminal point Py(xs, Yo, 22) are given by

—
PP, = (372 —Z1,Y2 — Y1,%2 — Zl)~

T
Example 1. What are the components of the vector v .= P, P, with initial
point P;(2,—1,4) and terminal point Py(7,5,—8)7

Definition 3.1.5. If n is a positive integer, then an ordered n-tuple is a
sequence of n real numbers (vy,vs,...,v,). The set of all ordered n-tuples is
called n-space and is denoted by R™.

Definition 3.1.6. Vectors v = (vy,v9,...,v,) and w = (wy,ws, ..., w,) in
R™ are said to be equivalent (also called equal) if

V1 = Wy, Vg = Wa, ..., VUp = Wy
We indicate this by writing v = w.

Example 2. When is
(a,b,c,d) = (1,—4,2,7)

true?
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Definition 3.1.7. If v = (vy,vs,...,v,) and w = (wq, ws, ..., w,) are vectors
in R", and if k is any scalar, then we define

v+ W= (v +wy,vy+ W, ..., 0, + W)

kv = (kvy, kvg, . .. kvy,)

— v = (—v,—Vg,...,—Vp)

W—vVv=w+ (—Vv) = (w; — v, Wy — Vo, ..., W, — Uy).

Example 3. If v=(1,-3,2) and w = (4,2, 1), then find v+w, 2v, —w, and
vV — W.

Theorem 3.1.1. Ifu, v, and w are vectors in R", and if k and m are scalars,
then:

—~
<L

ut+v=v-+u

)
(b) (u+v)+w=u+(v+w)
(¢) u+0=0+u=u
(d) u+(—u)=0
(e) k(u+v)=Fku+kv
(f) (E+m)u=ku+mu
(9) k(mu) = (km)u
(h) lu=u
Theorem 3.1.2. If v is a vector in R" and k is a scalar, then:
(a) Ov=0
(b) KO=0

(¢) (-1)v=—-v

Definition 3.1.8. If w is a vector in R", then w is said to be a linear combi-
nation of the vectors vi,vs,..., v, in R" if it can be expressed in the form

w = kivi + kove + - + kv,

where kq, ko, ..., k, are scalars. These scalars are called the coefficients of the
linear combination. In the case where r = 1, this formula becomes w = k;vyq,
so that a linear combination of a single vector is just a scalar multiple of that
vector.
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3.2 Norm, Dot Product, and Distance in R"

Definition 3.2.1. If v = (vy,v9,...,v,) is a vector in R™, then the norm of
v (also called the length of v or the magnitude of v) is denoted by ||v||, and
is defined by the formula

Ivll = \fo2 + 03+ 42

Example 1. Find the norm of the vector v = (—3,2,1) in R® and the norm
of the vector v = (2, —1,3,—5) in R

Theorem 3.2.1. If v is a vector in R", and if k is any scalar, then:
(a) vl =0
(b) |Iv]| =0 if and only if v=0
() Nkvll = [Ellvll

Remark 1. A vector of norm 1 is called a unit vector. If v is any nonzero

vector in R", then
1

u=—-V
vl

defines a unit vector that is in the same direction as v. The process of multi-
plying a nonzero vector by the reciprocal of its length to obtain a unit vector
is called normalizing v.

Example 2. Find the unit vector u that has the same direction as v =
(2,2,—1).
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Remark 2. When a rectangular coordinate system is introduced in R? or R3,
the unit vectors in the positive directions of the coordinate axes are called the
standard unit vectors. In R? these vectors are denoted by

i=(1,0) and j=(0,1)
and in R? by
i=(1,0,0), j=(0,1,0), and k=/(0,0,1).

Every vector v = (vy,v9) in R? and every vector v = (vy,v2,v3) in R® can be
expressed as a linear combination of standard unit vectors by writing

v = (v1,v2) = v1(1,0) + v2(0,1) = v11 + s
vV = (Ula U27U3) = Ul(lv Oa O) + U2(07 L O) + 'U3<Oa 07 1) = Uli + U?j + USk-

Moreover, we can generalize these formulas to R™ by defining the standard
unit vectors in R" to be

e =(1,0,0,...,0), ey =1(0,1,0,...,0),..., e,=1(0,0,0,...,1)
in which case every vector v = (vy,vg,...,v,) in R" can be expressed as
v = (v1,V2,...,0,) = vi€] + V€3 + -+ + U €.

Example 3. Write the vectors (2, —3,4) and (7,3, —4,5) as linear combina-
tions of standard unit vectors.

Definition 3.2.2. If u = (uy,us,...,u,) and v = (vy,vs,...,v,) are points
in R", then we denote the distance between u and v by d(u,v) and define it
to be

du,v) = [[u—v| = /(u1 — v1)2+ (ug — v2)2 + - + (uy — vy)%
Example 4. If
u=(1,3,-2,7) and v=(0,7,2,2)

then find the distance between u and v.
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Remark 3. Let u and v be nonzero vectors in R? or R? that have been po-
sitioned so that their initial points coincide. We define the angle between u
and v to be the angle # determined by u and v that satisfies the inequalities
0<o<m.

Definition 3.2.3. If u and v are nonzero vectors in R? or R?, and if 6 is the
angle between u and v, then the dot product (also called the Euclidean inner
product) of u and v is denoted by u - v and is defined as

u-v = ||ul|||v] cosb.

If u=0or v =0, then we define u- v to be 0.

Example 5. Find the dot product of the vectors shown in the
figure.

0,2,2)

Definition 3.2.4. If u = (uy,ug,...,u,) and v = (vy,v,...,v,) are vectors
in R", then the dot product (also called the Euclidean inner product) of u and
v is denoted by u - v and is defined by

U -V =1uv + UV + - - - + UpUy.

Example 6.

(a) Use Definition 3.2.4 to compute the dot product of the vectors u and v
in Example 5.

(b) Calculate u - v for the following vectors in R*:

u=(-1,3,57), v=(-3-4,1,0).
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Example 7. Find the angle between a diagonal of a cube and one of its edges.

Remark 4. In the special case where u = v in Definition 3.2.4, we obtain the

relationship
vev=0f + v 4ol = v

This yields the following formula for expressing the length of a vector in terms

of a dot product:
vl = Vv -v.

Theorem 3.2.2. Ifu, v, and w are vectors in R", and if k is a scalar, then:

() u-v=v-u

(b)) u-(v+w)=u-v+u-w

(¢) k(u-v)=(ku)- v

(d) v.-v>0andv-v =0 ifand only if v=20

Theorem 3.2.3. Ifu, v, and w are vectors in R", and if k is a scalar, then:
(ut+v)- w=u-w+v-w
u-(v-w)=u-v—u-w

d) (u—v) - w=u-w—-v-w
)

k(u-v)=u-(kv)

Example 8. Calculate (u —2v) - (3u + 4v).
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Theorem 3.2.4 (Cauchy-Schwarz Inequality). If u = (uy,us,...,u,) and
v = (v1,v9,...,0,) are vectors in R", then

w-v| < fuffv]
or in terms of components
U0y + gV + - A U] < (U A ud A )20 R 4 )R

Theorem 3.2.5. If u, v, and w are vectors in R", then:

(a) [Ju+v[ < fluff+]v]
(b) d(u,v) <d(u,w)+d(w,v)

Proof. (a)
la+vl*=(a+v) (u+v)=(a-u)+20u-v)+(v-v)
= [[uf* +2(u-v) + [[v]*
< [[ufl* + 2fu- | + | v]f*
< [[ull® + 2f[uf[[[v] + [Iv]*

= ([[ufl + lIvID*
(b)
d(u,v) = [[u—v|| = [[(u—w) + (w - v)]|
<|lu—-w| + [|w—v] =d(u,w) + d(w, V). O

Theorem 3.2.6 (Parallelogram Equation for Vectors). If u and v are vectors
i R™, then
o+ v+ o = v = 2 (JJul* + [[v]%) -

Proof.
[u+v[*+u=v[?=(u+v) - (u+v)+w=-v) (u-v)
=2u-u)+2(v-v)
=2 (J[ul* + [Iv?) . O

Theorem 3.2.7. If u and v are vectors in R™ with the Fuclidean inner prod-
uct, then

wv = v - v
Proof.
la+v[* = (u+v) - (u+v)=[[ul* +2(u v) +|v|’
lu—v[*=(u-v) (u=v)=ul®=2(u-v)+|v|*
from which the result follows by simple algebra. m
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Remark 5. If A is an n X n matrix and u and v are n x 1 matrices, then

Au-v=u-ATv

u-Av=A"u-v.

Example 9. Suppose that

1 -2 3 -1 -2
A= 2 4 1|, u= 2, v=1 0
-1 0 1 4 5

Verify that Au-v =u- ATv.
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3.3 Orthogonality

Definition 3.3.1. Two nonzero vectors u and v in R" are said to be orthog-
onal (or perpendicular) if u-v = 0. We will also agree that the zero vector in
R™ is orthogonal to every vector in R™.

Example 1.

(a) Show that u = (—2,3,1,4) and v = (1,2,0,—1) are orthogonal vectors
in R*.

(b) Let S = {i,j,k} be the set of standard unit vectors in R>. Show that
each ordered pair of vectors in S is orthogonal.

Remark 1. If n is a nonzero vector, called a normal, that is orthogonal to a
line or plane, then

a(z —x0) +b(y —yo) =0
a(x —xo) +b(y —yo) +c(z—29) =0
are called the point-normal equations of the line through the point Py(xq, yo)

that has normal n = (a, b) and the plane through the point Py(xg, 3o, 20) that
has normal n = (a, b, ¢).

Example 2. Write equations that represent the line through the point (3, —7)
with normal n = (6,1) and the plane through the point (3,0,7) with normal
n = (4,2,-5).
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Theorem 3.3.1.

(a) If a and b are constants that are not both zero, then an equation of the
form
ar+by+c=0

represents a line in R* with normal n = (a,b).
(b) Ifa,b, and ¢ are constants that are not all zero, then an equation of the
form
ar+by+cz+d=0

represents a plane in R with normal n = (a,b,c).

Example 3.

(a) The equation az+by = 0 represents a line through the origin in R%. Show
that the vector n; = (a,b) formed from the coefficients of the equation
is orthogonal to the line, that is, orthogonal to every vector along the
line.

(b) The equation ax + by + ¢z = 0 represents a plane through the origin
in R®. Show that the vector ny = (a,b, c) formed from the coefficients
of the equation is orthogonal to the plane, that is, orthogonal to every
vector that lies in the plane.
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Theorem 3.3.2 (Projection Theorem). If u and a are vectors in R", and
a # 0, then u can be expressed in exactly one way in the form u = wyi + wa,
where w1 is a scalar multiple of a and wo is orthogonal to a.

Proof. Since the vector w; is to be a scalar multiple of a, it must have the
form
Wi = ka.

Our goal is to find a value of the scalar k£ and a vector wy that is orthogonal
to a such that
u=Ww; + Ws.

We can determine k£ by writing
u=w; +wy;==ka+ wy
and thus
u-a=(ka+wy)- a=kl|al®+ (w;-a).

Since wy is to be orthogonal to a, ws - a must be 0, and hence k£ must satisfy
the equation
u-a=klal?
from which we obtain
_u-a
lalf?

as the only possible value for k. Then writing

u-a
Wo=—u—w;=—u—ka=u-— Sa
al
we see that
wg-a:(u—ﬁzg-a:u-a—u-azo. ]

Remark 2. The vectors wy; and wy in the Projection Theorem have associ-
ated names—the vector w; is called the orthogonal projection of u on a or
sometimes the vector component of u along a, and the vector wy is called the
vector component of u orthogonal to a. The vector wy is commonly denoted
by

. u-a
proj,u=——a
P
in which case it follows that wy is

u-a

u—proj,u=u— —-=a.
: lall?
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Example 4. Let u = (2, —1,3) and a = (4, —1,2). Find the vector component
of u along a and the vector component of u orthogonal to a.

Example 5.

(a) Find the orthogonal projections of the vectors e; = (1,0) and e; = (0, 1)
on the line L that makes an angle 6 with the positive z-axis.

(b) Use the result in part (a) to find the standard matrix for the operator
T : R?* — R? that maps each point orthogonally onto L.
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Example 6. Use part (b) of Example 5 to find the orthogonal projection of
the vector x = (1,5) onto the line through the origin that makes an angle of
/6 (= 30°) with the positive z-axis.

Remark 3. The reflection about a line L through the origin that makes an
angle ¢ with the positive z-axis is given by

17, — cos 20 sin 26
= 1sin20 —cos20|"

Example 7. Find the reflection of the vector x = (1,5) about the line through
the origin that makes an angle of 7/6 (= 30°) with the z-axis.

Remark 4. A formula for the norm of the vector component of u along a can
be derived as follows:

Jproj uf = || -2l = | L8] ja = M2l
rol, uf| = al| = al|| = all.
PP [all? [all? Jall?
Thus, | |
) u-a
I projy ull = S
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Theorem 3.3.3 (Theorem of Pythagoras in R™). If u and v are orthogonal
vectors in R™ with the Euclidean inner product, then

la+ vf* = [al* + [ v]f*.

Proof. Since u and v are orthogonal, we have u-v = 0, from which it follows
that

[lu+ vl =(u+tv) (utv)=ul*+2( v)+[v]* = [[u]* +[v]*. O
Example 8. We showed in Example 1 that the vectors
u=(-2,3,1,4) and v=(1,2,0,-1)

are orthogonal. Verify the Theorem of Pythagoras for these vectors.
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Theorem 3.3.4.

(a) In R? the distance D between the point Py(zo, yo) and the line ax+by+c =
0 s

_awo + byo + ¢

(b) In R? the distance D between the point Py(xo,yo, z0) and the plane ax +
by +cz+d=0 s

D

- |CLSC(] + byo + czo + d|
Va2 +2+c2

Example 9. Find the distance D between the point (1, —4, —3) and the plane
20 — 3y + 62 = —1.

D

Example 10. The planes
r4+2y—22=3 and 2x+4+4y—4z=7

are parallel since their normals, (1,2, —2) and (2,4, —4), are parallel vectors.
Find the distance between these planes.
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3.4 The Geometry of Linear Systems

Theorem 3.4.1. Let L be the line in R? or R? that contains the point xo and
1s parallel to the nonzero vector v. Then the equation of the line through xg
that is parallel to v is

X = Xg+ v,

where the variable t is called a parameter. If xo = 0, then the line passes
through the origin and the equation has the form

X =tv.

Theorem 3.4.2. Let W be the plane in R? that contains the point xq and is
parallel to the noncollinear vectors vi and vo. Then an equation of the plane
through xq that is parallel to vi and vy is given by

X = Xg + 11V + 2V,

where the variables t, and to are called parameters. If xg = 0, then the plane
passes through the origin and the equation has the form

X = t1V1 + t2v2.

Definition 3.4.1. If xg and v are vectors in R", and if v is nonzero, then the
equation
X =Xg+tv

defines the line through x( that is parallel to v. In the special case where
Xo = 0, the line is said to pass through the origin.

Definition 3.4.2. If xy, v, and vy are vectors in R", and if v; and vy are
not collinear, then the equation

X = Xp + t1V1 + t2V2

defines the plane through x, that is parallel to v; and v,. In the special case
where xg = 0, the plane is said to pass through the origin.
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Example 1.

(a) Find a vector equation and parametric equations of the line in R? that
passes through the origin and is parallel to the vector v = (-2, 3).

(b) Find a vector equation and parametric equations of the line in R? that
passes through the point Py(1,2,—3) and is parallel to the vector v =
(4,-5,1).

(c) Use the vector equation obtained in part (b) to find two points on the
line that are different from F.

Example 2. Find vector and parametric equations of the plane x —y+2z = 5.
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Example 3.

(a) Find vector and parametric equations of the line through the origin of
R* that is parallel to the vector v = (5, —3,6,1).

(b) Find vector and parametric equations of the plane in R* that passes
through the point x¢ = (2, —1, 0, 3) and is parallel to both v; = (1, 5,2, —4)
and vo = (0,7, -8, 6).

Remark 1. If xq and x; are distinct points in R", then the line determined by
these points is parallel to the vector v = x; — Xq, so it follows that the line
can be expressed in vector form as

X = Xg + t(x1 — Xq)

or, equivalently, as
x = (1 —t)xo + tx;.

These are called the two-point vector equations of a line in R".
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Example 4. Find vector and parametric equations for the line in R? that
passes through the points P(0,7) and Q(5,0).

Definition 3.4.3. If xo and x; are vectors in R", then the equation
x =Xy +t(x; —%p) (0<t<1)

defines the line segment from x; to x;. When convenient, this equation can
be written as

X:(l—t)X0+tX1 <0§t§1)

Example 5. Find equations for the line segment in R? from xo = (1, —3) to
X1 = (5, 6)

Theorem 3.4.3. If A is an m X n matrix, then the solution set of the homo-
geneous linear system Ax = 0 consists of all vectors in R™ that are orthogonal
to every row vector of A.
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Example 6. We showed in Example 6 of Section 1.2 that the general solution
of the homogeneous linear system

_xl_
1 3 -2 0 2 0| |z 0
2 6 -5 -2 4 =3[ |z3| |0
0 0 5 10 0 15| [xz4] |O
2 6 0 8 4 18| |zs 0
Te
18
r1=—-3r—4s—2t, wxo=1r, x3=-28 x4=35, x5=1, x5=0.

Verify Theorem 3.4.3 for this system.
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Theorem 3.4.4. The general solution of a consistent linear system Ax = b
can be obtained by adding any specific solution of Ax = b to the general
solution of Ax = 0.

Proof. Let xq be any specific solution of Ax = b, let W denote the solution
set of Ax = 0, and let xq + W denote the set of all vectors that result by
adding x( to each vector in W. We must show that if x is a vector in x4+ W,
then x is a solution of Ax = b, and conversely that every solution of Ax =b
is in the set xo + W.

Assume first that x is a vector in xg+ W. This implies that x is expressible
in the form x = xg + w, where Axqg = b and Aw = 0. Thus,

Ax = A(x¢g + W) = Axg+ Aw =b +0 =D,

which shows that x is a solution of Ax = b.
Conversely, let x be any solution of Ax = b. To show that x is in the set
Xo + W we must show that x is expressible in the form

X =Xg+W

where w is in W (i.e., Aw = 0). We can do this by taking w = x — xo. This
vector obviously satisfies x = xg + w, and it is in W since

Aw = A(x —x¢) = Ax— Axg=b —-b =0. O
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3.5 Cross Product

Definition 3.5.1. If u = (u, ug, u3z) and v = (vy, vg, v3) are vectors in 3-space,
then the cross product u x v is the vector defined by

u X v = (ugU3 — Uz, Ugl] — UIV3, U Vg — U1 )

or, in determinant notation,

Uy U3
Vg U3

Uy us
U1 U3

U Uo

uxv= ,
U1 U9

)

Example 1. Find u x v, where u = (1,2, —2) and v = (3,0, 1).

Theorem 3.5.1 (Relationships Involving Cross Product and Dot Product).
Ifu, v, and w are vectors in 3-space, then

(a) u-(uxv)=0

)l x v = fluf?[v]]® = (u-v)*
ux (vxw)=(u-w)v-—(au-v)w

Example 2. Consider the vectors
u=(1,2,—-2) and v=(3,0,1).

Verify that u x v is orthogonal to both u and v.
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Theorem 3.5.2 (Properties of Cross Product). If u, v, and w are vectors in
3-space and k is any scalar, then
(a) uxv=—(vxu)

b) ux (v+w)=(uxv)+(uxw)

c) (u+v)xw=(uxw)+(vxw)

d) k(uxv)=(ku) xv=ux(kv)
e) ux0=0xu=0
f) uxu=0

(
(
(
(
(

Example 3. Compute i X j.

Theorem 3.5.3. If u and v are vectors in 3-space, then ||u x v|| is equal to
the area of the parallelogram determined by u and v.

Proof. 1f 6 denotes the angle between u and v, then

[ > vi* = al*[v]* = (u-v)? v

= [ul®[Iv]]* = [[al*|v]}* cos® 0
= [[ul*[[v][*(1 — cos® )

= [[ull*|[v|]* sin® 6.

[[v]| sin 6

Since 0 < 0 < 7, it follows that sin # > 0, so this can be rewritten
as

([l

[[ux v = [[ull[[v]}sin6.

But ||v]|sin @ is the altitude of the parallelogram determined by
u and v (see the figure). Thus the area A of this parallelogram is given by

A = (base)(altitude) = [[ul|[|v|| sin@ = |ju x v]||. O
109



Linear Algebra - 3.5 Cross Product

Example 4. Find the area of the triangle determined by the points P;(2,2,0),
Pg(—l, O, 2), and P3(O, 4, 3)

Definition 3.5.2. If u, v, and w are vectors in 3-space, then
u-(vxw)

is called the scalar triple product of u, v, and w.

Remark 1. The scalar triple product of u = (uy, us,u3), v = (v1,v9,v3), and
w = (wy, ws, w3) can be calculated from the formula

Up Uz Usg
u-(vxw)=|v vy 3
wr w2 wWs

since
Uy U3|. v V3|, V1 V2
u-(vxw)=u- i— j+ k
Wy W3 w; W3 wyp W2
Uy U3 U1 U3 1 U2
= Uy — U9 + us
Wo2 W3 w1 Ws w1 Wy

Uy Uz U3

W w2 w3
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Example 5. Calculate the scalar triple product u - (v x w) of the vectors

u=3i—2j—5k, v=i+4j—4k, w=3j+2k.

Theorem 3.5.4.

(a) The absolute value of the determinant

det [ul u2]
V1 Vg
is equal to the area of the parallelogram in 2-space determined by the

vectors u = (uy,us) and v = (vy,ve). (See Figure a.)
(b) The absolute value of the determinant

Uy Uz U3
det V1 Vg Vs
wp w2 w3

15 equal to the volume of the parallelepiped in 3-space determined by the
vectors u = (uy,ug,uz), v = (v1,v2,v3), and w = (wy,wa, ws3). (See

Figure b.)
AY AZ Z
/
(vy,0,) ,/
(uls u2, u3)
| y
A% u g
/ — 2 \%
/ T = (Ula vz’ 0)
(uy, uy) (wy, wy, ws) u
u R W (v3,0,03) y
x (uls u2, 0)
(a) (b) (9]
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Proof. (a) We will view u and v as vectors in the zy-plane of an zyz-coordinate
system (Figure c), in which case these vectors are expressed as u = (uy, ug, 0)
and v = (vy,v9,0). Thus

uxv=\|u uy 0|= ! 2k:d‘c[1 2]k
V1 U9 V1 U9y
V1 Uy 0

It follows from Theorem 3.5.3 and the fact that ||k|| = 1 that the area A of
the parallelogram determined by u and v is

A = ||u X V” = det [ul U2] k — det [ul uQ] ||k|| _ det [u:L UQ]
V1 V2 V1 U9 vl Uy

(b) Take the base of the parallelepiped determined by u, v, and w to be the
parallelogram determined by v and w. The area of the base is ||[v x w|| and
the height h of the parallelepiped is the length of the orthogonal projection of
u on v X w. Therefore,

lu- (v x w)|

= Jlproj ul = T

It follows that the volume V' of the parallelepiped is

(v x w)

V' = (area of base) - height = ||v x w]| [u =|u-(vxw),

[v > w]

and so

Uy U2 U3
V=ldet |vy vy w3|]. O
w; w2 W3

Theorem 3.5.5. If the vectors u = (uy,us,uz), v = (v1,v9,v3), and w =
(w1, wa, w3) have the same initial point, then they lie in the same plane if and
only if
Uy Uz Us
U‘(VXW): V1 Vg Vs =0.
wy w2 w3

112



Chapter 4

General Vector Spaces

4.1 Real Vector Spaces

Definition 4.1.1. Let V be an arbitrary nonempty set of objects on which
two operations are defined: addition, and multiplication by numbers called
scalars. By addition we mean a rule for associating with each pair of objects u
and v in V' an object u+v, called the sum of u and v; by scalar multiplication
we mean a rule for associating with each scalar k and each object u in V' an
object ku called the scalar multiple of u by k. If the following axioms are
satisfied by all objects u, v, w in V' and all scalars £ and m, then we call V' a
vector space and we call the objects in V' vectors.

If u and v are objects in V', then u+ v isin V.

u+v=v+u

u+ (v4+w)=(u+v)+w

There is an object 0 in V| called a zero vector for V, such that 0 +u =
u+0=uforalluin V.

For each u in V| there is an object —u in V, called a negative of u, such
that u+ (—u) = (—u) +u=0.

If k is any scalar and u is any object in V/, then ku is in V.

k(u+v) = ku+ kv

(k+m)u = ku+mu

k(mu) = (km)(u)

lu=u

=W N =

ot

e L XN
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Example 1. Let V consist of a single object, which we denote by 0, and define
0+0=0 and k0=0

for all scalars k. Check that all the vector space axioms are satisfied.

Example 2. Let V = R"™, and define the vector space operations on V to be
the usual operations of addition and scalar multiplication of n-tuples, that is,

U+ v = (U, U, ... Uy) + (V1,09 .., 0,) = (U] + V1, Uz + Vo, ..., Uy + Vy)
ku = (kuy, kus, . .., kuy,).

Check that all the vector space axioms are satisfied.
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Example 3. Let V consist of objects of the form
u = (U, U, ..., Up,...)

in which uq,us,...,uy,, ... is an infinite sequence of real numbers. We define
two infinite sequences to be equal if their corresponding components are equal,
and we define addition and scalar multiplication componentwise by

u+v=(Up,Ug, ..., Upy,...)+ (V1,V2,...,0n,...)
= (ug + v, Uz + Vo, .. Uy F Upy )

ku = (kuq, kug, ..., kup,...).

Confirm that V' with these operations is a vector space.
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Example 4. Let V be the set of 2 x 2 matrices with real entries, and take the
vector space operations on V' to be the usual operations of matrix addition
and scalar multiplication; that is,

U1 U2 V11 V12
U21 U2 V21 V22
. Ui Uiz2| kuii  kugg
ku=%k = .
U21 U2 kugr  kug

Confirm that V' with these operations is a vector space.

Uil + V11 Uiz + V12
Ug1 + V21 Uz + V22
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Linear Algebra - 4.1 Real Vector Spaces

Example 5. Confirm that the set V' of all m x n matrices with the usual
matrix operations of addition and scalar multiplication is a vector space.

Example 6. Let V be the set of real-valued functions that are defined at
each x in the interval (—oo,00). If f = f(x) and g = g(x) are two functions
in V' and if k£ is any scalar, then define the operations of addition and scalar
multiplication by

(f+g)(x) = f(x) + g(x)
(k) (x) = kf ().

Confirm that V' with these operations is a vector space.

o
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Example 7. Let V = R? and define addition and scalar multiplication as
follows: If u = (uy,us) and v = (vy,vs), then define

u-+v= (Ul +U1,U2—|—U2)
and if k is any real number, then define
ku = (kuy,0).

Show that V' is not a vector space.
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Example 8. Let V be the set of positive real numbers, let u = v and v = v be
any vectors (i.e., positive real numbers) in V', and let k be any scalar. Define
the operations on V' to be

U+ v =uv
ku = u*

Confirm that V' with these operations is a vector space.

Theorem 4.1.1. Let V' be a vector space, u a vector in V', and k a scalar,
then:

(a) Ou=0

(b) KO=0

(¢) (-l)u=—u

(d) If ku =0, then k=0 oru=0.
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4.2 Subspaces

Definition 4.2.1. A subset W of a vector space V' is called a subspace of V' if
W is itself a vector space under the addition and scalar multiplication defined
on V.

Theorem 4.2.1 (Subspace Test). If W is a set of one or more vectors in a
vector space V', then W is a subspace of V' if and only if the following conditions
are satisfied.

(a) Ifu and v are vectors in W, then u+ v is in W.

(b) If k is a scalar and u is a vector in W, then ku is in W.

Proof. 1If W is a subspace of V', then all the vector space axioms hold in W,
including Axioms 1 and 6, which are precisely conditions (a) and (b).
Conversely, assume that conditions (a) and (b) hold. Since these are Ax-
ioms 1 and 6, and since Axioms 2, 3, 7, 8, 9, and 10 are inherited from V', we
only need to show that Axioms 4 and 5 hold in W. For this purpose, let u be
any vector in W. It follows from condition (b) that ku is a vector in W for
every scalar k. In particular, Ou = 0 and (—1)u = —u are in W, which shows
that Axioms 4 and 5 hold in W. O

Example 1. If V is any vector space, show that the subset W = {0} of V'
consisting of the zero vector only is a subspace of V, called the zero subspace
of V.

Example 2. Show that lines through the origin are subspaces of R? and of
R3.
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Example 3. Show that planes through the origin are subspaces of R3.

Example 4. Let W be the set of all points (z,y) in R? for which z > 0 and
y > 0. Show that this set is not a subspace of R2.

Example 5. Show that the set of symmetric n X n matrices is a subspace of
M.

Example 6. Show that the set of invertible n X n matrices is not a subspace
of M,,,.
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Example 7. Show that the set of continuous functions on (—oo, 00), denoted
by C(—o00, c0), is a subspace of F'(—o00,0).

Example 8. Show that the set of functions with m continuous derivatives on
(—00,00) and the set of functions with derivatives of all orders (—o0, 00) are
subspaces of F(—o0,00), denoted by C™(—o00,00) and C*°(—o00,00), respec-

tively.

Example 9. Show that the set of all polynomials is a subspace of F'(—o0, 00),
denoted by P.

Example 10. Show that the set of polynomials with positive degree n is
not a subspace of F(—o00,00), but that for each non-negative integer n the
polynomials of degree n or less form a subspace of F/(—o0, c0), denoted by P,.
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Example 11. Determine whether the indicated set of matrices is a subspace
of MQQ.

(a) The set U consisting of all matrices of the form

o

(b) The set W consisting of all 2 x 2 matrices A such that
1] |1
=1 4]

Al

Example 12. Determine whether the indicated set of polynomials is a sub-
space of Ps.

(a) The set U consisting of all polynomials of the form p = 1 + ar — ax?,
where a is a real number.

(b) The set W consisting of all polynomials p in P such that p(2) = 0.
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Theorem 4.2.2. If Wi, W,, ... . W, are subspaces of a vector space V', then
the intersection of these subspaces is also a subspace of V.

Proof. Let W be the intersection of the subspaces Wy, Wy, ..., W,.. This set is
not empty because each of these subspaces contains the zero vector of V', and
hence so does their intersection. Thus, it remains to show that W is closed
under addition and scalar multiplication.

To prove closure under addition, let u and v be vectors in W. Since W
is the intersection of Wy, Ws, ... W, it follows that u and v also lie in each
of these subspaces. Moreover, since these subspaces are closed under addition
and scalar multiplication, they also all contain the vectors u 4+ v and ku for
every scalar k, and hence so does their intersection W. [

Theorem 4.2.3. The solution set of a homogeneous linear system Ax = 0 of
m equations in n unknowns is a subspace of R™.

Proof. Let W be the solution set of the system. The set W is not empty
because it contains at least the trivial solution x = 0.

To show that W is a subspace of R", we must show that it is closed under
addition and scalar multiplication. To do this, let x; and x5 be vectors in W.
Since these vectors are solutions of Ax = 0, we have

Ax; =0 and Axy,=0.

It follows from these equations and the distributive property of matrix multi-
plication that
A(X1+X2) :AX1+AX2:0+0:O,

so W is closed under addition. Similarly, if £ is any scalar then
A(k)Xl) = ]CAXl =k0 = 0,

so W is also closed under scalar multiplication. O
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Example 13. In each part the solution of the linear system is provided. Give
a geometric description of the solution set.

1 -2 3| |z 0
(a) |2 =4 6| |y| = |0
3 -6 9| [z 0

1 -2 3| |z 0
M) |-3 7 =8| |y| =0

-2 4 -6 |z 0
1 -2 3| |z 0
(c) |-3 7 =8| |y| =10
4 1 2| |z 0
0 0 Of |z 0
(d) {0 0 0] [y] =10
0 0 O0f |z 0

Theorem 4.2.4. If A is an m X n matrix, then the kernel of the matrix
transformation Ty : R™ — R™, the set of vectors in R™ that Ty maps into the
zero vector in R™, is a subspace of R™.
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4.3 Spanning Sets

Definition 4.3.1. If w is a vector in a vector space V', then w is said to be a
linear combination of the vectors vi,vs,..., v, in V if w can be expressed in
the form

W:]{?1V1+kﬁ2V2+"‘+krvr

where ki, ko, ..., k, are scalars. These scalars are called the coefficients of the
linear combination.

Theorem 4.3.1. If S = {wy,ws,...,W,} is a nonempty set of vectors in a
vector space V', then:
(a) The set W of all possible linear combinations of the vectors in S is a
subspace of V.
(b) The set W in part (a) is the “smallest” subspace of V' that contains all
of the vectors in S in the sense that any other subspace that contains
those vectors contains W.

Proof. (a) Let W be the set of all possible linear combinations of the vectors
in .S. We must show that W is closed under addition and scalar multiplication.
To prove closure under addition, let

u=cw;+cws+---+c¢w, and v==Fkw;+kyws+---+ kW,
be two vectors in W. It follows that their sum can be written as
u-+v= (Cl + kl)wl + <02 + kQ)WQ 4+ -+ (Cr + kr)wm

which is a linear combination of the vectors in S. Similarly, if @ is any scalar,
then
au = (acy)wy + (ac)wa + - - - + (ac,)w,,

which is a linear combination of the vectors in S.

(b) Let W’ be any subspace of V' that contains all of the vectors in S. Since
W' is closed under addition and scalar multiplication, it contains all linear
combinations of the vectors in S and hence contains W. O]

Remark 1. The subspace W in Theorem 4.3.1 is called the subspace of V'
spanned by S. The vectors wi, wy,...,w, in S are said to span W, and we
write

W = span{w;,ws,...,w,.} or W =span(S).
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Example 1. Show that the standard unit vectors span R".

Example 2.

(a) If v is a nonzero vector in R? or R? that has its initial point at the origin,
what is a geometric description of span{v}?

(b) If v; and vy are nonzero vectors in R* that have their initial points at
the origin, what is a geometric description of span{vy, vs}?

Example 3. Show that the polynomials 1,z, 22, ..., 2" span the vector space
P,.
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Example 4. Consider the vectors u = (1,2, —1) and v = (6, 4,2) in R®. Show
that w = (9,2,7) is a linear combination of u and v and that w’ = (4, —1,8)
is not a linear combination of u and v.

Example 5. Determine whether the vectors vi = (1,1,2), vo = (1,0, 1), and
vs = (2,1, 3) span the vector space R3.
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Example 6. Determine whether the set .S spans P;.

(a) S={l1+x+2%-1—2,2+2x+ 2}

(b) S={z+2*x—2*1+x1—2z}
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Example 7. In each part, determine whether the set .S spans Mas.

=g 0

Theorem 4.3.2. If S = {vy,vo,...,v,.} and 5" = {wy,wq,..., Wi} are
nonempty sets of vectors in a vector space V', then

span{vy, vy, ..., V,} = span{wy.wy, ..., Wy}
if and only if each vector in S is a linear combination of those in S’, and each

vector in S’ is a linear combination of those in S.
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4.4 Linear Independence

Definition 4.4.1. If S = {vq,vy,..., Vv, } is a set of two or more vectors in
a vector space V, then S is said to be a linearly independent set if no vector
in S can be expressed as a linear combination of the others. A set that is not
linearly independent is said to be linearly dependent.

Theorem 4.4.1. A nonempty set S = {vi,Va,...,v,.} in a vector space V
1s linearly independent if and only if the only coefficients satisfying the vector
equation

k1V1+/€2V2+"'+k’TV7~:0

are ky =0,ky =0,..., k. =0.

Example 1. Show that the standard unit vectors in R™ are linearly indepen-
dent.

Example 2. Determine whether the vectors
vi =(1,-2,3), vo=(5,6,—-1), v3=(3,2,1)

are linearly independent or linearly dependent in R3.
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Example 3. Determine whether the vectors
vi=(1,2,2,-1), vy=(4,9,9,—4), v3=(5238,9,-5)

in R* are linearly independent or linearly dependent.

Example 4. Show that the polynomials
1, =z 2%..., =z

form a linearly independent set in P,.
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Example 5. Determine whether the polynomials

pi=1—2, ps=5+3x—22% ps=1+3z—2>

are linearly dependent or linearly independent in Ps.

Theorem 4.4.2.

(a) A set with finitely many vectors that contains 0 is linearly dependent.

(b) A set with exactly two vectors is linearly independent if and only if neither
vector is a scalar multiple of the other.

Example 6. Determine whether the functions f; = x and f; = sinx are

linearly independent in F(—oo,00), and whether the functions g; = sin 2z
and gy = sinx cosz are linearly independent in F'(—o0, 00).
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Theorem 4.4.3. Let S = {vy,Va,...,v,.} be a set of vectors in R™. If r > n,
then S is linearly dependent.

Proof. Suppose that

Vi = (U117U127"'7vln)
Vo = (U217U227-"7U2n)
Ve = (UT'17UT'27"'7UTTL)

and consider the equation
k1V1 + k‘ng + -+ k‘rVr = 0.

If we express both sides of this equation in terms of components and then
equate the corresponding components, we obtain the system

Ullkl + Uggkg +---+ Urlkr =0
7112/{71 + ’022162 + -+ ’Uﬂkr =0

Ulnkl + U2nk2 + -+ U'r’nkr =0.

This is a homogeneous system of n equations in the r unknowns kq,...,k,.
Since r > n, the system has nontrivial solutions. Therefore, S = {vy,va,...,v,}
is a linearly dependent set. O]

Example 7. It is an important fact that the nonzero row vectors of a matrix in
row echelon or reduced row echelon form are linearly independent. To suggest
how a general proof might go, show that the row vectors of the matrix

1 a2 aiz aus
R=1{0 1 923 Q924
0 0 0 1

are linearly independent.
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Definition 4.4.2. If f; = fi(x),f; = fo(x),...,f, = f.(x) are functions that
are n — 1 times differentiable on the interval (—oo, 00), then the determinant

Gl R
A7) V@) - V()

is called the Wronskian of fi, fo,..., fn.

Theorem 4.4.4. If the functions f1,f5, ... . f, have n — 1 continuous deriva-
tives on the interval (—oo, 00), and if the Wronskian of these functions is not
identically zero on (—o0, 00), then these functions form a linearly independent
set of vectors in C"1(—o00,00).

Example 8. Use the Wronskian to show that f; = x and f; = sin x are linearly
independent vectors in C'*°(—00, 00).

Example 9. Use the Wronskian to show that f; = 1, f, = €%, and f3 = e**
are linearly independent vectors in C'*°(—o0, 00).
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4.5 Coordinates and Basis

Remark 1. A vector space V' is said to be finite-dimensional if there is a finite
set of vectors in V' that spans V and is said to be infinite-dimensional if no
such set exists.

Definition 4.5.1. If S = {vy,vy,...,v,} is a set of vectors in a finite-
dimensional vector space V', then S is called a basis for V' if:

(a) S spans V.

(b) S is linearly independent.

Example 1. Show that the standard unit vectors form a basis for R™ called
the standard basis for R".

Example 2. Show that S = {1,x,22,...,2"} is a basis for the vector space
P, of polynomials of degree n or less.
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Example 3. Show that the vectors vi = (1,2,1), vo = (2,9,0), and v3 =
(3,3,4) form a basis for R3.

Example 4. Show that the matrices

10 01 0 0 0 0

form a basis for the vector space My of 2 x 2 matrices.
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Example 5. Show that the vector space P, of all polynomials with real
coefficients is infinite-dimensional by showing that it has no finite spanning
set.

Example 6. Which of the vector spaces in Examples 1-5 are finite-dimensional,
and which are infinite-dimensional?

Theorem 4.5.1 (Uniqueness of Basis Representation). If S = {vq,va,...,v,}
1s a basis for a vector space V', then every vector v in V' can be expressed in
the form v = c;vy + covo + - - - 4+ ¢, v, in exactly one way.

Proof. Since S spans V, it follows from the definition of a spanning set that
every vector in V' is expressible as a linear combination of the vectors in S.
To see that there is only one way to express a vector as a linear combination
of the vectors in S, suppose that some vector v can be written as

V=c0CV]+CVy+- --+c,v,

and also as
v =Fkivi+kavy+ -+ kv,

Subtracting the second equation from the first gives
0= (c1 — ki)vi+ (ca = ko)va + -+ (cp — kn) Vi

Since the right side of this equation is a linear combination of vectors in S,
the linear independence of S implies that

cl—kle, Cg—k‘gzo,..., cn—kn:0,
that is,

cp =k, ca=ky ..., c,=k, []
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Definition 4.5.2. If S = {vy,vy,...,Vv,} is a basis for a vector space V', and
V =10CV]+CVy+ -+ CpVy

is the expression for a vector v in terms of the basis S, then the scalars
c1,Ca, ..., C, are called the coordinates of v relative to the basis S. The vector
(c1,¢9,...,¢,) in R™ constructed from these coordinates is called the coordi-
nate vector of v relative to S; it is denoted by

(V)s = (c1,¢2, ..., ).

Example 7. What is the coordinate vector (v)g where V' = R™ and S is the
standard basis?

Example 8.

(a) Find the coordinate vector for the polynomial
p(x) = co+ c1x + cx® + -+ cpa”

relative to the standard basis for the vector space P,.

(b) Find the coordinate vector of

B =

a b
c d

relative to the standard basis for Mas.
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Example 9.
(a) We showed in Example 3 that the vectors

vi=(1,2,1), v2=1(2,9,0), vs=(3,3,4)

form a basis for R®. Find the coordinate vector of v = (5, —1,9) relative
to the basis S = {vy,va, v3}.

(b) Find the vector v in R* whose coordinate vector relative to S is (v)g =
(—1,3,2).
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4.6 Dimension

Theorem 4.6.1. All bases for a finite-dimensional vector space have the same
number of vectors.

Theorem 4.6.2. Let V' be an n-dimensional vector space, and let {vy,va, ..., v,}
be any basis.

(a) If a set in V' has more than n vectors, then it is linearly dependent.
(b) If a set in'V has fewer than n vectors, then it does not span V.

Definition 4.6.1. The dimension of a finite-dimensional vector space V is
denoted by dim(V') and is defined to be the number of vectors in a basis for
V. In addition, the zero vector space is defined to have dimension zero.

Example 1. Find the dimensions of R", P,, and M,,,.

Example 2. If S = {vy,vy,...,v,} is a set of linearly independent vectors,
what is dim[span(.S)]?

Example 3. Find a basis for and the dimension of the solution space of the
homogeneous system

T1 + 3x9 — 223 + 2x5 =0
221 + 629 — bxs — 2x4 +4x5 — 326 =0
5x3 + 1024 + 15z =0

211 + 6129 + 8x4 + 4x5 + 18z = 0.
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Theorem 4.6.3 (Plus/Minus Theorem). Let S be a nonempty set of vectors
i a vector space V.

(a) If S is a linearly independent set, and if v is a vector in V that is outside
of span(S), then the set SU{v} that results by inserting v into S is still
linearly independent.

(b) If v is a vector in S that is expressible as a linear combination of other
vectors in S, and if S—{v} denotes the set obtained by removing v from
S, then S and S — {v} span the same space; that is,

span(S) = span(S — {v}).

3

Example 4. Show that p; = 1 — 22, ps = 2 — 22, and p3 = 2° are linearly

independent vectors.

Theorem 4.6.4. Let V' be an n-dimensional vector space, and let S be a set
i V' with exactly n vectors. Then S is a basis for V if and only if S spans V'
or S is linearly independent.

Proof. Assume that S has exactly n vectors and spans V. To prove that S
is a basis, we must show that S is a linearly independent set. But if this
is not so, them some vector v in S is a linear combination of the remaining
vectors. If we remove this vector from S, then it follows that the remaining
set of n— 1 vectors still spans V. But this is impossible since no set with fewer
than n vectors can span an n-dimensional vector space. Thus S is linearly
independent.

Assume that S has exactly n vectors and is a linearly independent set. To
prove that S is a basis, we must show that S spans V. But if this is not so,
then there is some vector v in V' that is not in span(S). If we insert this vector
into S, then this set of n + 1 vectors is still linearly independent. But this is
impossible, since no set with more than n vectors in an n-dimensional vector
space can be linearly independent. Thus S spans V. O

142



Linear Algebra - 4.6 Dimension

Example 5.

(a) Explain why the vectors vi = (—3,7) and vy = (5,5) form a basis for
R

(b) Explain why the vectors vi = (2,0,—1), vo = (4,0,7), and v3 =
(—1,1,4) form a basis for R>.

Theorem 4.6.5. Let S be a finite set of vectors in a finite-dimensional vector
space V.

(a) If S spans V but is not a basis for V', then S can be reduced to a basis
for V' by removing appropriate vectors from S.

(b) If S is a linearly independent set that is not already a basis for V', then
S can be enlarged to a basis for V' by inserting appropriate vectors into

S.

Theorem 4.6.6. If W is a subspace of a finite-dimensional vector space V,
then:

(a) W is finite-dimensional.

(b) dim(W) < dim(V).

(¢) W =V if and only if dim(W) = dim(V).

Proof. (a) Since V is finite-dimensional, there exists a finite set S spanning
V. Since W is a subspace of V., W C V. Therefore S also spans W, so W is
finite-dimensional.

(b) Part (a) shows that W is finite-dimensional, so it has a basis

S ={wi,wa, ..., Wy}

Either S is also a basis for V or it is not. If so, then dim(V') = m, which means
that dim(V') = dim(W). If not, then because S is a linearly independent set
it can be enlarged to a basis for V. But this implies that dim(W) < dim(V),
so we have shown that dim(1¥) < dim(V') in all cases.

(c) Assume that dim(W) = dim(V') and that S = {wy, W, ..., w,,} is a basis
for W. If S is not also a basis for V', then being linearly independent S can
be extended to a basis for V. But this would mean that dim(V') > dim(W),
which contradicts our hypothesis. Thus S must also be a basis for V', which
means that W = V. The converse is obvious. ]
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4.7 Change of Basis

Remark 1. If S = {vy,vs,...,v,} is a basis for a finite-dimensional vector
space V', and if
(V)S - (Cl7 Coy ... ,Cn)

is the coordinate vector of v relative to .S, then the mapping
v — (V)s

creates a connection (a one-to-one correspondence) between vectors in the
general vector space V and vectors in the Fuclidean vector space R". We call
this the coordinate map relative to S from V to R".

Remark 2 (Solution of the Change-of-Basis Problem). If we change the basis
for a vector space V from an old basis B = {uj,us,...,u,} to a new basis
B’ = {u),u),...,ul}, then for each vector v in V, the new coordinate vector
[v]p is related to the old coordinate vector [v]z by the equation

where the columns of P are the coordinate vectors of the old basis vectors
relative to the new basis; that is,

P = [fw]p | sl || [a]m]

Example 1. Consider the bases B = {uj,uy} and B’ = {u),u}} for R?
where
u; = (1,0), wy=(0,1), uj=(1,1), uy(2,1).

(a) Find the transition matrix Pp_,p from B to B'.

(b) Find the transition matrix Pg/_,p from B’ to B.
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Example 2. Let B and B’ be the bases in Example 1. Use an appropriate
formula to find [v]p given that

Vs = [_gl |

Theorem 4.7.1. If P is the transition matriz from a basis B to a basis B’
for a finite-dimensional vector space V, then P is invertible and P~ is the
transition matriz from B’ to B.

Remark 3 (A Procedure for Computing Transition Matrices).

Step 1. Form the partitioned matrix [new basis | old basis] in which the
basis vectors are in column form.

Step 2. Use elementary row operations to reduce the matrix in Step 1 to
reduced row echelon form.

Step 3. The resulting matrix will be [I | transition matrix from old to new]
where [ is an identity matrix.

Step 4. Extract the matrix on the right side of the matrix obtained in Step
3.

Example 3. In Example 1 we considered the bases B = {u;,us} and B’ =
{u},u}} for R?, where

u; = (1,0), wy=(0,1), uj=(1,1), u)=(21).

(a) Use Remark 3 to find the transition matrix from B to B'.

(b) Use Remark 3 to find the transition matrix from B’ to B.

Theorem 4.7.2. Let B = {uy,uy,...,u,} be any basis for R" and let S =
{e1,e,...,e,} be the standard basis for R". If the vectors in these bases are
written in column form, then

Pps=u |uy| | u,)
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4.8 Row Space, Column Space, and Null Space

Example 1. Let
A=

2 1 0
3 -1 4|

What are the row and column vectors of A?

Definition 4.8.1. If A is an m x n matrix, then the subspace of R"™ spanned
by the row vectors of A is called the row space of A, and the subspace of R™
spanned by the column vectors of A is called the column space of A. The
solution space of the homogeneous system of equations Ax = 0, which is a
subspace of R", is called the null space of A.

Theorem 4.8.1. A system of linear equations Ax = b is consistent if and
only if b is in the column space of A.

Example 2. Let Ax = b be the linear system

1 2 =3| |z2f = [-9
2 1 =2| |x3 -3

Show that b is in the column space of A by expressing it as a linear combination
of the column vectors of A.
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Theorem 4.8.2. If xq is any solution of a consistent linear system Ax = b,
and if S = {v1,Vva,...,Vi} is a basis for the null space of A, then every solution
of Ax = b can be expressed in the form

X =Xg+ C1Vy +CVy + - + CLVE.

Conversely, for all choices of scalars cq,co, ..., ck, the vector X in this formula
s a solution of Ax =b.

Proof. Let xq be any solution of Ax = b, let W denote the null space of
Ax = 0, and let xo + W be the set of all vectors that result by adding x, to
each vector in W. Thus, the vectors in xy + W are those that are expressible
in the form

X = Xg + C1V] + CaVy + + -+ + C, V.

We must show that if x is a vector in xq + W, then x is a solution of Ax = b,
and conversely that every solution of Ax = b is in the set xo + W.

Assume first that x is a vector in xo+ W. This implies that x is expressible
in the form x = x¢y + w, where Axqg = b and Aw = 0. Thus,

Ax = A(xg+ W) = Axo+ Aw =b +0=Db,

which shows that x is a solution of Ax = b.
Conversely, let x be any solution of Ax = b. To show that x is in the set
X + W we must show that x is expressible in the form

X =Xg+W

where w is in W (i.e., Aw = 0). We can do this by taking w = x — xq. This
vector obviously satisfies x = xy + w, and it is in W since

Aw = A(x —x¢) = Ax — Axg=b —b =0. O

Remark 1. The vector x¢ in Theorem 4.7.2 is called a particular solution of
Ax = b, and the remaining part of the formula is called the general solution

of Ax =0.
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Theorem 4.8.3.

(a) Row equivalent matrices have the same row space.
(b) Row equivalent matrices have the same null space.

Proof. (a) If A and B are row equivalent then each can be obtained from the
other by elementary row operations. As these operations involve only scalar
multiplication (multiply a row by a scalar) and linear combinations (add a
scalar multiple of one row to another), it follows that the row space of each is
a subspace of the other, so the two row spaces must be the same.

(b) If A and B are row equivalent then each can be obtained from the other
by elementary row operations. But elementary row operations do not change
the solution set of a linear system, so the solution sets of Ax =0 and Bx =0
must be the same. That is, A and B have the same null space. O

Theorem 4.8.4. If a matrixz R is in row echelon form, then the row vectors
with the leading 1’s (the nonzero row wvectors) form a basis for the row space
of R, and the column vectors with the leading 1’s of the row vectors form a
basis for the column space of R.

Example 3. Find bases for the row and column spaces of the matrix

1 -2 5 0 3
0 1 3 0 O
R_O 0 0 1 0
0O 0 0 0 0
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Example 4. Find a basis for the row space of the matrix

1 -3 4-2 5 4

2 -6 9-1 &8 2

A= 2-6 9-1 9 7
-1 3 -4 2 -5 -4

Theorem 4.8.5. If A and B are row equivalent matrices, then:

(a) A given set of column vectors of A is linearly independent if and only if
the corresponding column vectors of B are linearly independent.

(b) A given set of column vectors of A forms a basis for the column space of
A if and only if the corresponding column vectors of B form a basis for
the column space of B.

Example 5. Find a basis for the column space of the matrix

1 -3 4-2 5 4

2 -6 9-1 &8 2

A= 2-6 9-1 9 7
-1 3 -4 2 -5 -4
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Example 6. Find a basis for the row space of

1-2 0 0 3
2 -5 -3-2 6
A= 0 5 15 10 O
2 6 18 8 6

consisting entirely of row vectors from A.

Example 7. The following vectors span a subspace of R*. Find a subset of
these vectors that forms a basis of this subspace.

vi=(1,2,2,-1), vs=(-3,-6,-6,3),

vs=(4,9,9,-4),  vi=(-2,-1,-1,2),
vs = (5,8,9,—5),  ve=(4,2,7,—4).
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Example 8.

(a) Find a subset of the vectors

vi=(1,-2,0,3), va»=(2,—5,-3,6),
vs=(0,1,3,0), vi=(2,-1,4,-7), vs=(5,-8,1,2)

that forms a basis for the subspace of R* spanned by these vectors.

(b) Express each vector not in the basis as a linear combination of the basis
vectors.
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4.9 Rank, Nullity, and the Fundamental Ma-
trix Spaces

Theorem 4.9.1. The row space and the column space of a matriz A have the
same dimension.

Proof. Elementary row operations do not change the dimension of the row
space or of the column space of a matrix. Thus, if R is any row echelon form
of A, it must be true that

dim(row space of A) = dim(row space of R)

dim(column space of A) = dim(column space of R)

so it suffices to show that the row and column spaces of R have the same
dimension. But the dimension of the row space of R is the number of nonzero
rows, and the dimension of the column space of R is the number of leading
1’s. Since these two numbers are the same, the row and column space have
the same dimension. O

Definition 4.9.1. The common dimension of the row space and column space
of a matrix A is called the rank of A and is denoted by rank(A); the dimension
of the null space of A is called the nullity of A and is denoted by nullity(A).

Example 1. Find the rank and nullity of the matrix

-1 2 0 4 5 =3
3 -7 2 0 1 4
A= 2 -5 2 4 6 1
4 -9 2 -4 -4 7
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Example 2. What is the maximum possible rank of an m x n matrix A that
is not square?

Theorem 4.9.2 (Dimension Theorem for Matrices). If A is a matriz with n
columns, then

rank(A) 4 nullity(A4) = n.

Proof. Since A has n columns, the homogeneous linear system Ax = 0 has n
unknowns. These fall into two distinct categories: the leading variables and
the free variables. Thus,

number of leading number of free|
. + i =n
variables variables

But the number of leading variables is the same as the number of leading 1’s in
any row echelon form of A, which is the same as the dimension of the row space
of A, which is the same as the rank of A. Also, the number of free variables
in the general solution of Ax = 0 is the same as the number of parameters
in that solution, which is the same as the dimension of the solution space of
Ax = 0, which is the same as the nullity of A. O

Example 3. Verify Theorem 4.8.2 for the matrix in Example 1.
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Theorem 4.9.3. If A is an m X n matriz, then

(a) rank(A) = the number of leading variables in the general solution of
Ax = 0.
(b) nullity(A) = the number of parameters in the general solution of Ax = 0.

Example 4.

(a) Find the number of parameters in the general solution of Ax = 0 if A is
a 5 X 7 matrix of rank 3.

(b) Find the rank of a 5x 7 matrix A for which Ax = 0 has a two-dimensional
solution space.

Theorem 4.9.4. If Ax = b is a consistent linear system of m equations in n
unknowns, and if A has rank r, then the general solution of the system contains
n — r parameters.

Remark 1. The following spaces associated with a matrix A and its transpose
AT are called the fundamental spaces of a matrix A:

row space of A column space of A

null space of A null space of AT

The row space and null space of A are subspaces of R", whereas the column
space of A and the null space of AT are subspaces of R™. The null space of
AT is also called the left null space of A because transposing both sides of the
equation ATx = 0 produces the equation x*' A = 07 in which the unknown is
on the left. The dimension of the left null space of A is called the left nullity
of A.

Theorem 4.9.5. If A is any matriz, then rank(A) = rank(AT).

Proof.

rank(A) = dim(row space of A) = dim(column space of A”) = rank(A™).
[l
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Example 5. Find bases for the fundamental spaces of the matrix

-1 2 0 4 5 -3
3 -7 2 0 1 4
A= 2 -5 2 4 6 1
4 -9 2 -4 -4 7

Definition 4.9.2. If WW is a subspace of R", then the set of all vectors in R"
that are orthogonal to every vector in W is called the orthogonal complement
of W and is denoted by the symbol W+,

Theorem 4.9.6. If W is a subspace of R"™, then:
(a) W is a subspace of R".
(b) The only vector common to W and W+ is 0.
(¢) The orthogonal complement of W+ is W.

155



Linear Algebra - 4.9 Rank, Nullity, and the Fundamental Matrix Spaces

Example 6. What is the orthogonal complement of a line W through the
origin in R?? What is the orthogonal complement of a plane W through the
origin in R3?

Theorem 4.9.7. If A is an m X n matriz, then:
(a) The null space of A and the row space of A are orthogonal complements
m R™.
(b) The null space of AT and the column space of A are orthogonal comple-
ments in R™.

Theorem 4.9.8 (Equivalent Statements). If A is an n X n matriz, then the
following statements are equivalent.
(a) A is invertible.
) Ax = 0 has only the trivial solution.
) The reduced row echelon form of A is I,.
) A is expressible as a product of elementary matrices.
) Ax = b is consistent for every n x 1 matriz b.
) Ax = b has ezactly one solution for every n x 1 matriz b.
) det(A) # 0.
) The column vectors of A are linearly independent.
) The row vectors of A are linearly independent.
7)  The column vectors of A span R".
k) The row vectors of A span R™.
) The column vectors of A form a basis for R".

LSS,

e e N N N e N e N N N i N W N NN

m) The row vectors of A form a basis for R™.

n) A has rank n.

0) A has nullity 0.

p) The orthogonal complement of the null space of A is R™.
q) The orthogonal complement of the row space of A is {0}.
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Remark 2. A linear system with more constraints than unknowns is called an
overdetermined system. A linear system with fewer constraints than unknowns
is called an underdetermined system.

Theorem 4.9.9. Let A be an m X n matriz.

(a) (Owverdetermined Case). If m > n, then the linear system Ax = b is
inconsistent for at least one vector b in R".

(b) (Underdetermined Case). If m < n, then for each vector b in R™ the
linear system Ax = b is either inconsistent or has infinitely many solu-
tions.

Proof. (a) Assume that m > n, in which case the column vectors of A cannot
span R™. Thus, there is at least one vector b in R™ that is not in the column
space of A, and for any such b the system Ax = b is inconsistent.

(b) Assume that m < n. For each vector b in R" there are two possibilities:
either the system Ax = b is consistent or it is inconsistent. If it is inconsistent,
then the proof is complete. If it is consistent, then the general solution has
n — r parameters, where r = rank(A). But we know from Example 2 that
rank(A) is at most the smaller of m and n, so

n—r>n—m>0.

This means that the general solution has at least one parameter and hence
there are infinitely many solutions. O]

Example 7.

(a) What can you say about the solutions of an overdetermined system Ax =
b of 7 equations in 5 unknowns in which A has rank r = 47

(b) What can you say about the solutions of an underdetermined system
Ax = b of 5 equations in 7 unknowns in which A has rank r = 47
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Example 8. Under what conditions is the linear system
T1 — 2T9 = by
Ty — T3 = by
T1+ X9 =0bs
1+ 279 = by
1+ 319 = by

consistent?
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Chapter 5

Eigenvalues and Eigenvectors

5.1 Eigenvalues and Eigenvectors

Definition 5.1.1. If A is an n X n matrix, then a nonzero vector x in R"
is called an eigenvector of A (or of the matrix operator T4) if Ax is a scalar

multiple of x; that is,
Ax = Ax

for some scalar A. The scalar A is called an eigenvalue of A (or of 7)), and x
is said to be an eigenvector corresponding to A.

2

Example 1. Determine whether the vector x = [ ] is an eigenvector of

3 0
-
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Theorem 5.1.1. If A is an n X n matriz, then X\ is an eigenvalue of A if and
only if it satisfies the equation

det(AM — A) =0.

This is called the characteristic equation of A.

Example 2. In Example 1 we observed that A = 3 is an eigenvalue of the
matrix
3 0

A=1g

but we did not explain how we found it. Use the characteristic equation to
find all eigenvalues of this matrix.

Remark 1. When the determinant det(A] — A) is expanded, the characteristic
equation of A takes the form

AN N T e, =0

where the left side of this equation is a polynomial of degree n in which the
coefficient of A" is 1. The polynomial

pN) =N+ N 4 e,

is called the characteristic polynomial of A.
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Example 3. Find the eigenvalues of

Example 4. Find the eigenvalues of the upper triangular matrix

11 Aaiz2 Aaiz aiq

. 0 a2 a3 an
A=

O 0 a3z Q34

0 0 0 au
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Theorem 5.1.2. If A is an n X n triangular matriz (upper triangular, lower
triangular, or diagonal), then the eigenvalues of A are the entries on the main
diagonal of A.

Example 5. Find the eigenvalues of the lower triangular matrix

A= |-

Ul =N
0w O
= O O

Theorem 5.1.3. If A is an n X n matriz, the following statements are equiv-
alent.

(a) X is an eigenvalue of A.

(b) X is a solution of the characteristic equation det(Al — A) = 0.
(¢) The system of equations (A — A)x = 0 has nontrivial solutions.
(d) There is a nonzero vector x such that Ax = Ax.

Remark 2. By definition, the eigenvectors of A corresponding to an eigenvalue
A are the nonzero vectors that satisfy

(M — A)x = 0.

Thus, we can find the eigenvectors of A corresponding to A by finding the
nonzero vectors in the solution space of this linear system. This solution
space, which is called the eigenspace of A corresponding to A, can also be
viewed as:

1. the null space of the matrix AT — A

2. the kernel of the matrix operator Th;_4 : R — R"

3. the set of vectors for which Ax = \x
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Example 6. Find bases for the eigenspaces of the matrix
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Example 7. Find bases for the eigenspaces of the matrix

0
A= |1
1

o NN O
W = N
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Theorem 5.1.4. A square matriz A is invertible if and only if A = 0 is not
an eigenvalue of A.

Proof. Assume that A is an n x n matrix and observe first that A = 0 is a
solution of the characteristic equation

N4+ 46, =0

if and only if the constant term ¢, is zero. Thus, it suffices to prove that A is
invertible if and only if ¢, # 0. But

det(A — A) = A"+ A" T4+ ¢,
or, on setting A = 0,
det(—A) =¢, or (—1)"det(A)=c,.

It follows from the last equation that det(A) = 0 if and only if ¢, = 0, and
this in turn implies that A is invertible if and only if ¢, # 0. O

Example 8. Verify Theorem 5.1.4 for the matrix A in Example 7.
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Theorem 5.1.5 (Equivalent Statements). If A is an n X n matriz, then the
following statements are equivalent.
(a) A is invertible.
) Ax = 0 has only the trivial solution.
) The reduced row echelon form of A is I,.
) A is expressible as a product of elementary matrices.
) Ax = b is consistent for every n x 1 matriz b.
) Ax = b has ezxactly one solution for every n x 1 matriz b.
) det(A) # 0.
)

The column vectors of A are linearly independent.

LSS,

) The row vectors of A are linearly independent.
7)  The column vectors of A span R".

k) The row vectors of A span R".

) The column vectors of A form a basis for R".

e e Ve N e e N e N N e i e N N N N

m) The row vectors of A form a basis for R™.

n) A has rank n.

0) A has nullity 0.

p) The orthogonal complement of the null space of A is R™.
q) The orthogonal complement of the row space of A is {0}.
r) A =0 is not an eigenvalue of A.
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5.2 Diagonalization

Remark 1. Products of the form P~'AP in which A and P are n x n matrices
and P is invertible can be viewed as transformations

A— PlAP

in which the matrix A is mapped into the matrix P~'AP. These are called
similarity transformations. In general, any property that is preserved by a
similarity transformation is called a similarity invariant and is said to be in-
variant under similarity. o

Table 1 Similarity Invariants

Property Description

Determinant A and P7'AP have the same determinant.
Invertibility A is invertible if and only if P~*AP is invertible.
Rank A and P1AP have the same rank.

Nullity A and P~1AP have the same nullity.

Trace A and P7'AP have the same trace.

Characteristic polynomial

A and P~1AP have the same characteristic polynomial.

Eigenvalues

A and P7'AP have the same eigenvalues.

Eigenspace dimension

If X is an eigenvalue of A (and hence P~'AP) then the eigenspace
of A corresponding to A and the eigenspace of P~1AP
corresponding to A have the same dimension.

Definition 5.2.1. If A and B are square matrices, then we say that B is
similar to A if there is an invertible matrix P such that B = P~1AP.

Remark 2. Note that if B is similar to A, then it is also true that A is similar
to B since we can express A as A = Q' BQ by taking Q = P~!. This being
the case, we will usually say that A and B are similar matrices if either is
similar to the other.

Definition 5.2.2. A square matrix A is said to be diagonalizable if it is similar
to some diagonal matrix; that is, if there exists an invertible matrix P such
that P~YAP is diagonal. In this case the matrix P is said to diagonalize A.
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Theorem 5.2.1. If A is an n X n matriz, the following statements are equiv-
alent.

(a) A is diagonalizable.

(b) A has n linearly independent eigenvectors.

Proof. (a) = (b) Since A is assumed to be diagonalizable, it follows that there
exist an invertible matrix P and a diagonal matrix D such that P7*AP = D

or, equivalently,
AP = PD.

If we denote the column vectors of P by p1, P2, ..., Pn, and if we assume that
the diagonal entries of D are Ay, A9, ..., \,, then the left side of this equation
can be expressed as

AP =A [Pl P2 - Pn] = [Apl Apy - Apni|
and the right side can be expressed as
PD = [\pi hops -+ Aapa|.
Thus, it follows that
Ap1 = Mip1,  Ap2 = \2p2,..., APn = AiPn
Since P is invertible, we know that its column vectors pi,ps, ..., P, are lin-

early independent (and hence nonzero). Thus, it follows that these n column
vectors are eigenvectors of A.
(b) = (a) Assume that A has n linearly independent eigenvectors, p1, pa, - - -, Pn,

and that A, Ao, ..., A\, are the corresponding eigenvalues. If we let
P = [Pl P2 - Pn]
and if we let D be the diagonal matrix that has A, Ag, ..., A\, as it successive
diagonal entries, then
AP:A[Pl P2 - pn] = [Apl Aps -+ Apa
= [)\1P1 APz Anpn} = PD.

Since the column vectors of P are linearly independent, it follows that P is
invertible, so that this last equation can be rewritten as P~'AP = D, which
shows that A is diagonalizable. O

Theorem 5.2.2.
(a) If A1, Ao, ..., A\ are distinct eigenvalues of a matriz A, and if vi,va, ..., Vg
are corresponding eigenvectors, then {vi,va, ..., vy} is a linearly inde-

pendent set.
(b) Anmn x n matriz with n distinct eigenvalues is diagonalizable.
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Example 1. Find a matrix P that diagonalizes

0
A= |1
1

o NN O
W = N

Example 2. Show that the following matrix is not diagonalizable:

1 0 0
A= 1 2 0
-3 5 2
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Example 3. Show that the matrix

0 1 0
A=10 0 1
4 —17 8
is diagonalizable.
Example 4. Show that the matrix
-1 2 4 0
o 3 1 7
A= 0 0 5 8
0 0 0 -2

is diagonalizable.

Theorem 5.2.3. If k is a positive integer, X is an eigenvalue of a matrixz A,
and x is a corresponding eigenvector, then \* is an eigenvalue of A* and x is
a corresponding eigenvector.

Example 5. In example 2 we found the eigenvalues and corresponding eigen-
vectors of the matrix

1 0 0
A= 1 2 0
-3 5 2

Do the same for A7.
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Remark 3. Suppose that A is a diagonalizable n xn matrix, that P diagonalizes

A, and that

M O - 0
) Ny - 0
P AP = . .| =D.
0 0 - )\,
If k£ is a positive integer, then
)\]f 0O --- 0
0O N ...
AF—pptpt=p| 7 | P
0 0 --- X

Example 6. Use Remark 3 to find A'?, where

A=

— = O
oo
W = N
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Example 7. Use the matrices
1 00 110
I=10 10 and J= |0 11
0 01 00 1

to show that the converse of Theorem 5.2.2(b) is false.

Remark 4. If )y is an eigenvalue of an n x n matrix A, then the dimension of
the eigenspace corresponding to \g is called the geometric multiplicity of Ay,
and the number of times that A — Ay appears as a factor in the characteristic
polynomial of A is called the algebraic multiplicity of Ag.

Theorem 5.2.4 (Geometric and Algebraic Multiplicity). If A is a square
matriz, then:
(a) For every eigenvalue of A, the geometric multiplicity is less than or equal
to the algebraic multiplicity.
(b) A is diagonalizable if and only if the geometric multiplicity of every eigen-
value is equal to the algebraic multiplicity.
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5.3 Complex Vector Spaces

Definition 5.3.1. If n is a positive integer, then a complex n-tuple is a se-
quence of n complex numbers (v, va, ..., v,). The set of all complex n-tuples
is called complex n-space and is denoted by C™. Scalars are complex num-
bers, and the operations of addition, subtraction, and scalar multiplication are
performed componentwise.

Example 1. Let

=(3+14,—2i,5) and A= 46— 9

144 —z’]

Find ¥, Re(v), Im(v), 4, Re(A), Im(A), and det(A).

Theorem 5.3.1. If u and v are vectors in C", and if k is a scalar, then:

(a) T=u

(b) ku = ku

(c) u

(d) u
Theorem 5.3.2. If A is an m x k complex matrixz and B is a k X n complex
matrix, then:

(a) A=A

(b) (A7) =AD"

(¢) AB=AB

C!I =]

+

<l <l

Definition 5.3.2. If u = (uy, ug, ..., u,) and v = (vy, v, ...,v,) are vectors
in C™, then the complex FEuclidean inner product of u and v (also called the
complex dot product) is denoted by u - v and is defined as

U-V =UjU1 + UV + - - - + UpUp,.

We also define the Euclidean norm on C™ to be

VIl = Vv v = V]or2 + [oa2 + -+ foa].
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Example 2. Find u- v, v-u, ||uf|, and ||v]| for the vectors

u=(1+443-14) and v=(1+1i72 4.

Theorem 5.3.3. Ifu, v, and w are vectors in C™, and if k is a scalar, then
the complex Fuclidean inner product has the following properties:

u-v=v-u

)
() u-(v+w)=u-v+u-w
(¢) k(u-v)=(ku)-v
(d) u-kv==Fk(u-v)
(e) v.-v>0andv-v =0 if and only if v=0.

Theorem 5.3.4. If A is an eigenvalue of a real n X n matriz A, and if x is
a corresponding eigenvector, then A is also an eigenvalue of A, X is a corre-
sponding eigenvector.

Proof. Since A is an eigenvalue of A and x is a corresponding eigenvector, we

have
Ax = \x = MX.

However, A = A, since A has real entries, so it follows that
Ax = Ax = AX.

Therefore B

AX = Ax = XX
in which Z # 0; this tells us that X is an eigenvalue of A and X is a corre-
sponding eigenvector. O]
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Example 3. Find the eigenvalues and bases for the eigenspaces of

-2 —1
e
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Theorem 5.3.5. If A is a 2 X2 matriz with real entries, then the characteristic
equation of A is N2 — tr(A)\ + det(A) =0 and

(a) A has two distinct real eigenvalues if tr(A)* — 4 det(A) > 0;

(b) A has one repeated real eigenvalue if tr(A)* — 4det(A) = 0;

(¢) A has two complex conjugate eigenvalues if tr(A)? — 4det(A) < 0.

Example 4. In each part, use the characteristic equation to find the eigen-
values of

Theorem 5.3.6. If A is a real symmetric matriz, then A has real eigenvalues.

Proof. Suppose that A is an eigenvalue of A and x is a corresponding eigen-
vector, where we allow for the possibility that A is complex and x is in C™.
Thus,

Ax = Ax

where x # 0. If we multiply both sides of this equation by X’ and use the fact
that
X' Ax =% (\x) = M(X'x) = A(x-x) = \|x|)?
then we obtain
7l Ax
[Ix[>
Since the denominator in this expression is real, we can prove that A is real
by showing that

=

' Ax = X7 Ax.

But A is symmetric and has real entries, so it follows that

X Ax =% Ax = x"Ax = (Ax)Tx = (AX)'x = (AX)'x = xT ATx = x" Ax.

[]
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Theorem 5.3.7. The eigenvalues of the real matriz
a —b
b a
are A\ =a =+ bi. If a and b are not both zero, then this matriz can be factored
a —b| ||A 0] |cos¢ —sing
b al |0 |N||sing coso

where ¢ is the angle from the positive x-axis to the ray that joins the origin to
the point (a,b).

O:

Proof. The characteristic equation of C' is (A — a)? + b* = 0, from which it
follows that the eigenvalues of C' are A = a 4 bi. Assuming that a and b are
not both zero, let ¢ be the angle from the positive z-axis to the ray that joins
the origin to the point (a,b). The angle ¢ is an argument of the eigenvalue
A=a+ bi, so

a=|Acos¢ and b= |\|sin¢.

It follows from this that the matrix C' can be written as

a b
a —=bl A O[]\ A _[IA 0| |cosg —sing 0
b oal |0 M| | al| |0 |A]||sing cos¢

A

Theorem 5.3.8. Let A be a real 2 X 2 matriz with complex eigenvalues \ =
a+bi (where b#0). If x is an eigenvector of A corresponding to A = a — bi,

then the matriz P = [Re(x) Im(x)] is invertible and

a —b

_ —1
A—Pb aP.

Example 5. Factor the matrix in Example 3 into the form given in Theorem
5.3.8 using the eigenvalue A = —i and the corresponding eigenvector previously
obtained.
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5.4 Differential Equations

Remark 1. A differential equation is an equation involving unknown functions
and their derivatives. The order of a differential equation is the order of the
highest derivative it contains. The simplest differential equations are the first-
order differential equations of the form

y =ay

where y = f(z) is an unknown differentiable function to be determined, y' =
dy/dz is its derivative, and a is a constant. As with most differential equations,
this equation has infinitely many solutions; they are the functions of the form

y — Ceax

where ¢ is an arbitrary constant. That every function of this form is a solution
follows from the computation

Yy = cae™ = ay.

Accordingly, we call y = ce® the general solution of 3/ = ay.

A condition which specifies the value of the general solution at a point is
called an initial condition, and the problem of solving a differential equation
subject to an initial condition is called an initial-value problem.

Remark 2. The system of differential equations

Yy = anyr + aoye + -+ a1pln
Yy = a1 + G2y + -+ + AonYn

Y, = Qn1Y1 + AnoYa + -+ - + ApnYn.

where y; = f1(x),y2 = fa(x),...,yn = fa(x) are functions to be determined,
and the a;;’s are constants, is called a constant coefficient first-order homoge-
neous linear system. The solution

yi=y2=-"=yY,=0

is called the trivial solution.

178



Linear Algebra - 5.4 Differential Equations

Example 1.

(a) Write the following system in matrix form:

Z/i = 3u
Yy = =2y
Y5 = 5ys

(b) Solve the system.

(c¢) Find a solution of the system that satisfies the initial conditions y;(0) =
1, y2(0) = 4, and y3(0) = —2.
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Example 2.

(a) Solve the system
M= nt u
Yo = 4y — 2.

(b) Find the solution that satisfies the initial conditions y;(0) = 1, y2(0) = 6.
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5.5 Dynamical Systems and Markov Chains

Remark 1. A dynamical system is a finite set of variables whose values change
with time. The value of a variable at a point in time is called the state of the
variable at that time, and the vector formed from these states is called the
state vector of the dynamical system at that time.

Example 1. Suppose that two competing television channels, channel 1 and
channel 2, each have 50% of the viewer market at some initial point in time.
Assume that over each one-year period channel 1 captures 10% of channel 2’s
share, and channel 2 captures 20% of channel 1’s share. What is each channel’s
market share after one year?
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Example 2. Track the market shares of channels 1 and 2 in Example 1 over
a five-year period.
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Remark 2. In many dynamical systems the states of the variables are not
known with certainty but can be expressed as probabilities; such dynamical
systems are called stochastic processes. Stated informally, the probability that
an experiment or observation will have a certain outcome is the fraction of time
that the outcome would occur if the experiment could be repeated indefinitely
under constant conditions—the greater the number of actual repetitions, the
more accurately the probability describes the fraction of time that the outcome
occurs.

Example 3. Interpret the entries in the state vector in Example 1 as proba-
bilities.

Remark 3. A square matrix, each of whose columns is a probability vector, is
called a stochastic matrix.

Definition 5.5.1. A Markov chain is a dynamical system whose state vectors
at a succession of equally spaced times are probability vectors and for which
the state vectors at successive times are related by an equation of the form

x(k+1) = Px(k)

in which P = [p;;] is a stochastic matrix and p;; is the probability that the
system will be in state ¢ at time ¢ = k£ + 1 if it is in state j at time t = k. The
matrix P is called the transition matrix for the system.
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Example 4. Suppose that a tagged lion can migrate over three adjacent game
reserves in search of food: Reserve 1, Reserve 2, and Reserve 3. Based on data
about the food resources, researchers conclude that the monthly migration
pattern of the lion can be modeled by a Markov chain with transition matrix

Reserve at time t = k
1 2 3

05 04 06| 1
P=102 02 03| 2 Reserve at timet=%k-+1
03 04 01| 3

That is,

p11 = 0.5 = probability that the lion will stay in Reserve 1 when it is in Reserve 1
p12 = 0.4 = probability that the lion will move from Reserve 2 to Reserve 1
p13 = 0.6 = probability that the lion will move from Reserve 3 to Reserve 1
po1 = 0.2 = probability that the lion will move from Reserve 1 to Reserve 2
pas = 0.2 = probability that the lion will stay in Reserve 2 when it is in Reserve 2
po3 = 0.3 = probability that the lion will move from Reserve 3 to Reserve 2
p31 = 0.3 = probability that the lion will move from Reserve 1 to Reserve 3
p32 = 0.4 = probability that the lion will move from Reserve 2 to Reserve 3

p33 = 0.1 = probability that the lion will stay in Reserve 3 when it is in Reserve 3.

Assuming that ¢ is in months and the lion is released in Reserve 2 at time ¢t = 0,
track its probable locations over a six-month period, and find the reserve in
which it is most likely to be at the end of that period.
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Remark 4. In a Markov chain with an initial state of x(0), the successive state
vectors are

x(1) = Px(0), x(2)=Px(1), x(3)=Px(2), x(4)=Px(3),....

For brevity, it is common to denote x(k) by X, which allows us to write the
successive state vectors more briefly as

x; = Pxg, X9 =Pxy, X3=Px5, x4=Px3,....

Alternatively, these state vectors can be expressed in terms of the initial state
vector X, as

X1:PX0, XQZP(PXO):P2XO, XgZP(P2X0>:P3X0, X4:P(P3X0):P4X0,...

from which it follows that
x; = P*xq.

Example 5. Use Remark 4 to find the state vector x(3) in Example 2.

Example 6. The matrix

P =

0 1
10
is stochastic and hence can be regarded as the transition matrix for a Markov
chain. Find the successive states in the Markov chain with initial vector xg.

185



Linear Algebra - 5.5 Dynamical Systems and Markov Chains

Remark 5. We say that a sequence of vectors
X1, Xo,..., Xg,...

approaches a limit q or that it converges to q if all entries in x; can be made
as close as we like to the corresponding entries in the vector q by taking k to
be sufficiently large. We denote this by writing x, — q as kK — oo. Similarly,
we say that a sequence of matrices

PPy DPs,.... Py, ...

converges to a matrix ), written P, — @) as k — o0, if each entry of P can
be made as close as we like to the corresponding entry of ) by taking k to be
sufficiently large.

Definition 5.5.2. A stochastic matrix P is said to be regular if P or some pos-
itive power of P has all positive entries, and a Markov chain whose transition
matrix is regular is said to be a regular Markov chain.

Example 7. Which transition matrices in Examples 2, 4, and 6 are regular?

Theorem 5.5.1. If P is the transition matriz for a reqular Markov chain,
then:

(a) There is a unique probability vector q with positive entries such that

Pq=q.
(b) For any initial probability vector Xq, the sequence of state vectors

k
X, PXQ,..., PXO,...

converges to q.
(¢) The sequence P, P2, P3, ... Pk ... converges to the matriz QQ each of
whose column vectors is q.

Remark 6. The vector q in Theorem 5.5.1 is called the steady-state vector of
the Markov chain.
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Example 8. Find the steady-state vector of the Markov chain in Example 2.

Example 9. Find the steady-state vector of the Markov chain in Example 4.
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Chapter 6

Inner Product Spaces

6.1 Inner Products

Definition 6.1.1. An inner product on a real vector space V is a function
that associates a real number (u,v) with each pair of vectors in V' in such a
way that the following axioms are satisfied for all vectors u, v, and w in V'
and all scalars k.

1. (u,v) = (v,u)

2. (u+v,w)=(u,w)+ (v,w)

3. (ku,v) = k(u,v)

4. (v,v) >0 and (v,v) =0 if and only if v =0

A real vector space with an inner product is called a real inner product space.

Remark 1. The inner product
(W, v) =u-v =1uv; + ugg + + - - + Uy,

of two vectors u and v in R" is called the Euclidean inner product (or the stan-
dard inner product) on R" to distinguish it from other possible inner products
that might be defined on R". We call R" with the Euclidean inner product
Euclidean n-space.

Definition 6.1.2. If V' is a real inner product space, then the norm (or length)
of a vector v in V' is denoted by ||v|| and is defined by

VIl = v (v, v)
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and the distance between two vectors is denoted by d(u,v) and is defined by

du,v) = Jlu— v = Vu—v,u—v).
A vector of norm 1 is called a unit vector.

Theorem 6.1.1. If u and v are vectors in a real inner product space V, and
if k is a scalar, then:

(a) |Iv] > 0 with equality if and only if v = 0.

(0) kvl = &[]V

(¢) d(u,v)=d(v,u).

(d) d(u,v) >0 with equality if and only if u=v.
Remark 2. If

Wy, W2, ..., Wy

are positive real numbers, which we will call weights, and if u = (uy, ug, . .., uy,)
and v = (v1,v9,...,v,) are vectors in R", then it can be shown that the
formula

(W, v) = wiugvy + watigvg + -+ + + Wy, Uy,

defines an inner product on R"™ that we call the weighted Euclidean inner
product with weights wy, wo, ..., w,.

Example 1. Let u = (u;,uz) and v = (vy,v3) be vectors in R, Verify that
the weighted Euclidean inner product

(u,v) = 3ugv; + 2ugvy

satisfies the four inner product axioms.
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Example 2. Calculate ||u|| and d(u,v) for the vectors u = (1,0) and v =
(0,1) in R? with the Euclidean inner product and with the weighted Euclidean
inner product from Example 1.

Definition 6.1.3. If V is an inner product space, then the set of points in V/
that satisfy
[uf[ =1

is called the unit sphere or sometimes the unit circle in V.

Example 3.

(a) Sketch the unit circle in an zy-coordinate system in R? using the Eu-
clidean inner product (u, v) = ujv; + ugvs.

(b) Sketch the unit circle in an zy-coordinate system in R? using the weighted

Euclidean inner product (u,v) = %ulvl + }luwg.
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Remark 3. The Euclidean inner product and the weighted Euclidean inner
products are special cases of a general class of inner products on R™ called
matrix inner products. To define this class of inner products, let u and v be
vectors in R™ that are expressed in column form, and let A be an invertible
n X n matrix. It can be shown that if u - v is the Euclidean inner product on
R™, then the formula

(u,v) = Au- Av

also defines an inner product; it is called the inner product on R™ generated
by A.

Example 4. Show that the standard Euclidean and weighted Euclidean inner
products are special cases of matrix inner products.

Example 5. The weighted Euclidean inner product discussed in Example 1
is the inner product on R? generated by what matrix?

Example 6. If u = U and v = V are matrices in the vector space M,,,, then

show that the formula
(u,v) = tr(UTV)

defines an inner product on M, called the standard inner product on that
space.
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Example 7. If
p=ay+ax+---+a,x" and q=by+byx+---+bx"

are polynomials in P,, then show that the following formula defines an inner
product on P, that we call the standard inner product on this space:

(P, q) = agby + arby + - - - + anby.

Example 8. If
p=ay+ax+---+a,xz" and q=by+byx+---+bx"

are polynomials in P,, and if xg,21,..., 2, are distinct real numbers (called
sample points), then show that the formula

(P, q) = p(wo)q(zo) + p(x1)q(z1) + - - + p(an)q(y).

defines an inner product on P, called the evaluation inner product at zg, 1, . . ., z,.
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Example 9. Let P, have the evaluation inner product at the points
ro=-—2, x1=0, and xo=2.

Compute (p,q) and ||p|| for the polynomials p = p(z) = 2% and q = ¢(z) =
1+ x.

Example 10. Let f = f(z) and g = g(z) be two functions in Cfa,b] and
define

(f,g) :/ f(x)g(z)dx.

Show that this formula defines an inner product on Cla, b].
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Example 11. If C'[a, b] has the inner product that was defined in Example 10,
then what is the norm of a function f = f(x) relative to this inner product?

Theorem 6.1.2. Ifu, v, and w are vectors in a real inner product space V,
and if k is a scalar, then:
(a) (0,v) =(v,0)=0
(b) (u,v+w)=(u,v)+ (uw)
(¢) (u,v—w)=(u,v)—(uw)
( <u_V7W>:<u7W>_<V7W>
(

k(u,v) = (u, kv)

Example 12. Compute
(u—2v,3u+4v)

in terms of ||u|, [|v||, and (u,v).
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6.2 Angle and Orthogonality in Inner Product
Spaces

Theorem 6.2.1 (Cauchy-Schwarz Inequality). If u and v are vectors in a real
inner product space V', then

[(w, v)| < [[ulf][v]].

Proof. In the case where u = 0 the two sides of the inequality are equal since
(u,v) and |[u]| are both zero. Thus, we need only consider the case where
u # 0. Making this assumption, let

a=(u,u), b=2uv), c=(v,v)

and let ¢ be any real number. Since the positivity axiom states that the inner
product of any vector with itself is nonnegative, it follows that

0< (tu+v,tu+v) = (u,w)t* + 2(u, v)t + (v, v)
= at® + bt + c.

This inequality implies that the quadratic polynomial at? + bt + ¢ has either
no real roots or a repeated real root. Therefore, its discriminant must satisfy
the inequality b? — 4ac < 0. Expressing the coefficients a, b, and ¢ in terms of
the vectors u and v gives 4(u,v)? — 4(u, u)(v, v) < 0 or, equivalently,

(u,v)? < (uw,u)(v,v).

Taking square roots of both sides and using the fact that (u,u) and (v, v) are
nonnegative yields

[(u, v)] < (u,w)2(v,v)!"2 or equivalently  |{u,v)| < [[u|[[v]. O

Remark 1. If u and v are vectors in a real inner product space V', then the
angle 6 between u and v is defined to be

o=cos” (qaier)
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Example 1. Let My have the standard inner product. Find the cosine of the
angle between the vectors

Theorem 6.2.2. Ifu, v, and w are vectors in a real inner product space V.,
and if k is a scalar, then:

(a) flu+v] < ufl+ vl

(b) d(u,v) < d(u, w) +d(w,v)

Definition 6.2.1. Two vectors u and v in an inner product space V' are called
orthogonal if (u,v) = 0.

Example 2. Are the vectors u = (1,1) and v = (1,—1) orthogonal with
respect to the Euclidean inner product on R?? What about with respect to
the weighted Fuclidean inner product (u,v) = 3ujv; + 2ugvy?

Example 3. If M,, has the inner product of Example 6 in the preceding
section, then are the matrices

0 2

0 0

10

U=11 1

] and V =

orthogonal?
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Example 4. Let P, have the inner product

(P, Q) = / p(a)q(x) de

1

and let p = z and q = 2. Find ||p| and ||q|| and show that p and q are
orthogonal relative to the given inner product.

Theorem 6.2.3 (Generalized Theorem of Pythagoras). If u and v are or-
thogonal vectors in a real inner product space, then

Jla+ vI* = [al* + [ v]f*.

Proof. The orthogonality of u and v implies that (u,v) =0, so

[l +vI[* = (ut+v,u+v) = [[ul* + 2(u, v) + ||v|
= [[ul* + [Iv]*. O

Example 5. Verify Theorem 6.2.3 for the vectors p and q and inner product
discussed in Example 4.

Definition 6.2.2. If W is a subspace of a real inner product space V', then
the set of all vectors in V' that are orthogonal to every vector in W is called
the orthogonal complement of W and is denoted by the symbol W+,
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Theorem 6.2.4. If W s a subspace of a real inner product space V', then:
(a) W is a subspace of V.
(b) WnWw+=/{0}.

Proof. (a) The set W+ contains at least the zero vector, since (0,w) = 0
for every vector w in W. Thus, it remains to show that W+ is closed under
addition and scalar multiplication. To do this, suppose that u and v are
vectors in W+, so that for every vector w in W we have (u,w) = 0 and
(v,w) = 0. It follows from the additivity and homogeneity axioms of inner
products that

(u+v,w)=(u,w)+(v,w)=0+0=0
(ku,w) = k(u,w) =k(0) =0

which proves that u + v and ku are in W+,

(b) If v is any vector in both W and W+, then v is orthogonal to itself; that
is, (v,v) = 0. It follows from the positivity axiom for inner products that
v=0. O

Theorem 6.2.5. If W is a subspace of a real finite-dimensional inner product
space V, then the orthogonal complement of W+ is W ; that is,

(WHt=Ww.
Example 6. Let W be the subspace of R® spanned by the vectors

wy =(1,3,-2,0,2,0),  wy=(2,6,—5,—24—3),
ws = (0,0,5,10,0,15),  wy = (2,6,0,8,4,18).

Find a basis for the orthogonal complement of W.
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6.3 Gram-Schmidt Process; QR-Decomposition

Definition 6.3.1. A set of two or more vectors in a real inner product space
is said to be orthogonal if all pairs of distinct vectors in the set are orthogonal.
An orthogonal set in which each vector has norm 1 is said to be orthonormal.

Example 1. Let
Vi = (O’ 170)7 Vo = (1707 1)a V3 = (1707 _1)

and assume that R? has the Euclidean inner product. Is the set S = {vy, vy, v3}
orthogonal?

Remark 1. The process of multiplying a vector v by the reciprocal of its length
is called normalizing v.

Example 2. Normalize the vectors v{, vo, and v3 in Example 1.

Theorem 6.3.1. If S = {vy,va,...,v,} is an orthogonal set of nonzero vec-
tors in an inner product space, then S s linearly independent.

Proof. Assume that
/{31V1 + kQVg + -+ ]{van =0.

To demonstrate that S = {vy,vs,...,v,} is linearly independent, we must
prove that k1 = ks =--- =k, =0.
For each v; in S, it follows that

<k}1V1 + kngQ + 4 knvn7 Vi) = <0a Vi> =0
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or, equivalently,
ki (vi, vi) + ka(va, vi) + - - 4 kp(viy, vi) = 0.

From the orthogonality of S it follows that (v;,v;) = 0 when j # ¢, so this
equation reduces to
ki<vi>vi> = O

Since the vectors in S are assumed to be nonzero, it follows from the positivity
axiom for inner products that (v;,v;) # 0. Thus, the preceding equation
implies that each k; is zero, which is what we wanted to prove. O

Remark 2. In an inner product space, a basis consisting of orthonormal vectors
is called an orthonormal basis, and a basis consisting of orthogonal vectors is
called an orthogonal basis.

Example 3. Show that the standard basis is orthonormal with respect to the
standard inner product for P,.

Example 4. Show that the vectors u;, uy, and uz from Example 2 form an
orthonormal basis for R3.

Theorem 6.3.2.

(a) If S ={vy,va,..., vy} is an orthogonal basis for an inner product space
V', and if u is any vector in 'V, then

<l.1, V1> <u7 V2> <U_, Vn)
u = 1 Vo R V.
[[ve]|? [[va|[? [[va[?
(b) If S = {v1,va,..., vV} is an orthonormal basis for an inner product

space V', and if u is any vector in 'V, then

u = (u,v)vy + (U, vo)vo + -+ - + (U, v, ) vy,.
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Proof. (a) Since S = {vy,Vs,...,Vv,} is a basis for V, every vector u in V' can
be expressed in the form

u=cvy+cyvy+---+c,vy,.
We will complete the proof by showing that

Co = <u> Vi>
o lal?

fort=1,2,...,n. To do this, observe first that

(u,v;) = (c1v1 + CaVa + - - + ¢V, V)

= c1(vy, Vi) + ca(Va, Vi) + - + cp(Vi, Vo).

Since S is an orthogonal set, all of the inner products in the last equality are
zero except the 7th, so we have

(W, vi) = ci(vi, vi) = Ci||vi||2~
Solving this equation for ¢; yields the desired result.
(b) Here [|v1]| = [|[ve| = -+ = ||v.]| = 1, so part (a) simplifies to part (b). [

Remark 3. The coordinate vector of a vector u in V relative to an orthogonal
basis S = {vq,va,..., Vv, } is

(u)s = <<U=V1> (1, va) (u,vn)>

[vall2 7 flval® 77 [[vall?
and relative to an orthonormal basis S = {vy,va,...,v,} is
(w)s = ((u,vy), (u,va), ..., (u,vy)).

Example 5. Let
Vi :(071a0)7 V2 = (_éa()?%)v Vs = (gaoa %)

It is easy to check that S = {vy, vy, v3} is an orthonormal basis for R? with
the Euclidean inner product. Express the vector u = (1,1,1) as a linear
combination of the vectors in S and find the coordinate vector (u)s.
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Example 6.
(a) Show that the vectors

w; = (0,2,0), wo=(3,0,3), w3=(—4,0,4)

form an orthogonal basis for R?* with the Euclidean inner product, and
use that basis to find an orthonormal basis by normalizing each vector.

(b) Express the vector u = (1,2,4) as a linear combination of the orthonor-
mal basis vectors obtained in part (a).

Theorem 6.3.3 (Projection Theorem). If W is a finite-dimensional subspace
of an inner product space V, then every vector u in V can be expressed in
exactly one way as

u=w; + Wy

where wy is in W and wo is in W=.
Remark 4. The vectors w; and wy in Theorem 6.3.3 are commonly denoted
Wi = projyyu and Wy = projy,. .

These are called the orthogonal projection of u on W and the orthogonal pro-
jection of u on W+, respectively. The vector w, is also called the component
of u orthogonal to W. Using this notation, we can write

U = Projyy U + projy, u = projy u -+ (u — projy u).
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Theorem 6.3.4. Let W be a finite-dimensional subspace of an inner product
space V.

(a) If {vi,va,...,V,.} is an orthogonal basis for W, and u is any vector in
V', then
: (u,v1> <11, V2> <1_1,V,,>
pProjyy u = 1 Vo + o+ ——— V.
v [ f? [[vall? v ||
(b) If{vi,va,...,v.} is an orthonormal basis for W, and u is any vector in
V', then

projyy u = (u, vi)vy + (U, vo)vy + - - + (u, v,.)v,.

Proof. (a) It follows from Theorem 6.3.3 that the vector u can be expressed
in the form u = w; + wo, where wy; = projyy u is in W and wy is in W+
and it follows from Theorem 6.3.2 that the component proj;; u = wy can be
expressed in terms of the basis vectors for W as

Wi,V Wi,V Wi, Ve
(Wi, v1) (w1 2>V2+...+er.

projyy u = wi =

Since ws is orthogonal to W, it follows that
<W2,V1> = <W27V2> == <W2,V7«> = Oa

SO we can write

(W1 + W, vy) (W1 + Wa, Vo) o (W1 + W, v,.)

pProjyy U = wy = Vo
v [[vall? [[ve]?

T

or, equivalently, as

<u7V1> <u,v2> <u7v7“>
A% Vo + -+ V.
il ™ el vl

pProjjy u = wj =

(b) Here ||vy|| = |||l = --- = ||v,|| = 1, so part (a) simplifies to part (b). O

Example 7. Let R? have the Euclidean inner product, and let W be the sub-
space spanned by the orthonormal vectors vi = (0,1,0) and v, = (—%,0, ).
Find the orthogonal projection of u = (1,1,1) on W and the component of u
orthogonal to W.
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Theorem 6.3.5. FEvery nonzero finite-dimensional inner product space has an
orthonormal basis.

Proof. Let W be any nonzero finite-dimensional subspace of an inner product

space, and suppose that {uj,us,...,u,} is any basis for W. It suffices to

show that W has an orthogonal basis since the vectors in that basis can be

normalized to obtain an orthonormal basis. The following sequence of steps

will produce an orthogonal basis {vy, va,...,v,} for W:

Step 1. Let vi = u;.

Step 2. We can obtain a vector v, that is orthogonal to v; by computing the
component of u, that is orthogonal to the space W; spanned by vj.
Using Theorem 6.3.4,

Vo = Uy — pI‘OjVV1 Uy = Ug —

Of course, if vo = 0, then v, is not a basis vector. But this cannot
happen, since it would then follow from the preceding formula for v

that ( > ( >
Uz, vy Uz, Vi

Uy = Vi = u;

[[va][? [ 2

which implies that uy is a multiple of u;, contradicting the linear
independence of the basis {uj,us, ..., u.}.

Step 3. To construct a vector vs that is orthogonal to both v; and vy, we
compute the component of uz orthogonal to the space W5 spanned by
vy and vy. Using Theorem 6.3.4,

V3 = U3 — pI'Oj uz — usg — <U37 Vl) 1 <U37 V2>V2
= W, Uz = .
’ [[val[? [[va[?
As in Step 2, the linear independence of {u;, uy, ..., u,} ensures that

V3 7é 0.

Step 4. To determine a vector v, that is orthogonal to vy, vy, and vs, we
compute the component of uy orthogonal to the space W3 spanned by
v1, Vg, and vs. Using Theorem 6.3.4,

<u47vl> <U4,V2> <U4,V3>
L 2 V27 Tvallz
INel INell

V4 = U4 — Projy, Uy = Uy — V3.

Continuing in this way we will produce after r steps an orthogonal set of

nonzero vectors {vy, va,..., v, }. Since such sets are linearly independent, we
will have produced an orthogonal basis for the r-dimensional space W. By
normalizing these basis vectors we can obtain an orthonormal basis. O]
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Example 8. Assume that the vector space R* has the Euclidean inner prod-
uct. Apply the Gram-Schmidt process to transform the basis vectors

u; = (1, 1, 1), Uy = (07 1, 1), Uz = (0,0, 1)

into an orthogonal basis {vy, vo, v3}, and then normalize the orthogonal basis
vectors to obtain an orthonormal basis {qi, q2, qs}.
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Example 9. Let the vector space P, have the inner product

(p,a) 2/_ p(z)q(z) dx.

1

Apply the Gram-Schmidt process to transform the standard basis {1,z, 2%}
for P, into an orthogonal basis {¢1(x), pa(x), ¢3(x)}.

Theorem 6.3.6. If W is a finite-dimensional inner product space, then:

(a) Ewvery orthogonal set of nonzero vectors in W can be enlarged to an or-
thogonal basis for W.
(b) FEwvery orthonormal set in W can be enlarged to an orthonormal basis for

w.
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Theorem 6.3.7 (QR-Decomposition). If A is an m x n matriz with linearly
independent column vectors, then A can be factored as

A=QR

where () is an m X n matriz with orthonormal column vectors, and R is an
n X n invertible upper triangular matriz.

Example 10. Find a () R-decomposition of

A:

—_ =
=)
—_ o O
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6.4 Best Approximation; Least Squares

Theorem 6.4.1 (Best Approximation Theorem). If W is a finite-dimensional
subspace of an inner product space V', and if b is a vector in V', then projy, b
1s the best approximation to b from W in the sense that

b — projy bl < [[b —w||

for every vector w in W' that is different from projy, b.

Proof. For every vector w in W, we can write
b —w = (b — projy b) + (projy b — w).

But projy,, b — w, being a difference of vectors in W, is itself in W; and since
b —projy, b is orthogonal to W, the two terms on the right side of the equation
are orthogonal. Thus, it follows from the Theorem of Pythagoras that

b —w|[* = [[b — projy, b||* + || projy, b — wl|*.

If w # projy, b, it follows that the second term in this sum is positive, and
hence that
b — projy bl|* < [Ib — w]*.

Since norms are nonnegative, it follows that
b — projy, bl| < b —w]|. O

Theorem 6.4.2. For every linear system Ax = b, the associated normal sys-
tem

ATAx = AT

is consistent, and all solutions are least squares solutions of Ax = b. More-
over, if W is the column space of A, and x is any least squares solution of
Ax = b, then the orthogonal projection of b on W is

projy b = Ax.
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Example 1. Find the least squares solution, the least squares error vector,
and the least squares error of the linear system

r1 — X2 =4
3r; +2z9 =1
—21]1 +4ZL’2 = 3.
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Example 2. Find the least squares solutions, the least squares error vector,
and the least squares error of the linear system

31’1 + 21’2 — X3 = 2
xr1 — 41’2 + 35(?3 = -2
T+ 101‘2 — 71‘3 = 1.
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Theorem 6.4.3. If A is an m X n matriz, then the following are equivalent.

(a) The column vectors of A are linearly independent.
(b) AT A is invertible.

Theorem 6.4.4. If A is an m X n matriz with linearly independent column
vectors, then for every m x 1 matriz b, the linear system Ax = b has a unique
least squares solution. This solution is given by

x = (ATA)LAD.

Moreover, if W is the column space of A, then the orthogonal projection of b
on W is
projyy b = Ax = A(ATA)'ATb.

Example 3. Use Theorem 6.4.4 to find the least squares solution of the linear
system in Example 1.

Example 4. We showed in Section 3.3 that the standard matrix for the or-
thogonal projection onto the line W through the origin of R? that makes an
angle ¢ with the positive z-axis is

sin 0 cos 0 sin® 6

[ cos?f  sinf cos 9]
9 p—

Derive this result using Theorem 6.4.4.
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Theorem 6.4.5 (Equivalent Statements). If A is an n X n matriz, then the
following statements are equivalent.

(a) A is invertible.

) Ax = 0 has only the trivial solution.

) The reduced row echelon form of A is I,.

) A is expressible as a product of elementary matrices.
) Ax = b is consistent for every n x 1 matriz b.

) Ax = b has ezxactly one solution for every n x 1 matriz b.
) det(A) # 0.

) The column vectors of A are linearly independent.

) The row vectors of A are linearly independent.

7)  The column vectors of A span R".

k) The row vectors of A span R".

) The column vectors of A form a basis for R".

The row vectors of A form a basis for R".

A has rank n.

LSS,

S

e N N e N e N N N R N e i N N N NI N
~—

0) A has nullity 0.

p) The orthogonal complement of the null space of A is R™.
q) The orthogonal complement of the row space of A is {0}.
r) A =0 is not an eigenvalue of A.

s) AT A is invertible.

Theorem 6.4.6. If A is an m X n matriz with linearly independent column
vectors, and if A = QR is a QR-decomposition of A, then for each b in R™
the system Ax = b has a unique least squares solution given by

x=R1'Q"b.
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6.5 Mathematical Modeling Using Least Squares

Theorem 6.5.1 (Uniqueness of the Least Squares Solution). Let (x1,y1), (X2, y2), -, (Tn, Yn)
be a set of two or more data points, not all lying on a vertical line, and let

I @ Y1
1 =z

M= "7 and y= y.2
1 e Yn

Then there is a unique least squares straight line fit
y=a" +br

to the data points. Moreover,

15 given by the formula
V* — (MTM)—IMTy

*

which expresses the fact that v = v* is the unique solution of the normal
equation
MTMv =MTy.

Example 1. Find the least squares straight line fit to the four
points (0, 1), (1,3), (2,4), and (3,4). (See the figure.)
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Example 2. Hooke’s law in physics states that the length x of
a uniform spring is a linear function of the force y applied to it.
If we express this relationship as y = a + bz, then the coefficient
b is called the spring constant. Suppose a particular unstretched
spring has a measured length of 6.1 inches (i.e., z = 6.1 when
y = 0). Suppose further that, as illustrated in the figure, various
weights are attached to the end of the spring and the follow-
ing table of resulting spring lengths is recorded. Find the least
squares straight line fit to the data and use it to approximate
the spring constant.

Weight y (Ib) | 0 | 2 | 4 6
Length z (in) | 6.1 | 7.6 | 8.7 | 10.4
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Example 3. According to Newton’s second law of motion, a body near the
Earth’s surface falls vertically downward in accordance with the equation

1 2
5:so—|—v0t+§gt

where

s = vertical displacement downward relative to some reference point
so = displacement from the reference point at time ¢t = 0
vg = velocity at time t = 0

g = acceleration of gravity at the Earth’s surface.

Suppose that a laboratory experiment is performed to approximate g by mea-
suring the displacement s relative to a fixed reference point of a falling weight
at various times. Use the experimental results shown in the following table to
approximate g.

Time ¢ (sec) 1 2 3 A4 5
Displacement s (ft) | —0.18 | 0.31 | 1.03 | 2.48 | 3.73
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6.6 Function Approximation; Fourier Series

Theorem 6.6.1. If f is a continuous function on [a,b], and W is a finite-
dimensional subspace of Cla,b], then the function g in W that minimizes the
mean square error

b
[ 8@ - g(a)da
15 g = projy £, where the orthogonal projection is relative to the inner product
b
(t.8) = | F)gle)ds

The function g = projy, f is called the least squares approzimation to £ from

w.

Remark 1. A function of the form

T(x) =co+ c1cosx + cacos2z + - -+ + ¢, cos nx
+dysinx + dysin2x + - - - 4+ d,, sinnx

is called a trigonometric polynomial; if ¢, and d,, are not both zero, then T'(z)
is said to have order n.

Remark 2. To find the least squares approximation of a continuous function
f(z) over the interval [0,27] by a trigonometric polynomial of order n or less
we use

projy, £ = % + [ay cosx + - - - + a, cosnz| + [bysinz + - - - + b, sin na]

where
1 2 1 27
ay = —/ f(x)coskxdx, b= —/ f(x)sin kz dz.
™ Jo ™ Jo

The numbers ag, ay,...,ay,,b1,...,b, are called the Fourier coefficients of f.
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Example 1. Find the least squares approximation of f(z) =z on [0, 27| by
(a) a trigonometric polynomial of order 2 or less;

(b) a trigonometric polynomial of order n or less.
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Chapter 7

Diagonalization and Quadratic
Forms

7.1 Orthogonal Matrices

Definition 7.1.1. A square matrix A is said to be orthogonal if its transpose
is the same as its inverse, that is, if

A—l — AT

or, equivalently, if

AAT = ATA=1T.

Example 1. Determine whether the matrix

I

Il

|
N o e
o lw N

W NI o

is orthogonal.
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Example 2. Recall from Table 5 of Section 1.8 that the standard matrix for
the counterclockwise rotation of R? through an angle 6 is

cosf —sinf
sin @ cos@| "’

Verify that this matrix is orthogonal, along with the reflection matrices in
Tables 1 and 2 of Section 1.8.

Theorem 7.1.1. The following are equivalent for an n X n matriz A.

(a) A is orthogonal.

(b) The row vectors of A form an orthonormal set in R™ with the Euclidean
inner product.

(¢) The column vectors of A form an orthonormal set in R™ with the Eu-
clidean inner product.

Theorem 7.1.2.

(a) The transpose of an orthogonal matriz is orthogonal.
(b) The inverse of an orthogonal matriz is orthogonal.
(¢) A product of orthogonal matrices is orthogonal.

(d) If A is orthogonal, then det(A) =1 or det(A) = —1.
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Example 3. Verify Theorem 7.1.2 (d) for the matrix

L
ﬁ]
7|

V2

A=

S-S

Theorem 7.1.3. If A is an n X n matriz, then the following are equivalent.

(a) A is orthogonal.
(b) ||Ax]| = |Ix|| for all x in R".
(¢) Ax- Ay =x-y for allx andy in R".

Proof. (a) = (b) Assume that A is orthogonal, so that ATA = I. Tt follows
that
A = (Ax - Ax)"/2 = (x - ATAx)Y? = (- )'2 = [x].

(b) = (c) Assume that ||Ax|| = ||x]|| for all x in R™. Then we have

Ax - Ay = 7] Ax + Ay||* — {llAx — Ay||* = {[|[A(x +y)[* - I AGx - )|
= 3lx+yl* = glx-yll*=x-y.

(c) = (a) Assume that Ax - Ay =x -y for all x and y in R". It follows that
x-y=x-ATAy
which can be rewritten as x - (AT Ay —y) = 0 or as
x- (ATA - Ty =0.

Since this equation holds for all x in R"™, it holds in particular if
x = (ATA - 1)y, so

(ATA-IDy-(ATA—-I)y =0.
Thus, it follows from the positivity axiom for inner products that
(ATA— Iy =o0.
Since this equation is satisfied by every vector y in R", it must be that ATA—1T

is the zero matrix and hence A’ A = I. Thus, A is orthogonal. m
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Theorem 7.1.4. If S is an orthonormal basis for an n-dimensional inner
product space V', and if

(w)s = (ug,ugy...,u,) and (v)s = (vi,v9,...,0,)

then:
(a) flull = uf+ud+---+ul
(b) d(u,v) = /(ur — v1)? + (ug — v2)? + - - - + (up — v)?
(¢) (u,v) =wujvy + ugvg + - + upvy,

Theorem 7.1.5. Let V be a finite-dimensional inner product space. If P is the
transition matriz from one orthonormal basis for V to another orthonormal
basis for V', then P is an orthogonal matriz.

Example 4. Let the 2'y’-coordinate system be the system obtained by ro-
tating a rectangular xy-coordinate system counterclockwise about the origin
through an angle 6. Write the coordinates (z’,y') in terms of the coordinates

(z,y).
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Example 5. Use the rotation equations for R? to find the new coordinates of
the point (2, 1) if the coordinate axes of a rectangular coordinate system are
rotated through an angle of § = 7 /4.

Example 6. Let the 2'y'2'-coordinate system be the system obtained by ro-
tating a rectangular xyz-coordinate system around its z-axis counterclockwise
through an angle 6. Write the coordinates (z/, v/, z’) in terms of the coordinates

(x’ y? Z)
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7.2 Orthogonal Diagonalization

Definition 7.2.1. If A and B are square matrices, then we say that B is
orthogonally similar to A if there is an orthogonal matrix P such that B =
PTAP.

Remark 1. If A is orthogonally similar to some diagonal matrix, say
PTAP =D

then we say that A is orthogonally diagonalizable and that P orthogonally
diagonalizes A.

Theorem 7.2.1. If A is an n X n matriz with real entries, then the following
are equivalent.

(a) A is orthogonally diagonalizable.
(b) A has an orthonormal set of n eigenvectors.
(¢) A is symmetric.

Theorem 7.2.2. If A is a symmetric matriz with real entries, then:

(a) The eigenvalues of A are all real numbers.
(b) Eigenvectors from different eigenspaces are orthogonal.

Example 1. Find an orthogonal matrix P that diagonalizes

A—

N DN~
DN B~ DN
NN
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Remark 2. If A is a symmetric matrix that is orthogonally diagonalized by
P = |:u1 u2 e un]

and if A\;, A9, ..., A, are the eigenvalues of A corresponding to the unit eigen-
vectors up, Uo, ..., u,, then

A= /\1u1u1T + )\ngug 4+ )\nunuz,

which is called a spectral decomposition of A.

Example 2. Find a spectral decomposition of the matrix

1 2
-l
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Theorem 7.2.3 (Schur’s Theorem). If A is an n X n matriz with real entries
and real eigenvalues, then there is an orthogonal matriz P such that PT AP is
an upper triangular matriz of the form

Al X X eee X
0 X X -+ X
PTAP=10 0 Az - X
00 0 - )\n_
i which Ay, Aa, ..., N\, are the eigenvalues of A repeated according to multi-

plicity.

Theorem 7.2.4 (Hessenberg’s Theorem). If A is an n x n matriz with real
entries, then there is an orthogonal matriz P such that PT AP is a matriz of
the form

[« % v x x x|
X X -0 X X X
0 0 X X X
0 O 0 x X
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7.3 Quadratic Forms

Remark 1. If a1, ao, ..., a, are treated as fixed constants, then the expression
a1x1 + a2 + - - - + ARy

is a real-valued function of the n variables x1, xs, ..., x, and is called a linear
form on R". A quadratic form on R" is a function of the form

a1 77 + agxs + -+ + a,x2 + (all possible terms ayx;x; in which i # 7).

The terms of the form ax;x; are called cross product terms.

Remark 2. If A is a symmetric n X n matrix and x is an n X 1 column vector
of variables, then we call the function

Qa(x) = x Ax

the quadratic form associated with A. When convenient, this function can be
expressed in dot product notation as

x'Ax = x - Ax = Ax - Xx.

Example 1. In each part, express the quadratic form in the matrix notation
xT Ax, where A is symmetric.

(a) 2x* + 6zy — 5y°

(b) x% + Tx3 — 323 + 4x179 — 27173 + 8T273
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Theorem 7.3.1 (The Principal Axes Theorem). If A is a symmetric n X n
matrixz, then there is an orthogonal change of variable that transforms the
quadratic form x* Ax into a quadratic form y* Dy with no cross product terms.
Specifically, if P orthogonally diagonalizes A, then making the change of vari-
able x = Py in the quadratic form x* Ax yields the quadratic form

x"Ax = y" Dy = My; + Aays + - + Ay

in which A, \a, ..., \, are the eigenvalues of A corresponding to the eigenvec-
tors that form the successive columns of P.

Example 2. Find an orthogonal change of variable that eliminates the cross
product terms in the quadratic form Q = 2% — 2% — 4,25 + 42973, and express
() in terms of the new variables.
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Remark 3. A conic section is a curve that results by cutting a double-napped
cone with a plane (see the figure).

N

|
=== -
|
|
|
|
|
|
|
|
|
i

| \

| \\
| [y
|

|

Circle Ellipse Parabola Hyperbola

If the cutting plane passes through the vertex, then the resulting intersection
is called a degenerate conic. An equation of the form

az® 4+ 2bzy +cy* +dr+ey+ f =0

in which a, b, and ¢ are not all zero, represents a conic section. If d = e = 0,
the equation becomes

az® 4 2bxy +cy’ + f =0

and is said to represent a central conic. Furthermore, if b = 0, the equation
becomes

ax® +cy* + f =0
and is said to represent a central conic in standard position. If we take the
constant f in these equations to the right side and let £ = —f, then we can
rewrite these equations in matrix form as

o e s ]

The three-dimensional analogs of these equations are

a d el |x a 0 0f |z
[x Y z] d b f| |yl =k and [x Y z} 0 b 0] |y| =k.
e f c| |z 0 0 cf| |z

If a, b, and c are not all zero, the the graphs in R? of these equations are called
central quadrics; the graph of the second of these equations, which is a special
case of the first, is called a central quadric in standard position.
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Example 3.

(a) Identify the conic whose equation is 5x? — 4y + 8y? — 36 = 0 by rotating
the xy-axes to put the conic in standard position.

(b) Find the angle 6 through which you rotated the zy-axes in part (a).
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Definition 7.3.1. A quadratic form x” Ax is said to be
positive definite if x” Ax > 0 for x # 0;
negative definite if x7 Ax < 0 for x # 0;
indefinite if x” Ax has both positive and negative values.

Theorem 7.3.2. If A is a symmetric matriz, then:

(a) xT Ax is positive definite if and only if all eigenvalues of A are positive.

(b) xT Ax is negative definite if and only if all eigenvalues of A are negative.

(¢) xTAx is indefinite if and only if A has at least one positive eigenvalue
and at least one negative eigenvalue.

Example 4. Determine whether the matrix

3
A= |1
1

N O =
O N =

is positive definite, negative definite, indefinite, or none of these.
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Remark 4. The kth principal submatrix of an n X n matrix A is the k x k
submatrix consisting of the first k£ rows and columns of A.

Theorem 7.3.3. If A is a symmetric 2 X 2 matriz, then:
(a) xT'Ax =1 represents an ellipse if A is positive definite.
(b) xT'Ax =1 has no graph if A is negative definite.

(¢) xTAx =1 represents a hyperbola if A is indefinite.

Theorem 7.3.4. If A is a symmetric matriz, then:

(a) A is positive definite if and only if the determinant of every principal
submatriz s positive.

(b) A is negative definite if and only if the determinants of the principal
submatrices alternate between negative and positive values starting with
a negative value for the determinant of the first principal submatrix.

(¢) A is indefinite if and only if it is neither positive definite nor negative
definite and at least one principal submatriz has a positive determinant
and at least one has a negative determinant.

Example 5. Determine whether the matrix

2 -1 -3
A=1|-1 2 4
-3 4 9

is positive definite, negative definite, indefinite, or none of these.
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7.4 Optimization Using Quadratic Forms

Theorem 7.4.1 (Constrained Extremum Theorem). Let A be a symmetric

n X n matriz whose eigenvalues in order of decreasing size are Ay > g > -+ >
An. Then:
(a) The quadratic form xT Ax attains a mazimum value and a minimum
value on the set of vectors for which ||x|| = 1.

(b) The mazximum value attained in part (a) occurs at a vector corresponding
to the eigenvalue A;.

(¢) The minimum value attained in part (a) occurs at a vector corresponding
to the eigenvalue A, .

Example 1. Find the maximum and minimum values of the quadratic form
2 = ba® + by + dzy

subject to the constraint z? + y? = 1.

233



Linear Algebra - 7.4 Optimization Using Quadratic Forms

Example 2. A rectangle is to be inscribed in the ellipse

42% 4 9y? = 36, as shown in the figure. Use eigenvalue methods
to find nonnegative values of x and y that produce the inscribed
rectangle with maximum area.

\‘(i)’)
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Remark 1. The curves in the xy-plane for which the function ¢ 2=1(xy)
f(z,y) is constant have equations of the form
x Planez =k
flzy) =k N |
and are called the level curves of f (see the figure). ‘ ; : y
| |

/

Example 3. Geometrically interpret the level curves of the /
X Levelcurve f(x,y)=k

quadratic form
2 = ba® + by? + day

subject to the constraint 2% + y? = 1.

Remark 2. If a function f(z,y) has first-order partial derivatives, then its
relative maxima and minima, if any, occur at points where the conditions

fft(xvy> = O and fy(x,y) = 0

are both true. These are called critical points of f. The specific behavior of f
at a critical point (zg,yo) is determined by the sign of

D(Zt,y) = f(xuy) - f(xO,yO)

at points (z,y) that are close to, but different from, (¢, yo):

e If D(z,y) > 0 at points (x,y) that are sufficiently close to, but different
from, (zo,vo), then f(zo,vy0) < f(x,y) at such points and f is said to
have a relative minimum at (g, yo).

e If D(z,y) <0 at points (x,y) that are sufficiently close to, but different
from, (zo,v0), then f(zo,y0) > f(x,y) at such points and f is said to
have a relative maximum at (xg, yo).

e If D(z,y) has both positive and negative values inside every circle cen-
tered at (xo, yo), then are points (x, y) that are arbitrarily close to (xq, yo)
at which f(xo,70) < f(z,y) and points (x,y) that are arbitrarily close
to (xo, o) at which f(xg,y0) > f(x,y). In this case we say that f has a
saddle point at (zo,yo).
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Theorem 7.4.2 (Second Derivative Test). Suppose that (x, o) is a critical
point of f(x,y) and that f has continuous second-order partial derivatives in
some circular region centered at (xo,yo). Then:

(a) f has a relative minimum at (xq,yo) if

fm(xmyo)fyy(xmyo) - fiy(xo,yo) >0 and  fee(z0,%0) >0

(b) f has a relative mazimum at (xq,yo) if

fm(xmyo)fyy(xmyo) - mey(x()?yO) >0 and  fee(z0,%0) <0

(¢) f has a saddle point at (xo,yo) if

foa (@0, Y0) fyy (20, o) — foy (X0, Y0) < 0

(d) The test is inconclusive if

2 (20, Y0) fuy (0, Y0) — f2, (0, %0) = 0

Remark 3. The symmetric matrix

_ | ae(@,y) fay(@,y)
H(zy) = [f:cy(xa?/) fyy(l'ay)]

is called the Hessian or Hessian matrix of f.

Theorem 7.4.3 (Hessian Form of the Second Derivative Test). Suppose that
(xo,Y0) s a critical point of f(x,y) and that f has continuous second-order
partial derivatives in some circular region centered at (xo,yo). If H(xo,yo) is
the Hessian of f at zo,vo), then:

(a
(b
(c
(

) f has a relative minimum at (xg,yo) if H(zo,yo) s positive definite.
) [ has a relative mazimum at (xo,y0) if H(xo,yo) is negative definite.
) f has a saddle point at (xo,yo) if H(zo,yo) is indefinite.

d) The test is inconclusive otherwise.
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Example 4. Find the critical points of the function
flz,y) = 32° + xy® — 8xy + 3

and use the eigenvalues of the Hessian matrix at those points to determine
which of them, if any, are relative maxima, relative minima, or saddle points.
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7.5 Hermitian, Unitary, and Normal Matrices

Definition 7.5.1. If A is a complex matrix, then the conjugate transpose of
A, denoted by A*, is defined by

T

A=A,

Example 1. Find the conjugate transpose A* of the matrix

A=, 392 i

140 —i 0]

Theorem 7.5.1. If k is a complex scalar, and if A and B are complex matrices
whose sizes are such that the stated operations can be performed, then:

a) (AH)*=A
(A+ B)* = A* + B*
(A—B)* = A*— B*
) (kA)* = kA*
(AB)* = B*A*
Definition 7.5.2. A square matrix A is said to be unitary if

AA* =A"A=1

or, equivalently, if
A* — A*l

and it is said to be Hermitian if
A=A
Example 2. Determine whether the matrix
1 1 141
A=| —i -5 2—1
1l—2 242 3

is Hermitian.
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Example 3. Determine whether the matrix

l .
7@1
1
V2

A:

1
V2

—1
V2

is unitary.

Theorem 7.5.2. If A is a Hermitian matriz, then:

(a) The eigenvalues of A are all real numbers.
(b) FEigenvalues from different eigenspaces are orthogonal.

Example 4. Confirm that the Hermitian matrix

2 1+

A=11_, 3

has real eigenvalues and that eigenvectors from different eigenspaces are or-
thogonal.
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Theorem 7.5.3. If A is an n X n matrixz with complex entries, then the fol-
lowing are equivalent.
(a) A is unitary.
(b) ||Ax]| = ||x|| for all x in C™.
(¢) Ax- Ay =x-y for allx andy in C™.
(d) The column vectors of A form an orthonormal set in C™ with respect to
the complex Euclidean inner product.
(e) The row vectors of A form an orthonormal set in C™ with respect to the
complex Euclidean inner product.

Example 5. Use Theorem 7.5.3 to show that

(1+14) 5(141)

A= (1—1i) (=1+1)

N N

is unitary, and then find A~
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Definition 7.5.3. A square complex matrix A is said to be unitarily diago-
nalizable if there is a unitary matrix P such that P*AP = D is a complex
diagonal matrix. Any such matrix P is said to unitarily diagonalize A.

Theorem 7.5.4. Every n x n Hermitian matriz A has an orthonormal set
of n eigenvectors and is unitarily diagonalized by any n X n matriz P whose
column vectors form an orthonormal set of eigenvectors of A.

Example 6. Find a matrix P that unitarily diagonalizes the Hermitian matrix

2 1+
A= 1—¢ 3
Remark 1. A square real matrix A is said to be skew-symmetric if AT = —A,
and a square compler matrix A is said to be skew-Hermitian if A* = —A.
Matrices with the property
AA* = A"A

are said to be normal.
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Chapter 8

(General Linear Transformations

8.1 General Linear Transformations

Definition 8.1.1. If T : V — W is a mapping from a vector space V to a
vector space W, then T is called a linear transformation from V to W if the
following two properties hold for all vectors u and v in V' and for all scalars
k:

(i) T(ku) = kT (u)

() T(u+v)=T(u)+T(v)
In the special case where V' = W, the linear transformation 7T is called a linear
operator on the vector space V.

Theorem 8.1.1. IfT :V — W s a linear transformation, then:
(a) T(0)=0
(b) T(wu—v)=T(u)—T(v) for allu and v in V.

Proof. Let u be any vector in V. Since Ou = 0, it follows that

7(0) = T(0u) = 0T (u) = 0

which proves (a).
We can prove part (b) by rewriting 7'(u — v) as
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Example 1. Verify that every matrix transformation Ty : R — R™ is also a
linear transformation.

Example 2. Let V and W be any two vector spaces. Verify that the mapping
T :V — W such that T'(v) = 0 for every v is a linear transformation, called
the zero transformation.

Example 3. Let V be any vector space. Verify that the mapping [ : V — V
such that I(v) = v is a linear transformation, called the identity operator.

Example 4. If V' is a vector space and c is any scalar, then verify that the
mapping 7" : V. — V given by T(x) = ¢x is a linear operator on V. If
0 < ¢ < 1, then T is called the contraction of V' with factor ¢, and if ¢ > 1, it
is called the dilation of V' with factor c.

Example 5. Let p = p(z) = ¢+ 1z + - - + ¢,z be a polynomial in P,, and
define the transformation 7": P, — P, 1 by

T(p) = T(p(x)) = zp(z) = cox + c12® + - - + ¢z

Verify that T is linear.
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Example 6. Let vy be any fixed vector in a real inner product space V', and
let T': V — R be the transformation

T(x) = (x,vq)

that maps a vector x to its inner product with vy. Verify this transformation
is linear.

Example 7. Let M, be the vector space of n x n matrices. In each part
determine whether the transformation is linear.

(a) Ty(A) = A"

(b) T5(A) = det(A)

Example 8. If x; is a fixed nonzero vector in a real inner product space V,
determine whether the transformation

T(x) =X+ xg

is linear.
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Example 9. Let V' be a subspace of F(—o0,c0), let
T1,T2y...,Tp

be a sequence of distinct real numbers, and let 7" : V' — R™ be the transfor-
mation

T(f) = (f(x1), fz2), .., f(zn))

that associates with f the n-tuple of function values at xq,x9,...,2,. We
call this the evaluation transformation on V' at zq,xs,...,z,. Verify that the
evaluation transformation is linear.

Theorem 8.1.2. Let T : V. — W be a linear transformation, where V is
finite-dimensional. If S = {vi,Va,...,v,} s a basis for V, then the image of
any vector v in V' can be expressed as

T(v)=aT(vi)+ T (va) + -+ e, T(vy)

where ¢y, ca, ..., c, are the coefficients required to express v as a linear combi-
nation of the vectors in the basis S.
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Example 10. Consider the basis S = {vy, Vs, v3} for R? where
vi=(1,1,1), vo=(1,1,0), v3=(1,0,0).
Let T : R?* — R? be the linear transformation for which
T(vi) =(1,0), T(vq)=1(2,—-1), T(v3)=(4,3).

Find a formula for T'(xy, x5, x3), and then use that formula to compute 7°(2, —3, 5).

Example 11. Let V = C'(—o00,0) be the vector space of functions with
continuous first derivatives on (—oo,00), and let W = F(—o00,00) be the
vector space of all real-valued functions defined on (—o0,00). Let D : V — W
be the transformation that maps a function f = f(x) into its derivative—that
is,

D(f) = f'(x).

Verify that D is a linear transformation.
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Example 12. Let V = C(—o00, 00) be the vector space of continuous functions
on the interval (—oo, 00), let W = C'!(—o00, 00) be the vector space of functions
with continuous first derivatives on (—o0,00), and let J : V. — W be the
transformation that maps a function f in V' into

J(f) = /O " f) .

Verify that J is a linear transformation.

Definition 8.1.2. If 7" : V' — W is a linear transformation, then the set of
vectors in V' that maps into O is called the kernel of T" and is denoted by
ker(7T"). The set of all vectors in W that are images under 7" of at least one
vector in V' is called the range of T" and is denoted by R(T).

Example 13. If T4 : R — R™ is multiplication by the m x n matrix A, then
what are the kernel and range of 147

Example 14. Let T : V — W be the zero transformation. What are the
kernel and range of 17

Example 15. Let I : V — V be the identity operator. What are the kernel
and range of 7
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Example 16. Let T : R* — R® be the orthogonal projection onto the zy-
plane. What are the kernel and range of 77

Example 17. Let T : R?> — R? be the linear operator that rotates each vector
in the xy-plane through some angle #. What are the kernel and range of 17

Example 18. Let V = C'(—o00,0) be the vector space of functions with
continuous first derivatives on (—o0,00), let W = F(—00,00) be the vector
space of all real-valued functions defined on (—00,c0), and let D : V' — W be
the differentiation transformation D(f) = f'(x). What is the kernel of D?
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Theorem 8.1.3. If T :V — W s a linear transformation, then:

(a) The kernel of T is a subspace of V.
(b) The range of T is a subspace of W.

Proof. (a) To show that ker(T') is a subspace, we must show that it contains
at least one vector and is closed under addition and scalar multiplication. By
part (a) of Theorem 8.1.1, the vector 0 is in ker(7'), so the kernel contains at
least one vector. Let vi and vy be vectors in ker(T"), and let k be any scalar.
Then

T(Vl + Vg) = T(Vl) + T(Vg) =0+4+0= 0,

so vi + vy is in ker(7T'). Also,
T(kvl) = kT(Vl) = k0 = 0,

so kvy is in ker(7T).

(b) To show that R(T) is a subspace of W, we must show that it contains
at least one vector and is closed under addition and scalar multiplication.
However, it contains at least the zero vector of W since T'(0) = (0). To prove
that it is closed under addition and scalar multiplication, we must show that if
wy and wy are vectors in R(T'), and if k is any scalar, then there exist vectors

a and b in V for which
T(a) =w;+wy and T(b) = kwy.

But the fact that w; and wy are in R(T") tells us there exist vectors v; and v
in V such that
T(Vl) = Wi T(Vg) = Wao.

The following computations complete the proof by showing that the vectors
a = vy + vy and b = kv, satisfy the desired equations:

T(a) =T(vi+ve) =T(vy) +T(va) = Wy + Wy
T(b) =T(kvy) = kT (vy) = kw;. O
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Example 19. Differential equations of the form
y' +w?y =0 (w a positive constant)
arise in the study of vibrations. Confirm that
yp = coswxr and Yp = sinwzx

are solutions of these differential equations, and use them to find a general
solution.

Definition 8.1.3. Let T : V' — W be a linear transformation. If the range of
T is finite-dimensional, then its dimension is called the rank of T'; and if the
kernel of T is finite-dimensional, then its dimension is called the nullity of T
The rank of T is denoted by rank(7") and the nullity of 7" by nullity (7).

Theorem 8.1.4 (Dimension Theorem for Linear Transformations). If
T :V — W s a linear transformation from a finite-dimensional vector space
V' to a vector space W, then the range of T is finite-dimensional, and

rank(7") + nullity(7) = dim(V).
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8.2 Compositions and Inverse Transformations

Definition 8.2.1. If T : V — W is a linear transformation from a vector
space V' to a vector space W, then T is said to be one-to-one if T" maps
distinct vectors in V into distinct vectors in W.

Definition 8.2.2. If 7" : V — W is a linear transformation from a vector
space V' to a vector space W, then T is said to be onto (or onto W) if every
vector in W is the image of at least one vector in V.

Theorem 8.2.1. IfT :V — W is a linear transformation, then the following
statements are equivalent.

(a) T is one-to-one.
(b) ker(T) = {0}.

Proof. (a) = (b) Since T is linear, we know that 7°(0) = 0. Since 7" is one-to-
one, there can be no other vectors in V' that map into 0, so ker(7") = {0}.
(b) = (a) Assume that ker(7T") = {0}. If u and v are distinct vectors in V,
then u — v # 0. This implies that T'(u — v) # 0, for otherwise ker(7") would
contain a nonzero vector. Since T is linear, it follows that

Tu)—T(v)=T(u—v)#0,

so T" maps distinct vectors in V' into distinct vectors in W and hence is one-
to-one. O

Example 1. Let T : R? — R? be the linear operator that rotates each vector
in the plane about the origin through an angle . Is T one-to-one? Is T" onto?

Example 2. Let T : R? — R? be the linear operator that maps points or-
thogonally on to the z-axis in R2. Is T one-to-one? Is T onto?
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Example 3. Verify that the linear transformations T} : P; — R* and
Ty : Myy — R* defined by

Ti(a + bz + cx® + dz*) = (a,b, ¢, d)

a b

I c d

= (a,b,¢,d)

are both one-to-one and onto.

Example 4. Let T': P, — P,,1 be the linear transformation

discussed in Example 5 of Section 8.1. Is T" one-to-one? Is T onto?

Example 5. Let V = R* be the sequence space discussed in Example 3 of
Section 4.1, and consider the linear “shifting operators” on V' defined by

Tl(ul,u2,...,un,...) = (O,ul,ug,...,un,...)

To(ug,tgy ..y Upy...) = (Ug, Usy ooy Upy .. .).

(a) Show that 7} is one-to-one but not onto.

(b) Show that T; is onto but not one-to-one.
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Example 6. Let

D : C'(—00,00) = F(—00,00)
be the differentiation transformation discussed in Example 11 of Section 8.1.
Is D one-to-one?

Theorem 8.2.2. If V and W are finite-dimensional vector spaces with the
same dimension, and if T 'V — W is a linear transformation, then the
following statements are equivalent.

(a) T is one-to-one.

(b) ker(T) ={0}.

(¢) T is onto fi.e., R(T)=W].

Example 7. If T4 : R* — R™ is multiplication by an m x n matrix A, then
when is T4 one-to-one and when is Ty onto?

Theorem 8.2.3. If T4 is a matriz transformation, then

(a) Ta is one-to-one if and only if the columns of A are linearly independent.
(b) Ta is onto if and only if the columns of A span R™.

Proof. (a) It follows from Theorem 8.2.1 that T4 is one-to-one if and only if
A has nullity 0, which is equivalent to saying that A has rank m, which is
equivalent to saying that the m column vectors of A are linearly independent.
(b) To say that T4 is onto is equivalent to saying that the system Ax = b has
a solution for every vector b in R™. But this is so if and only if the columns
of A span R™. O]
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Theorem 8.2.4 (Equivalent Statements). If A is an n X n matriz, then the
following statements are equivalent.
(a) A is invertible.
) Ax = 0 has only the trivial solution.
) The reduced row echelon form of A is I,.
) A is expressible as a product of elementary matrices.
) Ax = b is consistent for every n x 1 matriz b.
) Ax = b has ezxactly one solution for every n x 1 matriz b.
) det(A) # 0.
)

The column vectors of A are linearly independent.

LSS,

) The row vectors of A are linearly independent.
7)  The column vectors of A span R".

k) The row vectors of A span R".

The column vectors of A form a basis for R™.
The row vectors of A form a basis for R".

A has rank n.

S

e e e D N e e i N N N N N W N N N
o~
3 N
~—

0) A has nullity 0.

p) The orthogonal complement of the null space of A is R™.
q) The orthogonal complement of the row space of A is {0}.
r) A =0 is not an eigenvalue of A.

s) AT A is invertible.

t) The kernel of Ty is {0}.

u) The range of Ta is R™.

v) Ta is one-to-one.

Example 8. Let T : R? — R? be the linear operator defined by the formula
T(Q?l, Xa, x’3> = (3£C1 + X2, —2$1 — 41’2 + 333'3, 5.1'1 + 41'2 — 2.]]3)

Determine whether T is one-to-one; if so, find T (21, 29, 3).
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Remark 1. If T': 'V — W is a one-to-one linear transformation with range
R(T), and if w is any vector in R(T"), then the fact that 7" is one-to-one means
that there is ezactly one vector v in V' for which T'(v) = w. This fact allows
us to define a new function, called the inverse of 7' (and denoted by T'), that
is defined on the range of T" and that maps w back into v.

Example 9. Find the inverse of the linear transformation 7' : P, — P,i1
given by

Definition 8.2.3. If 71 : U — V and T5 : V' — W are linear transformations,
then the composition of Ty with 77, denoted by Ty 0T} (which is read “T5 circle
T1”), is the function defined by the formula

(T 0 Th)(u) = Tp(T1(u))
where u is a vector in U.

Theorem 8.2.5. If T, : U —V and Ty : V — W are linear transformations,
then (Ty o Ty) : U — W is also a linear transformation.

Proof. If u and v are vectors in U and c is a scalar, then it follows from the
linearity of 77 and T, that

(TroTh)(u+v) =To(Ti(u+v)) = To(Ti(u) + T1(v))
= To(T1 () + To(Ti(v))
= (Tyo Ty)(u) + (Th 0 Ty)(V)

and
(Ty o Th)(cu) = Ty (T (cu)) = To(cTi(u))
= CTQ(Tl(U)) = C(TQ e} T1>(u>
Thus, T5 o T} satisfies the two requirements of a linear transformation. O
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Example 10. Let T} : P, — Py and T, : P, — P, be the linear transformations
given by the formulas

Ti(p(z)) = zp(x) and Ti(p(x)) = p(2z +4).

Find the composition (T, 0 T}) : P, — Py if p(z) = ¢o + c1x.

Example 11. If T': V — V is any linear operator, and if I : V' — V is the
identity operator, then show that for all vectors v in V that T ol and [ o T
are the same as T'.

Remark 2. Compositions can be defined for more than two linear transforma-
tions. For example, if

Th:U—=V, Ty,:V—=W, and T3:W =Y
are linear transformations, then the composition T3 o Ty o T} is defined by

(Ts 0Ty 0Ty)(u) = T5(To(T1(u))).

256



Linear Algebra - 8.2 Compositions and Inverse Transformations

Theorem 8.2.6. IfT7 : U — V and T : V. — W are one-to-one linear
transformations, then:

(a) TyoTy is one-to-one.
() (TooT) ' =T oTyt.

Proof. (a) We want to show that 7507 maps distinct vectors in U into distinct
vectors in W. But if u and v are distinct vectors in U, then 77 (u) and T3 (v)
are distinct vectors in V' since T is one-to-one. This and the fact that T, is
one-to-one imply that

Ty(Ti(u)) and To(Ti(v))
are also distinct vectors. But these expressions can also be written as
(TQ o T1)<LI) and (T2 o T1)<V),

so T, o Ty maps u and v into distinct vectors in W.
(b) We want to show that

(Ty o Ty)"H(w) = (T o Ty ')(w)
for every vector w in the range of T; o T7. For this purpose, let
u=(TyoTy) Hw),
so our goal is to show that
u=(T7' o Ty M) (w).
But it follows from u = (Ty o T})~}(w) that
(Ty0Ty)(u) = w,

or, equivalently,
TQ(Tl(u)) = W.

Now, taking 7, ! of each side of this equation, then taking 77 * of each side of
the result yields

or, equivalently,
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8.3 Isomorphism

Definition 8.3.1. A linear transformation 7" : V' — W that is both one-to-
one and onto is said to be an isomorphism, and W is said to be isomorphic to
V.

Theorem 8.3.1. Fvery real n-dimensional vector space is isomorphic to R™.

Proof. Let V be a real n-dimensional vector space. To prove that V' is isomor-

phic to R we must find a linear transformation 7" : V' — R™ that is one-to-one

and onto. For this purpose, let S = {v1,vs,...,v,} be any basis for V| let
u=Fkivi+kyvo+---+ kv,

be the representation of a vector u in V' as a linear combination of the basis
vectors, and let T': V' — R™ be the coordinate map

T(u) = (u)s = (k1, ko, ... kn).
We will show that T is an isomorphism. To prove the linearity, let u and v be
vectors in V, let ¢ be a scalar, and let
u=~kvy+kyve+---+kywv, and v=dvi+dyvao+---+d,v,
be the representations of u and v as linear combinations of the basis vectors.
Then it follows that
T(cu) = T(ckivy + ckovo + - - - + ckpvy)

= (cky,cka, ..., cky)

= c(ki, ko, ..., ky) = cT(u)
and that

Tu+v) =T (ki +di)vi+ (ko + do)vo + -+ + (kn + dp)vy,)
= (k1 +di,ka+do, ... .k, +dy)
= (k1,koy ... kn) + (d1,do, ..., dy)
= T(u) +T(v),
which shows that T is linear. To show that 7' is one-to-one, we must show
that if u and v are distinct vectors in V', then so are their images in R". But if

u # v, and if the representations of these vectors in terms of the basis vectors
are as above, then we must have k; # d; for at least one . Thus,

T() = (ki ko, ... k) % (d1,do, . ... dy) = T(V),

which shows that u and v have distinct images under 7T'. Finally, the transfor-
mation 7' is onto, for if w = (ky, ko, ..., k,) is any vector in R"™, then it follows
that w is the image under T of the vector u = kyvy 4+ kovo + -+ + k,v,,. [
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Theorem 8.3.2. If S is an ordered basis for a vector space V', then the coor-
dinate map

us (u)s
1s an isomorphism between V and R".

Example 1. Find an isomorphism between P, ; and R".

Example 2. Find an isomorphism between M,y and R*.

Example 3. Use isomorphisms to calculate the derivative
d 2 3 2

d—(2+x—i—4x —2°) =148z —3x
x

as a matrix product.
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Example 4. Use the natural isomorphism between P5 and R® to determine
whether the following polynomials are linearly independent.

p1 =142z — 322 +42% + 2°
p2 = 1 + 32 — 42 + 62° + 52* + 42°
ps = 3+ 8z — 1122 — 162° + 102* + 92°

Remark 1. If V and W are inner product spaces, then we call an isomorphism
T :V — W an inner product space isomorphism if

(I'(u),T(v)) = (u,v) foralluandvinV.

Theorem 8.3.3. If S = {vy,Va,...,v,} is an ordered orthonormal basis for
a real vector space V', then the coordinate map

u— (u)g

18 an inner product space isomorphism between V' and the vector space R™ with
the Euclidean inner product.
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Example 5. Show that the isomorphism in Example 1 is an inner product
space isomorphism.

Example 6. Find an inner product isomorphism between R"™ and M, the
vector space of real n x 1 matrices.

261



Linear Algebra - 8.4 Matrices for General Linear Transformations

8.4 Matrices for General Linear Transforma-
tions

Remark 1. Suppose that V is an n-dimensional vector space, that W is an
m-~dimensional vector space, and that T : V' — W is a linear transformation.
Suppose further that B is a basis for V, that B’ is a basis for W, and that
for each vector x in V, the coordinate matrices for x and 7'(x) are [x]p and
[T(x)] s, respectively. Then the matrix for T relative to the bases B and B’
is denoted by the symbol [T]p p and given by

[T = [[T(w)]p | [T(u)]p |- | [T(u,)]s]

and has the property
[Ts.5[x]5 = [T'(x)]5"

Example 1. Let T : P, — P, be the linear transformation defined by
T(p(x)) = zp(x).
Find the matrix for 7" with respect to the standard bases
B ={u;,uy} and B’ = {vy, vy, v3}

where

w=1 w=z vi=1 ve=zx v3=2>
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Example 2. Let T : P, — P, be the linear transformation in Example 1, and
use the three-step procedure illustrated in the following figure to perform the
computation

T(a+ bx) = x(a+ bx) = azx + ba’.

Direct
- irec : T (X)
computation

(1) (3)

Multiply by [T]5/ g

x5 - T(x)]

Example 3. Let T : R? — R3 be the linear transformation defined by

1
Z2

T2 0 1 .
T = | =5z, +1325| = | =5 13 [1]

7y + 1624 —7 16| ™

Find the matrix for the transformation 7" with respect to the bases
B = {uy,u,} for R? and B’ = {vy, vy, v3} for R3 where

1 —1 0
u; = [?] ’ Ug = [g 3 Vi = 0 ) Vo = 2 ’ V3 = 1
-1 2 2

263



Linear Algebra - 8.4 Matrices for General Linear Transformations

Remark 2. In the special case where V' =W (so that T': V' — V is a linear
operator), it is usual to take B = B’ when constructing a matrix for 7. In
this case the resulting matrix is called the matrix for 7' relative to the basis
B and is usually denoted by [T']p rather than [T]p p. If B = {u;,uy, ..., u,},
then

[T]p = [[T(a)]p | [T(u)lp |- | [T(un)]5]
and has the property
[Tsxls = [T(X)]s.

Example 4. If B = {uj,uy,...,u,} is a basis for an n-dimensional vector
space V, and if I : V' — V is the identity operator on V, then find [I]p.

Example 5. Let T : P, — P, be the linear operator defined by
T(p(x)) = p(3z = 5),

that is, T'(co + 12 + c22%) = ¢ + ¢1(3x — 5) + c2(3x — 5)*.
(a) Find [T]p relative to the basis B = {1, x, 2°}.

(b) Use the indirect procedure to compute T'(1 + 2z + 3z?).

(c) Check the result in (b) by computing T'(1 + 2z + 3z?) directly.
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Theorem 8.4.1. IfT) : U —V and Ty : V — W are linear transformations,
and if B, B”, and B’ are bases for U, V, and W respectively, then

[Tz o T1]B',B = [TQ]B’,B” [Tl]B”,B-

Theorem 8.4.2. If T :V — V is a linear operator, and if B is a basis for V,
then the following are equivalent.

(a) T is one-to-one.
(b) [Tp is invertible.

Moreover, when these equivalent conditions hold,
[T =T
Example 6. Let T} : P, — P, be the linear transformation defined by
Ti(p(x)) = zp(z)
and let Ty : P, — P, be the linear operator defined by
Tr(p(x)) = p(3z = 5).

Find [T, o Ty]p/ p relative to the bases B = {1,z} and B’ = {1, z,2%}.
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8.5 Similarity

Theorem 8.5.1. If B and B’ are bases for a finite-dimensional vector space
V,and if I -V — V s the identity operator on V', then

Py =ps and Poop=[Ips.

Proof. Suppose that B = {u,uy,...,u,} and B’ = {u),u),...,ul} are bases
for V. Using the fact that I(v) = v for all v in V, it follows that

g s = [[T(w)]p | [[(a)]p |- | [(u,)]5]
= [[w]p | [ualp |-+ | [wn]p]
= Pp_.p.
The proof that [I|g g = Pp/_,p is similar. O

Theorem 8.5.2. Let T': V. — V be a linear operator on a finite-dimensional
vector space V', and let B and B’ be bases for V.. Then

T)p = P_l[T]BP
where P = Pgi_,g and P~' = Pg_.p.

Theorem 8.5.3. IfV is a finite-dimensional vector space, then two matrices A
and B represent the same linear operator (but possibly with respect to different
bases) if and only if they are similar. Moreover, if B = P AP, then Pis the
transition matriz from the bases used for B to the basis used for A.
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Example 1. Show that the matrices

1 1
-2 4

20

¢= 0 3

and D =

represent the same linear operator T : R? — R? where C' is the matrix relative
to the basis B = {ej, e} and D is the matrix relative to the basis B’ = {u/, u}}

in which

Verify that these matrices are similar by finding a matrix P for which D =
P~iCP.

Remark 1. We define the determinant of the linear operator T" to be

det(T) = det[T]p

where B is any basis for V.
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Table 1 Similarity Invariants

Property Similarity

Determinant [T]p and P~[T]pP have the same determinant.

Invertibility [T is invertible if and only if P7'[T]zP is invertible.

Rank [T]p and P~[T]pP have the same rank.

Nullity [T]5 and P~YT]zP have the same nullity.

Trace [T)5 and P~!T]gP have the same trace.

Characteristic polynomial | [T]g and P~![T]gP have the same characteristic polynomial.
Eigenvalues [T]5 and P~T]gP have the same eigenvalues.

Eigenspace dimension

If X is an eigenvalue of [T]g and P~![T|gP, then the eigenspace
of [T]p corresponding to A and the eigenspace of P~T]gP
corresponding to A have the same dimension.

Example 2. Find det[T| and det[T]p: for

1 1 2 0
9 4] and [T]p = [0 3].

Example 3. Find the eigenvalues of the linear operator T : P, — P, defined

by

T(a+ bz + cx®) = —2c+ (a + 2b + c)z + (a + 3c)a>.

268




Linear Algebra - 8.6 Geometry of Matrix Operators

8.6 Geometry of Matrix Operators

Theorem 8.6.1. If T : R?> — R? is multiplication by an invertible matriz,
then:

(a) The image of a straight line is a straight line.

(b) The image of a line through the origin is a line through the origin.

(¢) The images of parallel lines are parallel lines.

(d) The image of the line segment joining points P and Q) is the line segment
joining the images of P and Q).

(e) The images of three points lie on a line if and only if the points themselves
lie on a line.

Example 1. According to Theorem 8.6.1, the invertible matrix
3 1
2 1

maps the line y = 2x + 1 into another line. Find its equation.

A:

Example 2. Sketch the image of the unit square under multiplication by the
invertible matrix

0 1

2 1

Label the vertices of the image with their coordinates, and number the edges
of the unit square and their corresponding images.

A:
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Table 1
Operator Standard Matrix | Effect on the Unit Square
AY AY
Reflection about 1 0 4 2 |:> ;
the z-axis 0 —1 - > ! >
4 2
3@,-
AY \ Y
Reflection about -1 0 3 LV LY 3
the y-axis 0 1 4 2 2 4
x =~
1 g 1 g
AY L y=x AY L y=x
/ /
Reflection about 0 1 3 /(1 3 2 .
the line y = x 1 0 al S| L] Bl
’ X fl X
/ 1 - / 4
Table 2
Operator Standard Matrix Effect on the Unit Square
AY y
1, 1)
Orthogonal projection 1 0 |:>
onto the z-axis 0 0 . 1.0) o
> i o >
AY y
a1
Orthogonal projection 0 0 |:> ©.1)
onto the y-axis 0 1
> | > x
Table 3
Operator Standard Matrix Effect on the Unit Square
(cos 6-sin 6, sin 6+ cos 6)
Rotation about the . 4 Y §
.. cosf) —sinf (1,1
origin through a .
i sin 6 cos
positive angle 6
> —10 "

>

[\

D
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Table 4

Operator

Standard Matrix

Effect on the Unit Square

Expansion in the
z-direction with
factor k

(k>1)

AY

1§D

=

X

J

\Y

(k, 1)

Y %

Expansion in the
y-direction with
factor k

(k>1)

AY

1§

Y

1, k)

Y«

Compression in the
z-direction with
factor k

0<k<1)

AY
1, 1)

Y =

(k, 1)

Compression in the
y-direction with
factor k

(0<k<1)

\y
11

Y
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Table 5

Operator

Standard Matrix

Effect on the Unit Square

Shear in the
positive x-direction
by a factor k

(k> 0)

CIpY)

Y«

y
(k, 1)

1+k,1)

X

Shear in the
negative z-direction
by a factor k

(k <0)

1,1

Y«

AY

k,1)| (k+1,1)

&

Vx

Shear in the
positive y-direction
by a factor k

(k> 0)

11

Y«

1,1+k)

(1, k)

X

Shear in the
negative y-direction
by a factor k

(k<0)

11

\E®

g4 44

AY

Y

1,1+k)
X

1, k)
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Example 3.

(a) Find the standard matrix for the operator on R? that first shears by a
factor of 2 in the z-direction and then reflects the result about the line
y = x. Sketch the image of the unit square under this operator.

(b) Find the standard matrix for the operator on R? that first reflects about
y = x and then shears by a factor of 2 in the z-direction. Sketch the
image of the unit square under this operator.

(c¢) Confirm that the shear and the reflection in parts (a) and (b) do not
commute.
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Table 6
Operator Effect on the Unit Square Standard Matrix

factor k in R?

Contraction with 0, 1)) I
T 0, k)
0<k<1) | -

' (k)

1,0) (k

b

factor k in R2
(k> 1) |

—

Dilation with 0, 1)) © kT 't

(1,0) (k, 0)

Example 4. Discuss the geometric effect on the unit square of multiplication
by a diagonal matrix

]{?1 0

0 ko

in which the entries ki and ks are positive real numbers (# 1).

A=

Example 5. Discuss the geometric effect on the unit square of multiplication
by the matrix
-1 0
0 —1|"

A:
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Example 6. Discuss the geometric effect on the unit square of multiplication
by the matrix

Theorem 8.6.2. If E is an elementary matriz, then Ty : R* — R? is one of
the following:
(a) A shear along a coordinate axis.
(b) A reflection about y = x.
(¢) A compression along a coordinate azxis.
(d) An expansion along a coordinate azis.
(e) A reflection about a coordinate azis.
(f) A compression or expansion along a coordinate axis followed by a reflec-
tion about a coordinate azis.

e
f

Proof. Because a 2 x 2 elementary matrix results from performing a single
elementary row operation on the 2 x 2 identity matrix, such a matrix must
have one of the following forms:

C R R N O

The first two matrices represent shears along coordinate axes, and the third
represents a reflection about y = x. If k > 0, the last two matrices represent
compressions or expansions along coordinate axes, depending on whether 0 <
k<lork>1 If k <0, and if we express k in the form k& = —k; where
ki1 > 0, then the last two matrices can be written as

kol [~k o] [-1 o] [m o
o1~ | o 1 o 1/]o0 1
1ol [t o] 1 o]t o]
0 k| |0 k| |0 —1|]0 K

Since k; > 0, the first product represents a compression or expansion along
the z-axis followed by a reflection about the y-axis, and the second product
represents a compression or expansion along the y-axis followed by a reflection
about the z-axis. In the case where k = —1, these transformations are simply
reflections about the y-axis and z-axis, respectively. O]

275



Linear Algebra - 8.6 Geometry of Matrix Operators

Theorem 8.6.3. If Ty : R> — R? is multiplication by an invertible matriz
A, then the geometric effect of T'x is the same as an appropriate succession of
shears, compressions, expansions, and reflections.

Example 7. In Example 2 we illustrated the effect on the unit square of
multiplication by

01

2 1|

Express this matrix as a product of elementary matrices, and then describe
the effect of multiplication by A in terms of shears, compressions, expansions,
and reflections.

A:
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Remark 1. The right-hand rule can be used to establish a sign for an angle of

rotation about a unit vector u by cupping the fingers of your right hand so
they curl in the direction of rotation. If your thumb points in the direction of
u, then the angle of rotation is regarded to be positive relative to u, and if it
points in the direction opposite to u, then it is regarded to be be negative to

(a) Angle of rotation

Positive z
rotation

Negative
rotation

Y

(b) Right-hand rule

Table 6

Operator [lustration Rotation Equations Standard Matrix

Z
Counterclockwise o —
rotation about the y wl B cosd — zaind 1 0 O
positive z-axis through w . > yo 4 0 0 cosf —sind
an angle 6 < Wy =ysmo + zcos 0 sinf cosf
1%
Z
Counterclockwise Wi — 2cos + 2 sin 0 _
rotation about the wl - ) cos# 0 sinf
o . . X 2 = O 1 O
positive y-axis through y _ .
an angle 0 o > w3 = —xsinf 4+ z cos 6 _sinf 0 cosf
X w
TZ

Counterclockwise 6 W — 7z cosl — vsind '
rotation about the . A wl B osing 4 ycos p cos 0 —sinf 0O
positive z-axis through w2 . y sing cos 0
an angle 6 R 3 0 0 1
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Chapter 9

Numerical Methods

9.1 LU-Decompositions

Definition 9.1.1. A factorization of square matrix A as
A=LU

where L is lower triangular and U is upper triangular, is called an LU-decom-
position (or LU-factorization) of A.
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Example 1. Use the factorization

2 6 2 2 0 0Ol 31
-3 -8 0f=|-3 1 010 1 3
4 9 2 4 =3 7( (0 0 1

2 6 2| |z 2
-3 =8 O0f |z2| = |2
4 9 2 xT3 3

Theorem 9.1.1. If A is a square matriz that can be reduced to a row eche-
lon form U by Gaussian elimination without row interchanges, then A can be
factored as A = LU, where L is a lower triangular matriz.
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Example 2. Find an LU-decomposition of

2 6
A= |-3 -8
4 9
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Example 3. Find an LU-decomposition of

6 —2
A= 19 -1
3 7
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9.2 The Power Method

Remark 1. There are many applications in which some vector xq in R" is
multiplied repeatedly by an n x n matrix A to produce a sequence

2 k
X0, AX(), AXQ,..., AXQ,....

We call a sequence of this form a power sequence generated by A.

Definition 9.2.1. If the distinct eigenvalues of a matrix A are Ay, Ag, ..., Ag,
and if [A;| is larger than |As], ..., |\, then A; is called a dominant eigenvalue
of A. Any eigenvector corresponding to a dominant eigenvalue is called a
dominant eigenvector of A.

Example 1. Find the dominant eigenvalues, if any, of a matrix with distinct
eigenvalues

M=—4, d=-2 d3=1, \=3

and of a matrix with distinct eigenvalues

Theorem 9.2.1. Let A be a symmetric n X n matriz that has a positive dom-
want eigenvalue X. If Xq is a unit vector in R™ that is not orthogonal to the
eigenspace corresponding to A, then the normalized power sequence

AXO AXl Axk—l

X, X1 =—, Xog=_ ——o Xp=——

5 yee ey k s
[ Ao [[Ax | [ Ax. ]
converges to a unit dominant eigenvector, and the sequence
AXy - Xy, AXg- X9, AxXz-X3,..., Axp-xg,...
converges to the dominant eigenvalue .

Remark 2. Theorem 9.2.1 provides us with an algorithm for approximating
the dominant eigenvalue and a corresponding unit eigenvector of a symmetric
matrix A, provided that the dominant eigenvalue is positive. This algorithm
is called the power method with Euclidean scaling.
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Example 2. Apply the power method with Euclidean scaling to

3 2 . 1
9 3] with xg = [0]

Stop at x5 and compare the resulting approximations to the exact values of
the dominant eigenvalue and eigenvector.

A:
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Theorem 9.2.2. Let A be a symmetric n X n matriz that has a positive dom-
wmant eigenvalue X. If Xq is a nonzero vector in R"™ that is not orthogonal to
the eirgenspace corresponding to X\, then the sequence

Axg Axy AXp

Xp, X1 =——"1, Xg=——— ..., Xp=
O T max(Axg)’ 7 max(Ax,)’ 7 F

max(Axy_ 1)’
converges to an eigenvector corresponding to A\, and the sequence

Axg-x9  Axy Xy AXy, - Xp

Xo-Xo @ X1-X1 0 Xp-Xp

converges to \.

Remark 3. The algorithm provided by Theorem 9.2.2 is called the power
method with maximum entry scaling, where max(x) denotes the maximum
absolute value of the entries in a vector x.

Example 3. Apply the power method with maximum entry scaling to

3 2 . 1
9 2] with xg = [0]

Stop at x5 and compare the resulting approximations to the exact values and
to the approximations obtained in Example 2.

A:
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Remark 4. 1f X\ is the exact value of the dominant eigenvalue, and if a power
method produces the approximation A*) at the kth iteration, then we call

A= AF)
A

the relative error in A(®). Expressed as a percentage it is called the percentage
error in A®. Tt is usual to estimate A by A*) and stop computations when

M) \(k=1)

NG <FE

for a known relative error E. The quantity on the left side is called the es-
timated relative error in A®) and its percentage form is called the estimated
percentage error in A(%),

Example 4. For the computations in Example 3, find the smallest value of k
for which the estimated percentage error in A*) is less than 0.1%.
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9.3 Comparison of Procedures for Solving Lin-
ear Systems

Remark 1. In computer jargon, an arithmetic operation (4, —,*,+) on two
real numbers is called a flop, which is an acronym for “floating-point opera-
tion.” The total number of flops required to solve a problem, which is called
the cost of the solution, provides a convenient way of choosing between various
algorithms for solving the problem.

Table 1 Approximate Cost for an n x n matrix A with Large n

Algorithm Cost in Flops
Gauss-Jordan elimination (forward phase) ~ 2n?
Gauss-Jordan elimination (backward phase) ~ n?
LU-decomposition of A ~ 2n®
Forward substitution to solve Ly = b ~ n?
Backward substitution to solve Ux =y ~ n?

A~ by reducing [A | I] to [I | A7 ~ 2n?
Compute A~'b ~ 2n?

Example 1. Approximate the time required to execute the forward and back-
ward phases of Gauss-Jordan elimination for a system of one million (= 10°)
equations in one million unknowns using a computer that can execute 10
petaflops per second (1 petaflop = 10 flops).

286



Linear Algebra - 9.4 Singular Value Decomposition

9.4 Singular Value Decomposition

Theorem 9.4.1. If A is an m X n matriz, then:
(a) A and AT A have the same null space.
(b) A and AT A have the same row space.

b)
(¢) AT and AT A have the same column space.
(d) A and AT A have the same rank.

Theorem 9.4.2. If A is an m X n matriz, then:

(a) AT A is orthogonally diagonalizable.
(b) The eigenvalues of AT A are nonnegative real numbers.

Proof. (a) The matrix AT A, being symmetric, is orthogonally diagonalizable.
(b) Since AT A is orthogonally diagonalizable, there is an orthonormal ba-

sis for R consisting of eigenvectors of ATA, say {vi,va,..

S Vpt If we let

A1, A2, ..., Ay be the corresponding eigenvalues, then for 1 < i < n we have

”sz”2 = AVZ' : AVZ‘ =V;- ATAVZ‘

=v;-ANvi=N(vi-vi) = N[ villP =

It follows from this relationship that \; > 0.

Definition 9.4.1. If A is an m X n matrix, and if A\;, Ao, ..
values of AT A, then the numbers

0'1:\/)\—1, 0'2:\/)\_2,..., O’n:\/)\—n.

are called the singular values of A.

Example 1. Find the singular values of matrix

11
01
10
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Remark 1. We define the main diagonal of an m X n matrix to

X X X X
be the line of entries shown in the figure—it starts at the upper
. . ) X X X X
left corner and extends diagonally as far as it can go. We will
refer to the entries on the main diagonal as diagonal entries. X * X
X X X X
Theorem 9.4.3 (Singular Value Decomposition (Brief Form)).
If A is an m x n matriz of rank k, then A can be expressed in the X X X
form A =UXVT, where ¥ has size m x n and can be expressed X X X
i partitioned form as X X X
X X X
Y — D ‘ Ok (n—k) X X X X
Oty | Ofm—k)x(n—k) X X X X
. : . , . , , X X X X
i which D s a diagonal k X k matrix whose successive entries
are the first k singular values of A in nonincreasing order, U
1s an m X n orthogonal matriz, and V is an n X n orthogonal
matriz.
Theorem 9.4.4 (Singular Value Decomposition (Expanded Form)). If A is
an m X n matriz of rank k, then A can be factored as i i
vi
] S ovE
oo 0 -+ 0 :
0 (o) 0 0
A=UxVT = [ul U wy, | Wp U, : kx (n—k) v
0 0 (% T
0 0 Vi1
| (m—k)xk (m—k)x(n—k) |
vT

i which U, X, and V' have sizes m X m, m X n, and n X n, respectively,
and 1n which:

(a)
(b)

V=|vi vy Vn] orthogonally diagonalizes AT A.

The nonzero diagonal entries of ¥ are

01 =V, 00 =g, ...,00 =/ A, Where A\, \a, ..., N\ are the nonzero
eigenvalues of AT A corresponding to the column vectors of V.

The column vectors of V' are ordered so that o1 > g9 > -+ > o > 0.

AVZ‘ 1
uZ ||AVZ|| O'i Vl (Z bl ) ) )
{uy,uy, ..., ug} is an orthonormal basis for col(A).
{u,ug, ..., g, Wy, ..., 0y} is an extension of {ug,ug, ..., ux}t to an

orthonormal basis for R™.
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Example 2. Find a singular value decomposition of the matrix

11
A=10 1
10
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9.5 Data Compression Using Singular Value
Decomposition

Remark 1. The zero rows and columns of the matrix > in Theorem 9.4.4 can be
eliminated by multiplying out the expression UX V7 using block multiplication
and the partitioning shown in that formula. The products that involve zero
blocks as factors drop out, leaving

T
v
oo 0 -+ 0 1
0 09 0 Vg
U up - U . . . . )
0 0 (% T
Vi

which is called a reduced singular value decomposition of A. We will denote
the matrices on the right side by Uy, X, and VI, respectively, and we will
write this equation as

A=U2 V7%

Note that the sizes of Uy, X1, and VI, are m x k, k x k, and k x n, respectively,
and that the matrix ¥ is invertible since its diagonal entries are positive.

If we multiply out the right side of the equation using the column-row rule,
then we obtain

T T T
A =oyuyvy +oougvy + - - 4 opug vy,

which is called a reduced singular value expansion of A.
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Example 1. Find a reduced singular value decomposition and a reduced sin-
gular value expansion of the matrix

11
A= 10 1
10
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Remark 2. If a matrix A has size m X n, then one might store each of its
mn entries individually. An alternative procedure is to compute the reduced
singular value decomposition

T T T
A =oywvy +o2uavy + - 4 opuE vy

in which o1 > 09 > - -+ > 0}, and store the ¢’s, the u’s, and v’s. When needed,
the matrix A can be reconstructed from this decomposition. Since each u; has
m entries and each v; has n entries, this method requires storage space for

km—+kn+k=k(m+n+1)

numbers. Suppose, however, that the singular values o,,1,...,0, are suf-
ficiently small that dropping the corresponding terms in the decomposition
produces an acceptable approximation

T T T
A, = oguyvy + ougvy + -+ - 4 o, v,

to A and the image that it represents. We call this the rank r approximation
of A. This matrix requires storage space for only

rm+rn+r=r(m+n+1)
numbers, compared to mn numbers required for entry-by-entry storage of A.

Example 2. Suppose A is a 1000 x 1000 matrix. How many numbers must
be stored in the rank 100 approximation of A? Compare this with the number
of entries of A.
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Chapter 10

Applications of Linear Algebra

10.1 Constructing Curves and Surfaces Through
Specified Points

Theorem 10.1.1. A homogeneous linear system with as many equations as
unknowns has a nontrivial solution if and only if the determinant of the coef-
ficient matriz is zero.

Remark 1. The line with equation
ar+cy+c3=0

that passes through two distinct points (x1,3;) and (x2,ys) is given by the
determinant equation

z y 1

r1 y1 1] =0.

Ty Y2 1

Example 1. Find the equation of the line that passes through the two points
(2,1) and (3,7).
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Points

Remark 2. The circle with equation
(@ +9y°) F eyt =0

that passes through three noncollinear points (x1,y1), (z2,¥2), and (x3,ys) is
given by the determinant equation

m2+y2 r oy

T4yl T o

T3+Y5 T2 Yo

T3+Y; T3 Y3

—_ = =

Example 2. Find the equation of the circle that passes through the three
points (1,7), (6,2), and (4,6).

Remark 3. The conic section with equation
or? + coxy + 03y2 +cyxr+cesy+c =0

that passes through five distinct points (z1,v1), (22, y2), (z3,93), (24,v4), and
(x5,ys5) is given by the determinant equation

2 ay y? ox oy 1
i o yi ooy 1
T3 ToYa Y5 T2 Yo _,
w} wsys Y3 ows ys 1)
T TaYs Yi Ta Ya 1
T3 asYs Yi w5 Ys 1
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Points

Example 3. An astronomer who wants to determine the orbit of an asteroid
about the Sun sets up a Cartesian coordinate system in the plane of the orbit
with the Sun at the origin. Astronomical units of measurement are used along
the axes (1 astronomical unit = mean distance of Earth to Sun = 93 million
miles). By Kepler’s first law, the orbit must be an ellipse, so the astronomer
makes five observations of the asteroid at five different times and finds five
points along the orbit to be

(8.025,8.310), (10.170,6.355), (11.202,3.212), (10.736,0.375), (9.092, —2.267).

Find the equation of the orbit.

Remark 4. The plane in 3-space with equation
ar+cy+cz+ce,=0

that passes through three noncollinear points (x1, 41, 21), (z2, Y2, 22), and
(x3,ys, 23) is given by the determinant equation

T Yy =z
I Y1 A
T2 Y2 22
T3 Ys =3

— = = =
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Example 4. Find the equation of the plane that passes through the three
points (1,1,0), (2,0,—1), and (2,9, 2).

Remark 5. The sphere in 3-space with equation
(@ + 9y +22) Feor + sy +cuz+c5 =0

that passes through four noncoplanar points (z1,y1, 21), (T2, Y2, 22), (£3,Ys, 23),
and (x4, Y4, 24) is given by the determinant equation

22+yi 22 o oy oz
Tyl +2 vy oz
T34+ys+25 T Y 2

2, .2 .2
T3+ Ys+25 T3 Ys 23

— = = = =
Il
(@]

2, .92, .2
Ty+Ys T2 Ta Ys 2

Example 5. Find the equation of the sphere that passes through the four
points (0, 3,2), (1,—1,1), (2,1,0), and (5,1, 3).
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10.2 The Earliest Applications of Linear Al-
gebra

Example 1.

Problem 40 of the Ahmes Papyrus

The Ahmes (or Rhind) Papyrus is the source of most of our information about
ancient Egyptian mathematics. This 5-meter-long papyrus contains 84 short
mathematical problems, together with their solutions, and dates from about
1650 B.C. Problem 40 in this papyrus is the following:

Divide 100 hekats of barley among five men in arithmetic progression
so that the sum of the two smallest is one-seventh the sum of the three
largest.
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Example 2. The Old Babylonian Empire flourished in Mesopotamia between
1900 and 1600 B.C. Many clay tablets containing mathematical tables and
problems survive from that period, one of which (designated Ca MLA 1950)
contains the next problem. The statement of the problem is a bit muddled
because of the condition of the tablet, but the diagram and solution on the
tablet indicate that the problem is as follows:

Area = 320

R

A trapezoid with an area of 320 square units is cut off from a right triangle
by a line parallel to one of its sides. The other side has length 50 units,
and the height of the trapezoid is 20 units. What are the upper and the
lower widths of the trapezoid?
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Example 3. The most important treatise in the history of Chinese mathemat-
ics is the Chiu Chang Suan Shu, or “The Nine Chapters of the Mathematical
Art.” This treatise, which is a collection of 246 problems and their solutions,
was assembled in its final form by Liu Hui in A.D. 263. Its contents, however,
go back to at least the beginning of the Han dynasty in the second century
B.C. The eighth of its nine chapters, entitled “The Way of Calculating by
Arrays,” contains 18 word problems that lead to linear systems in three to
six unknowns. The general solution procedure described is almost identical
to the Gaussian elimination technique developed in Europe in the nineteenth
century by Carl Friedrich Gauss. The first problem in the eighth chapter is
the following:

There are three classes of corn, of which three bundles of the first class,
two of the second, and one of the third make 39 measures. Two of the
first, three of the second, and one of the third make 34 measures. And one
of the first, two of the second, and three of the third make 26 measures.
How many measures of grain are contained in one bundle of each class?
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Example 4. Perhaps the most famous system of linear equations from antiq-
uity is the one associated with the first part of Archimedes’ celebrated Cattle
Problem. This problem supposedly was posed by Archimedes as a challenge
to his colleague Eratosthenes. No solution has come down to us from ancient
times, so that it is not known how, or even whether, either of these two ge-
ometers solved it.

If thou art diligent and wise, O stranger, compute the number of cattle
of the Sun, who once upon a time grazed on the fields of the Thrinacian
wsle of Sicily, divided into four herds of different colors, one milk white,
another glossy black, a third yellow, and the last dappled. In each herd
were bulls, mighty in number according to these proportions: Understand,
stranger, that the white bulls were equal to a half and a third of the black
together with the whole of the yellow, while the black were equal to the
fourth part of the dappled and a fifth, together with, once more, the whole
of the yellow. Observe further that the remaining bulls, the dappled, were
equal to a sixth part of the white and a seventh, together with all of the
yellow. These were the proportions of the cows: The white were precisely
equal to the third part and a fourth of the whole herd of the black; while
the black were equal to the fourth part once more of the dappled and with
it a fifth part, when all, including the bulls, went to pasture together.
Now the dappled in four parts were equal in number to a fifth part and
a sixth of the yellow herd. Finally the yellow were in number equal to a
sizth part and a seventh of the white herd. If thou canst accurately tell,
O stranger, the number of cattle of the Sun, giving separately the number
of well-fed bulls and again the number of females according to each color,
thou wouldst not be called unskilled or ignorant of numbers, but not yet
shalt thou be numbered among the wise.
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Example 5. The Bakhshali Manuscript is an ancient work of Indian/Hindu
mathematics dating from around the fourth century A.D., although some of its
materials undoubtedly come from many centuries before. It consists of about
70 leaves or sheets of birch bark containing mathematical problems and their
solutions. Many of its problems are so-called equalization problems that lead
to systems of linear equations. One such problem on the fragment shown is
the following:

One merchant has seven asava horses, a second has mine haya horses,
and a third has ten camels. They are equally well off in the value of their
animals if each gives two animals, one to each of the others. Find the
price of each animal and the total value of the animals possessed by each
merchant.
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10.3 Cubic Spline Interpolation

Remark 1. A curve that passes through a set of points in the plane is said
to interpolate those points, and the curve is called an interpolating curve for
those points.

Theorem 10.3.1 (Cubic Spline Interpolation). Given n points
(x1,91), (T2, Y2)s -+, (Tpy Yn) with x40 —x; = h, i =1,2,....,n— 1, the cubic
spline

(

a(xr—m)P+bi(z—o)+ele—z)+d, 7<2<
an(x — 22)% + bo(x — 22)? + Co(x — T3) + do, T <1 <3

a’n—l(x - C5'77,—1)3 + bn—l(l‘ - xn—1)2

+ Cn—l(a7 - xn—l) + dn—la Tp—1 S € S Tp

\

that interpolates these points is given by

a; = (Mi—i-l - MZ)/6h

¢ = (Yir1 — ¥i)/h — [(M;41 + 2M;)R /6]
d; = Yi

fori=1,2,....,n—1, where M; = S"(x;), 1=1,2,...,n.
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Table 1

Natural The second M, =0 (41 0--.00 O- "M, ]

Spline derivative of the M, =0 141--000|l My Y1 — 22+ ys
spline is zero at the o o 6 Yo — 2y3 + ya
endpoints. Do Do Y :

000 ---141||Mo 9
000---014 Mn—l Yn—2 ynfl"i_yn

Parabolic | The spline reduces M, = M, 510---000lT M, T

Runout to a parabolic curve M, =M, , 141..000!|| M Y1 —2Y2+ Y3

Spline on the first and last o S _ 6 Yo — 2y3 + ya
intervals. S N CoT R :

000 -+ 141[[Ms _ 9
000---015 Mn—l Yn—2 yn—l"'yn

Cubic The spline is a M1 = 2M2 — M3 _6 10---00 O- B ]\42 7]

Runout single cubic curve M, =2M, 1 — M, ||141...000|| M Y1 — 2Y2+ Y3

Spline on the first two and o o . 6 Yo — 2y3 + Ya
last two intervals. Do Do TR :

000 ---141||Mo 9
000---016 Mn—l Yn—2 ynfl"i_yn
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Example 1. The density of water is well known to
reach a maximum at a temperature slightly above
freezing. Table 2, from the Handbook of Chem-
istry and Physics (CRC Press, 2009), gives the den-
sity of water in grams per cubic centimeter for five
equally spaced temperatures from —10°C to 30°C.
Interpolate these five temperature-density measure-
ments with a parabolic runout spline and find the
maximum density of water in this range by finding
the maximum value on this cubic spline.
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Temperature (°C)

Density (g/cm?)

—10 99815
0 99987

10 99973
20 99823
30 99567
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10.4 Markov Chains

Remark 1. Suppose a physical or mathematical system undergoes a process of
change such that at any moment it can occupy one of a finite number of states.
Suppose that such a system changes with time from one state to another and at
scheduled times the state of the system is observed. If the state of the system
at any observation cannot be predicted with certainty, but the probability that
a given state occurs can be predicted by just knowing the state of the system
at the preceding observation, then the process of change is called a Markov
chain or Markov process.

Definition 10.4.1. If a Markov chain has k possible states, which we label as
1,2,...,k, then the probability that the system is in state ¢ at any observation
after it was in state j at the preceding observation is denoted by p;; and is
called the transition probability from state j to state i. The matrix P = [p;;]
is called the transition matrix of the Markov chain.

Example 1. A car rental agency has three rental locations, denoted by 1, 2,
and 3. A customer may rent a car from any of the three locations and return
the car to any of the three locations. The manager finds that customers return
the cars to the various locations according to the following probabilities:

Rented from Location

1 2 3
8 32 Returned
d 2 6] 2 to

1 5 2| 3 Location

Find the probability that a car rented from location 3 will be returned to loca-
tion 2, and the probability that a car rented from location 1 will be returned
to location 1.

Example 2. By reviewing its donation records, the alumni office of a college
finds that 80% of its alumni who contribute to the annual fund one year will
also contribute the next year, and 30% of those who do not contribute one
year will contribute the next. What is the transition matrix?
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Definition 10.4.2. The state vector for an observation of a Markov chain
with k states is a column vector x whose ith component z; is the probability
that the system is in the ¢th state at that time.

Theorem 10.4.1. If P is the transition matriz of a Markov chain and x™ is
the state vector at the nth observation, then x"t1 = Px(),

Example 3. Use the transition matrix from Example 2 to construct the prob-
able future donation record of a new graduate who did not give a donation in
the initial year after graduation.
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Example 4. Determine whether the state vectors for Example 1 approach a
fixed vector.
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Example 5. A traffic officer is assigned to control the traffic at
the eight intersections indicated in the figure. She is instructed
to remain at each intersection for an hour and then to either
remain at the same intersection or move to a neighboring in-
tersection. To avoid establishing a pattern, she is told to choose
her new intersection on a random basis, with each possible choice
equally likely. For example, if she is at intersection 5, her next
intersection can be 2, 4, 5, or 8, each with probability 71;- Every
day she starts at the location where she stopped the day before.
Find the transition matrix for this Markov chain and use it to
determine whether the state vectors approach a fixed vector.
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Example 6. Let
=

01 1
0) _
1 0] and x\V/ = [O] .

Determine whether the state vectors approach a fixed vector.

Definition 10.4.3. A transition matrix is regular if some integer power of it
has all positive entries.

Theorem 10.4.2 (Behavior of P" as n — 00). If P is a reqular transition
matrix, then as n — oo,

qQq q1 - Q1
q2 42 -+ Q2
PY— | )
k. gk gk

where the q; are positive numbers such that ¢ + ¢ + -+ + qx = 1.

Theorem 10.4.3 (Behavior of P"x as n — 00). If P is a regular transition
matrix and X is any probability vector, then as n — oo,

dk
where q 1s a fixed probability vector, independent of n, all of whose entries are

positive.

Theorem 10.4.4 (Steady-State Vector). The steady-state vector q of a reqular
transition matriz P is the unique probability vector that satisfies the equation

Pq=q.
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Example 7. Find the steady-state vector from Example 2.
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Example 8. Find the steady-state vector from Example 1.
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Example 9. Find the steady-state vector from Example 5.
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10.5 Graph Theory

Remark 1. A directed graph is a finite set of elements,
{Py, Py, ..., P,}, together with a finite collection of ordered pairs
(P, P;) of distinct elements of this set, with no ordered pair be-
ing repeated. The elements of the set are called vertices, and the
ordered pairs are called directed edges, of the directed graph.
We use the notation P, — P; (which is read “P; is connected to
P;”) to indicate that the directed edge (P, P;) belongs to the
directed graph. Geometrically, we can visualize a directed graph (see the fig-
ure) by representing the vertices as points in the plane and representing the
directed edge P, — P; by drawing a line or arc from vertex P; to vertex P;,
with an arrow pointing from P; to P;. If both P, — P; and P; — P; hold (de-
noted P; <+ P;), we draw a single line between P; and P; with two oppositely
pointing arrows (as with P, and P; in the figure).

With a directed graph having n vertices, we may associate an n x n matrix
M = [myj], called the vertex matrix of the directed graph. Its elements are
defined by

1, if B, — P,
mij = .
! 0, otherwise.

Example 1. A certain family consists of a mother, father, daughter, and two
sons. The family members have influence, or power, over each other in the
following ways: the mother can influence the daughter and the oldest son; the
father can influence the two sons; the daughter can influence the father; the
oldest son can influence the youngest son; and the youngest son can influence
the mother. We may model this family influence pattern with a directed graph
whose vertices are the five family members. If family member A influences
family member B, we write A — B. Determine the resulting directed graph
and vertex matrix of this directed graph.
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Example 2. In chess the knight moves in an “L.”-shaped pattern
about the chessboard. For the board in the top figure it may ‘

move horizontally two squares and then vertically one square, ‘
or it may move vertically two squares and then horizontally one

square. Thus, from the center square in the figure, the knight l—--——--‘

may move to any of the eight marked shaded squares. Suppose
that the knight is restricted to the nine numbered squares in ‘

the bottom figure. If by ¢« — 7 we mean that the knight may ‘

move from square 7 to square j, determine the resulting directed
graph and vertex matrix that illustrates all possible moves that

the knight may make among these nine squares. 1| 2] 3
4| 5| 6
71 8 | 9

Remark 2. We call P, — P; in a directed graph a l-step connection and
P, — P, — P; a 2-step connection. Similarly, we call
P, — P, — Py, = -+ — B, — P; a r-step connection.

Theorem 10.5.1. Let M be the vertex matrix of a directed graph and let mg)

be the (i,7)-th element of M". Then mg-) is equal to the number of r-step
connections from P; to P;.
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Example 3. The figure is the route map of a small airline that
services the four cities Py, P, P3, P,. Find the number of 1, 2,
or 3-step connections from Py to Pj.

Definition 10.5.1. A subset of a directed graph is called a clique if it satisfies
the following three conditions:

(i) The subset contains at least three vertices.
(ii) For each pair of vertices P, and P; in the subset, both P, — P; and
P; — P; are true.
(iii) The subset is as large as possible; that is, it is not possible to add another
vertex to the subset and still satisfy condition (ii).
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Example 4. What are the cliques for the graph illustrated in
the figure?

Remark 3. The matrix S = [s;;] related to a given directed graph
is defined as follows:

1, it P e Py
v 0, otherwise.

Theorem 10.5.2 (Identifying Cliques). Let sg-’) be the (i,7)-th element of S®.
Then a vertex P; belongs to some clique if and only if sgig) #0.

Proof. 1f 3513 ) # 0, then there is at least one 3-step connection from F; to itself
in the modified directed graph determined by S. Suppose it is

P, — P; — P, — P;. In the modified directed graph, all of the directed
relations are two-way, so we also have the connections P; <+ P; <+ P, <+ P;.
But this means that {P;, P;, P} is either a clique or a subset of a clique. In
either case, P, must belong to some clique. The converse statement, “if P;
belongs to a clique, then SE? ) #0,” follows in a similar manner. O

Example 5. Suppose that a directed graph has as its vertex matrix

—_— O = O
S = O =
S O = =
S = O =

What are the cliques of the directed graph?
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Example 6. Suppose that a directed graph has as its vertex matrix

01011
10010
M=1]110120
11000
1 0010

What are the cliques of the directed graph?

Definition 10.5.2. A dominance-directed graph is a directed graph such that
for any distinct pair of vertices P; and P;, either P, — P; or P; — P;, but not
both.

Theorem 10.5.3 (Connections in Dominance-Directed Graphs). In any
dominance-directed graph, there is at least one vertex from which there is a
1-step or 2-step connection to any other vertex.

Proof. Consider a vertex (there may be several) with the largest total number
of 1-step and 2-step connections to other vertices in the graph. By renumbering
the vertices, we may assume that P; is such a vertex. Suppose there is some
vertex P, such that there is no 1-step or 2-step connection from P; to P;.
Then, in particular, P, — P; is not true, so that by definition of a dominance-
directed graph, it must be that P, — P;. Next, let Py be any vertex such that
P, — P, is true. Then we cannot have P, — P;, as then P, — P, — P, would
be a 2-step from P; to P;. Thus, it must be that P, — P,. That is, P; has
1-step connections to all the vertices to which P; has 1-step connections. The
vertex P; must then also have 2-step connections to all the vertices to which P;
has 2-step connections. But because, in addition, we have that P, — P, this
means that P, has more 1-step connections and 2-step connections to other
vertices than does P;. However, this contradicts the way in which P, was
chosen. Hence, there can be no vertex P; to which P; has no 1-step or 2-step
connection. O
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Example 7. Suppose that five baseball teams play each other
exactly once, and the results are as indicated in the dominance-
directed graph of the figure. Use Theorem 10.5.3 to show that
P, must have a 1-step or 2-step connection to any other vertex.

P,

Definition 10.5.3. The power of a vertex of a dominance-directed graph is
the total number of 1-step and 2-step connections from it to other vertices.
Alternatively, the power of a vertex P; is the sum of the entries of the ith row
of the matrix A = M + M?, where M is the vertex matrix of the directed
graph.

Example 8. Rank the five baseball teams in Example 7 according to their
powers.
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10.6 Games of Strategy

Remark 1. In a two-person zero-sum matrix game the term zero-sum means
that in each play of the game, the positive gain of one player is equal to the
negative gain (loss) of the other player. The term matriz game is used to
describe a two-person game in which each player has only a finite number of
moves, so that all possible outcomes of each play, and the corresponding gains
of the players, can be displayed in tabular or matrix form.

In a general game of this type, let player R have m possible moves and let
player C' have n possible moves. In a play of the game, each player makes one
of his or her possible moves, and then a payoff is made from player C' to player
R, depending on the moves. Fort=1,2,...,m,and 7 =1,2,...,n, let us set

a;; = payoff that player C' makes to player R if player R
makes move ¢ and player C' makes move j.
If an entry a;; is negative, we mean that player C receives a payoft of |a;;|

from player R. We arrange these mn possible payoffs in the form of an m x n
matrix

a1; a2 Q1n
Q21 Q22 Q2p

A - . I
Am1 Am2 -~ Omp

which we call the payoff matrix of the game.
Each player is to make his or her moves on a probabilistic basis. In the
general case we make the following definitions:

p; = probability that player R makes move i (i =1,2,...,m)
¢; = probability that player C' makes move j (j =1,2,...,n).

With the probabilities p; and ¢; we form two vectors:

q1
q2

P=1|p1 p2-r pm| and q=

dn
We call the row vector p the strategy of player R and the column vector q the
strategy of player C.

If we multiply each possible payoff by its corresponding probability and
sum over all possible payoffs, we obtain the expression

a11p1q1 + a12p1qe + - - - + A1pP1Gn + A2102G1 + -+ - + CmnDPmn,
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which is a weighted average of the payoffs to player R called the expected pay-
off to player R. We denote this expected payoff by E(p,q) to emphasize the
fact that it depends on the strategies of the two players. From the definition
of the payoff matrix A and the strategies p and q, it can be verified that we
may express the expected payoff in matrix notation as

aj; a2 -+ Aip q1

Qg1 QA22 -+ QA2p q2
E(.q)=(pr p2 Dl | . . : . | = pAq.

Am1 Am2 - Omnp dn

Because E(p,q) is the expected payoff to player R, it follows that —FE(p, q)
is the expected payoff to player C.

Example 1. Consider the following carnival-type game where each

player has a stationary wheel with a movable pointer on it as in the
figure. We will call player R’s wheel the row-wheel and player C’s wheel
the column-wheel. The row-wheel is divided into three sectors numbered
1, 2, and 3, and the column-wheel is divided into four sectors numbered
1, 2, 3, and 4. The fractions of the area occupied by the various sec-
tors are indicated in the figure. To play the game, each player spins 1/2

1/6

the pointer of his or her wheel and lets it come to rest at random. The
number of the sector in which each pointer comes to rest is called the
move of that player. Depending on the move each player makes, player

Row-wheel
of player R

C then makes a payment of money to player R according to Table 1.

Table 1 Payment to Player R
Player C’s Move
1 2 3 4

1| 33| 85| —$2|-$1
$4 | —83 | —%4
3| $6|—-$5| $0| 83

Player R’s Move

)
|

&%

]

Find the expected payoff to player R.

320

Column-wheel

of player C




Linear Algebra - 10.6 Games of Strategy

Theorem 10.6.1 (Fundamental Theorem of Zero-Sum Games). There exist
strategies p* and q* such that

E(p*,q) > E(p",q") > E(p,q")
for all strategies p and q.

Definition 10.6.1. If p* and q* are strategies such that

E(p*,q) > E(p",q") > E(p,q")

for all strategies p and q, then

(i) p* is called an optimal strategy for player R.
(ii) q* is called an optimal strategy for player C.
(i) v = E(p*, q*) is called the value of the game.

Definition 10.6.2. An entry a,, in a payoff matrix A is called a saddle point
if

(i) a,s is the smallest entry in its row, and
(ii) a,s is the largest entry in its column.

A game whose payoff matrix has a saddle point is called strictly determined.

Remark 2. If a matrix has a saddle point a,, it turns out that the following
strategies are optimal strategies for the two players:

0
0
pr=00 /1 0]’ a = 1|+ sth entry
rth entry :
0

That is, an optimal strategy for player R is to always make the rth move, and
an optimal strategy for player C'is to always make the sth move. Such strate-
gies for which only one move is possible are called pure strategies. Strategies
for which more than one move is possible are called mixed strategies.

321



Linear Algebra - 10.6 Games of Strategy

Example 2. Two competing television networks, R and C', are scheduling
one-hour programs in the same time period. Network R can schedule one
of three possible programs, and network C' can schedule one of four possible
programs. Neither network knows which program the other will schedule.
Both networks ask the same outside polling agency to give them an estimate
of how all possible pairings of the programs will divide the viewing audience.
The agency gives them each Table 2, whose (7, j)-th entry is the percentage
of the viewing audience that will watch network R if network R’s program ¢
is paired against network C’s program j. What program should each network

schedule in order to maximize its viewing audience?

Table 2 Audience Percentage for

Network R
Network C’s
Program
11 2] 3| 4
11602013055
Peonom 15 12| 50| 75| 45 | 60
3701|4535 30
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Theorem 10.6.2 (Optimal Strategies for a 2 x 2 Matrix Game). For a 2 x 2
game that is not strictly determined, optimal strategies for players R and C
are

. Q2 — A2 air — a2
p fry
Q11 + Qg9 — Q12 — Q21 Q11 + G2 — Q12 — Aoy
and
Q22 — Q12
q = | + Qg2 — a12 — a1
11 — Q21

a1 + g2 — A12 — G21

The value of the game s

a11A22 — G12021
a11 + Gg2 — Q12 — G21

v =

Example 3. The federal government desires to inoculate its citizens against
a certain flu virus. The virus has two strains, and the proportions in which
the two strains occur in the virus population is not known. Two vaccines have
been developed and each citizen is given only one of them. Vaccine 1 is 85%
effective against strain 1 and 70% effective against strain 2. Vaccine 2 is 60%
effective against strain 1 and 90% effective against strain 2. What inoculation
policy should the government adopt?
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10.7 Forest Management

Remark 1. The optimal sustainable yield of a forest is the largest yield that
can be attained continually without depleting the forest. The column vector

X
X2
X =

Tn

is called the nonharvest vector, where x; are the number of trees within the
1th class that remain after each harvest and p; is the economic value of a tree
in the ith class. We set

1+ To+---+x,=35
where s is predetermined by the amount of land available and the amount of
space each tree requires. We define the following growth parameters g; for
1=1,2,...,n—1:
g; = the fraction of trees in the ¢th class that grow into
the (i + 1)-st class during a growth period.

Assuming that a tree can move at most one height class upward in one growth
period, we form the following n x n growth matrix:

(1—-¢, 0 0 e 0
g 1—g 0 x 0
a=| V¢ e Y
0 0 0 o+ 1—gp—1 O
_0 0 0 In—1 1_
The column vector
n
Y2
y=1.
Un

is called the harvest vector, where y; are the number of trees removed from
the ith class. If we define the following n x n replacement matrix
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then the equation
Gx—y+Ry=x

represents the sustainable harvesting condition.

Theorem 10.7.1 (Optimal Sustainable Yield). The optimal sustainable yield
1s achieved by harvesting all the trees from one particular height class and none
of the trees from any other height class.

Theorem 10.7.2 (Finding the Optimal Sustainable Yield). The optimal sus-
tainable yield is the largest value of

PrsS
1 1 1
g1 9o k-1
for k =2.3,...,n. The corresponding value of k is the number of the class

that s completely harvested.

Example 1. For a Scots pine forest in Scotland with a growth period of
six years, the following growth matrix was found (see M. B. Usher, “A Matrix
Approach to the Management of Renewable Resources, with Special Reference
to Selection Forests,” Journal of Applied Ecology, vol. 3, 1966, pp. 355-367):
720 0 0 0 0
28 69 0 0 O 0
0 31 7% 0 0 0
0 0 25 .77 0 0
0O 0 0 .23 63 0
0O 0 0 0 .37 1.00

Suppose that the prices of trees in the five tallest height classes are
p2 = $50, ps = $100, ps = $150, ps = $200, pe = $250.

Which class should be completely harvested to obtain the optimal sustainable
yield, and what is that yield?
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10.8 Computer Graphics

Remark 1. Suppose that we want to visualize a three-dimensional object by
displaying various views of it on a video screen. The object we have in mind to
display is to be determined by a finite number of straight line segments. As an
example, consider the truncated right pyramid with hexagonal base illustrated
in the figure.

We first introduce an xyz-coordinate system in which to embed the object.
As in the figure, we orient the coordinate system so that its origin is at the
center of the video screen and the xy-plane coincides with the plane of the
screen. Consequently, an observer will see only the projection of the view of
the three-dimensional object onto the two-dimensional xy-plane.
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Example 1. The top view represents line segments of the truncated
right pyramid with hexagonal base as they would appear on a video

screen.

(a) The bottom view is the top view subject to the following five
transformations:

1.

=N

5

Scale by a factor of % in the z-direction, 2 in the y-
direction, and % in the z-direction.

Translate % unit in the z-direction.

Rotate 20° about the z-axis.

Rotate —45° about the y-axis.

Rotate 90° about the z-axis.

Construct the five matrices M;, My, Mz, My, and M5 associated
with these five transformations.

=
7

(b) If P is the coordinate matrix of the original view and P’ is the coordinate
matrix of the transformed view, express P’ in terms of My, My, M3, My, M,
and P.
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10.9 Equilibrium Temperature Distributions

Theorem 10.9.1 (The Mean-Value Property). Let a plate be in thermal equi-
librium and let P be a point inside the plate. Then if C' is any circle with
center at P that is completely contained in the plate, the temperature at P is
the average value of the temperature on the circle.

Remark 1. A plate can be overlaid with a succession of finer and finer square
nets or meshes. The points of intersection of the net lines are called mesh
points. We classify them as boundary mesh points if they fall on the boundary
of the plate or as interior mesh points if they lie in the interior of the plate.

Theorem 10.9.2 (Discrete Mean-Value Property). At each interior mesh
point, the temperature is approximately the average of the temperatures at the
four neighboring mesh points.

Remark 2. The technique of generating successive approximations to the so-
lution of the equation
t=Mt+b

where t and b are column vectors whose numbers of entries are equal to the
number of interior mesh points and M is a matrix whose number of rows
and columns is equal to the number of interior mesh points, is called Jacobi
iteration.

Example 1. A plate in the form of a circular disk has bound-
ary temperatures of 0° on the left of its circumference and
1deg on the right half of its circumference. A net with four
interior mesh points is overlaid on the disk (see the figure).

(a) Using the discrete mean-value property, write the 4 x 4
linear system t = Mt + b that determines the approxi-
mate temperatures at the four interior mesh points.
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(b) Solve the linear system in part (a).

(c) Use the Jacobi iteration scheme with t(©) = 0 to generate the iterates
t, @ £®) t™ and t® for the linear system in part (a). What is the
“error vector” t®) — t, where t is the solution found in part (b)?

(d) By certain advanced methods, it can be determined that the exact tem-
peratures to four decimal places at the four mesh points are t; = t3 =
2871 and to = t4, = .7129. What are the percentage errors in the values
found in part (b)?
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Remark 3. By a discrete random walk along a net we mean a directed path
along the net lines that joins a succession of mesh points such that the direction
of departure from each mesh point is chosen at random.

Theorem 10.9.3 (Random Walk Property). Let Wy, Ws, ..., W, be a succes-
sion of random walks, all of which begin at a specified interior mesh point. Let
1,15, ..., 1 be the temperatures at the boundary mesh points first encountered
along each of these random walks. Then the average value (t7+t5+---+1t%)/n
of these boundary temperatures approaches the temperature at the specified in-

terior mesh point as the number of random walks n increases without bound.
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Example 2. The random walk illustrated in Figure (a) can be described by
SIX arrows

===

that specify the directions of departure from the successive mesh points along
the path. Figure (b) is an array of 100 computer-generated, random oriented
arrows arranged in a 10 x 10 array. Use these arrows to determine random
walks to approximate the temperature t5. Proceed as follows:

1.

Take the last two digits of your telephone number. Use the last digit to
specify a row and the other to specify a column.

Go to the arrow in the array with that row and column number.

Using this arrow as a starting point, move through the array of arrows as
you would read a book (left to right and top to bottom). Beginning at the
point labeled t5 in Figure (a) and using this sequence of arrows to specify
a sequence of directions, move from mesh point to mesh point until you
reach a boundary mesh point. This completes your first random walk.
Record the temperature at the boundary mesh point. (If you reach the
end of the arrow array, continue with the arrow in the upper left corner.)
Return to the interior mesh point labeled ¢5 and begin where you left
off in the arrow array; generate your next random walk. Repeat this
process until you have completed 10 random walks and have recorded 10
boundary temperatures.

Calculate the average of the 10 boundary temperatures recorded. (The
exact value is t5 = .7491.)

29 01234567809

0y << §y ==y ¥4

14—4——»—»4—} }—»—»{

2 0

2} w ey <
R
2 0 N e AR R,
St 4 <4
bAoA bbb =t~
R R
<4<
boA {

O 00 3 O

331



)

Linear Algebra - 10.10 Computed Tomography

10.10 Computed Tomography

Theorem 10.10.1 (Orthogonal Projection Formula). Let L
be a line in R? with equation a’x = b, and let x* be any point
in R? (see the figure). Then the orthogonal projection, x,, of ~
x* onto L is given by

A

(b —alx*)
Xp = X* + Ta.

A X2

Example 1. Find an approximate solution of the linear system

Li: 1+ 9= 2
L2 : T, — 25E2 = -2
Ly: 3x1— x29= 3

shown in the figure.

3x,-x,=3
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Example 2. Find the unknown pixel densities of the 9 pixels arranged in the
3 x 3 array illustrated in the figure. These 9 pixels are scanned using the
parallel mode with 12 beams whose measured beam densities are indicated in
the figure.

by = 12.00
be = 3.81 by=6.00 b, =18.00 byp =10.51
by = 1431 by, = 16.13

b, =14.79 by, =7.04

PO

N

9e

4// .51/46 . E 4\\5.
L7489 7, E"H 7[8%
HiEN
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10.11 Fractals

Remark 1. We call a set in R? bounded if it can be enclosed by a suitably
large circle and closed if it contains all of its boundary points. Two sets in R?
will be called congruent if they can be made to coincide exactly by translating
and rotating them appropriately within R?.

If T : R? — R?is the linear operator that scales by a factor of s (see Table
7 of Section 4.9), and if @Q is a set in R?, then the set T'(Q) (the set of images of
points in ) under 7T is called a dilation of the set ) if s > 1 and a contraction
of Q if 0 < s < 1. In either case we say that T(Q) is the set @) scaled by the
factor s.

Definition 10.11.1. A closed and bounded subset of the Euclidean plane R?
is said to be self-similar if it can be expressed in the form

S=5USUS3U---US

where 57, 59, S3, ..., Sk are nonoverlapping sets, each of which is congruent to
S scaled by the same factor s (0 < s < 1).

Example 1. A line segment in R? can be expressed as the union of two
nonoverlapping congruent line segments. Determine the values of k£ and s for
this self-similar set.

Example 2. A square can be expressed as the union of four nonoverlapping
congruent squares. Determine the values of k and s for this self-similar set.

Example 3. The set suggested by the figure, the Sierpinski e ¥ -
“carpet,” was first described by the Polish mathematician Wa- g8~ - =
claw Sierpinski (1882-1969). Determine the values of k£ and s 7%

for this self-similar set.
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Example 4. The figure illustrates another set described by
Sierpinski. Determine the values of k and s for this self-similar
set.

Remark 2. The definition of the dimension of a subspace given

jemarn 2. 3 . NS
in Section 4.5 is a special case of a more general concept called

topological dimension, which is applicable to sets in R that are not necessarily
subspaces. We denote the topological dimension of a set S by dr(5).

Example 5. What are the topological dimensions of the sets given in Exam-
ples 1-4?

Definition 10.11.2. The Hausdorff dimension of a self-similar set S is denoted
by dg(S) and is defined by

Ink
du(5) = In(1/s)

Example 6. What are the Hausdorff dimensions of the sets given in Examples
1-47
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Definition 10.11.3. A fractal is a subset of a Euclidean space whose Haus-
dorff dimension and topological dimension are not equal.

Definition 10.11.4. A similitude with scale factor s is a mapping of R? into
R? of the form

T
Y

e

iy

~ |cosf —sinf
=5 | sing cos 6

where s, 0, e, and f are scalars.

Example 7. Consider the line segment S connecting the points (0,0) and
(1,0) in the xy-plane. Find similitudes whose union is S.

Example 8. Consider the unit square U in the zy-plane, as y
shown in the figure. Find similitudes whose union is U.

0,1) 1,1)

(0,0) (1, 0)
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Example 9. Consider the Sierpinski carpet S over the unit y
square U of the xy-plane, as shown in the figure. Find simil-
itudes whose union is S.

0,1) L

00| S 10

Example 10. Consider the Sierpinski triangle S fitted inside
the unit square U of the zy-plane, as shown in the figure. Find
similitudes whose union is S.

Theorem 10.11.1. IfT1,T5, ..., T} are contracting similitudes with the same
scale factor, then there is a unique nonempty closed and bounded set in S in
the Fuclidean plane such that

S =T1(S)UT(S)UT5(S)U---UTL(S).
Furthermore, if the sets T1(S), T»(S), T5(S), . . ., Tx(S) are nonoverlapping, then

S is self-similar.
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Example 11. Use similitudes to construct the Sierpinski carpet, starting with
the unit square in the xy-plane.

Example 12. Use similitudes to construct the Sierpinski tri-
angle, starting with the arbitrary closed and bounded set S
in the figure.

AY

0, 1)

=

(0,0)
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Example 13. Consider the following two similitudes:

2]\ 110
h y| ] — 210 1]
T ] 1 cosf  —sind] [« i 3
2V lyl ] 2 |sind®  cos@| |y 3

Describe the actions of these two similitudes on the unit square U for various
values of 6.

Definition 10.11.5. An affine transformation is a mapping of R? into R? of

o -l

where a, b, ¢, d, e, and f are scalars.

T
Y

T
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10.12 Chaos

Remark 1. Arnold’s cat map is the transformation I' : R? — R? defined by
the formula

I':(z,y) > (x+y,z+2y)mod 1

(BB g

Under Arnold’s cat map each pixel point of the unit square

or, in matrix notation,

S={(z,y)|[0<2<1,0<y <1}

is transformed into another pixel point of S. To see why this is so, observe
that the image of the pixel point (m/p,n/p) under T is given in matrix form

by
m m m-—+n
p |1 1 |p _ P
I n = [1 2] n mod1l = m 4+ on mod 1.
4 p 4

Example 1. Determine the successive iterates of the point (%, %) under
Arnold’s cat map.

Remark 2. We say that a set D of points in S is dense in S if every circle
centered at any point of S encloses points of D, no matter how small the
radius of the circle is taken. It can be shown that the rational points are dense
in S and the iterates of most (but not all) of the irrational points are dense in

S.

Definition 10.12.1. A mapping T" of S onto itself is said to be chaotic if:

(i) S contains a dense set of periodic points of the mapping 7.
(ii) There is a point in S whose iterates under T" are dense in S.
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10.13 Cryptography

Remark 1. The study of encoding and decoding secret messages is called cryp-
tography. In the language of cryptography, codes are called ciphers, uncoded
messages are called plaintext, and coded messages are called ciphertext. The
process of converting from plaintext to ciphertext is called enciphering, and
the reverse process of converting from ciphertext to plaintext is called deci-
phering.

The simplest ciphers, called substitution ciphers, are those that replace
each letter of the alphabet by a different letter. A system of cryptography in
which the plaintext is divided into sets of n letters, each of which is replaced
by a set of n cipher letters, is called a polygraphic system. Hill ciphers are a
class of polygraphic systems based on matrix transformations.

b

to obtain the Hill cipher for the plaintext message

Example 1. Use the matrix

I AM HIDING.
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Definition 10.13.1. If m is a positive integer and a and b are any integers,
then we say that a is equivalent to b modulo m, written

a=>b (modm)
if a — b is an integer multiple of m.

Example 2. Determine values for m that make these equivalences true:

7=2 (mod m)
19 = (mod m)
—1=25 (mod m)
12=0 (mod m)

Remark 2. For any modulus m it can be proved that every integer a is equiv-
alent, modulo m, to exactly one of the integers

0,1,2,...,m—1.
We call this integer the residue of @ modulo m, and we write
Zm=10,1,2,....,m — 1}
to denote the set of residues modulo m.

Theorem 10.13.1. For any integer a and modulus m, let
|al

R = remainder of —.
m

Then the residue r of a modulo m is given by

R ifa>0
r=qm—R ifa<0and R#0
0 ifa <0 and R=0.

Example 3. Find the residue modulo 26 of (a) 87, (b) —38, and (c¢) —26.
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Definition 10.13.2. If @ is a number in Z,,, then a number ¢! in Z,, is
called a reciprocal or multiplicative inverse of a modulo m if
aa™' =a"'a=1 (mod m).

Example 4. Find the reciprocal of the number 3 modulo 26, if it exists.

Example 5. Find the reciprocal of the number 4 modulo 26, if it exists.

Theorem 10.13.2. A square matriz A with entries in Z,, is invertible modulo
m if and only if the residue of det(A) modulo m has a reciprocal modulo m.

Theorem 10.13.3. A square matriz A with entries in Z,, is invertible modulo
m if and only if m and the residue of det(A) modulo m have no common prime
factors.

Theorem 10.13.4. A square matriz A with entries in Zag is invertible modulo
26 if and only if the residue of det(A) modulo 26 is not divisible by 2 or 13.

Example 6. Find the inverse of

A:

5 6
2 3

modulo 26.

343



Linear Algebra - 10.13 Cryptography

Example 7. Decode the following Hill 2-cipher, which was enciphered by the
matrix in Example 6:

GTNKGKDUSK.

Theorem 10.13.5 (Determining the Deciphering Matrix). Let p1,pa, ..., Pn
be linearly independent plaintext vectors, and let ci,cs,...,c, be the corre-
sponding ciphertext vectors in a Hill n-cipher. If

P
P=|"7

pL

is the n x n matriz with row vectors pt,ps,...,pL and if

T
¢y
cy

C =

T
cn

is the n x n matriz with row vectors ¢I',cl ... cT then the sequence of ele-

Yy n

mentary row operations that reduces C' to I transforms P to (A~HT.

344



Linear Algebra - 10.13 Cryptography

Example 8. The following Hill 2-cipher is intercepted:

I0SBTGXESPXHOPDE.

Decipher the message, given that it starts with the word DEAR.
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10.14 Genetics

Remark 1. In this section we will assume that inherited traits are governed
by a set of two genes, which we designate by A and a. Under autosomal in-
heritance each individual in the population of either gender possesses two of
these genes, the possible pairings being designated AA, Aa, and aa. This pair
of genes is called the individual’s genotype, and it determines how the trait
controlled by the genes is manifested in the individual.

Table 1

Genotype Genotypes of Parents

o Ol AA-AA | AA-Aa| AA-aa | Aa-Aa | Aa-aa | aa-aa
AA 1 : 0 : 0 0
Aa 0 % 1 % % 0
aa 0 0 0 i % 1

Example 1. Suppose that a farmer has a large population of plants consisting
of some distribution of all three possible genotypes AA, Aa, and aa. The farmer
desires to undertake a breeding program in which each plant in the population
is always fertilized with a plant of genotype AA and is then replaced by one
of its offspring.

Forn=0,1,2,..., let us set

a, = fraction of plants of genotype AA in nth generation
b, = fraction of plants of genotype Aa in nth generation

¢, = fraction of plants of genotype aa in nth generation.

Derive an expression for the distribution of the three possible genotypes in the
population after any number of generations.
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Example 2. Modify Example 1 so that instead of each plant being fertilized
with one of genotype AA, each plant is fertilized with a plant of its own geno-
type. Derive an expression for the distribution of the three possible genotypes
in the population after any number of generations.
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10.15 Age-Specific Population Growth

Remark 1. Suppose the maximum age attained by any female in a population
is L years and divide the population into n age classes. We define the age
distribution vector x* at time ¢ by

(k)

where z; is the number of females in the ith age class at time ¢;. Then

x®) = [x+=1) k=1,2,...

where L is the Leslie matrix

ay Qa asg -+ Ap—1 Qp
by 0 0 --- O 0
10 b, 0 -~ 0 0
_O 0 0 -+ by O_

Example 1. Suppose that the oldest age attained by the females in a cer-
tain animal population is 15 years and we divide the population into three
age classes with equal durations of five years. Let the Leslie matrix for this
population be

0 4 3
L=1{1 00
0 1o

If there are initially 1000 females in each of the three age classes, then find the
number of females in each age class after 15 years.
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Theorem 10.15.1 (Existence of a Positive Eigenvalue). A Leslie matriz L
has a unique positive eigenvalue \i. This eigenvalue has multiplicity 1 and an
eigenvector X1 all of whose entries are positive.

Theorem 10.15.2 (Eigenvalues of a Leslie Matrix). If A\; is the unique positive

eigenvalue of a Leslie matrixz L, and Ay is any other real or complex eigenvalue
of L, then |Ag| < Aq.

Example 2. Find the eigenvalues of

00 6
L=1{1 00
010

Theorem 10.15.3 (Dominant Eigenvalue). If two successive entries a; and
a1 n the first row of a Leslie matriz L are nonzero, then the positive eigen-
value of L is dominant.

Example 3. Find the limiting proportion of the age distribution of the pop-
ulation in Example 1.
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Example 4. In this example we use birth and parameters from the year 1965
for Canadian females. Because few women over 50 years of age bear children,
we restrict ourselves to the portion of the female population between 0 and 50
years of age. The birth and death parameters are as follows:

Age Interval a; b;
0,5) 0.00000 | 0.99651
5,10) 0.00024 | 0.99820

0.05861 | 0.99802

0.28608 | 0.99729

0.44791 | 0.99694

0.22259 | 0.99460

0.10457 | 0.99184
0.02826 | 0.98700
0.00240 —

)
)
)
25,30) | 0.36399 | 0.99621
)
)
)
)

Using numerical techniques, we can approximate the positive eigenvalue and
corresponding eigenvector by

1.00000
0.92594
0.85881
0.79641
0.73800
0.68364
0.63281
0.58482
0.53897
0.49429

A1 =1.07622 and x; =

Interpret these results in the context of this example.
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10.16 Harvesting of Animal Populations

Definition 10.16.1. A harvesting policy in which an animal population is
periodically harvested is said to be sustainable if the yield of each harvest
is the same and the age distribution of the population remaining after each
harvest is the same.

Remark 1. To describe this harvesting model mathematically, let

X
X2
X =

T

be the age distribution vector of the population at the beginning of the growth
period. Then

(I —H)Lx=x
where L is the Leslie matrix describing the growth of the population, H is the
harvesting matrix

by 0 0 0]
0 hy O 0
H=10 0 hs 01,
(00 0 - hy
and h;, for i = 1,2,...,n, is the fraction of females from the ith class that is

harvested.
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Example 1. For a certain species of domestic sheep in New Zealand with a
growth period of 1 year, the following Leslie matrix was found (see G. Caugh-
ley, “Parameters for Seasonally Breeding Populations,” Ecology, 48, 1967, pp.
834-839).

000 .045 .391 472 .484 .546 .5b43 .502 .468 .459 .433 421
845 0 0 0 0 0 0 0 0 0 0 0
0 97 0 0 0 0 0 0 0 0 0 0
0 0 965 0 0 0 0 0 0 0 0 0
0 0 0 950 O 0 0 0 0 0 0 0
I 0 0 0 0 926 0 0 0 0 0 0 0
0 0 0 0 0 895 0 0 0 0 0 0
0 0 0 0 0 0 .80 0 0 0 0 0
0 0 0 0 0 0 0 .78 O 0 0 0
0 0 0 0 0 0 0 0 691 O 0 0
0 0 0 0 0 0 0 0 0 561 0 0
0 0 0 0 0 0 0 0 0 0 370 0

The sheep have a lifespan of 12 years, so they are divided into 12 age classes of
duration 1 year each. By the use of numerical techniques, the unique positive
eigenvalue of L can be found to be

A = 1.176.

Determine the uniform harvesting policy for this population.
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Example 2. In some populations only the youngest females are of any eco-
nomic value, so the harvester seeks to harvest only the females from the
youngest age class. Apply this type of sustainable harvesting policy to the
sheep population in Example 1.

Theorem 10.16.1 (Optimal Sustainable Yield). An optimal sustainable har-
vesting policy is one in which either one or two age classes are harvested. If
two age classes are harvested, then the older age class is completely harvested.
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10.17 A Least Squares Model for Human Hear-
ing

Theorem 10.17.1. (Minimizing the Mean Square Error on [0, 27]). If f(t) is
continuous on |0, 27], then the trigonometric function g(t) of the form

1
g(t) = §a0+a1 cost + -+ 4+ a,cosnt + bysint + - - - + b, sinnt

that minimizes the mean square error

/0 ") — gl de

has coefficients
1 2w
ak:—/ f(t) cos kt dt, k=0,1,2,...,n
T Jo
1

2
b, = — f(t)sin kt dt, k=1,2,...,n.

™ Jo

Theorem 10.17.2. (Minimizing the Mean Square Error on [0, 7). If f(t) is
continuous on [0,T], then the trigonometric function g(t) of the form

(t) Lo+ 2my 20T b sin 2t by sin 21y
= —ag+aj;cos —t + --- + a,, cos — sin —t + -+ + b, sin —
g g0 T A1 €08 T 1S T

that minimizes the mean square error

/0 ") — gl de

has coefficients

ap =

2 [T 2kt
?/0 f(t) cos 7zrdt, kE=0,1,2,...,n

2 [T 2kt
bk:f/o f(t) sin ; dt, k=1,2,...,n.
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Example 1. Let a sound wave p(t) have a saw-tooth pattern N0

with a basic frequency of 5000 cps (see the figure). Assume
units are chosen so that the normal atmospheric pressure is at 4
the zero level and the maximum amplitude of the wave is A.
The basic period of the wave is T = 1/5000 = .0002 second.
From ¢t = 0 to t = T, the function p(t) has the equation

p(t):%<g—t).

Investigate how the sound wave p(t) is perceived by the human ear.

.
0
D\
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10.18 Warps and Morphs

Remark 1. Let the three vertices of a triangle be given by the

three noncollinear points vy, vy, and vz (see the figure). We 4y V2
will call this triangle the begin-triangle. If v is any point in the
begin-triangle, then there are unique constants c¢; and ¢y such
that K
vV — V3 :Cl(Vl—V3)+CQ(V2—V3). !
If we set ¢c3 =1 — ¢; — ¢, then we can rewrite this equation as Vs X
V = (V] + GV, + C3V
V = C1V] + CyVy + C3V3 e 2 3
where

c1+cy+cg=1.

We say that v is a convex combination of the vectors vy, vo, and vs if these
equations are satisfied and, in addition, the coefficients ¢, cp, and c3 are
nonnegative. It can be shown that v lies in the triangle determined by vy, va,
and vz if and only if it is a convex combination of those three vectors.
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Example 1. Determine whether the vector v is a convex combination of the
vectors vq, vo, and vs.
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Remark 2. Given three noncollinear points wy, wo, and ws of

an end-triangle (see the figure), there is a unique affine transfor- 47
mation that maps v; to wy, vo to wo, and v3 to ws. That is, w
there is a unique 2 x 2 invertible matrix M and a unique vector ht ’
b such that

w;, =Mv;,+b fori=1,2,3. w,
Moreover, it can be shown that the image w of the vector v X
under this affine transformation is W =Wy + W, + C3W'3

W = C{W] + CgW3 + C3W3.

To each point in the begin-triangle we assign a gray level, say 0 for white and
100 for black, with any other gray level lying between 0 and 100. In particular,
let a scalar-valued function py, called the picture-density of the begin-triangle,
be defined so that pg(v) is the gray level at the point v in the begin-triangle.
We can now define a picture in the end-triangle, called a warp of the original
picture, with a picture-density p; by defining the gray level at the point w
within the end-triangle to be the gray level of the point v in the begin-triangle
that maps onto w. In equation form, the picture-density p; is determined by

p1(W) = po(c1vy + cava + c3V3).

Suppose we are given a picture contained within some rectangular region of
the plane. We choose n points vy, vy, ..., v, within the rectangle, which we
call vertex points, so that they fall on key elements or features of the picture
we wish to warp. Once the vertex points are chosen, we complete a triangula-
tion of the region.

A time-varying warp is the set of warps generated when the vertex points of a
beginning picture are moved continually in time from their original positions to
specified final positions. A time-varying morph can be described as a blending
of two time-varying warps of two different pictures using two triangulations
that match corresponding features in the two pictures.
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Example 2. Find the 2 x 2 matrix M and two-dimensional vector b that
define the affine transformation that maps the three vectors vy, vo, and v3 to
the three vectors wy, wy, and ws. Do this by setting up a system of six linear

equations for the four entries of the matrix M and the two entries of the vector
b.
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10.19 Internet Search Engines

Remark 1. A network of links between web pages can provide a means of
measuring their relative importance. A diagram called a webgraph shows the
links among the web pages. A directed path from the ith page to the jth page
means that the ith page has an outgoing link to the jth page (i.e., it references
that page). The adjacency matrix of a webgraph with n pages is the n x n
matrix A whose ¢jth entry a;; is 1 if the jth page has an outgoing link to the
1th page and 0 otherwise.

Definition 10.19.1. If a webgraph with n pages is “surfed” by clicking a
mouse, then the state vector x(®) is the n x 1 column vector whose ith entry is
the probability that the surfer is on the ith page after k£ random mouse clicks.

Definition 10.19.2. The probability transition matrix B = [b;;] associated
with an adjacency matrix A = [a;;] is the matrix obtained by dividing each
entry of A by the sum of the entries in the same column; that is,

CL,‘]‘

by = ——9
J D :
Zk:l Ay

Example 1. Suppose we know with certainty that Alice is
initially on Page 2 of the webgraph in the figure. Determine /-)—\

her successive state vectors. 1

A
)

Y \ A
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Remark 2. Suppose there is a probability d, called the damping factor, that
one will go to the next page in a network by choosing a link on the current
page and a probability of 1 — ¢ that the next page will be chosen at random.
Then there is a new probability transition matrix A = [m;;| in which

1—-9¢
mlj:(SbZJ+T

with b;; as given in Definition 10.19.2.

Example 2. Consider the webgraph in the figure. Determine
the successive state vectors with and without a damping factor /-)_\

of § = 0.85. 1

A
)
,'A\
w
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Ps =

Linear Algebra - 10.20 Facial Recognition

10.20 Facial Recognition

Example 1. Suppose we have grayscale images of 1000 faces and we reduce
the resolution of each image to only 3 pixels. The facial images can then be
represented by vectors (or points) p;, ¢ = 1,2,...,1000 in the unit box in R3

(see the figure).

Let us pick the following 10 face vectors as our training set (shown as red dots

in the figure).

0.7272 0.6763
0.2826 | ,py = |0.3489
0.7404 0.7039
| 0.3034)
7p5 — 06640 ,p6 =
0.5243
[0.6670 [0.3495
0.3386| ,po = |0.5876
0.7375 0.4980

,yP3 =

0.5806
0.4154
0.6729

y P10 =

0.5431
0.4740
0.5756

, P =

0.5816]
0.3480

0.7132

0.25
0 %

(a) Find the mean m of the training set, and use it to find the caricature

vectors qi,qs, - . -

» 410-

365




Linear Algebra - 10.20 Facial Recognition

(b) Find the 3 x 10 caricature matrix ), the 3 x 3 correlation matrix C' =
QQT, and the 10 x 10 matrix A = QT Q.

(c¢) Find the eigenvalues Aj, A2, A3 and corresponding normalized eigenvec-
tors uy, us, us of the correlation matrix C.
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(d) Find the 10 eigenvalues of the matrix A and verify that the eigenvalues
A1, Ao, Az of the matrix C' in part (c¢) are the nonzero eigenvalues of
A and that corresponding eigenvectors are Qui, Qus, Quz with norms
VAL V2, VA3, [Note: In this example it is easier to work with the 3 x 3
matrix C' rather than the 10 x 10 matrix A. However, that is a result of
the small size of our training set. In most facial-recognition applications
A will be very much smaller than C'.]

(e) Compute the three eigenfaces e, es, e3 determined by the training set.
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(f) Compute the 3 features of each of the 10 faces in the training set.
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(g) Let f;; denote the jth feature of the ith face vector in the training set, so
that the ith caricature vector is q; = f;1e1 + fioes + fizes. Suppose that
q; is approximated by f;;e; (that is, each caricature vector is approxi-
mated by the feature corresponding to the largest eigenvalue of C'). Find
the Euclidean distance between each caricature vector and its approxi-
mation. [Note: In the figure, the blue line passes through the average
coordinates of the 1000 pictured points and lies in the direction of the
eigenface e;. Thus, the distances computed in this part are the distances
of the red training-set points to the line.]
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LU-decomposition, 278
1-step connection, 314
2-space, 85

3-space, 85

adjoint, 81

affine transformation, 339, 360
algebraic multiplicity, 172
angle between vectors, 91
associative law, 86

augmented matrix, 5
autosomal inheritance, 347

back-substitution, 13
backward phase, 10

basis, 136

begin-triangle, 358

best approximation, 208
boundary mesh points, 328
bounded, 334

central conic, 229

central quadric, 229
chaotic, 340

characteristic equation, 160
characteristic polynomial, 160
cipher, 341

ciphertext, 341

clique, 315

closed, 334

codomain, 46

coefficient matrix, 22
coefficients, 20, 88
cofactor, 70

cofactor expansion, 71
column space, 146

column vector, 16
column-row expansion, 21
column-vector form, 46
comma-delimited form, 46
complex n-space, 173
complex n-tuple, 173

complex Euclidean inner product, 173

component, 86
composition, 255
congruent, 334

conic section, 229
conjugate transpose, 238
consistent linear system, 3

constrained extremum theorem, 233

consumption matrix, 67
contraction, 243, 334
convex combination, 358
coordinate map, 144
coordinate vector, 139
coordinates, 139

cost, 286

critical points, 235

cross product, 108

cross product terms, 227
cryptography, 341

damping factor, 364
deciphering, 341
degenerate conic, 229
determinant, 71, 267
diagonal entries, 288
diagonal matrix, 42
diagonalizable, 167
differential equation, 178
general solution, 178
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initial condition, 178 geometric multiplicity, 172
order, 178 geometric vectors, 85
dilation, 243, 334 growth matrix, 324
dimension, 141
directed edges, 313 harvest vector, 324
directed graph, 313 harvesting matrix, 353

Hausdorff dimension, 335
Hermitian, 238
Hessenberg’s Theorem, 226
Hessian matrix, 236

discrete random walk, 330
distance between points, 90
distance between vectors, 189
dominance-directed graph, 317
dominant eigenvalue, 282 Hill cipher, 341

dominant eigenvector, 282 homogencous, 12

dot product, 91 homogeneous linear equation, 1

dynamical system, 181 identity matrix, 26

identity operator, 243

image, 46

inconsistent linear system, 3
indefinite form, 231
infinite-dimensional, 136
initial-value problem, 178

inner product, 188

inner product space, 188

inner product space isomorphism, 260
interior mesh points, 328
intermediate demand vector, 67
interpolate, 302

interpolating curve, 302
invariant, 167

eigenspace, 162

eigenvalue, 159

eigenvector, 159

elementary matrix, 33
elementary row operations, 6
elimination procedure, 10
enciphering, 341
end-triangle, 360

entries, 16

Euclidean inner product, 188
Euclidean norm, 173
evaluation transformation, 245
expected payoff, 320

finite-dimensional, 136 inverse, 255

flop, 286 inverse operator, 60
forward phase, 10 invertible, 26
Fourier coefficients, 216 isomorphism, 258

fractal, 336
free variables, 9

function, 46 kernel, 125, 247
fundamental spaces, 154

Jacobi iteration, 328

o leading 1, 8
Gauss-Jordan elimination, 10 leading variables, 9

Gaussilan i}hr'nination, 10 least squares approximation, 216
general so ut?on, 147 left null space, 154
general solution of a system, 10 left nullity, 154

genotype, 347 Leontief equation, 67
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Leontief matrix, 67
Leslie matrix, 350
level curves, 235
line segment, 105

linear combination, 20, 88, 126

linear equation, 1

linear form, 227

linear operator, 242

linear system, 2

linear transformation, 49, 242
linearity conditions, 49
linearly dependent, 131
linearly independent, 131
links, 363

lower triangular matrix, 43

magnitude, 89
main diagonal, 17, 288
maps, 47
Markov chain, 183, 305
matrix, 16

difference, 17

equal, 17

inverse, 26

product, 18

scalar multiple, 18

scalar product, 18

size, 16

sum, 17
matrix inner products, 191
matrix of cofactors, 81
matrix operator, 47
matrix polynomial, 31
matrix transformation, 47
mean square error, 216
minor, 70
modular equivalence, 342
multiplicative inverse, 343

negative definite form, 231
nonharvest vector, 324
nonsingular, 26

norm, 89, 188

normal, 95

normal matrix, 241
normal system, 208
normalize, 89
normalizing, 199
null space, 146
nullity, 152, 250

one-to-one, 251

onto, 251

operator, 47

optimal sustainable yield, 324
ordered n-tuple, 2, 87
ordered pair, 2

ordered triple, 2

orthogonal, 95, 196, 199, 218
orthogonal basis, 200

orthogonal complement, 155, 197

orthogonal projection, 97, 202

orthogonally diagonalizable, 223

orthogonally similar, 223
orthonormal, 199
orthonormal basis, 200
outside demand vector, 67
overdetermined system, 157

parameter, 102

particular solution, 147
partitioned matrix, 19
payoff matrix, 319
percentage error, 285
picture-density, 360

pivot, 15

pivot column, 15

pivot position, 15

pivot row, 15

plaintext, 341
point-normal equations, 95
polygraphic system, 341
polynomial interpolation, 65
positive definite form, 231
power method, 282, 284
power sequence, 282
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principal submatrix, 232 skew-Hermitian, 241
probability, 183 skew-symmetric, 241
probability transition matrix, 363 solution, 2
production vector, 67 span, 126

spectral decomposition, 225

spring constant, 214

range, 46, 247 square matrix, 17

rank 71527 25(0) standard basis for R", 136

recip’rocaf 343 standard basis vectors, 46

reduced r(;w echelon form. 8 standard inner product, 188, 191, 192

reflection operators, 53 standard ma.trlx, 50
regular, 309 standard unit vectors, 90

regular Markov chain, 186 state of a variable, 181
regular matrix, 186 state vector, 181, 306, 363
relative error ’285 steady-state vector, 186

relative maximum. 235 stochastic matrix, 183
relative minimum 7 9235 stochastic processes, 183

replacement matrix, 324 strictly determined, 321
residue, 342 subspace, 120

right-hand rule, 277 subst.itution cipher, 341
sustainable, 353

sustainable harvesting condition, 325
symmetric matrix, 44
system of linear equations, 2

quadratic form, 227

rotation operators, 53
row echelon form, 8
row equivalent, 33
row matrix, 16

row space, 146

row vector, 16
row-column rule, 19

time-varying morph, 360
time-varying warp, 360
trace, 23

saddle point, 235, 321 transformat.i(?n, A7
scalar. 113 composition, 56

scalar multiplication, 113 trans%t?on matrix,‘1‘183
scalar triple product, 110 transition probability, 305
transpose, 22

scalars, 16 _ )

Schur’s Theorem, 226 tr?angular'matrlx, 43

second derivative test, 236 tr?angulatlor.l, 360 )
self-similar, 334 trigonometric polynomial, 216

trivial solution, 12

similar matrices, 167 . )
two-point vector equation, 104

similarity invariant, 167
similarity transformations, 167
similitude, 336 unit Circle, 190

singular, 26 unit sphere, 190
singular values, 287 unit vector. 89. 189

underdetermined system, 157
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unitarily diagonalizable, 241
unitary, 238
unknowns, 2
upper triangular matrix, 43

vector
difference, 86
direction, 85
equivalent vectors, 85, 87
initial point, 85
length, 85, 89
negative, 86
scalar product, 86
sum, 85
terminal point, 85
vector space, 113
vectors, 46
vertex
power, 318
vertex matrix, 313
vertex points, 360
vertices, 313

warp, 360
webgraph, 363

weighted Euclidean inner product, 189

Wronskian, 135

zero matrix, 25

zero subspace, 120

zero transformation, 243
zero vector, 85, 113
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